Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

6050 lines (5262 sloc) 170.861 kb
/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
#include <linux/mempolicy.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/compaction.h>
#include <trace/events/kmem.h>
#include <linux/ftrace_event.h>
#include <linux/memcontrol.h>
#include <linux/prefetch.h>
#include <linux/migrate.h>
#include <linux/page-debug-flags.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
* defined in <linux/topology.h>.
*/
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif
/*
* Array of node states.
*/
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
[N_POSSIBLE] = NODE_MASK_ALL,
[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
/*
* When calculating the number of globally allowed dirty pages, there
* is a certain number of per-zone reserves that should not be
* considered dirtyable memory. This is the sum of those reserves
* over all existing zones that contribute dirtyable memory.
*/
unsigned long dirty_balance_reserve __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
#ifdef CONFIG_PM_SLEEP
/*
* The following functions are used by the suspend/hibernate code to temporarily
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
* while devices are suspended. To avoid races with the suspend/hibernate code,
* they should always be called with pm_mutex held (gfp_allowed_mask also should
* only be modified with pm_mutex held, unless the suspend/hibernate code is
* guaranteed not to run in parallel with that modification).
*/
static gfp_t saved_gfp_mask;
void pm_restore_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
if (saved_gfp_mask) {
gfp_allowed_mask = saved_gfp_mask;
saved_gfp_mask = 0;
}
}
void pm_restrict_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
WARN_ON(saved_gfp_mask);
saved_gfp_mask = gfp_allowed_mask;
gfp_allowed_mask &= ~GFP_IOFS;
}
bool pm_suspended_storage(void)
{
if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
return false;
return true;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
int pageblock_order __read_mostly;
#endif
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
256,
#endif
#ifdef CONFIG_ZONE_DMA32
256,
#endif
#ifdef CONFIG_HIGHMEM
32,
#endif
32,
};
EXPORT_SYMBOL(totalram_pages);
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
"DMA32",
#endif
"Normal",
#ifdef CONFIG_HIGHMEM
"HighMem",
#endif
"Movable",
};
int min_free_kbytes = 1024;
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif
int page_group_by_mobility_disabled __read_mostly;
/*
* NOTE:
* Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
* Instead, use {un}set_pageblock_isolate.
*/
void set_pageblock_migratetype(struct page *page, int migratetype)
{
if (unlikely(page_group_by_mobility_disabled))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
bool oom_killer_disabled __read_mostly;
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
do {
seq = zone_span_seqbegin(zone);
if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
ret = 1;
else if (pfn < zone->zone_start_pfn)
ret = 1;
} while (zone_span_seqretry(zone, seq));
return ret;
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
if (!pfn_valid_within(page_to_pfn(page)))
return 0;
if (zone != page_zone(page))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
return 1;
if (!page_is_consistent(zone, page))
return 1;
return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
return 0;
}
#endif
static void bad_page(struct page *page)
{
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/* Don't complain about poisoned pages */
if (PageHWPoison(page)) {
reset_page_mapcount(page); /* remove PageBuddy */
return;
}
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
goto out;
}
if (nr_unshown) {
printk(KERN_ALERT
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
dump_page(page);
print_modules();
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
reset_page_mapcount(page); /* remove PageBuddy */
add_taint(TAINT_BAD_PAGE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page".
*
* The remaining PAGE_SIZE pages are called "tail pages".
*
* All pages have PG_compound set. All tail pages have their ->first_page
* pointing at the head page.
*
* The first tail page's ->lru.next holds the address of the compound page's
* put_page() function. Its ->lru.prev holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
static void free_compound_page(struct page *page)
{
__free_pages_ok(page, compound_order(page));
}
void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, free_compound_page);
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
__SetPageTail(p);
set_page_count(p, 0);
p->first_page = page;
}
}
/* update __split_huge_page_refcount if you change this function */
static int destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
int bad = 0;
if (unlikely(compound_order(page) != order) ||
unlikely(!PageHead(page))) {
bad_page(page);
bad++;
}
__ClearPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
if (unlikely(!PageTail(p) || (p->first_page != page))) {
bad_page(page);
bad++;
}
__ClearPageTail(p);
}
return bad;
}
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
/*
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
* and __GFP_HIGHMEM from hard or soft interrupt context.
*/
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
for (i = 0; i < (1 << order); i++)
clear_highpage(page + i);
}
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
static int __init debug_guardpage_minorder_setup(char *buf)
{
unsigned long res;
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
return 0;
}
_debug_guardpage_minorder = res;
printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
return 0;
}
__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
static inline void set_page_guard_flag(struct page *page)
{
__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
static inline void clear_page_guard_flag(struct page *page)
{
__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
}
#else
static inline void set_page_guard_flag(struct page *page) { }
static inline void clear_page_guard_flag(struct page *page) { }
#endif
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
__SetPageBuddy(page);
}
static inline void rmv_page_order(struct page *page)
{
__ClearPageBuddy(page);
set_page_private(page, 0);
}
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline unsigned long
__find_buddy_index(unsigned long page_idx, unsigned int order)
{
return page_idx ^ (1 << order);
}
/*
* This function checks whether a page is free && is the buddy
* we can do coalesce a page and its buddy if
* (a) the buddy is not in a hole &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we set ->_mapcount -2.
* Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline int page_is_buddy(struct page *page, struct page *buddy,
int order)
{
if (!pfn_valid_within(page_to_pfn(buddy)))
return 0;
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
if (page_is_guard(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
if (PageBuddy(buddy) && page_order(buddy) == order) {
VM_BUG_ON(page_count(buddy) != 0);
return 1;
}
return 0;
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with _mapcount -2. Page's
* order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- wli
*/
static inline void __free_one_page(struct page *page,
struct zone *zone, unsigned int order,
int migratetype)
{
unsigned long page_idx;
unsigned long combined_idx;
unsigned long uninitialized_var(buddy_idx);
struct page *buddy;
if (unlikely(PageCompound(page)))
if (unlikely(destroy_compound_page(page, order)))
return;
VM_BUG_ON(migratetype == -1);
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
VM_BUG_ON(page_idx & ((1 << order) - 1));
VM_BUG_ON(bad_range(zone, page));
while (order < MAX_ORDER-1) {
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
if (!page_is_buddy(page, buddy, order))
break;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
*/
if (page_is_guard(buddy)) {
clear_page_guard_flag(buddy);
set_page_private(page, 0);
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
} else {
list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
}
combined_idx = buddy_idx & page_idx;
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;
}
set_page_order(page, order);
/*
* If this is not the largest possible page, check if the buddy
* of the next-highest order is free. If it is, it's possible
* that pages are being freed that will coalesce soon. In case,
* that is happening, add the free page to the tail of the list
* so it's less likely to be used soon and more likely to be merged
* as a higher order page
*/
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
struct page *higher_page, *higher_buddy;
combined_idx = buddy_idx & page_idx;
higher_page = page + (combined_idx - page_idx);
buddy_idx = __find_buddy_index(combined_idx, order + 1);
higher_buddy = higher_page + (buddy_idx - combined_idx);
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
list_add_tail(&page->lru,
&zone->free_area[order].free_list[migratetype]);
goto out;
}
}
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
zone->free_area[order].nr_free++;
}
/*
* free_page_mlock() -- clean up attempts to free and mlocked() page.
* Page should not be on lru, so no need to fix that up.
* free_pages_check() will verify...
