Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

5697 lines (4952 sloc) 160.547 kb
/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
#include <linux/mempolicy.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/memory.h>
#include <linux/compaction.h>
#include <trace/events/kmem.h>
#include <linux/ftrace_event.h>
#include <linux/memcontrol.h>
#include <linux/prefetch.h>
#include <linux/page-debug-flags.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
* defined in <linux/topology.h>.
*/
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif
/*
* Array of node states.
*/
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
[N_POSSIBLE] = NODE_MASK_ALL,
[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
/*
* When calculating the number of globally allowed dirty pages, there
* is a certain number of per-zone reserves that should not be
* considered dirtyable memory. This is the sum of those reserves
* over all existing zones that contribute dirtyable memory.
*/
unsigned long dirty_balance_reserve __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
#ifdef CONFIG_PM_SLEEP
/*
* The following functions are used by the suspend/hibernate code to temporarily
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
* while devices are suspended. To avoid races with the suspend/hibernate code,
* they should always be called with pm_mutex held (gfp_allowed_mask also should
* only be modified with pm_mutex held, unless the suspend/hibernate code is
* guaranteed not to run in parallel with that modification).
*/
static gfp_t saved_gfp_mask;
void pm_restore_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
if (saved_gfp_mask) {
gfp_allowed_mask = saved_gfp_mask;
saved_gfp_mask = 0;
}
}
void pm_restrict_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
WARN_ON(saved_gfp_mask);
saved_gfp_mask = gfp_allowed_mask;
gfp_allowed_mask &= ~GFP_IOFS;
}
bool pm_suspended_storage(void)
{
if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
return false;
return true;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
int pageblock_order __read_mostly;
#endif
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
256,
#endif
#ifdef CONFIG_ZONE_DMA32
256,
#endif
#ifdef CONFIG_HIGHMEM
32,
#endif
32,
};
EXPORT_SYMBOL(totalram_pages);
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
"DMA32",
#endif
"Normal",
#ifdef CONFIG_HIGHMEM
"HighMem",
#endif
"Movable",
};
int min_free_kbytes = 1024;
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif
int page_group_by_mobility_disabled __read_mostly;
static void set_pageblock_migratetype(struct page *page, int migratetype)
{
if (unlikely(page_group_by_mobility_disabled))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
bool oom_killer_disabled __read_mostly;
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
do {
seq = zone_span_seqbegin(zone);
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
ret = 1;
else if (pfn < zone->zone_start_pfn)
ret = 1;
} while (zone_span_seqretry(zone, seq));
return ret;
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
if (!pfn_valid_within(page_to_pfn(page)))
return 0;
if (zone != page_zone(page))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
return 1;
if (!page_is_consistent(zone, page))
return 1;
return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
return 0;
}
#endif
static void bad_page(struct page *page)
{
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/* Don't complain about poisoned pages */
if (PageHWPoison(page)) {
reset_page_mapcount(page); /* remove PageBuddy */
return;
}
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
goto out;
}
if (nr_unshown) {
printk(KERN_ALERT
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
dump_page(page);
print_modules();
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
reset_page_mapcount(page); /* remove PageBuddy */
add_taint(TAINT_BAD_PAGE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page".
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
* All pages have PG_compound set. All tail pages have their ->first_page
* pointing at the head page.
*
* The first tail page's ->lru.next holds the address of the compound page's
* put_page() function. Its ->lru.prev holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
static void free_compound_page(struct page *page)
{
__free_pages_ok(page, compound_order(page));
}
void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, free_compound_page);
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
__SetPageTail(p);
set_page_count(p, 0);
p->first_page = page;
}
}
/* update __split_huge_page_refcount if you change this function */
static int destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
int bad = 0;
if (unlikely(compound_order(page) != order) ||
unlikely(!PageHead(page))) {
bad_page(page);
bad++;
}
__ClearPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
if (unlikely(!PageTail(p) || (p->first_page != page))) {
bad_page(page);
bad++;
}
__ClearPageTail(p);
}
return bad;
}
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
/*
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
* and __GFP_HIGHMEM from hard or soft interrupt context.
*/
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
for (i = 0; i < (1 << order); i++)
clear_highpage(page + i);
}
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
static int __init debug_guardpage_minorder_setup(char *buf)
{
unsigned long res;
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
return 0;
}
_debug_guardpage_minorder = res;
printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
return 0;
}
__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
static inline void set_page_guard_flag(struct page *page)
{
__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
static inline void clear_page_guard_flag(struct page *page)
{
__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
#else
static inline void set_page_guard_flag(struct page *page) { }
static inline void clear_page_guard_flag(struct page *page) { }
#endif
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
__SetPageBuddy(page);
}
static inline void rmv_page_order(struct page *page)
{
__ClearPageBuddy(page);
set_page_private(page, 0);
}
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline unsigned long
__find_buddy_index(unsigned long page_idx, unsigned int order)
{
return page_idx ^ (1 << order);
}
/*
* This function checks whether a page is free && is the buddy
* we can do coalesce a page and its buddy if
* (a) the buddy is not in a hole &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we set ->_mapcount -2.
* Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline int page_is_buddy(struct page *page, struct page *buddy,
int order)
{
if (!pfn_valid_within(page_to_pfn(buddy)))
return 0;
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
if (page_is_guard(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
if (PageBuddy(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
return 0;
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with _mapcount -2. Page's
* order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- wli
*/
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order,
int migratetype)
{
unsigned long page_idx;
unsigned long combined_idx;
unsigned long uninitialized_var(buddy_idx);
struct page *buddy;
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
return;
VM_BUG_ON(migratetype == -1);
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
VM_BUG_ON(page_idx & ((1 << order) - 1));
VM_BUG_ON(bad_range(zone, page));
while (order < MAX_ORDER-1) {
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
if (!page_is_buddy(page, buddy, order))
break;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
*/
if (page_is_guard(buddy)) {
clear_page_guard_flag(buddy);
set_page_private(page, 0);
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
} else {
list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
}
combined_idx = buddy_idx & page_idx;
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;
}
set_page_order(page, order);
/*
* If this is not the largest possible page, check if the buddy
* of the next-highest order is free. If it is, it's possible
* that pages are being freed that will coalesce soon. In case,
* that is happening, add the free page to the tail of the list
* so it's less likely to be used soon and more likely to be merged
* as a higher order page
*/
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
struct page *higher_page, *higher_buddy;
combined_idx = buddy_idx & page_idx;
higher_page = page + (combined_idx - page_idx);
buddy_idx = __find_buddy_index(combined_idx, order + 1);
higher_buddy = page + (buddy_idx - combined_idx);
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
list_add_tail(&page->lru,
&zone->free_area[order].free_list[migratetype]);
goto out;
}
}
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
zone->free_area[order].nr_free++;
}
/*
* free_page_mlock() -- clean up attempts to free and mlocked() page.
* Page should not be on lru, so no need to fix that up.
* free_pages_check() will verify...
*/
static inline void free_page_mlock(struct page *page)
{
__dec_zone_page_state(page, NR_MLOCK);
__count_vm_event(UNEVICTABLE_MLOCKFREED);
}
static inline int free_pages_check(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
(mem_cgroup_bad_page_check(page)))) {
bad_page(page);
return 1;
}
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
}
/*
* Frees a number of pages from the PCP lists
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static void free_pcppages_bulk(struct zone *zone, int count,
struct per_cpu_pages *pcp)
{
int migratetype = 0;
int batch_free = 0;
int to_free = count;
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
while (to_free) {
struct page *page;
struct list_head *list;
/*
* Remove pages from lists in a round-robin fashion. A
* batch_free count is maintained that is incremented when an
* empty list is encountered. This is so more pages are freed
* off fuller lists instead of spinning excessively around empty
* lists
*/
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
/* This is the only non-empty list. Free them all. */
if (batch_free == MIGRATE_PCPTYPES)
batch_free = to_free;
do {
page = list_entry(list->prev, struct page, lru);
/* must delete as __free_one_page list manipulates */
list_del(&page->lru);
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
__free_one_page(page, zone, 0, page_private(page));
trace_mm_page_pcpu_drain(page, 0, page_private(page));
} while (--to_free && --batch_free && !list_empty(list));
}
__mod_zone_page_state(zone, NR_FREE_PAGES, count);
spin_unlock(&zone->lock);
}
static void free_one_page(struct zone *zone, struct page *page, int order,
int migratetype)
{
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__free_one_page(page, zone, order, migratetype);
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
spin_unlock(&zone->lock);
}
static bool free_pages_prepare(struct page *page, unsigned int order)
{
int i;
int bad = 0;
trace_mm_page_free(page, order);
kmemcheck_free_shadow(page, order);
if (PageAnon(page))
page->mapping = NULL;
for (i = 0; i < (1 << order); i++)
bad += free_pages_check(page + i);
if (bad)
return false;
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
arch_free_page(page, order);
kernel_map_pages(page, 1 << order, 0);
return true;
}
static void __free_pages_ok(struct page *page, unsigned int order)
{
unsigned long flags;
int wasMlocked = __TestClearPageMlocked(page);
if (!free_pages_prepare(page, order))
return;
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_events(PGFREE, 1 << order);
free_one_page(page_zone(page), page, order,
get_pageblock_migratetype(page));
local_irq_restore(flags);
}
void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
{
unsigned int nr_pages = 1 << order;
unsigned int loop;
prefetchw(page);
for (loop = 0; loop < nr_pages; loop++) {
struct page *p = &page[loop];
if (loop + 1 < nr_pages)
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
set_page_refcounted(page);
__free_pages(page, order);
}
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- wli
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
#ifdef CONFIG_DEBUG_PAGEALLOC
if (high < debug_guardpage_minorder()) {
/*
* Mark as guard pages (or page), that will allow to
* merge back to allocator when buddy will be freed.