*/
static inline void free_page_mlock(struct page *page)
{
__dec_zone_page_state(page, NR_MLOCK);
__count_vm_event(UNEVICTABLE_MLOCKFREED);
}
static inline int free_pages_check(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
(mem_cgroup_bad_page_check(page)))) {
bad_page(page);
return 1;
}
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
}
/*
* Frees a number of pages from the PCP lists
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static void free_pcppages_bulk(struct zone *zone, int count,
struct per_cpu_pages *pcp)
{
int migratetype = 0;
int batch_free = 0;
int to_free = count;
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
while (to_free) {
struct page *page;
struct list_head *list;
/*
* Remove pages from lists in a round-robin fashion. A
* batch_free count is maintained that is incremented when an
* empty list is encountered. This is so more pages are freed
* off fuller lists instead of spinning excessively around empty
* lists
*/
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
/* This is the only non-empty list. Free them all. */
if (batch_free == MIGRATE_PCPTYPES)
batch_free = to_free;
do {
page = list_entry(list->prev, struct page, lru);
/* must delete as __free_one_page list manipulates */
list_del(&page->lru);
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
__free_one_page(page, zone, 0, page_private(page));
trace_mm_page_pcpu_drain(page, 0, page_private(page));
} while (--to_free && --batch_free && !list_empty(list));
}
__mod_zone_page_state(zone, NR_FREE_PAGES, count);
spin_unlock(&zone->lock);
}
static void free_one_page(struct zone *zone, struct page *page, int order,
int migratetype)
{
spin_lock(&zone->lock);
zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__free_one_page(page, zone, order, migratetype);
__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
spin_unlock(&zone->lock);
}
static bool free_pages_prepare(struct page *page, unsigned int order)
{
int i;
int bad = 0;
trace_mm_page_free(page, order);
kmemcheck_free_shadow(page, order);
if (PageAnon(page))
page->mapping = NULL;
for (i = 0; i < (1 << order); i++)
bad += free_pages_check(page + i);
if (bad)
return false;
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
arch_free_page(page, order);
kernel_map_pages(page, 1 << order, 0);
return true;
}
static void __free_pages_ok(struct page *page, unsigned int order)
{
unsigned long flags;
int wasMlocked = __TestClearPageMlocked(page);
if (!free_pages_prepare(page, order))
return;
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_events(PGFREE, 1 << order);
free_one_page(page_zone(page), page, order,
get_pageblock_migratetype(page));
local_irq_restore(flags);
}
void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
{
unsigned int nr_pages = 1 << order;
unsigned int loop;
prefetchw(page);
for (loop = 0; loop < nr_pages; loop++) {
struct page *p = &page[loop];
if (loop + 1 < nr_pages)
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
set_page_refcounted(page);
__free_pages(page, order);
}
#ifdef CONFIG_CMA
/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
void __init init_cma_reserved_pageblock(struct page *page)
{
unsigned i = pageblock_nr_pages;
struct page *p = page;
do {
__ClearPageReserved(p);
set_page_count(p, 0);
} while (++p, --i);
set_page_refcounted(page);
set_pageblock_migratetype(page, MIGRATE_CMA);
__free_pages(page, pageblock_order);
totalram_pages += pageblock_nr_pages;
}
#endif
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- wli
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
#ifdef CONFIG_DEBUG_PAGEALLOC
if (high < debug_guardpage_minorder()) {
/*
* Mark as guard pages (or page), that will allow to
* merge back to allocator when buddy will be freed.
* Corresponding page table entries will not be touched,
* pages will stay not present in virtual address space
*/
INIT_LIST_HEAD(&page[size].lru);
set_page_guard_flag(&page[size]);
set_page_private(&page[size], high);
/* Guard pages are not available for any usage */
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
continue;
}
#endif
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
}
}
/*
* This page is about to be returned from the page allocator
*/
static inline int check_new_page(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
(atomic_read(&page->_count) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
(mem_cgroup_bad_page_check(page)))) {
bad_page(page);
return 1;
}
return 0;
}
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *p = page + i;
if (unlikely(check_new_page(p)))
return 1;
}
set_page_private(page, 0);
set_page_refcounted(page);
arch_alloc_page(page, order);
kernel_map_pages(page, 1 << order, 1);
if (gfp_flags & __GFP_ZERO)
prep_zero_page(page, order, gfp_flags);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
return 0;
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area * area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
expand(zone, page, order, current_order, area, migratetype);
return page;
}
return NULL;
}
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][4] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
#ifdef CONFIG_CMA
[MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
#else
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
#endif
[MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
[MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
};
/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*/
static int move_freepages(struct zone *zone,
struct page *start_page, struct page *end_page,
int migratetype)
{
struct page *page;
unsigned long order;
int pages_moved = 0;
#ifndef CONFIG_HOLES_IN_ZONE
/*
* page_zone is not safe to call in this context when
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
* anyway as we check zone boundaries in move_freepages_block().
* Remove at a later date when no bug reports exist related to
* grouping pages by mobility
*/
BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif
for (page = start_page; page <= end_page;) {
/* Make sure we are not inadvertently changing nodes */
VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
}
if (!PageBuddy(page)) {
page++;
continue;
}
order = page_order(page);
list_move(&page->lru,
&zone->free_area[order].free_list[migratetype]);
page += 1 << order;
pages_moved += 1 << order;
}
return pages_moved;
}
int move_freepages_block(struct zone *zone, struct page *page,
int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
start_pfn = page_to_pfn(page);
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
start_page = pfn_to_page(start_pfn);
end_page = start_page + pageblock_nr_pages - 1;
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (start_pfn < zone->zone_start_pfn)
start_page = page;
if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
return 0;
return move_freepages(zone, start_page, end_page, migratetype);
}
static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
int nr_pageblocks = 1 << (start_order - pageblock_order);
while (nr_pageblocks--) {
set_pageblock_migratetype(pageblock_page, migratetype);
pageblock_page += pageblock_nr_pages;
}
}
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
struct free_area * area;
int current_order;
struct page *page;
int migratetype, i;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
--current_order) {
for (i = 0;; i++) {
migratetype = fallbacks[start_migratetype][i];
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)
break;
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
area->nr_free--;
/*
* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* aggressive about taking ownership of free pages
*
* On the other hand, never change migration
* type of MIGRATE_CMA pageblocks nor move CMA
* pages on different free lists. We don't
* want unmovable pages to be allocated from
* MIGRATE_CMA areas.
*/
if (!is_migrate_cma(migratetype) &&
(unlikely(current_order >= pageblock_order / 2) ||
start_migratetype == MIGRATE_RECLAIMABLE ||
page_group_by_mobility_disabled)) {
int pages;
pages = move_freepages_block(zone, page,
start_migratetype);
/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)) ||
page_group_by_mobility_disabled)
set_pageblock_migratetype(page,
start_migratetype);
migratetype = start_migratetype;
}
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order &&
!is_migrate_cma(migratetype))
change_pageblock_range(page, current_order,
start_migratetype);
expand(zone, page, order, current_order, area,
is_migrate_cma(migratetype)
? migratetype : start_migratetype);
trace_mm_page_alloc_extfrag(page, order, current_order,
start_migratetype, migratetype);
return page;
}
}
return NULL;
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order,
int migratetype)
{
struct page *page;
retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
page = __rmqueue_fallback(zone, order, migratetype);
/*
* Use MIGRATE_RESERVE rather than fail an allocation. goto
* is used because __rmqueue_smallest is an inline function
* and we want just one call site
*/
if (!page) {
migratetype = MIGRATE_RESERVE;
goto retry_reserve;
}
}
trace_mm_page_alloc_zone_locked(page, order, migratetype);
return page;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
int migratetype, int cold)
{
int mt = migratetype, i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
struct page *page = __rmqueue(zone, order, migratetype);
if (unlikely(page == NULL))
break;
/*
* Split buddy pages returned by expand() are received here
* in physical page order. The page is added to the callers and
* list and the list head then moves forward. From the callers
* perspective, the linked list is ordered by page number in
* some conditions. This is useful for IO devices that can
* merge IO requests if the physical pages are ordered
* properly.
*/
if (likely(cold == 0))
list_add(&page->lru, list);
else
list_add_tail(&page->lru, list);
if (IS_ENABLED(CONFIG_CMA)) {
mt = get_pageblock_migratetype(page);
if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
mt = migratetype;
}
set_page_private(page, mt);
list = &page->lru;
}
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
spin_unlock(&zone->lock);
return i;
}
#ifdef CONFIG_NUMA
/*
* Called from the vmstat counter updater to drain pagesets of this
* currently executing processor on remote nodes after they have
* expired.
*
* Note that this function must be called with the thread pinned to
* a single processor.
*/
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
unsigned long flags;
int to_drain;
local_irq_save(flags);
if (pcp->count >= pcp->batch)
to_drain = pcp->batch;
else
to_drain = pcp->count;
if (to_drain > 0) {
free_pcppages_bulk(zone, to_drain, pcp);
pcp->count -= to_drain;
}
local_irq_restore(flags);
}
#endif
/*
* Drain pages of the indicated processor.
*
* The processor must either be the current processor and the
* thread pinned to the current processor or a processor that
* is not online.
*/
static void drain_pages(unsigned int cpu)
{
unsigned long flags;
struct zone *zone;
for_each_populated_zone(zone) {
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
local_irq_save(flags);
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
if (pcp->count) {
free_pcppages_bulk(zone, pcp->count, pcp);
pcp->count = 0;
}
local_irq_restore(flags);
}
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
void drain_local_pages(void *arg)
{
drain_pages(smp_processor_id());
}
/*
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
*
* Note that this code is protected against sending an IPI to an offline
* CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
* on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
* nothing keeps CPUs from showing up after we populated the cpumask and
* before the call to on_each_cpu_mask().
*/
void drain_all_pages(void)
{
int cpu;
struct per_cpu_pageset *pcp;
struct zone *zone;
/*
* Allocate in the BSS so we wont require allocation in
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
*/
static cpumask_t cpus_with_pcps;
/*
* We don't care about racing with CPU hotplug event
* as offline notification will cause the notified
* cpu to drain that CPU pcps and on_each_cpu_mask
* disables preemption as part of its processing
*/
for_each_online_cpu(cpu) {
bool has_pcps = false;
for_each_populated_zone(zone) {
pcp = per_cpu_ptr(zone->pageset, cpu);
if (pcp->pcp.count) {
has_pcps = true;
break;
}
}
if (has_pcps)
cpumask_set_cpu(cpu, &cpus_with_pcps);
else
cpumask_clear_cpu(cpu, &cpus_with_pcps);
}
on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
}
#ifdef CONFIG_HIBERNATION
void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
int order, t;
struct list_head *curr;
if (!zone->spanned_pages)
return;
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!swsusp_page_is_forbidden(page))
swsusp_unset_page_free(page);
}
for_each_migratetype_order(order, t) {
list_for_each(curr, &zone->free_area[order].free_list[t]) {
unsigned long i;
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
swsusp_set_page_free(pfn_to_page(pfn + i));
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif /* CONFIG_PM */
/*
* Free a 0-order page
* cold == 1 ? free a cold page : free a hot page
*/
void free_hot_cold_page(struct page *page, int cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
int migratetype;
int wasMlocked = __TestClearPageMlocked(page);
if (!free_pages_prepare(page, 0))
return;
migratetype = get_pageblock_migratetype(page);
set_page_private(page, migratetype);
local_irq_save(flags);
if (unlikely(wasMlocked))
free_page_mlock(page);
__count_vm_event(PGFREE);
/*
* We only track unmovable, reclaimable and movable on pcp lists.
* Free ISOLATE pages back to the allocator because they are being
* offlined but treat RESERVE as movable pages so we can get those
* areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
if (migratetype >= MIGRATE_PCPTYPES) {
if (unlikely(migratetype == MIGRATE_ISOLATE)) {
free_one_page(zone, page, 0, migratetype);
goto out;
}
migratetype = MIGRATE_MOVABLE;
}
pcp = &this_cpu_ptr(zone->pageset)->pcp;
if (cold)
list_add_tail(&page->lru, &pcp->lists[migratetype]);
else
list_add(&page->lru, &pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
free_pcppages_bulk(zone, pcp->batch, pcp);
pcp->count -= pcp->batch;
}
out:
local_irq_restore(flags);
}
/*
* Free a list of 0-order pages
*/
void free_hot_cold_page_list(struct list_head *list, int cold)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
trace_mm_page_free_batched(page, cold);
free_hot_cold_page(page, cold);
}
}
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
void split_page(struct page *page, unsigned int order)
{
int i;
VM_BUG_ON(PageCompound(page));
VM_BUG_ON(!page_count(page));
#ifdef CONFIG_KMEMCHECK
/*
* Split shadow pages too, because free(page[0]) would
* otherwise free the whole shadow.
*/
if (kmemcheck_page_is_tracked(page))
split_page(virt_to_page(page[0].shadow), order);
#endif
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
}
/*
* Similar to split_page except the page is already free. As this is only
* being used for migration, the migratetype of the block also changes.
* As this is called with interrupts disabled, the caller is responsible
* for calling arch_alloc_page() and kernel_map_page() after interrupts
* are enabled.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
int split_free_page(struct page *page)
{
unsigned int order;
unsigned long watermark;
struct zone *zone;
BUG_ON(!PageBuddy(page));
zone = page_zone(page);
order = page_order(page);
/* Obey watermarks as if the page was being allocated */
watermark = low_wmark_pages(zone) + (1 << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
return 0;
/* Remove page from free list */
list_del(&page->lru);
zone->free_area[order].nr_free--;
rmv_page_order(page);
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
/* Split into individual pages */
set_page_refcounted(page);
split_page(page, order);
if (order >= pageblock_order - 1) {
struct page *endpage = page + (1 << order) - 1;
for (; page < endpage; page += pageblock_nr_pages) {
int mt = get_pageblock_migratetype(page);
if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
set_pageblock_migratetype(page,
MIGRATE_MOVABLE);
}
}
return 1 << order;
}
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
struct zone *zone, int order, gfp_t gfp_flags,
int migratetype)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
again:
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
struct list_head *list;
local_irq_save(flags);
pcp = &this_cpu_ptr(zone->pageset)->pcp;
list = &pcp->lists[migratetype];
if (list_empty(list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
migratetype, cold);
if (unlikely(list_empty(list)))
goto failed;
}
if (cold)
page = list_entry(list->prev, struct page, lru);
else
page = list_entry(list->next, struct page, lru);
list_del(&page->lru);
pcp->count--;
} else {
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
/*
* __GFP_NOFAIL is not to be used in new code.
*
* All __GFP_NOFAIL callers should be fixed so that they
* properly detect and handle allocation failures.
*
* We most definitely don't want callers attempting to
* allocate greater than order-1 page units with
* __GFP_NOFAIL.
*/
WARN_ON_ONCE(order > 1);
}
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order, migratetype);
spin_unlock(&zone->lock);
if (!page)
goto failed;
__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
}
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone, gfp_flags);
local_irq_restore(flags);
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
goto again;
return page;
failed:
local_irq_restore(flags);
return NULL;
}
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN WMARK_MIN
#define ALLOC_WMARK_LOW WMARK_LOW
#define ALLOC_WMARK_HIGH WMARK_HIGH
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#ifdef CONFIG_FAIL_PAGE_ALLOC
static struct {
struct fault_attr attr;
u32 ignore_gfp_highmem;
u32 ignore_gfp_wait;
u32 min_order;
} fail_page_alloc = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_wait = 1,
.ignore_gfp_highmem = 1,
.min_order = 1,
};
static int __init setup_fail_page_alloc(char *str)
{
return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
if (order < fail_page_alloc.min_order)
return false;
if (gfp_mask & __GFP_NOFAIL)
return false;
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
return false;
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
return false;
return should_fail(&fail_page_alloc.attr, 1 << order);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
static int __init fail_page_alloc_debugfs(void)
{
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
&fail_page_alloc.attr);
if (IS_ERR(dir))
return PTR_ERR(dir);
if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
&fail_page_alloc.ignore_gfp_wait))
goto fail;
if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
&fail_page_alloc.ignore_gfp_highmem))
goto fail;
if (!debugfs_create_u32("min-order", mode, dir,
&fail_page_alloc.min_order))
goto fail;
return 0;
fail:
debugfs_remove_recursive(dir);
return -ENOMEM;
}
late_initcall(fail_page_alloc_debugfs);
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
#else /* CONFIG_FAIL_PAGE_ALLOC */
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
return false;
}
#endif /* CONFIG_FAIL_PAGE_ALLOC */
/*
* Return true if free pages are above 'mark'. This takes into account the order
* of the allocation.
*/
static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags, long free_pages)
{
/* free_pages my go negative - that's OK */
long min = mark;
long lowmem_reserve = z->lowmem_reserve[classzone_idx];
int o;
free_pages -= (1 << order) - 1;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
if (alloc_flags & ALLOC_HARDER)
min -= min / 4;
if (free_pages <= min + lowmem_reserve)
return false;
for (o = 0; o < order; o++) {
/* At the next order, this order's pages become unavailable */
free_pages -= z->free_area[o].nr_free << o;
/* Require fewer higher order pages to be free */
min >>= 1;
if (free_pages <= min)
return false;
}
return true;
}
#ifdef CONFIG_MEMORY_ISOLATION
static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
{
if (unlikely(zone->nr_pageblock_isolate))
return zone->nr_pageblock_isolate * pageblock_nr_pages;
return 0;
}
#else
static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
{
return 0;
}
#endif
bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
zone_page_state(z, NR_FREE_PAGES));
}
bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
int classzone_idx, int alloc_flags)
{
long free_pages = zone_page_state(z, NR_FREE_PAGES);
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
/*
* If the zone has MIGRATE_ISOLATE type free pages, we should consider
* it. nr_zone_isolate_freepages is never accurate so kswapd might not
* sleep although it could do so. But this is more desirable for memory
* hotplug than sleeping which can cause a livelock in the direct
* reclaim path.
*/
free_pages -= nr_zone_isolate_freepages(z);
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
free_pages);
}
#ifdef CONFIG_NUMA
/*
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
* skip over zones that are not allowed by the cpuset, or that have
* been recently (in last second) found to be nearly full. See further
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over a lot of full or unallowed zones.
*
* If the zonelist cache is present in the passed in zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
*
* If the zonelist cache is not available for this zonelist, does
* nothing and returns NULL.
*
* If the fullzones BITMAP in the zonelist cache is stale (more than
* a second since last zap'd) then we zap it out (clear its bits.)
*
* We hold off even calling zlc_setup, until after we've checked the
* first zone in the zonelist, on the theory that most allocations will
* be satisfied from that first zone, so best to examine that zone as
* quickly as we can.