* Corresponding page table entries will not be touched,
* pages will stay not present in virtual address space
*/
INIT_LIST_HEAD(&page[size].lru);
set_page_guard_flag(&page[size]);
set_page_private(&page[size], high);
/* Guard pages are not available for any usage */
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
continue;
}
#endif
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
}
}
/*
* This page is about to be returned from the page allocator
*/
static inline int check_new_page(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
(mem_cgroup_bad_page_check(page)))) {
bad_page(page);
return 1;
}
return 0;
}
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *p = page + i;
if (unlikely(check_new_page(p)))
return 1;
}
set_page_private(page, 0);
set_page_refcounted(page);
arch_alloc_page(page, order);
kernel_map_pages(page, 1 << order, 1);
if (gfp_flags & __GFP_ZERO)
prep_zero_page(page, order, gfp_flags);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
return 0;
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area * area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
expand(zone, page, order, current_order, area, migratetype);
return page;
}
return NULL;
}
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
};
/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*/
static int move_freepages(struct zone *zone,
struct page *start_page, struct page *end_page,
int migratetype)
{
struct page *page;
unsigned long order;
int pages_moved = 0;
#ifndef CONFIG_HOLES_IN_ZONE
/*
* page_zone is not safe to call in this context when
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
* anyway as we check zone boundaries in move_freepages_block().
* Remove at a later date when no bug reports exist related to
* grouping pages by mobility
*/
BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif
for (page = start_page; page <= end_page;) {
/* Make sure we are not inadvertently changing nodes */
VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
}
if (!PageBuddy(page)) {
page++;
continue;
}
order = page_order(page);
list_move(&page->lru,
&zone->free_area[order].free_list[migratetype]);
page += 1 << order;
pages_moved += 1 << order;
}
return pages_moved;
}
static int move_freepages_block(struct zone *zone, struct page *page,
int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
start_pfn = page_to_pfn(page);
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
start_page = pfn_to_page(start_pfn);
end_page = start_page + pageblock_nr_pages - 1;
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (start_pfn < zone->zone_start_pfn)
start_page = page;
if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
return 0;
return move_freepages(zone, start_page, end_page, migratetype);
}
static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
int nr_pageblocks = 1 << (start_order - pageblock_order);
while (nr_pageblocks--) {
set_pageblock_migratetype(pageblock_page, migratetype);
pageblock_page += pageblock_nr_pages;
}
}
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
struct free_area * area;
int current_order;
struct page *page;
int migratetype, i;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
--current_order) {
for (i = 0; i < MIGRATE_TYPES - 1; i++) {
migratetype = fallbacks[start_migratetype][i];
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)
continue;
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
area->nr_free--;
/*
* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* aggressive about taking ownership of free pages
*/
if (unlikely(current_order >= (pageblock_order >> 1)) ||
start_migratetype == MIGRATE_RECLAIMABLE ||
page_group_by_mobility_disabled) {
unsigned long pages;
pages = move_freepages_block(zone, page,
start_migratetype);
/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)) ||
page_group_by_mobility_disabled)
set_pageblock_migratetype(page,
start_migratetype);
migratetype = start_migratetype;
}
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order)
change_pageblock_range(page, current_order,
start_migratetype);
expand(zone, page, order, current_order, area, migratetype);
trace_mm_page_alloc_extfrag(page, order, current_order,
start_migratetype, migratetype);
return page;
}
}
return NULL;
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order,
int migratetype)
{
struct page *page;
retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
page = __rmqueue_fallback(zone, order, migratetype);
/*
* Use MIGRATE_RESERVE rather than fail an allocation. goto
* is used because __rmqueue_smallest is an inline function
* and we want just one call site
*/
if (!page) {
migratetype = MIGRATE_RESERVE;
goto retry_reserve;
}
}
trace_mm_page_alloc_zone_locked(page, order, migratetype);
return page;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
int migratetype, int cold)
{
int i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
struct page *page = __rmqueue(zone, order, migratetype);
if (unlikely(page == NULL))
break;
/*
* Split buddy pages returned by expand() are received here
* in physical page order. The page is added to the callers and
* list and the list head then moves forward. From the callers
* perspective, the linked list is ordered by page number in
* some conditions. This is useful for IO devices that can
* merge IO requests if the physical pages are ordered
* properly.
*/
if (likely(cold == 0))
list_add(&page->lru, list);
else
list_add_tail(&page->lru, list);
set_page_private(page, migratetype);
list = &page->lru;
}
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
spin_unlock(&zone->lock);
return i;
}
#ifdef CONFIG_NUMA
/*
* Called from the vmstat counter updater to drain pagesets of this
* currently executing processor on remote nodes after they have
* expired.
*
* Note that this function must be called with the thread pinned to
* a single processor.
*/
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
unsigned long flags;
int to_drain;
local_irq_save(flags);
if (pcp->count >= pcp->batch)
to_drain = pcp->batch;
else
to_drain = pcp->count;
free_pcppages_bulk(zone, to_drain, pcp);
pcp->count -= to_drain;
local_irq_restore(flags);
}
#endif
/*
* Drain pages of the indicated processor.
*
* The processor must either be the current processor and the
* thread pinned to the current processor or a processor that
* is not online.
*/
static void drain_pages(unsigned int cpu)
{
unsigned long flags;
struct zone *zone;
for_each_populated_zone(zone) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
local_irq_save(flags);
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
if (pcp->count) {
free_pcppages_bulk(zone, pcp->count, pcp);
pcp->count = 0;
}
local_irq_restore(flags);
}
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
void drain_local_pages(void *arg)
{
drain_pages(smp_processor_id());
}
/*
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
*
* Note that this code is protected against sending an IPI to an offline
* CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
* on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
* nothing keeps CPUs from showing up after we populated the cpumask and
* before the call to on_each_cpu_mask().
*/
void drain_all_pages(void)
{
int cpu;
struct per_cpu_pageset *pcp;
struct zone *zone;
/*
* Allocate in the BSS so we wont require allocation in
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
*/
static cpumask_t cpus_with_pcps;
/*
* We don't care about racing with CPU hotplug event
* as offline notification will cause the notified
* cpu to drain that CPU pcps and on_each_cpu_mask
* disables preemption as part of its processing
*/
for_each_online_cpu(cpu) {
bool has_pcps = false;
for_each_populated_zone(zone) {
pcp = per_cpu_ptr(zone->pageset, cpu);
if (pcp->pcp.count) {
has_pcps = true;
break;
}
}
if (has_pcps)
cpumask_set_cpu(cpu, &cpus_with_pcps);
else
cpumask_clear_cpu(cpu, &cpus_with_pcps);
}
on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
}
#ifdef CONFIG_HIBERNATION
void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
int order, t;
struct list_head *curr;
if (!zone->spanned_pages)
return;
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!swsusp_page_is_forbidden(page))
swsusp_unset_page_free(page);
}
for_each_migratetype_order(order, t) {
list_for_each(curr, &zone->free_area[order].free_list[t]) {
unsigned long i;
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
swsusp_set_page_free(pfn_to_page(pfn + i));
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif /* CONFIG_PM */
/*
* Free a 0-order page
* cold == 1 ? free a cold page : free a hot page
*/
void free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
int migratetype;
int wasMlocked = __TestClearPageMlocked(page);
if (!free_pages_prepare(page, 0))
return;
migratetype = get_pageblock_migratetype(page);
set_page_private(page, migratetype);
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_event(PGFREE);
/*
* We only track unmovable, reclaimable and movable on pcp lists.