*/
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
nodemask_t *allowednodes; /* zonelist_cache approximation */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return NULL;
if (time_after(jiffies, zlc->last_full_zap + HZ)) {
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
zlc->last_full_zap = jiffies;
}
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
&cpuset_current_mems_allowed :
&node_states[N_HIGH_MEMORY];
return allowednodes;
}
/*
* Given 'z' scanning a zonelist, run a couple of quick checks to see
* if it is worth looking at further for free memory:
* 1) Check that the zone isn't thought to be full (doesn't have its
* bit set in the zonelist_cache fullzones BITMAP).
* 2) Check that the zones node (obtained from the zonelist_cache
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
* Return true (non-zero) if zone is worth looking at further, or
* else return false (zero) if it is not.
*
* This check -ignores- the distinction between various watermarks,
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
* found to be full for any variation of these watermarks, it will
* be considered full for up to one second by all requests, unless
* we are so low on memory on all allowed nodes that we are forced
* into the second scan of the zonelist.
*
* In the second scan we ignore this zonelist cache and exactly
* apply the watermarks to all zones, even it is slower to do so.
* We are low on memory in the second scan, and should leave no stone
* unturned looking for a free page.
*/
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
int n; /* node that zone *z is on */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return 1;
i = z - zonelist->_zonerefs;
n = zlc->z_to_n[i];
/* This zone is worth trying if it is allowed but not full */
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
}
/*
* Given 'z' scanning a zonelist, set the corresponding bit in
* zlc->fullzones, so that subsequent attempts to allocate a page
* from that zone don't waste time re-examining it.
*/
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
int i; /* index of *z in zonelist zones */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
i = z - zonelist->_zonerefs;
set_bit(i, zlc->fullzones);
}
/*
* clear all zones full, called after direct reclaim makes progress so that
* a zone that was recently full is not skipped over for up to a second
*/
static void zlc_clear_zones_full(struct zonelist *zonelist)
{
struct zonelist_cache *zlc; /* cached zonelist speedup info */
zlc = zonelist->zlcache_ptr;
if (!zlc)
return;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
}
#else /* CONFIG_NUMA */
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
{
return NULL;
}
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
nodemask_t *allowednodes)
{
return 1;
}
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
{
}
static void zlc_clear_zones_full(struct zonelist *zonelist)
{
}
#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
struct zone *preferred_zone, int migratetype)
{
struct zoneref *z;
struct page *page = NULL;
int classzone_idx;
struct zone *zone;
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
int zlc_active = 0; /* set if using zonelist_cache */
int did_zlc_setup = 0; /* just call zlc_setup() one time */
classzone_idx = zone_idx(preferred_zone);
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
for_each_zone_zonelist_nodemask(zone, z, zonelist,
high_zoneidx, nodemask) {
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
continue;
/*
* When allocating a page cache page for writing, we
* want to get it from a zone that is within its dirty
* limit, such that no single zone holds more than its
* proportional share of globally allowed dirty pages.
* The dirty limits take into account the zone's
* lowmem reserves and high watermark so that kswapd
* should be able to balance it without having to
* write pages from its LRU list.
*
* This may look like it could increase pressure on
* lower zones by failing allocations in higher zones
* before they are full. But the pages that do spill
* over are limited as the lower zones are protected
* by this very same mechanism. It should not become
* a practical burden to them.
*
* XXX: For now, allow allocations to potentially
* exceed the per-zone dirty limit in the slowpath
* (ALLOC_WMARK_LOW unset) before going into reclaim,
* which is important when on a NUMA setup the allowed
* zones are together not big enough to reach the
* global limit. The proper fix for these situations
* will require awareness of zones in the
* dirty-throttling and the flusher threads.
*/
if ((alloc_flags & ALLOC_WMARK_LOW) &&
(gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
goto this_zone_full;
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
unsigned long mark;
int ret;
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
if (zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto try_this_zone;
if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
/*
* we do zlc_setup if there are multiple nodes
* and before considering the first zone allowed
* by the cpuset.
*/
allowednodes = zlc_setup(zonelist, alloc_flags);
zlc_active = 1;
did_zlc_setup = 1;
}
if (zone_reclaim_mode == 0)
goto this_zone_full;
/*
* As we may have just activated ZLC, check if the first
* eligible zone has failed zone_reclaim recently.
*/
if (NUMA_BUILD && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
ret = zone_reclaim(zone, gfp_mask, order);
switch (ret) {
case ZONE_RECLAIM_NOSCAN:
/* did not scan */
continue;
case ZONE_RECLAIM_FULL:
/* scanned but unreclaimable */
continue;
default:
/* did we reclaim enough */
if (!zone_watermark_ok(zone, order, mark,
classzone_idx, alloc_flags))
goto this_zone_full;
}
}
try_this_zone:
page = buffered_rmqueue(preferred_zone, zone, order,
gfp_mask, migratetype);
if (page)
break;
this_zone_full:
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
}
if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
/* Disable zlc cache for second zonelist scan */
zlc_active = 0;
goto zonelist_scan;
}
if (page)
/*
* page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
* necessary to allocate the page. The expectation is
* that the caller is taking steps that will free more
* memory. The caller should avoid the page being used
* for !PFMEMALLOC purposes.
*/
page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
return page;
}
/*
* Large machines with many possible nodes should not always dump per-node
* meminfo in irq context.
*/
static inline bool should_suppress_show_mem(void)
{
bool ret = false;
#if NODES_SHIFT > 8
ret = in_interrupt();
#endif
return ret;
}
static DEFINE_RATELIMIT_STATE(nopage_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
{
unsigned int filter = SHOW_MEM_FILTER_NODES;
if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
debug_guardpage_minorder() > 0)
return;
/*
* This documents exceptions given to allocations in certain
* contexts that are allowed to allocate outside current's set
* of allowed nodes.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
if (test_thread_flag(TIF_MEMDIE) ||
(current->flags & (PF_MEMALLOC | PF_EXITING)))
filter &= ~SHOW_MEM_FILTER_NODES;
if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
filter &= ~SHOW_MEM_FILTER_NODES;
if (fmt) {
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_warn("%pV", &vaf);
va_end(args);
}
pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
current->comm, order, gfp_mask);
dump_stack();
if (!should_suppress_show_mem())
show_mem(filter);
}
static inline int
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
unsigned long did_some_progress,
unsigned long pages_reclaimed)
{
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
return 0;
/* Always retry if specifically requested */
if (gfp_mask & __GFP_NOFAIL)
return 1;
/*
* Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
* making forward progress without invoking OOM. Suspend also disables
* storage devices so kswapd will not help. Bail if we are suspending.
*/
if (!did_some_progress && pm_suspended_storage())
return 0;
/*
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
* means __GFP_NOFAIL, but that may not be true in other
* implementations.
*/
if (order <= PAGE_ALLOC_COSTLY_ORDER)
return 1;
/*
* For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
* specified, then we retry until we no longer reclaim any pages
* (above), or we've reclaimed an order of pages at least as
* large as the allocation's order. In both cases, if the
* allocation still fails, we stop retrying.
*/
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
return 1;
return 0;
}
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
/* Acquire the OOM killer lock for the zones in zonelist */
if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
schedule_timeout_uninterruptible(1);
return NULL;
}
/*
* Go through the zonelist yet one more time, keep very high watermark
* here, this is only to catch a parallel oom killing, we must fail if
* we're still under heavy pressure.
*/
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
order, zonelist, high_zoneidx,
ALLOC_WMARK_HIGH|ALLOC_CPUSET,
preferred_zone, migratetype);
if (page)
goto out;
if (!(gfp_mask & __GFP_NOFAIL)) {
/* The OOM killer will not help higher order allocs */
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto out;
/* The OOM killer does not needlessly kill tasks for lowmem */
if (high_zoneidx < ZONE_NORMAL)
goto out;
/*
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
* The caller should handle page allocation failure by itself if
* it specifies __GFP_THISNODE.
* Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
*/
if (gfp_mask & __GFP_THISNODE)
goto out;
}
/* Exhausted what can be done so it's blamo time */
out_of_memory(zonelist, gfp_mask, order, nodemask, false);
out:
clear_zonelist_oom(zonelist, gfp_mask);
return page;
}
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, bool sync_migration,
bool *contended_compaction, bool *deferred_compaction,
unsigned long *did_some_progress)
{
struct page *page;
if (!order)
return NULL;
if (compaction_deferred(preferred_zone, order)) {
*deferred_compaction = true;
return NULL;
}
current->flags |= PF_MEMALLOC;
*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
nodemask, sync_migration,
contended_compaction);
current->flags &= ~PF_MEMALLOC;
if (*did_some_progress != COMPACT_SKIPPED) {
/* Page migration frees to the PCP lists but we want merging */
drain_pages(get_cpu());
put_cpu();
page = get_page_from_freelist(gfp_mask, nodemask,
order, zonelist, high_zoneidx,
alloc_flags & ~ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (page) {
preferred_zone->compact_considered = 0;
preferred_zone->compact_defer_shift = 0;
if (order >= preferred_zone->compact_order_failed)
preferred_zone->compact_order_failed = order + 1;
count_vm_event(COMPACTSUCCESS);
return page;
}
/*
* It's bad if compaction run occurs and fails.
* The most likely reason is that pages exist,
* but not enough to satisfy watermarks.
*/
count_vm_event(COMPACTFAIL);
/*
* As async compaction considers a subset of pageblocks, only
* defer if the failure was a sync compaction failure.
*/
if (sync_migration)
defer_compaction(preferred_zone, order);
cond_resched();
}
return NULL;
}
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, bool sync_migration,
bool *contended_compaction, bool *deferred_compaction,
unsigned long *did_some_progress)
{
return NULL;
}
#endif /* CONFIG_COMPACTION */
/* Perform direct synchronous page reclaim */
static int
__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
nodemask_t *nodemask)
{
struct reclaim_state reclaim_state;
int progress;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
current->flags |= PF_MEMALLOC;
lockdep_set_current_reclaim_state(gfp_mask);
reclaim_state.reclaimed_slab = 0;
current->reclaim_state = &reclaim_state;
progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
current->reclaim_state = NULL;
lockdep_clear_current_reclaim_state();
current->flags &= ~PF_MEMALLOC;
cond_resched();
return progress;
}
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
int migratetype, unsigned long *did_some_progress)
{
struct page *page = NULL;
bool drained = false;
*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
nodemask);
if (unlikely(!(*did_some_progress)))
return NULL;
/* After successful reclaim, reconsider all zones for allocation */
if (NUMA_BUILD)
zlc_clear_zones_full(zonelist);
retry:
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx,
alloc_flags & ~ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
/*
* If an allocation failed after direct reclaim, it could be because
* pages are pinned on the per-cpu lists. Drain them and try again
*/
if (!page && !drained) {
drain_all_pages();
drained = true;
goto retry;
}
return page;
}
/*
* This is called in the allocator slow-path if the allocation request is of
* sufficient urgency to ignore watermarks and take other desperate measures
*/
static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
struct page *page;
do {
page = get_page_from_freelist(gfp_mask, nodemask, order,
zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (!page && gfp_mask & __GFP_NOFAIL)
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
} while (!page && (gfp_mask & __GFP_NOFAIL));
return page;
}
static inline
void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
enum zone_type high_zoneidx,
enum zone_type classzone_idx)
{
struct zoneref *z;
struct zone *zone;
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
wakeup_kswapd(zone, order, classzone_idx);
}
static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)
{
int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
const gfp_t wait = gfp_mask & __GFP_WAIT;
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
* set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
*/
alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
if (!wait) {
/*
* Not worth trying to allocate harder for
* __GFP_NOMEMALLOC even if it can't schedule.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
alloc_flags |= ALLOC_HARDER;
/*
* Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
* See also cpuset_zone_allowed() comment in kernel/cpuset.c.
*/
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(current)) && !in_interrupt())
alloc_flags |= ALLOC_HARDER;
if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
if (gfp_mask & __GFP_MEMALLOC)
alloc_flags |= ALLOC_NO_WATERMARKS;
else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
alloc_flags |= ALLOC_NO_WATERMARKS;
else if (!in_interrupt() &&
((current->flags & PF_MEMALLOC) ||
unlikely(test_thread_flag(TIF_MEMDIE))))
alloc_flags |= ALLOC_NO_WATERMARKS;
}
return alloc_flags;
}
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
}
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, enum zone_type high_zoneidx,
nodemask_t *nodemask, struct zone *preferred_zone,
int migratetype)
{
const gfp_t wait = gfp_mask & __GFP_WAIT;
struct page *page = NULL;
int alloc_flags;
unsigned long pages_reclaimed = 0;
unsigned long did_some_progress;
bool sync_migration = false;
bool deferred_compaction = false;
bool contended_compaction = false;
/*
* In the slowpath, we sanity check order to avoid ever trying to
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
* be using allocators in order of preference for an area that is
* too large.
*/
if (order >= MAX_ORDER) {
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
return NULL;
}
/*
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
* __GFP_NOWARN set) should not cause reclaim since the subsystem
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
* using a larger set of nodes after it has established that the
* allowed per node queues are empty and that nodes are
* over allocated.
*/
if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
goto nopage;
restart:
if (!(gfp_mask & __GFP_NO_KSWAPD))
wake_all_kswapd(order, zonelist, high_zoneidx,
zone_idx(preferred_zone));
/*
* OK, we're below the kswapd watermark and have kicked background
* reclaim. Now things get more complex, so set up alloc_flags according
* to how we want to proceed.
*/
alloc_flags = gfp_to_alloc_flags(gfp_mask);
/*
* Find the true preferred zone if the allocation is unconstrained by
* cpusets.
*/
if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
first_zones_zonelist(zonelist, high_zoneidx, NULL,
&preferred_zone);
rebalance:
/* This is the last chance, in general, before the goto nopage. */
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
preferred_zone, migratetype);
if (page)
goto got_pg;
/* Allocate without watermarks if the context allows */
if (alloc_flags & ALLOC_NO_WATERMARKS) {
/*
* Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
* the allocation is high priority and these type of
* allocations are system rather than user orientated
*/
zonelist = node_zonelist(numa_node_id(), gfp_mask);
page = __alloc_pages_high_priority(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
if (page) {
goto got_pg;
}
}
/* Atomic allocations - we can't balance anything */
if (!wait)
goto nopage;
/* Avoid recursion of direct reclaim */
if (current->flags & PF_MEMALLOC)
goto nopage;
/* Avoid allocations with no watermarks from looping endlessly */
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
goto nopage;
/*
* Try direct compaction. The first pass is asynchronous. Subsequent
* attempts after direct reclaim are synchronous
*/
page = __alloc_pages_direct_compact(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, sync_migration,
&contended_compaction,
&deferred_compaction,
&did_some_progress);
if (page)
goto got_pg;
sync_migration = true;
/*
* If compaction is deferred for high-order allocations, it is because
* sync compaction recently failed. In this is the case and the caller
* requested a movable allocation that does not heavily disrupt the
* system then fail the allocation instead of entering direct reclaim.
*/
if ((deferred_compaction || contended_compaction) &&
(gfp_mask & __GFP_NO_KSWAPD))
goto nopage;
/* Try direct reclaim and then allocating */
page = __alloc_pages_direct_reclaim(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, &did_some_progress);
if (page)
goto got_pg;
/*
* If we failed to make any progress reclaiming, then we are
* running out of options and have to consider going OOM
*/
if (!did_some_progress) {
if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
if (oom_killer_disabled)
goto nopage;
/* Coredumps can quickly deplete all memory reserves */
if ((current->flags & PF_DUMPCORE) &&
!(gfp_mask & __GFP_NOFAIL))
goto nopage;
page = __alloc_pages_may_oom(gfp_mask, order,
zonelist, high_zoneidx,
nodemask, preferred_zone,
migratetype);
if (page)
goto got_pg;
if (!(gfp_mask & __GFP_NOFAIL)) {
/*
* The oom killer is not called for high-order
* allocations that may fail, so if no progress
* is being made, there are no other options and
* retrying is unlikely to help.
*/
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto nopage;
/*
* The oom killer is not called for lowmem
* allocations to prevent needlessly killing
* innocent tasks.
*/
if (high_zoneidx < ZONE_NORMAL)
goto nopage;
}
goto restart;
}
}
/* Check if we should retry the allocation */
pages_reclaimed += did_some_progress;
if (should_alloc_retry(gfp_mask, order, did_some_progress,
pages_reclaimed)) {
/* Wait for some write requests to complete then retry */
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
goto rebalance;
} else {
/*
* High-order allocations do not necessarily loop after
* direct reclaim and reclaim/compaction depends on compaction
* being called after reclaim so call directly if necessary
*/
page = __alloc_pages_direct_compact(gfp_mask, order,
zonelist, high_zoneidx,
nodemask,
alloc_flags, preferred_zone,
migratetype, sync_migration,
&contended_compaction,
&deferred_compaction,
&did_some_progress);
if (page)
goto got_pg;
}
nopage:
warn_alloc_failed(gfp_mask, order, NULL);
return page;
got_pg:
if (kmemcheck_enabled)
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*/
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask)
{
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
struct zone *preferred_zone;
struct page *page = NULL;
int migratetype = allocflags_to_migratetype(gfp_mask);
unsigned int cpuset_mems_cookie;
gfp_mask &= gfp_allowed_mask;
lockdep_trace_alloc(gfp_mask);
might_sleep_if(gfp_mask & __GFP_WAIT);
if (should_fail_alloc_page(gfp_mask, order))
return NULL;
/*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
* of GFP_THISNODE and a memoryless node
*/
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
/* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx,
nodemask ? : &cpuset_current_mems_allowed,
&preferred_zone);
if (!preferred_zone)
goto out;
/* First allocation attempt */
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
preferred_zone, migratetype);
if (unlikely(!page))
page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype);
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
out:
/*
* When updating a task's mems_allowed, it is possible to race with
* parallel threads in such a way that an allocation can fail while
* the mask is being updated. If a page allocation is about to fail,
* check if the cpuset changed during allocation and if so, retry.