* Free ISOLATE pages back to the allocator because they are being
* offlined but treat RESERVE as movable pages so we can get those
* areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
if (migratetype >= MIGRATE_PCPTYPES) {
if (unlikely(migratetype == MIGRATE_ISOLATE)) {
free_one_page(zone, page, 0, migratetype);
goto out;
}
migratetype = MIGRATE_MOVABLE;
}
pcp = &this_cpu_ptr(zone->pageset)->pcp;
if (cold)
list_add_tail(&page->lru, &pcp->lists[migratetype]);
else
list_add(&page->lru, &pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
free_pcppages_bulk(zone, pcp->batch, pcp);
pcp->count -= pcp->batch;
}
out:
local_irq_restore(flags);
}
/*
* Free a list of 0-order pages
*/
void free_hot_cold_page_list(struct list_head *list, int cold)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
trace_mm_page_free_batched(page, cold);
free_hot_cold_page(page, cold);
}
}
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
void split_page(struct page *page, unsigned int order)
{
int i;
VM_BUG_ON(PageCompound(page));
VM_BUG_ON(!page_count(page));
#ifdef CONFIG_KMEMCHECK
/*
* Split shadow pages too, because free(page[0]) would
* otherwise free the whole shadow.
*/
if (kmemcheck_page_is_tracked(page))
split_page(virt_to_page(page[0].shadow), order);
#endif
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
}
/*
* Similar to split_page except the page is already free. As this is only
* being used for migration, the migratetype of the block also changes.
* As this is called with interrupts disabled, the caller is responsible
* for calling arch_alloc_page() and kernel_map_page() after interrupts
* are enabled.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
int split_free_page(struct page *page)
{
unsigned int order;
unsigned long watermark;
struct zone *zone;
BUG_ON(!PageBuddy(page));
zone = page_zone(page);
order = page_order(page);
/* Obey watermarks as if the page was being allocated */
watermark = low_wmark_pages(zone) + (1 << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
return 0;
/* Remove page from free list */
list_del(&page->lru);
zone->free_area[order].nr_free--;
rmv_page_order(page);
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
/* Split into individual pages */
set_page_refcounted(page);
split_page(page, order);
if (order >= pageblock_order - 1) {
struct page *endpage = page + (1 << order) - 1;
for (; page < endpage; page += pageblock_nr_pages)
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
}
return 1 << order;
}
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
struct zone *zone, int order, gfp_t gfp_flags,
int migratetype)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
again:
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
struct list_head *list;
local_irq_save(flags);
pcp = &this_cpu_ptr(zone->pageset)->pcp;
list = &pcp->lists[migratetype];
if (list_empty(list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
migratetype, cold);
if (unlikely(list_empty(list)))
goto failed;
}
if (cold)
page = list_entry(list->prev, struct page, lru);
else
page = list_entry(list->next, struct page, lru);
list_del(&page->lru);
pcp->count--;
} else {
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
/*
* __GFP_NOFAIL is not to be used in new code.
*
* All __GFP_NOFAIL callers should be fixed so that they
* properly detect and handle allocation failures.
*
* We most definitely don't want callers attempting to
* allocate greater than order-1 page units with
* __GFP_NOFAIL.
*/
WARN_ON_ONCE(order > 1);
}
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order, migratetype);
spin_unlock(&zone->lock);
if (!page)
goto failed;
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
}
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone, gfp_flags);
local_irq_restore(flags);
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
goto again;
return page;
failed:
local_irq_restore(flags);
return NULL;
}
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN WMARK_MIN
#define ALLOC_WMARK_LOW WMARK_LOW
#define ALLOC_WMARK_HIGH WMARK_HIGH
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#ifdef CONFIG_FAIL_PAGE_ALLOC
static struct {
struct fault_attr attr;
u32 ignore_gfp_highmem;
u32 ignore_gfp_wait;
u32 min_order;
} fail_page_alloc = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_wait = 1,
.ignore_gfp_highmem = 1,
.min_order = 1,
};
static int __init setup_fail_page_alloc(char *str)
{
return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);
static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
if (order < fail_page_alloc.min_order)
return 0;
if (gfp_mask & __GFP_NOFAIL)
return 0;
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
return 0;
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
return 0;
return should_fail(&fail_page_alloc.attr, 1 << order);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
static int __init fail_page_alloc_debugfs(void)
{
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
&fail_page_alloc.attr);
if (IS_ERR(dir))
return PTR_ERR(dir);
if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
&fail_page_alloc.ignore_gfp_wait))
goto fail;
if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
&fail_page_alloc.ignore_gfp_highmem))
goto fail;
if (!debugfs_create_u32("min-order", mode, dir,
&fail_page_alloc.min_order))
goto fail;
return 0;
fail:
debugfs_remove_recursive(dir);
return -ENOMEM;
}
late_initcall(fail_page_alloc_debugfs);
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
#else /* CONFIG_FAIL_PAGE_ALLOC */
static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
return 0;
}
#endif /* CONFIG_FAIL_PAGE_ALLOC */
/*
* Return true if free pages are above 'mark'. This takes into account the order
* of the allocation.
*/
static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags, long free_pages)
{
/* free_pages my go negative - that's OK */
long min = mark;
int o;
free_pages -= (1 << order) - 1;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
min -= min / 4;
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return false;
for (o = 0; o < order; o++) {
/* At the next order, this order's pages become unavailable */
free_pages -= z->free_area[o].nr_free << o;
/* Require fewer higher order pages to be free */
min >>= 1;
if (free_pages <= min)
return false;
}
return true;
}
bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
zone_page_state(z, NR_FREE_PAGES));
}
bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
long free_pages = zone_page_state(z, NR_FREE_PAGES);
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
free_pages);
}
#ifdef CONFIG_NUMA
/*
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
* skip over zones that are not allowed by the cpuset, or that have
* been recently (in last second) found to be nearly full. See further
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over a lot of full or unallowed zones.
*
* If the zonelist cache is present in the passed in zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
*
* If the zonelist cache is not available for this zonelist, does
* nothing and returns NULL.
*
* If the fullzones BITMAP in the zonelist cache is stale (more than
* a second since last zap'd) then we zap it out (clear its bits.)
*
* We hold off even calling zlc_setup, until after we've checked the
* first zone in the zonelist, on the theory that most allocations will
* be satisfied from that first zone, so best to examine that zone as
* quickly as we can.
*/
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
nodemask_t *allowednodes; /* zonelist_cache approximation */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return NULL;
if (time_after(jiffies, zlc->last_full_zap + HZ)) {
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
zlc->last_full_zap = jiffies;
}
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
&cpuset_current_mems_allowed :
&node_states[N_HIGH_MEMORY];
return allowednodes;
}
/*
* Given 'z' scanning a zonelist, run a couple of quick checks to see
* if it is worth looking at further for free memory:
* 1) Check that the zone isn't thought to be full (doesn't have its
* bit set in the zonelist_cache fullzones BITMAP).
* 2) Check that the zones node (obtained from the zonelist_cache
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
* Return true (non-zero) if zone is worth looking at further, or
* else return false (zero) if it is not.
*
* This check -ignores- the distinction between various watermarks,
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
* found to be full for any variation of these watermarks, it will
* be considered full for up to one second by all requests, unless
* we are so low on memory on all allowed nodes that we are forced
* into the second scan of the zonelist.
*
* In the second scan we ignore this zonelist cache and exactly
* apply the watermarks to all zones, even it is slower to do so.
* We are low on memory in the second scan, and should leave no stone
* unturned looking for a free page.
*/
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
int n; /* node that zone *z is on */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return 1;
i = z - zonelist->_zonerefs;
n = zlc->z_to_n[i];
/* This zone is worth trying if it is allowed but not full */
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
}
/*
* Given 'z' scanning a zonelist, set the corresponding bit in
* zlc->fullzones, so that subsequent attempts to allocate a page
* from that zone don't waste time re-examining it.