*/
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);
/*
* Common helper functions.
*/
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *page;
/*
* __get_free_pages() returns a 32-bit address, which cannot represent
* a highmem page
*/
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
unsigned long get_zeroed_page(gfp_t gfp_mask)
{
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
}
EXPORT_SYMBOL(get_zeroed_page);
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
if (order == 0)
free_hot_cold_page(page, 0);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
{
if (addr) {
unsigned long alloc_end = addr + (PAGE_SIZE << order);
unsigned long used = addr + PAGE_ALIGN(size);
split_page(virt_to_page((void *)addr), order);
while (used < alloc_end) {
free_page(used);
used += PAGE_SIZE;
}
}
return (void *)addr;
}
/**
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* This function is similar to alloc_pages(), except that it allocates the
* minimum number of pages to satisfy the request. alloc_pages() can only
* allocate memory in power-of-two pages.
*
* This function is also limited by MAX_ORDER.
*
* Memory allocated by this function must be released by free_pages_exact().
*/
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
unsigned long addr;
addr = __get_free_pages(gfp_mask, order);
return make_alloc_exact(addr, order, size);
}
EXPORT_SYMBOL(alloc_pages_exact);
/**
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
* pages on a node.
* @nid: the preferred node ID where memory should be allocated
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
* back.
* Note this is not alloc_pages_exact_node() which allocates on a specific node,
* but is not exact.
*/
void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
{
unsigned order = get_order(size);
struct page *p = alloc_pages_node(nid, gfp_mask, order);
if (!p)
return NULL;
return make_alloc_exact((unsigned long)page_address(p), order, size);
}
EXPORT_SYMBOL(alloc_pages_exact_nid);
/**
* free_pages_exact - release memory allocated via alloc_pages_exact()
* @virt: the value returned by alloc_pages_exact.
* @size: size of allocation, same value as passed to alloc_pages_exact().
*
* Release the memory allocated by a previous call to alloc_pages_exact.
*/
void free_pages_exact(void *virt, size_t size)
{
unsigned long addr = (unsigned long)virt;
unsigned long end = addr + PAGE_ALIGN(size);
while (addr < end) {
free_page(addr);
addr += PAGE_SIZE;
}
}
EXPORT_SYMBOL(free_pages_exact);
static unsigned int nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone;
/* Just pick one node, since fallback list is circular */
unsigned int sum = 0;
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->present_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
}
return sum;
}
/*
* Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
*/
unsigned int nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
/*
* Amount of free RAM allocatable within all zones
*/
unsigned int nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}
static inline void show_node(struct zone *zone)
{
if (NUMA_BUILD)
printk("Node %d ", zone_to_nid(zone));
}
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = global_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
val->totalram = pgdat->node_present_pages;
val->freeram = node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
NR_FREE_PAGES);
#else
val->totalhigh = 0;
val->freehigh = 0;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
/*
* Determine whether the node should be displayed or not, depending on whether
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
*/
bool skip_free_areas_node(unsigned int flags, int nid)
{
bool ret = false;
unsigned int cpuset_mems_cookie;
if (!(flags & SHOW_MEM_FILTER_NODES))
goto out;
do {
cpuset_mems_cookie = get_mems_allowed();
ret = !node_isset(nid, cpuset_current_mems_allowed);
} while (!put_mems_allowed(cpuset_mems_cookie));
out:
return ret;
}
#define K(x) ((x) << (PAGE_SHIFT-10))
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
* Suppresses nodes that are not allowed by current's cpuset if
* SHOW_MEM_FILTER_NODES is passed.
*/
void show_free_areas(unsigned int filter)
{
int cpu;
struct zone *zone;
for_each_populated_zone(zone) {
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s per-cpu:\n", zone->name);
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pageset;
pageset = per_cpu_ptr(zone->pageset, cpu);
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
cpu, pageset->pcp.high,
pageset->pcp.batch, pageset->pcp.count);
}
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
" unevictable:%lu"
" dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
global_page_state(NR_ACTIVE_ANON),
global_page_state(NR_INACTIVE_ANON),
global_page_state(NR_ISOLATED_ANON),
global_page_state(NR_ACTIVE_FILE),
global_page_state(NR_INACTIVE_FILE),
global_page_state(NR_ISOLATED_FILE),
global_page_state(NR_UNEVICTABLE),
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
global_page_state(NR_FREE_PAGES),
global_page_state(NR_SLAB_RECLAIMABLE),
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_page_state(NR_FILE_MAPPED),
global_page_state(NR_SHMEM),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE));
for_each_populated_zone(zone) {
int i;
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" isolated(anon):%lukB"
" isolated(file):%lukB"
" present:%lukB"
" mlocked:%lukB"
" dirty:%lukB"
" writeback:%lukB"
" mapped:%lukB"
" shmem:%lukB"
" slab_reclaimable:%lukB"
" slab_unreclaimable:%lukB"
" kernel_stack:%lukB"
" pagetables:%lukB"
" unstable:%lukB"
" bounce:%lukB"
" writeback_tmp:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(min_wmark_pages(zone)),
K(low_wmark_pages(zone)),
K(high_wmark_pages(zone)),
K(zone_page_state(zone, NR_ACTIVE_ANON)),
K(zone_page_state(zone, NR_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ACTIVE_FILE)),
K(zone_page_state(zone, NR_INACTIVE_FILE)),
K(zone_page_state(zone, NR_UNEVICTABLE)),
K(zone_page_state(zone, NR_ISOLATED_ANON)),
K(zone_page_state(zone, NR_ISOLATED_FILE)),
K(zone->present_pages),
K(zone_page_state(zone, NR_MLOCK)),
K(zone_page_state(zone, NR_FILE_DIRTY)),
K(zone_page_state(zone, NR_WRITEBACK)),
K(zone_page_state(zone, NR_FILE_MAPPED)),
K(zone_page_state(zone, NR_SHMEM)),
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
zone_page_state(zone, NR_KERNEL_STACK) *
THREAD_SIZE / 1024,
K(zone_page_state(zone, NR_PAGETABLE)),
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
K(zone_page_state(zone, NR_BOUNCE)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
zone->pages_scanned,
(zone->all_unreclaimable ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %lu", zone->lowmem_reserve[i]);
printk("\n");
}
for_each_populated_zone(zone) {
unsigned long nr[MAX_ORDER], flags, order, total = 0;
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
nr[order] = zone->free_area[order].nr_free;
total += nr[order] << order;
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++)
printk("%lu*%lukB ", nr[order], K(1UL) << order);
printk("= %lukB\n", K(total));
}
printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
show_swap_cache_info();
}
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
zoneref->zone = zone;
zoneref->zone_idx = zone_idx(zone);
}
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones, enum zone_type zone_type)
{
struct zone *zone;
BUG_ON(zone_type >= MAX_NR_ZONES);
zone_type++;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
zoneref_set_zone(zone,
&zonelist->_zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type);
return nr_zones;
}
/*
* zonelist_order:
* 0 = automatic detection of better ordering.
* 1 = order by ([node] distance, -zonetype)
* 2 = order by (-zonetype, [node] distance)
*
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
* the same zonelist. So only NUMA can configure this param.
*/
#define ZONELIST_ORDER_DEFAULT 0
#define ZONELIST_ORDER_NODE 1
#define ZONELIST_ORDER_ZONE 2
/* zonelist order in the kernel.
* set_zonelist_order() will set this to NODE or ZONE.
*/
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
#ifdef CONFIG_NUMA
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN 16
char numa_zonelist_order[16] = "default";
/*
* interface for configure zonelist ordering.
* command line option "numa_zonelist_order"
* = "[dD]efault - default, automatic configuration.
* = "[nN]ode - order by node locality, then by zone within node
* = "[zZ]one - order by zone, then by locality within zone
*/
static int __parse_numa_zonelist_order(char *s)
{
if (*s == 'd' || *s == 'D') {
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
} else if (*s == 'n' || *s == 'N') {
user_zonelist_order = ZONELIST_ORDER_NODE;
} else if (*s == 'z' || *s == 'Z') {
user_zonelist_order = ZONELIST_ORDER_ZONE;
} else {
printk(KERN_WARNING
"Ignoring invalid numa_zonelist_order value: "
"%s\n", s);
return -EINVAL;
}
return 0;
}
static __init int setup_numa_zonelist_order(char *s)
{
int ret;
if (!s)
return 0;
ret = __parse_numa_zonelist_order(s);
if (ret == 0)
strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
return ret;
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);
/*
* sysctl handler for numa_zonelist_order
*/
int numa_zonelist_order_handler(ctl_table *table, int write,
void __user *buffer, size_t *length,
loff_t *ppos)
{
char saved_string[NUMA_ZONELIST_ORDER_LEN];
int ret;
static DEFINE_MUTEX(zl_order_mutex);
mutex_lock(&zl_order_mutex);
if (write)
strcpy(saved_string, (char*)table->data);
ret = proc_dostring(table, write, buffer, length, ppos);
if (ret)
goto out;
if (write) {
int oldval = user_zonelist_order;
if (__parse_numa_zonelist_order((char*)table->data)) {
/*
* bogus value. restore saved string
*/
strncpy((char*)table->data, saved_string,
NUMA_ZONELIST_ORDER_LEN);
user_zonelist_order = oldval;
} else if (oldval != user_zonelist_order) {
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL, NULL);
mutex_unlock(&zonelists_mutex);
}
}
out:
mutex_unlock(&zl_order_mutex);
return ret;
}
#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = -1;
const struct cpumask *tmp = cpumask_of_node(0);
/* Use the local node if we haven't already */
if (!node_isset(node, *used_node_mask)) {
node_set(node, *used_node_mask);
return node;
}
for_each_node_state(n, N_HIGH_MEMORY) {
/* Don't want a node to appear more than once */
if (node_isset(n, *used_node_mask))
continue;
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Penalize nodes under us ("prefer the next node") */
val += (n < node);
/* Give preference to headless and unused nodes */
tmp = cpumask_of_node(n);
if (!cpumask_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
node_set(best_node, *used_node_mask);
return best_node;
}
/*
* Build zonelists ordered by node and zones within node.
* This results in maximum locality--normal zone overflows into local
* DMA zone, if any--but risks exhausting DMA zone.
*/
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build gfp_thisnode zonelists
*/
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[1];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build zonelists ordered by zone and nodes within zones.
* This results in conserving DMA zone[s] until all Normal memory is
* exhausted, but results in overflowing to remote node while memory
* may still exist in local DMA zone.
*/
static int node_order[MAX_NUMNODES];
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
int pos, j, node;
int zone_type; /* needs to be signed */
struct zone *z;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[0];
pos = 0;
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
for (j = 0; j < nr_nodes; j++) {
node = node_order[j];
z = &NODE_DATA(node)->node_zones[zone_type];
if (populated_zone(z)) {
zoneref_set_zone(z,
&zonelist->_zonerefs[pos++]);
check_highest_zone(zone_type);
}
}
}
zonelist->_zonerefs[pos].zone = NULL;
zonelist->_zonerefs[pos].zone_idx = 0;
}
static int default_zonelist_order(void)
{
int nid, zone_type;
unsigned long low_kmem_size,total_size;
struct zone *z;
int average_size;
/*
* ZONE_DMA and ZONE_DMA32 can be very small area in the system.
* If they are really small and used heavily, the system can fall
* into OOM very easily.
* This function detect ZONE_DMA/DMA32 size and configures zone order.
*/
/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
low_kmem_size = 0;
total_size = 0;
for_each_online_node(nid) {
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
} else if (zone_type == ZONE_NORMAL) {
/*
* If any node has only lowmem, then node order
* is preferred to allow kernel allocations
* locally; otherwise, they can easily infringe
* on other nodes when there is an abundance of
* lowmem available to allocate from.
*/
return ZONELIST_ORDER_NODE;
}
}
}
if (!low_kmem_size || /* there are no DMA area. */
low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
return ZONELIST_ORDER_NODE;
/*
* look into each node's config.
* If there is a node whose DMA/DMA32 memory is very big area on
* local memory, NODE_ORDER may be suitable.
*/
average_size = total_size /
(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
for_each_online_node(nid) {
low_kmem_size = 0;
total_size = 0;
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
z = &NODE_DATA(nid)->node_zones[zone_type];
if (populated_zone(z)) {
if (zone_type < ZONE_NORMAL)
low_kmem_size += z->present_pages;
total_size += z->present_pages;
}
}
if (low_kmem_size &&
total_size > average_size && /* ignore small node */
low_kmem_size > total_size * 70/100)
return ZONELIST_ORDER_NODE;
}
return ZONELIST_ORDER_ZONE;
}
static void set_zonelist_order(void)
{
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
current_zonelist_order = default_zonelist_order();
else
current_zonelist_order = user_zonelist_order;
}
static void build_zonelists(pg_data_t *pgdat)
{
int j, node, load;
enum zone_type i;
nodemask_t used_mask;
int local_node, prev_node;
struct zonelist *zonelist;
int order = current_zonelist_order;
/* initialize zonelists */
for (i = 0; i < MAX_ZONELISTS; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->_zonerefs[0].zone = NULL;
zonelist->_zonerefs[0].zone_idx = 0;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = nr_online_nodes;
prev_node = local_node;
nodes_clear(used_mask);
memset(node_order, 0, sizeof(node_order));
j = 0;
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
int distance = node_distance(local_node, node);
/*
* If another node is sufficiently far away then it is better
* to reclaim pages in a zone before going off node.
*/
if (distance > RECLAIM_DISTANCE)
zone_reclaim_mode = 1;
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (distance != node_distance(local_node, prev_node))
node_load[node] = load;
prev_node = node;
load--;
if (order == ZONELIST_ORDER_NODE)
build_zonelists_in_node_order(pgdat, node);
else
node_order[j++] = node; /* remember order */
}
if (order == ZONELIST_ORDER_ZONE) {
/* calculate node order -- i.e., DMA last! */
build_zonelists_in_zone_order(pgdat, j);
}
build_thisnode_zonelists(pgdat);
}
/* Construct the zonelist performance cache - see further mmzone.h */
static void build_zonelist_cache(pg_data_t *pgdat)
{
struct zonelist *zonelist;
struct zonelist_cache *zlc;
struct zoneref *z;
zonelist = &pgdat->node_zonelists[0];
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
for (z = zonelist->_zonerefs; z->zone; z++)
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
}
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* Return node id of node used for "local" allocations.
* I.e., first node id of first zone in arg node's generic zonelist.
* Used for initializing percpu 'numa_mem', which is used primarily
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
*/
int local_memory_node(int node)
{
struct zone *zone;
(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
gfp_zone(GFP_KERNEL),
NULL,
&zone);
return zone->node;
}
#endif
#else /* CONFIG_NUMA */
static void set_zonelist_order(void)
{
current_zonelist_order = ZONELIST_ORDER_ZONE;
}
static void build_zonelists(pg_data_t *pgdat)
{
int node, local_node;
enum zone_type j;
struct zonelist *zonelist;
local_node = pgdat->node_id;
zonelist = &pgdat->node_zonelists[0];
j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
for (node = 0; node < local_node; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j,
MAX_NR_ZONES - 1);
}
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
static void build_zonelist_cache(pg_data_t *pgdat)
{
pgdat->node_zonelists[0].zlcache_ptr = NULL;
}
#endif /* CONFIG_NUMA */
/*
* Boot pageset table. One per cpu which is going to be used for all
* zones and all nodes. The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list. This is safe since pageset manipulation is done
* with interrupts disabled.
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and/or zones. They do play a role for bootstrapping
* hotplugged processors.
*
* zoneinfo_show() and maybe other functions do
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
static void setup_zone_pageset(struct zone *zone);
/*
* Global mutex to protect against size modification of zonelists
* as well as to serialize pageset setup for the new populated zone.
*/
DEFINE_MUTEX(zonelists_mutex);
/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *data)
{
int nid;
int cpu;
pg_data_t *self = data;
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif
if (self && !node_online(self->node_id)) {
build_zonelists(self);
build_zonelist_cache(self);
}
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
build_zonelist_cache(pgdat);
}
/*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
* each zone will be allocated later when the per cpu
* allocator is available.
*
* boot_pagesets are used also for bootstrapping offline
* cpus if the system is already booted because the pagesets
* are needed to initialize allocators on a specific cpu too.
* F.e. the percpu allocator needs the page allocator which
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
for_each_possible_cpu(cpu) {
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* We now know the "local memory node" for each node--
* i.e., the node of the first zone in the generic zonelist.