*/
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
i = z - zonelist->_zonerefs;
set_bit(i, zlc->fullzones);
}
/*
* clear all zones full, called after direct reclaim makes progress so that
* a zone that was recently full is not skipped over for up to a second
*/
static void zlc_clear_zones_full(struct zonelist *zonelist)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
}
#else /* CONFIG_NUMA */
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
return NULL;
}
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
return 1;
}
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
}
static void zlc_clear_zones_full(struct zonelist *zonelist)
{
}
#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
struct zone *preferred_zone, int migratetype)
{
struct zoneref *z;
struct page *page = NULL;
int classzone_idx;
struct zone *zone;
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
int zlc_active = 0; /* set if using zonelist_cache */
int did_zlc_setup = 0; /* just call zlc_setup() one time */
classzone_idx = zone_idx(preferred_zone);
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
for_each_zone_zonelist_nodemask(zone, z, zonelist,
high_zoneidx, nodemask) {
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
continue;
/*
* When allocating a page cache page for writing, we
* want to get it from a zone that is within its dirty
* limit, such that no single zone holds more than its
* proportional share of globally allowed dirty pages.
* The dirty limits take into account the zone's
* lowmem reserves and high watermark so that kswapd
* should be able to balance it without having to
* write pages from its LRU list.
*
* This may look like it could increase pressure on
* lower zones by failing allocations in higher zones
* before they are full. But the pages that do spill
* over are limited as the lower zones are protected
* by this very same mechanism. It should not become
* a practical burden to them.
*
* XXX: For now, allow allocations to potentially
* exceed the per-zone dirty limit in the slowpath
* (ALLOC_WMARK_LOW unset) before going into reclaim,
* which is important when on a NUMA setup the allowed
* zones are together not big enough to reach the
* global limit. The proper fix for these situations
* will require awareness of zones in the
* dirty-throttling and the flusher threads.
*/
if ((alloc_flags & ALLOC_WMARK_LOW) &&
(gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
goto this_zone_full;
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
int ret;
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
if (zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto try_this_zone;
if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
/*
* we do zlc_setup if there are multiple nodes
* and before considering the first zone allowed
* by the cpuset.
*/
allowednodes = zlc_setup(zonelist, alloc_flags);
zlc_active = 1;
did_zlc_setup = 1;
}
if (zone_reclaim_mode == 0)
goto this_zone_full;
/*
* As we may have just activated ZLC, check if the first
* eligible zone has failed zone_reclaim recently.
*/
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
ret = zone_reclaim(zone, gfp_mask, order);
switch (ret) {
case ZONE_RECLAIM_NOSCAN:
/* did not scan */
continue;
case ZONE_RECLAIM_FULL:
/* scanned but unreclaimable */
continue;
default:
/* did we reclaim enough */
if (!zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto this_zone_full;
}
}
try_this_zone:
page = buffered_rmqueue(preferred_zone, zone, order,
gfp_mask, migratetype);
if (page)
break;
this_zone_full:
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
}
if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
/* Disable zlc cache for second zonelist scan */
zlc_active = 0;
goto zonelist_scan;
}
return page;
}
/*
* Large machines with many possible nodes should not always dump per-node
* meminfo in irq context.
*/
static inline bool should_suppress_show_mem(void)
{
bool ret = false;
#if NODES_SHIFT > 8
ret = in_interrupt();
#endif
return ret;
}
static DEFINE_RATELIMIT_STATE(nopage_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
{
unsigned int filter = SHOW_MEM_FILTER_NODES;
if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
debug_guardpage_minorder() > 0)
return;
/*
* This documents exceptions given to allocations in certain
* contexts that are allowed to allocate outside current's set
* of allowed nodes.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
if (test_thread_flag(TIF_MEMDIE) ||
(current->flags & (PF_MEMALLOC | PF_EXITING)))
filter &= ~SHOW_MEM_FILTER_NODES;
if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
filter &= ~SHOW_MEM_FILTER_NODES;
if (fmt) {
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_warn("%pV", &vaf);
va_end(args);
}
pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
current->comm, order, gfp_mask);
dump_stack();
if (!should_suppress_show_mem())
show_mem(filter);
}
static inline int
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
unsigned long did_some_progress,
unsigned long pages_reclaimed)
{
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
return 0;
/* Always retry if specifically requested */
if (gfp_mask & __GFP_NOFAIL)
return 1;
/*
* Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
* making forward progress without invoking OOM. Suspend also disables
* storage devices so kswapd will not help. Bail if we are suspending.
*/
if (!did_some_progress && pm_suspended_storage())
return 0;
/*
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
* means __GFP_NOFAIL, but that may not be true in other
* implementations.
*/
if (order <= PAGE_ALLOC_COSTLY_ORDER)
return 1;
/*
* For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
* specified, then we retry until we no longer reclaim any pages
* (above), or we've reclaimed an order of pages at least as
* large as the allocation's order. In both cases, if the
* allocation still fails, we stop retrying.
*/
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
return 1;
return 0;
}
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
/* Acquire the OOM killer lock for the zones in zonelist */
if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
schedule_timeout_uninterruptible(1);
return NULL;
}
/*
* Go through the zonelist yet one more time, keep very high watermark
* here, this is only to catch a parallel oom killing, we must fail if
* we're still under heavy pressure.
*/
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
order, zonelist, high_zoneidx,
ALLOC_WMARK_HIGH|ALLOC_CPUSET,
preferred_zone, migratetype);
if (page)
goto out;
if (!(gfp_mask & __GFP_NOFAIL)) {
/* The OOM killer will not help higher order allocs */
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto out;
/* The OOM killer does not needlessly kill tasks for lowmem */
if (high_zoneidx < ZONE_NORMAL)
goto out;
/*
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
* The caller should handle page allocation failure by itself if
* it specifies __GFP_THISNODE.
* Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
*/
if (gfp_mask & __GFP_THISNODE)
goto out;
}
/* Exhausted what can be done so it's blamo time */
out_of_memory(zonelist, gfp_mask, order, nodemask, false);
out:
clear_zonelist_oom(zonelist, gfp_mask);
return page;
}
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, bool sync_migration,
bool *deferred_compaction,
unsigned long *did_some_progress)
{
struct page *page;
if (!order)
return NULL;
if (compaction_deferred(preferred_zone, order)) {
*deferred_compaction = true;
return NULL;
}
current->flags |= PF_MEMALLOC;
*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
nodemask, sync_migration);
current->flags &= ~PF_MEMALLOC;
if (*did_some_progress != COMPACT_SKIPPED) {
/* Page migration frees to the PCP lists but we want merging */
drain_pages(get_cpu());
put_cpu();
page = get_page_from_freelist(gfp_mask, nodemask,
order, zonelist, high_zoneidx,
alloc_flags, preferred_zone,
migratetype);
if (page) {
preferred_zone->compact_considered = 0;
preferred_zone->compact_defer_shift = 0;
if (order >= preferred_zone->compact_order_failed)
preferred_zone->compact_order_failed = order + 1;
count_vm_event(COMPACTSUCCESS);
return page;
}
/*
* It's bad if compaction run occurs and fails.
* The most likely reason is that pages exist,
* but not enough to satisfy watermarks.
*/
count_vm_event(COMPACTFAIL);
/*
* As async compaction considers a subset of pageblocks, only
* defer if the failure was a sync compaction failure.
*/
if (sync_migration)
defer_compaction(preferred_zone, order);
cond_resched();
}
return NULL;
}
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, bool sync_migration,
bool *deferred_compaction,
unsigned long *did_some_progress)
{
return NULL;
}
#endif /* CONFIG_COMPACTION */
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, unsigned long *did_some_progress)
{
struct page *page = NULL;
struct reclaim_state reclaim_state;
bool drained = false;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
current->flags |= PF_MEMALLOC;
lockdep_set_current_reclaim_state(gfp_mask);
reclaim_state.reclaimed_slab = 0;
current->reclaim_state = &reclaim_state;
*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
current->reclaim_state = NULL;
lockdep_clear_current_reclaim_state();
current->flags &= ~PF_MEMALLOC;
cond_resched();
if (unlikely(!(*did_some_progress)))
return NULL;
/* After successful reclaim, reconsider all zones for allocation */
if (NUMA_BUILD)
zlc_clear_zones_full(zonelist);
retry:
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx,
alloc_flags, preferred_zone,
migratetype);
/*
* If an allocation failed after direct reclaim, it could be because
* pages are pinned on the per-cpu lists. Drain them and try again
*/
if (!page && !drained) {
drain_all_pages();
drained = true;
goto retry;
}
return page;
}
/*
* This is called in the allocator slow-path if the allocation request is of
* sufficient urgency to ignore watermarks and take other desperate measures
*/
static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
do {
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (!page && gfp_mask & __GFP_NOFAIL)
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
} while (!page && (gfp_mask & __GFP_NOFAIL));
return page;
}
static inline
void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
enum zone_type high_zoneidx,
enum zone_type classzone_idx)
{
struct zoneref *z;
struct zone *zone;
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
wakeup_kswapd(zone, order, classzone_idx);
}
static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)
{
int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
const gfp_t wait = gfp_mask & __GFP_WAIT;
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
*/
alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
if (!wait) {
/*
* Not worth trying to allocate harder for
* __GFP_NOMEMALLOC even if it can't schedule.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
alloc_flags |= ALLOC_HARDER;
/*
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(current)) && !in_interrupt())
alloc_flags |= ALLOC_HARDER;
if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
if (!in_interrupt() &&
((current->flags & PF_MEMALLOC) ||
unlikely(test_thread_flag(TIF_MEMDIE))))
alloc_flags |= ALLOC_NO_WATERMARKS;
}
return alloc_flags;
}
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
const gfp_t wait = gfp_mask & __GFP_WAIT;
struct page *page = NULL;
int alloc_flags;
unsigned long pages_reclaimed = 0;
unsigned long did_some_progress;
bool sync_migration = false;
bool deferred_compaction = false;
/*
* In the slowpath, we sanity check order to avoid ever trying to
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
* be using allocators in order of preference for an area that is
* too large.
*/
if (order >= MAX_ORDER) {
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
return NULL;
}
/*
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
* __GFP_NOWARN set) should not cause reclaim since the subsystem
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
* using a larger set of nodes after it has established that the
* allowed per node queues are empty and that nodes are
* over allocated.
*/
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
goto nopage;
restart:
if (!(gfp_mask & __GFP_NO_KSWAPD))
wake_all_kswapd(order, zonelist, high_zoneidx,
zone_idx(preferred_zone));
/*
* OK, we're below the kswapd watermark and have kicked background
* reclaim. Now things get more complex, so set up alloc_flags according
* to how we want to proceed.
*/
alloc_flags = gfp_to_alloc_flags(gfp_mask);
/*
* Find the true preferred zone if the allocation is unconstrained by
* cpusets.
*/
if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
first_zones_zonelist(zonelist, high_zoneidx, NULL,
&preferred_zone);
rebalance:
/* This is the last chance, in general, before the goto nopage. */
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (page)
goto got_pg;
/* Allocate without watermarks if the context allows */
if (alloc_flags & ALLOC_NO_WATERMARKS) {
page = __alloc_pages_high_priority(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
if (page)
goto got_pg;
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
/* Avoid recursion of direct reclaim */
if (current->flags & PF_MEMALLOC)
goto nopage;
/* Avoid allocations with no watermarks from looping endlessly */
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
goto nopage;
/*
* Try direct compaction. The first pass is asynchronous. Subsequent
* attempts after direct reclaim are synchronous
*/
page = __alloc_pages_direct_compact(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, sync_migration,
&deferred_compaction,
&did_some_progress);
if (page)
goto got_pg;
sync_migration = true;
/*
* If compaction is deferred for high-order allocations, it is because
* sync compaction recently failed. In this is the case and the caller
* has requested the system not be heavily disrupted, fail the
* allocation now instead of entering direct reclaim
*/
if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
goto nopage;
/* Try direct reclaim and then allocating */
page = __alloc_pages_direct_reclaim(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, &did_some_progress);
if (page)
goto got_pg;
/*
* If we failed to make any progress reclaiming, then we are
* running out of options and have to consider going OOM
*/
if (!did_some_progress) {
if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
if (oom_killer_disabled)
goto nopage;
/* Coredumps can quickly deplete all memory reserves */
if ((current->flags & PF_DUMPCORE) &&
!(gfp_mask & __GFP_NOFAIL))
goto nopage;
page = __alloc_pages_may_oom(gfp_mask, order,
zonelist, high_zoneidx,
nodemask, preferred_zone,
migratetype);
if (page)
goto got_pg;
if (!(gfp_mask & __GFP_NOFAIL)) {
/*
* The oom killer is not called for high-order
* allocations that may fail, so if no progress
* is being made, there are no other options and
* retrying is unlikely to help.
*/
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto nopage;
/*
* The oom killer is not called for lowmem
* allocations to prevent needlessly killing
* innocent tasks.
*/
if (high_zoneidx < ZONE_NORMAL)
goto nopage;
}
goto restart;
}
}
/* Check if we should retry the allocation */
pages_reclaimed += did_some_progress;
if (should_alloc_retry(gfp_mask, order, did_some_progress,
pages_reclaimed)) {
/* Wait for some write requests to complete then retry */
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
goto rebalance;
} else {
/*
* High-order allocations do not necessarily loop after
* direct reclaim and reclaim/compaction depends on compaction
* being called after reclaim so call directly if necessary
*/
page = __alloc_pages_direct_compact(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, sync_migration,
&deferred_compaction,
&did_some_progress);
if (page)
goto got_pg;
}
nopage:
warn_alloc_failed(gfp_mask, order, NULL);
return page;
got_pg:
if (kmemcheck_enabled)
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*/
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask)
{
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
struct zone *preferred_zone;
struct page *page = NULL;
int migratetype = allocflags_to_migratetype(gfp_mask);
unsigned int cpuset_mems_cookie;
gfp_mask &= gfp_allowed_mask;
lockdep_trace_alloc(gfp_mask);
might_sleep_if(gfp_mask & __GFP_WAIT);
if (should_fail_alloc_page(gfp_mask, order))
return NULL;
/*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
* of GFP_THISNODE and a memoryless node
*/
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
/* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx,
nodemask ? : &cpuset_current_mems_allowed,
&preferred_zone);
if (!preferred_zone)
goto out;
/* First allocation attempt */
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
preferred_zone, migratetype);
if (unlikely(!page))
page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
out:
/*
* When updating a task's mems_allowed, it is possible to race with
* parallel threads in such a way that an allocation can fail while
* the mask is being updated. If a page allocation is about to fail,
* check if the cpuset changed during allocation and if so, retry.
*/
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);
/*
* Common helper functions.
*/
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *page;
/*
* __get_free_pages() returns a 32-bit address, which cannot represent
* a highmem page
*/
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
unsigned long get_zeroed_page(gfp_t gfp_mask)
{
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
}
EXPORT_SYMBOL(get_zeroed_page);
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
if (order == 0)
free_hot_cold_page(page, 0);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
{
if (addr) {
unsigned long alloc_end = addr + (PAGE_SIZE << order);
unsigned long used = addr + PAGE_ALIGN(size);
split_page(virt_to_page((void *)addr), order);
while (used < alloc_end) {
free_page(used);
used += PAGE_SIZE;
}
}
return (void *)addr;
}
/**
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* This function is similar to alloc_pages(), except that it allocates the
* minimum number of pages to satisfy the request. alloc_pages() can only
* allocate memory in power-of-two pages.
*
* This function is also limited by MAX_ORDER.
*
* Memory allocated by this function must be released by free_pages_exact().
*/
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
unsigned long addr;
addr = __get_free_pages(gfp_mask, order);
return make_alloc_exact(addr, order, size);
}
EXPORT_SYMBOL(alloc_pages_exact);
/**
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
* pages on a node.
* @nid: the preferred node ID where memory should be allocated
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
* back.
* Note this is not alloc_pages_exact_node() which allocates on a specific node,
* but is not exact.
*/
void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
{
unsigned order = get_order(size);
struct page *p = alloc_pages_node(nid, gfp_mask, order);
if (!p)
return NULL;
return make_alloc_exact((unsigned long)page_address(p), order, size);
}
EXPORT_SYMBOL(alloc_pages_exact_nid);
/**
* free_pages_exact - release memory allocated via alloc_pages_exact()
* @virt: the value returned by alloc_pages_exact.
* @size: size of allocation, same value as passed to alloc_pages_exact().
*
* Release the memory allocated by a previous call to alloc_pages_exact.