* Set up numa_mem percpu variable for on-line cpus. During
* boot, only the boot cpu should be on-line; we'll init the
* secondary cpus' numa_mem as they come on-line. During
* node/memory hotplug, we'll fixup all on-line cpus.
*/
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
}
return 0;
}
/*
* Called with zonelists_mutex held always
* unless system_state == SYSTEM_BOOTING.
*/
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
{
set_zonelist_order();
if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
} else {
/* we have to stop all cpus to guarantee there is no user
of zonelist */
#ifdef CONFIG_MEMORY_HOTPLUG
if (zone)
setup_zone_pageset(zone);
#endif
stop_machine(__build_all_zonelists, pgdat, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
* more accurate, but expensive to check per-zone. This check is
* made on memory-hotadd so a system can start with mobility
* disabled and enable it later
*/
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
page_group_by_mobility_disabled = 1;
else
page_group_by_mobility_disabled = 0;
printk("Built %i zonelists in %s order, mobility grouping %s. "
"Total pages: %ld\n",
nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
printk("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
#else
/*
* A zone's size might be changed by hot-add, so it is not possible to determine
* a suitable size for its wait_table. So we use the maximum size now.
*
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
*
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
*
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
* or more by the traditional way. (See above). It equals:
*
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
* ia64(16K page size) : = ( 8G + 4M)byte.
* powerpc (64K page size) : = (32G +16M)byte.
*/
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
return 4096UL;
}
#endif
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
/*
* Check if a pageblock contains reserved pages
*/
static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
return 1;
}
return 0;
}
/*
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
* of blocks reserved is based on min_wmark_pages(zone). The memory within
* the reserve will tend to store contiguous free pages. Setting min_free_kbytes
* higher will lead to a bigger reserve which will get freed as contiguous
* blocks as reclaim kicks in
*/
static void setup_zone_migrate_reserve(struct zone *zone)
{
unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
struct page *page;
unsigned long block_migratetype;
int reserve;
/*
* Get the start pfn, end pfn and the number of blocks to reserve
* We have to be careful to be aligned to pageblock_nr_pages to
* make sure that we always check pfn_valid for the first page in
* the block.
*/
start_pfn = zone->zone_start_pfn;
end_pfn = start_pfn + zone->spanned_pages;
start_pfn = roundup(start_pfn, pageblock_nr_pages);
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
pageblock_order;
/*
* Reserve blocks are generally in place to help high-order atomic
* allocations that are short-lived. A min_free_kbytes value that
* would result in more than 2 reserve blocks for atomic allocations
* is assumed to be in place to help anti-fragmentation for the
* future allocation of hugepages at runtime.
*/
reserve = min(2, reserve);
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
/* Watch out for overlapping nodes */
if (page_to_nid(page) != zone_to_nid(zone))
continue;
block_migratetype = get_pageblock_migratetype(page);
/* Only test what is necessary when the reserves are not met */
if (reserve > 0) {
/*
* Blocks with reserved pages will never free, skip
* them.
*/
block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
if (pageblock_is_reserved(pfn, block_end_pfn))
continue;
/* If this block is reserved, account for it */
if (block_migratetype == MIGRATE_RESERVE) {
reserve--;
continue;
}
/* Suitable for reserving if this block is movable */
if (block_migratetype == MIGRATE_MOVABLE) {
set_pageblock_migratetype(page,
MIGRATE_RESERVE);
move_freepages_block(zone, page,
MIGRATE_RESERVE);
reserve--;
continue;
}
}
/*
* If the reserve is met and this is a previous reserved block,
* take it back
*/
if (block_migratetype == MIGRATE_RESERVE) {
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
move_freepages_block(zone, page, MIGRATE_MOVABLE);
}
}
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct page *page;
unsigned long end_pfn = start_pfn + size;
unsigned long pfn;
struct zone *z;
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
z = &NODE_DATA(nid)->node_zones[zone];
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
/*
* There can be holes in boot-time mem_map[]s
* handed to this function. They do not
* exist on hotplugged memory.
*/
if (context == MEMMAP_EARLY) {
if (!early_pfn_valid(pfn))
continue;
if (!early_pfn_in_nid(pfn, nid))
continue;
}
page = pfn_to_page(pfn);
set_page_links(page, zone, nid, pfn);
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
* movable at startup. This will force kernel allocations
* to reserve their blocks rather than leaking throughout
* the address space during boot when many long-lived
* kernel allocations are made. Later some blocks near
* the start are marked MIGRATE_RESERVE by
* setup_zone_migrate_reserve()
*
* bitmap is created for zone's valid pfn range. but memmap
* can be created for invalid pages (for alignment)
* check here not to call set_pageblock_migratetype() against
* pfn out of zone.
*/
if ((z->zone_start_pfn <= pfn)
&& (pfn < z->zone_start_pfn + z->spanned_pages)
&& !(pfn & (pageblock_nr_pages - 1)))
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
}
static void __meminit zone_init_free_lists(struct zone *zone)
{
int order, t;
for_each_migratetype_order(order, t) {
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif
static int __meminit zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
int batch;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/2 of a meg.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->present_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases.
*
* For example if 2 tasks are alternately allocating
* batches of pages, one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
batch = rounddown_pow_of_two(batch + batch/2) - 1;
return batch;
#else
/* The deferral and batching of frees should be suppressed under NOMMU
* conditions.
*
* The problem is that NOMMU needs to be able to allocate large chunks
* of contiguous memory as there's no hardware page translation to
* assemble apparent contiguous memory from discontiguous pages.
*
* Queueing large contiguous runs of pages for batching, however,
* causes the pages to actually be freed in smaller chunks. As there
* can be a significant delay between the individual batches being
* recycled, this leads to the once large chunks of space being
* fragmented and becoming unavailable for high-order allocations.
*/
return 0;
#endif
}
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
struct per_cpu_pages *pcp;
int migratetype;
memset(p, 0, sizeof(*p));
pcp = &p->pcp;
pcp->count = 0;
pcp->high = 6 * batch;
pcp->batch = max(1UL, 1 * batch);
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
INIT_LIST_HEAD(&pcp->lists[migratetype]);
}
/*
* setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p.
*/
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
unsigned long high)
{
struct per_cpu_pages *pcp;
pcp = &p->pcp;
pcp->high = high;
pcp->batch = max(1UL, high/4);
if ((high/4) > (PAGE_SHIFT * 8))
pcp->batch = PAGE_SHIFT * 8;
}
static void __meminit setup_zone_pageset(struct zone *zone)
{
int cpu;
zone->pageset = alloc_percpu(struct per_cpu_pageset);
for_each_possible_cpu(cpu) {
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
setup_pageset(pcp, zone_batchsize(zone));
if (percpu_pagelist_fraction)
setup_pagelist_highmark(pcp,
(zone->present_pages /
percpu_pagelist_fraction));
}
}
/*
* Allocate per cpu pagesets and initialize them.
* Before this call only boot pagesets were available.
*/
void __init setup_per_cpu_pageset(void)
{
struct zone *zone;
for_each_populated_zone(zone)
setup_zone_pageset(zone);
}
static noinline __init_refok
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
struct pglist_data *pgdat = zone->zone_pgdat;
size_t alloc_size;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_hash_nr_entries =
wait_table_hash_nr_entries(zone_size_pages);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_hash_nr_entries);
alloc_size = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
if (!slab_is_available()) {
zone->wait_table = (wait_queue_head_t *)
alloc_bootmem_node_nopanic(pgdat, alloc_size);
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot-add.
* But it may be the case that a new node was hot-added. In
* this case vmalloc() will not be able to use this new node's
* memory - this wait_table must be initialized to use this new
* node itself as well.
* To use this new node's memory, further consideration will be
* necessary.
*/
zone->wait_table = vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
}
static __meminit void zone_pcp_init(struct zone *zone)
{
/*
* per cpu subsystem is not up at this point. The following code
* relies on the ability of the linker to provide the
* offset of a (static) per cpu variable into the per cpu area.
*/
zone->pageset = &boot_pageset;
if (zone->present_pages)
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
}
int __meminit init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size,
enum memmap_context context)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int ret;
ret = zone_wait_table_init(zone, size);
if (ret)
return ret;
pgdat->nr_zones = zone_idx(zone) + 1;
zone->zone_start_pfn = zone_start_pfn;
mminit_dprintk(MMINIT_TRACE, "memmap_init",
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
pgdat->node_id,
(unsigned long)zone_idx(zone),
zone_start_pfn, (zone_start_pfn + size));
zone_init_free_lists(zone);
return 0;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
* Architectures may implement their own version but if add_active_range()
* was used and there are no special requirements, this is a convenient
* alternative
*/
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
unsigned long start_pfn, end_pfn;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
if (start_pfn <= pfn && pfn < end_pfn)
return nid;
/* This is a memory hole */
return -1;
}