*/
void free_pages_exact(void *virt, size_t size)
{
unsigned long addr = (unsigned long)virt;
unsigned long end = addr + PAGE_ALIGN(size);
while (addr < end) {
free_page(addr);
addr += PAGE_SIZE;
}
}
EXPORT_SYMBOL(free_pages_exact);
static unsigned int nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone;
/* Just pick one node, since fallback list is circular */
unsigned int sum = 0;
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->present_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
}
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}
static inline void show_node(struct zone *zone)
{
if (NUMA_BUILD)
printk("Node %d ", zone_to_nid(zone));
}
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = global_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
val->totalram = pgdat->node_present_pages;
val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
#else
val->totalhigh = 0;
val->freehigh = 0;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
/*
* Determine whether the node should be displayed or not, depending on whether
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
*/
bool skip_free_areas_node(unsigned int flags, int nid)
{
bool ret = false;
unsigned int cpuset_mems_cookie;
if (!(flags & SHOW_MEM_FILTER_NODES))
goto out;
do {
cpuset_mems_cookie = get_mems_allowed();
ret = !node_isset(nid, cpuset_current_mems_allowed);
} while (!put_mems_allowed(cpuset_mems_cookie));
out:
return ret;
}
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
* Suppresses nodes that are not allowed by current's cpuset if
* SHOW_MEM_FILTER_NODES is passed.
*/
void show_free_areas(unsigned int filter)
{
int cpu;
struct zone *zone;
for_each_populated_zone(zone) {
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s per-cpu:\n", zone->name);
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pageset;
pageset = per_cpu_ptr(zone->pageset, cpu);
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
cpu, pageset->pcp.high,
pageset->pcp.batch, pageset->pcp.count);
}
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
" unevictable:%lu"
" dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
global_page_state(NR_ACTIVE_ANON),
global_page_state(NR_INACTIVE_ANON),
global_page_state(NR_ISOLATED_ANON),
global_page_state(NR_ACTIVE_FILE),
global_page_state(NR_INACTIVE_FILE),
global_page_state(NR_ISOLATED_FILE),
global_page_state(NR_UNEVICTABLE),
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
global_page_state(NR_FREE_PAGES),
global_page_state(NR_SLAB_RECLAIMABLE),
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_page_state(NR_FILE_MAPPED),
global_page_state(NR_SHMEM),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE));
for_each_populated_zone(zone) {
int i;
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" isolated(anon):%lukB"
" isolated(file):%lukB"
" present:%lukB"
" mlocked:%lukB"
" dirty:%lukB"
" writeback:%lukB"
" mapped:%lukB"
" shmem:%lukB"
" slab_reclaimable:%lukB"
" slab_unreclaimable:%lukB"
" kernel_stack:%lukB"
" pagetables:%lukB"
" unstable:%lukB"
" bounce:%lukB"
" writeback_tmp:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(min_wmark_pages(zone)),
K(low_wmark_pages(zone)),
K(high_wmark_pages(zone)),
K(zone_page_state(zone, NR_ACTIVE_ANON)),
K(zone_page_state(zone, NR_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ACTIVE_FILE)),
K(zone_page_state(zone, NR_INACTIVE_FILE)),
K(zone_page_state(zone, NR_UNEVICTABLE)),
K(zone_page_state(zone, NR_ISOLATED_ANON)),
K(zone_page_state(zone, NR_ISOLATED_FILE)),
K(zone->present_pages),
K(zone_page_state(zone, NR_MLOCK)),
K(zone_page_state(zone, NR_FILE_DIRTY)),
K(zone_page_state(zone, NR_WRITEBACK)),
K(zone_page_state(zone, NR_FILE_MAPPED)),
K(zone_page_state(zone, NR_SHMEM)),
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
zone_page_state(zone, NR_KERNEL_STACK) *
THREAD_SIZE / 1024,
K(zone_page_state(zone, NR_PAGETABLE)),
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
K(zone_page_state(zone, NR_BOUNCE)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
zone->pages_scanned,
(zone->all_unreclaimable ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %lu", zone->lowmem_reserve[i]);
printk("\n");
}
for_each_populated_zone(zone) {
unsigned long nr[MAX_ORDER], flags, order, total = 0;
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
nr[order] = zone->free_area[order].nr_free;
total += nr[order] << order;
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++)
printk("%lu*%lukB ", nr[order], K(1UL) << order);
printk("= %lukB\n", K(total));
}
printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
show_swap_cache_info();
}
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
zoneref->zone = zone;
zoneref->zone_idx = zone_idx(zone);
}
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones, enum zone_type zone_type)
{
struct zone *zone;
BUG_ON(zone_type >= MAX_NR_ZONES);
zone_type++;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zoneref_set_zone(zone,
&zonelist->_zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type);
return nr_zones;
}
/*
* zonelist_order:
* 0 = automatic detection of better ordering.
* 1 = order by ([node] distance, -zonetype)
* 2 = order by (-zonetype, [node] distance)
*
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
* the same zonelist. So only NUMA can configure this param.
*/
#define ZONELIST_ORDER_DEFAULT 0
#define ZONELIST_ORDER_NODE 1
#define ZONELIST_ORDER_ZONE 2
/* zonelist order in the kernel.
* set_zonelist_order() will set this to NODE or ZONE.
*/
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
#ifdef CONFIG_NUMA
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN 16
char numa_zonelist_order[16] = "default";
/*
* interface for configure zonelist ordering.
* command line option "numa_zonelist_order"
* = "[dD]efault - default, automatic configuration.
* = "[nN]ode - order by node locality, then by zone within node
* = "[zZ]one - order by zone, then by locality within zone
*/
static int __parse_numa_zonelist_order(char *s)
{
if (*s == 'd' || *s == 'D') {
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
} else if (*s == 'n' || *s == 'N') {
user_zonelist_order = ZONELIST_ORDER_NODE;
} else if (*s == 'z' || *s == 'Z') {
user_zonelist_order = ZONELIST_ORDER_ZONE;
} else {
printk(KERN_WARNING
"Ignoring invalid numa_zonelist_order value: "
"%s\n", s);
return -EINVAL;
}
return 0;
}
static __init int setup_numa_zonelist_order(char *s)
{
int ret;
if (!s)
return 0;
ret = __parse_numa_zonelist_order(s);
if (ret == 0)
strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
return ret;
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);
/*
* sysctl handler for numa_zonelist_order
*/
int numa_zonelist_order_handler(ctl_table *table, int write,
void __user *buffer, size_t *length,
loff_t *ppos)
{
char saved_string[NUMA_ZONELIST_ORDER_LEN];
int ret;
static DEFINE_MUTEX(zl_order_mutex);
mutex_lock(&zl_order_mutex);
if (write)
strcpy(saved_string, (char*)table->data);
ret = proc_dostring(table, write, buffer, length, ppos);
if (ret)
goto out;
if (write) {
int oldval = user_zonelist_order;
if (__parse_numa_zonelist_order((char*)table->data)) {
/*
* bogus value. restore saved string
*/
strncpy((char*)table->data, saved_string,
NUMA_ZONELIST_ORDER_LEN);
user_zonelist_order = oldval;
} else if (oldval != user_zonelist_order) {
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL);
mutex_unlock(&zonelists_mutex);
}
}
out:
mutex_unlock(&zl_order_mutex);
return ret;
}
#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = -1;
const struct cpumask *tmp = cpumask_of_node(0);
/* Use the local node if we haven't already */
if (!node_isset(node, *used_node_mask)) {
node_set(node, *used_node_mask);
return node;
}
for_each_node_state(n, N_HIGH_MEMORY) {
/* Don't want a node to appear more than once */
if (node_isset(n, *used_node_mask))
continue;
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Penalize nodes under us ("prefer the next node") */
val += (n < node);
/* Give preference to headless and unused nodes */
tmp = cpumask_of_node(n);
if (!cpumask_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
node_set(best_node, *used_node_mask);
return best_node;
}
/*
* Build zonelists ordered by node and zones within node.
* This results in maximum locality--normal zone overflows into local
* DMA zone, if any--but risks exhausting DMA zone.
*/
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build gfp_thisnode zonelists
*/
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[1];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build zonelists ordered by zone and nodes within zones.
* This results in conserving DMA zone[s] until all Normal memory is
* exhausted, but results in overflowing to remote node while memory
* may still exist in local DMA zone.
*/
static int node_order[MAX_NUMNODES];
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
int pos, j, node;
int zone_type; /* needs to be signed */
struct zone *z;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
pos = 0;
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
for (j = 0; j < nr_nodes; j++) {
node = node_order[j];
z = &NODE_DATA(node)->node_zones[zone_type];
if (populated_zone(z)) {
zoneref_set_zone(z,
&zonelist->_zonerefs[pos++]);
check_highest_zone(zone_type);
}
}
}
zonelist->_zonerefs[pos].zone = NULL;
zonelist->_zonerefs[pos].zone_idx = 0;
}
static int default_zonelist_order(void)
{
int nid, zone_type;
unsigned long low_kmem_size,total_size;
struct zone *z;
int average_size;
/*
* ZONE_DMA and ZONE_DMA32 can be very small area in the system.
* If they are really small and used heavily, the system can fall
* into OOM very easily.
* This function detect ZONE_DMA/DMA32 size and configures zone order.
*/
/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
low_kmem_size = 0;
total_size = 0;
for_each_online_node(nid) {
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
} else if (zone_type == ZONE_NORMAL) {
/*
* If any node has only lowmem, then node order
* is preferred to allow kernel allocations
* locally; otherwise, they can easily infringe
* on other nodes when there is an abundance of
* lowmem available to allocate from.
*/
return ZONELIST_ORDER_NODE;
}
}
}
if (!low_kmem_size || /* there are no DMA area. */
low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
return ZONELIST_ORDER_NODE;
/*
* look into each node's config.
* If there is a node whose DMA/DMA32 memory is very big area on
* local memory, NODE_ORDER may be suitable.
*/
average_size = total_size /
(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
for_each_online_node(nid) {
low_kmem_size = 0;
total_size = 0;
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
}
}
if (low_kmem_size &&
total_size > average_size && /* ignore small node */
low_kmem_size > total_size * 70/100)
return ZONELIST_ORDER_NODE;
}
return ZONELIST_ORDER_ZONE;
}
static void set_zonelist_order(void)
{
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
current_zonelist_order = default_zonelist_order();
else
current_zonelist_order = user_zonelist_order;
}
static void build_zonelists(pg_data_t *pgdat)
{
int j, node, load;
enum zone_type i;
nodemask_t used_mask;
int local_node, prev_node;
struct zonelist *zonelist;
int order = current_zonelist_order;
/* initialize zonelists */
for (i = 0; i < MAX_ZONELISTS; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->_zonerefs[0].zone = NULL;
zonelist->_zonerefs[0].zone_idx = 0;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = nr_online_nodes;
prev_node = local_node;
nodes_clear(used_mask);
memset(node_order, 0, sizeof(node_order));
j = 0;
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
int distance = node_distance(local_node, node);
/*
* If another node is sufficiently far away then it is better
* to reclaim pages in a zone before going off node.
*/
if (distance > RECLAIM_DISTANCE)
zone_reclaim_mode = 1;
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (distance != node_distance(local_node, prev_node))
node_load[node] = load;
prev_node = node;
load--;
if (order == ZONELIST_ORDER_NODE)
build_zonelists_in_node_order(pgdat, node);
else
node_order[j++] = node; /* remember order */
}
if (order == ZONELIST_ORDER_ZONE) {
/* calculate node order -- i.e., DMA last! */
build_zonelists_in_zone_order(pgdat, j);
}
build_thisnode_zonelists(pgdat);
}
/* Construct the zonelist performance cache - see further mmzone.h */
static void build_zonelist_cache(pg_data_t *pgdat)
{
struct zonelist *zonelist;
struct zonelist_cache *zlc;
struct zoneref *z;
zonelist = &pgdat->node_zonelists[0];
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
for (z = zonelist->_zonerefs; z->zone; z++)
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
}
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* Return node id of node used for "local" allocations.
* I.e., first node id of first zone in arg node's generic zonelist.
* Used for initializing percpu 'numa_mem', which is used primarily
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
*/
int local_memory_node(int node)
{
struct zone *zone;
(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
gfp_zone(GFP_KERNEL),
NULL,
&zone);
return zone->node;
}
#endif
#else /* CONFIG_NUMA */
static void set_zonelist_order(void)
{
current_zonelist_order = ZONELIST_ORDER_ZONE;
}
static void build_zonelists(pg_data_t *pgdat)
{
int node, local_node;
enum zone_type j;
struct zonelist *zonelist;
local_node = pgdat->node_id;
zonelist = &pgdat->node_zonelists[0];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
for (node = 0; node < local_node; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void build_zonelist_cache(pg_data_t *pgdat)
{
pgdat->node_zonelists[0].zlcache_ptr = NULL;
}
#endif /* CONFIG_NUMA */
/*
* Boot pageset table. One per cpu which is going to be used for all
* zones and all nodes. The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list. This is safe since pageset manipulation is done
* with interrupts disabled.
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and/or zones. They do play a role for bootstrapping
* hotplugged processors.
*
* zoneinfo_show() and maybe other functions do
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
static void setup_zone_pageset(struct zone *zone);
/*
* Global mutex to protect against size modification of zonelists
* as well as to serialize pageset setup for the new populated zone.
*/
DEFINE_MUTEX(zonelists_mutex);
/* return values int ....just for stop_machine() */
static __init_refok int __build_all_zonelists(void *data)
{
int nid;
int cpu;
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
/*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
* each zone will be allocated later when the per cpu
* allocator is available.
*
* boot_pagesets are used also for bootstrapping offline
* cpus if the system is already booted because the pagesets
* are needed to initialize allocators on a specific cpu too.
* F.e. the percpu allocator needs the page allocator which
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
for_each_possible_cpu(cpu) {
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* We now know the "local memory node" for each node--
* i.e., the node of the first zone in the generic zonelist.
* Set up numa_mem percpu variable for on-line cpus. During
* boot, only the boot cpu should be on-line; we'll init the
* secondary cpus' numa_mem as they come on-line. During
* node/memory hotplug, we'll fixup all on-line cpus.
*/
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
}
return 0;
}
/*
* Called with zonelists_mutex held always
* unless system_state == SYSTEM_BOOTING.
*/
void __ref build_all_zonelists(void *data)
{
set_zonelist_order();
if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
} else {
/* we have to stop all cpus to guarantee there is no user
of zonelist */
#ifdef CONFIG_MEMORY_HOTPLUG
if (data)
setup_zone_pageset((struct zone *)data);
#endif
stop_machine(__build_all_zonelists, NULL, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
* more accurate, but expensive to check per-zone. This check is
* made on memory-hotadd so a system can start with mobility
* disabled and enable it later
*/
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
page_group_by_mobility_disabled = 1;
else
page_group_by_mobility_disabled = 0;
printk("Built %i zonelists in %s order, mobility grouping %s. "
"Total pages: %ld\n",
nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
printk("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
#else
/*
* A zone's size might be changed by hot-add, so it is not possible to determine
* a suitable size for its wait_table. So we use the maximum size now.
*
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
*
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
*
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
* or more by the traditional way. (See above). It equals:
*
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
* ia64(16K page size) : = ( 8G + 4M)byte.
* powerpc (64K page size) : = (32G +16M)byte.
*/
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
return 4096UL;
}
#endif
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
/*
* Check if a pageblock contains reserved pages
*/
static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
return 1;
}
return 0;
}
/*
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
* of blocks reserved is based on min_wmark_pages(zone). The memory within
* the reserve will tend to store contiguous free pages. Setting min_free_kbytes
* higher will lead to a bigger reserve which will get freed as contiguous
* blocks as reclaim kicks in
*/
static void setup_zone_migrate_reserve(struct zone *zone)
{
unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
struct page *page;
unsigned long block_migratetype;
int reserve;
/*
* Get the start pfn, end pfn and the number of blocks to reserve
* We have to be careful to be aligned to pageblock_nr_pages to
* make sure that we always check pfn_valid for the first page in
* the block.
*/
start_pfn = zone->zone_start_pfn;
end_pfn = start_pfn + zone->spanned_pages;
start_pfn = roundup(start_pfn, pageblock_nr_pages);
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
pageblock_order;
/*
* Reserve blocks are generally in place to help high-order atomic
* allocations that are short-lived. A min_free_kbytes value that
* would result in more than 2 reserve blocks for atomic allocations
* is assumed to be in place to help anti-fragmentation for the
* future allocation of hugepages at runtime.
*/
reserve = min(2, reserve);
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
/* Watch out for overlapping nodes */
if (page_to_nid(page) != zone_to_nid(zone))
continue;
block_migratetype = get_pageblock_migratetype(page);
/* Only test what is necessary when the reserves are not met */
if (reserve > 0) {
/*
* Blocks with reserved pages will never free, skip
* them.
*/
block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
if (pageblock_is_reserved(pfn, block_end_pfn))
continue;
/* If this block is reserved, account for it */
if (block_migratetype == MIGRATE_RESERVE) {
reserve--;
continue;
}
/* Suitable for reserving if this block is movable */
if (block_migratetype == MIGRATE_MOVABLE) {
set_pageblock_migratetype(page,
MIGRATE_RESERVE);
move_freepages_block(zone, page,
MIGRATE_RESERVE);
reserve--;
continue;
}
}
/*
* If the reserve is met and this is a previous reserved block,
* take it back
*/
if (block_migratetype == MIGRATE_RESERVE) {
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
move_freepages_block(zone, page, MIGRATE_MOVABLE);
}
}
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;
struct zone *z;
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
z = &NODE_DATA(nid)->node_zones[zone];
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
/*
* There can be holes in boot-time mem_map[]s
* handed to this function. They do not
* exist on hotplugged memory.
*/
if (context == MEMMAP_EARLY) {
if (!early_pfn_valid(pfn))
continue;
if (!early_pfn_in_nid(pfn, nid))
continue;
}
page = pfn_to_page(pfn);
set_page_links(page, zone, nid, pfn);
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
* movable at startup. This will force kernel allocations
* to reserve their blocks rather than leaking throughout
* the address space during boot when many long-lived
* kernel allocations are made. Later some blocks near
* the start are marked MIGRATE_RESERVE by
* setup_zone_migrate_reserve()
*
* bitmap is created for zone's valid pfn range. but memmap
* can be created for invalid pages (for alignment)
* check here not to call set_pageblock_migratetype() against
* pfn out of zone.
*/
if ((z->zone_start_pfn <= pfn)
&& (pfn < z->zone_start_pfn + z->spanned_pages)
&& !(pfn & (pageblock_nr_pages - 1)))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
}
static void __meminit zone_init_free_lists(struct zone *zone)
{
int order, t;
for_each_migratetype_order(order, t) {
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif
static int zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
int batch;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/2 of a meg.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases.
*
* For example if 2 tasks are alternately allocating
* batches of pages, one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
batch = rounddown_pow_of_two(batch + batch/2) - 1;
return batch;
#else
/* The deferral and batching of frees should be suppressed under NOMMU
* conditions.
*
* The problem is that NOMMU needs to be able to allocate large chunks
* of contiguous memory as there's no hardware page translation to
* assemble apparent contiguous memory from discontiguous pages.
*
* Queueing large contiguous runs of pages for batching, however,
* causes the pages to actually be freed in smaller chunks. As there
* can be a significant delay between the individual batches being
* recycled, this leads to the once large chunks of space being
* fragmented and becoming unavailable for high-order allocations.
*/
return 0;
#endif
}
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
struct per_cpu_pages *pcp;
int migratetype;
memset(p, 0, sizeof(*p));
pcp = &p->pcp;
pcp->count = 0;
pcp->high = 6 * batch;
pcp->batch = max(1UL, 1 * batch);
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
INIT_LIST_HEAD(&pcp->lists[migratetype]);
}
/*
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p.
*/
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
unsigned long high)
{
struct per_cpu_pages *pcp;
pcp = &p->pcp;
pcp->high = high;
pcp->batch = max(1UL, high/4);
if ((high/4) > (PAGE_SHIFT * 8))
pcp->batch = PAGE_SHIFT * 8;
}
static void setup_zone_pageset(struct zone *zone)
{
int cpu;
zone->pageset = alloc_percpu(struct per_cpu_pageset);
for_each_possible_cpu(cpu) {
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
setup_pageset(pcp, zone_batchsize(zone));
if (percpu_pagelist_fraction)
setup_pagelist_highmark(pcp,
(zone->present_pages /
percpu_pagelist_fraction));
}
}
/*
* Allocate per cpu pagesets and initialize them.
* Before this call only boot pagesets were available.
*/
void __init setup_per_cpu_pageset(void)
{
struct zone *zone;
for_each_populated_zone(zone)
setup_zone_pageset(zone);
}
static noinline __init_refok
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
struct pglist_data *pgdat = zone->zone_pgdat;
size_t alloc_size;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_hash_nr_entries =
wait_table_hash_nr_entries(zone_size_pages);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_hash_nr_entries);
alloc_size = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
if (!slab_is_available()) {
zone->wait_table = (wait_queue_head_t *)
alloc_bootmem_node_nopanic(pgdat, alloc_size);
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot-add.
* But it may be the case that a new node was hot-added. In
* this case vmalloc() will not be able to use this new node's
* memory - this wait_table must be initialized to use this new
* node itself as well.
* To use this new node's memory, further consideration will be
* necessary.
*/
zone->wait_table = vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
}
static int __zone_pcp_update(void *data)
{
struct zone *zone = data;
int cpu;
unsigned long batch = zone_batchsize(zone), flags;
for_each_possible_cpu(cpu) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
local_irq_save(flags);
free_pcppages_bulk(zone, pcp->count, pcp);
setup_pageset(pset, batch);
local_irq_restore(flags);
}
return 0;
}
void zone_pcp_update(struct zone *zone)
{
stop_machine(__zone_pcp_update, zone, NULL);
}
static __meminit void zone_pcp_init(struct zone *zone)
{
/*
* per cpu subsystem is not up at this point. The following code
* relies on the ability of the linker to provide the
* offset of a (static) per cpu variable into the per cpu area.
*/
zone->pageset = &boot_pageset;
if (zone->present_pages)
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
}
__meminit int init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size,
enum memmap_context context)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int ret;
ret = zone_wait_table_init(zone, size);
if (ret)
return ret;
pgdat->nr_zones = zone_idx(zone) + 1;
zone->zone_start_pfn = zone_start_pfn;
mminit_dprintk(MMINIT_TRACE, "memmap_init",
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
pgdat->node_id,
(unsigned long)zone_idx(zone),
zone_start_pfn, (zone_start_pfn + size));
zone_init_free_lists(zone);
return 0;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
* Architectures may implement their own version but if add_active_range()
* was used and there are no special requirements, this is a convenient
* alternative
*/
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
unsigned long start_pfn, end_pfn;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
if (start_pfn <= pfn && pfn < end_pfn)
return nid;
/* This is a memory hole */
return -1;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
int __meminit early_pfn_to_nid(unsigned long pfn)
{
int nid;
nid = __early_pfn_to_nid(pfn);
if (nid >= 0)
return nid;
/* just returns 0 */
return 0;
}
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
int nid;
nid = __early_pfn_to_nid(pfn);
if (nid >= 0 && nid != node)
return false;
return true;
}
#endif
/**
* free_bootmem_with_active_regions - Call free_bootmem_node for each active range
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
* @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* this function may be used instead of calling free_bootmem() manually.
*/
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
{
unsigned long start_pfn, end_pfn;
int i, this_nid;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
start_pfn = min(start_pfn, max_low_pfn);
end_pfn = min(end_pfn, max_low_pfn);
if (start_pfn < end_pfn)
free_bootmem_node(NODE_DATA(this_nid),
PFN_PHYS(start_pfn),
(end_pfn - start_pfn) << PAGE_SHIFT);
}
}
/**
* sparse_memory_present_with_active_regions - Call memory_present for each active range
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
*
* If an architecture guarantees that all ranges registered with
* add_active_ranges() contain no holes and may be freed, this
* function may be used instead of calling memory_present() manually.
*/
void __init sparse_memory_present_with_active_regions(int nid)
{
unsigned long start_pfn, end_pfn;
int i, this_nid;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
memory_present(this_nid, start_pfn, end_pfn);
}
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by an arch calling add_active_range(). If called for a node
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
unsigned long this_start_pfn, this_end_pfn;
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
*start_pfn = min(*start_pfn, this_start_pfn);
*end_pfn = max(*end_pfn, this_end_pfn);
}
if (*start_pfn == -1UL)
*start_pfn = 0;
}
/*
* This finds a zone that can be used for ZONE_MOVABLE pages. The
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
static void __init find_usable_zone_for_movable(void)