Permalink
Join GitHub today
GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together.
Sign up// SPDX-License-Identifier: GPL-2.0-only | |
/* cpu_feature_enabled() cannot be used this early */ | |
#define USE_EARLY_PGTABLE_L5 | |
#include <linux/memblock.h> | |
#include <linux/linkage.h> | |
#include <linux/bitops.h> | |
#include <linux/kernel.h> | |
#include <linux/export.h> | |
#include <linux/percpu.h> | |
#include <linux/string.h> | |
#include <linux/ctype.h> | |
#include <linux/delay.h> | |
#include <linux/sched/mm.h> | |
#include <linux/sched/clock.h> | |
#include <linux/sched/task.h> | |
#include <linux/init.h> | |
#include <linux/kprobes.h> | |
#include <linux/kgdb.h> | |
#include <linux/smp.h> | |
#include <linux/io.h> | |
#include <linux/syscore_ops.h> | |
#include <asm/stackprotector.h> | |
#include <asm/perf_event.h> | |
#include <asm/mmu_context.h> | |
#include <asm/doublefault.h> | |
#include <asm/archrandom.h> | |
#include <asm/hypervisor.h> | |
#include <asm/processor.h> | |
#include <asm/tlbflush.h> | |
#include <asm/debugreg.h> | |
#include <asm/sections.h> | |
#include <asm/vsyscall.h> | |
#include <linux/topology.h> | |
#include <linux/cpumask.h> | |
#include <asm/pgtable.h> | |
#include <linux/atomic.h> | |
#include <asm/proto.h> | |
#include <asm/setup.h> | |
#include <asm/apic.h> | |
#include <asm/desc.h> | |
#include <asm/fpu/internal.h> | |
#include <asm/mtrr.h> | |
#include <asm/hwcap2.h> | |
#include <linux/numa.h> | |
#include <asm/asm.h> | |
#include <asm/bugs.h> | |
#include <asm/cpu.h> | |
#include <asm/mce.h> | |
#include <asm/msr.h> | |
#include <asm/pat.h> | |
#include <asm/microcode.h> | |
#include <asm/microcode_intel.h> | |
#include <asm/intel-family.h> | |
#include <asm/cpu_device_id.h> | |
#include <asm/uv/uv.h> | |
#include "cpu.h" | |
u32 elf_hwcap2 __read_mostly; | |
/* all of these masks are initialized in setup_cpu_local_masks() */ | |
cpumask_var_t cpu_initialized_mask; | |
cpumask_var_t cpu_callout_mask; | |
cpumask_var_t cpu_callin_mask; | |
/* representing cpus for which sibling maps can be computed */ | |
cpumask_var_t cpu_sibling_setup_mask; | |
/* Number of siblings per CPU package */ | |
int smp_num_siblings = 1; | |
EXPORT_SYMBOL(smp_num_siblings); | |
/* Last level cache ID of each logical CPU */ | |
DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; | |
/* correctly size the local cpu masks */ | |
void __init setup_cpu_local_masks(void) | |
{ | |
alloc_bootmem_cpumask_var(&cpu_initialized_mask); | |
alloc_bootmem_cpumask_var(&cpu_callin_mask); | |
alloc_bootmem_cpumask_var(&cpu_callout_mask); | |
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); | |
} | |
static void default_init(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_X86_64 | |
cpu_detect_cache_sizes(c); | |
#else | |
/* Not much we can do here... */ | |
/* Check if at least it has cpuid */ | |
if (c->cpuid_level == -1) { | |
/* No cpuid. It must be an ancient CPU */ | |
if (c->x86 == 4) | |
strcpy(c->x86_model_id, "486"); | |
else if (c->x86 == 3) | |
strcpy(c->x86_model_id, "386"); | |
} | |
#endif | |
} | |
static const struct cpu_dev default_cpu = { | |
.c_init = default_init, | |
.c_vendor = "Unknown", | |
.c_x86_vendor = X86_VENDOR_UNKNOWN, | |
}; | |
static const struct cpu_dev *this_cpu = &default_cpu; | |
DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { | |
#ifdef CONFIG_X86_64 | |
/* | |
* We need valid kernel segments for data and code in long mode too | |
* IRET will check the segment types kkeil 2000/10/28 | |
* Also sysret mandates a special GDT layout | |
* | |
* TLS descriptors are currently at a different place compared to i386. | |
* Hopefully nobody expects them at a fixed place (Wine?) | |
*/ | |
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), | |
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), | |
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), | |
[GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), | |
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), | |
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), | |
#else | |
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), | |
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | |
[GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), | |
[GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), | |
/* | |
* Segments used for calling PnP BIOS have byte granularity. | |
* They code segments and data segments have fixed 64k limits, | |
* the transfer segment sizes are set at run time. | |
*/ | |
/* 32-bit code */ | |
[GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), | |
/* 16-bit code */ | |
[GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), | |
/* 16-bit data */ | |
[GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff), | |
/* 16-bit data */ | |
[GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0), | |
/* 16-bit data */ | |
[GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0), | |
/* | |
* The APM segments have byte granularity and their bases | |
* are set at run time. All have 64k limits. | |
*/ | |
/* 32-bit code */ | |
[GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff), | |
/* 16-bit code */ | |
[GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff), | |
/* data */ | |
[GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff), | |
[GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | |
[GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | |
GDT_STACK_CANARY_INIT | |
#endif | |
} }; | |
EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); | |
static int __init x86_mpx_setup(char *s) | |
{ | |
/* require an exact match without trailing characters */ | |
if (strlen(s)) | |
return 0; | |
/* do not emit a message if the feature is not present */ | |
if (!boot_cpu_has(X86_FEATURE_MPX)) | |
return 1; | |
setup_clear_cpu_cap(X86_FEATURE_MPX); | |
pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n"); | |
return 1; | |
} | |
__setup("nompx", x86_mpx_setup); | |
#ifdef CONFIG_X86_64 | |
static int __init x86_nopcid_setup(char *s) | |
{ | |
/* nopcid doesn't accept parameters */ | |
if (s) | |
return -EINVAL; | |
/* do not emit a message if the feature is not present */ | |
if (!boot_cpu_has(X86_FEATURE_PCID)) | |
return 0; | |
setup_clear_cpu_cap(X86_FEATURE_PCID); | |
pr_info("nopcid: PCID feature disabled\n"); | |
return 0; | |
} | |
early_param("nopcid", x86_nopcid_setup); | |
#endif | |
static int __init x86_noinvpcid_setup(char *s) | |
{ | |
/* noinvpcid doesn't accept parameters */ | |
if (s) | |
return -EINVAL; | |
/* do not emit a message if the feature is not present */ | |
if (!boot_cpu_has(X86_FEATURE_INVPCID)) | |
return 0; | |
setup_clear_cpu_cap(X86_FEATURE_INVPCID); | |
pr_info("noinvpcid: INVPCID feature disabled\n"); | |
return 0; | |
} | |
early_param("noinvpcid", x86_noinvpcid_setup); | |
#ifdef CONFIG_X86_32 | |
static int cachesize_override = -1; | |
static int disable_x86_serial_nr = 1; | |
static int __init cachesize_setup(char *str) | |
{ | |
get_option(&str, &cachesize_override); | |
return 1; | |
} | |
__setup("cachesize=", cachesize_setup); | |
static int __init x86_sep_setup(char *s) | |
{ | |
setup_clear_cpu_cap(X86_FEATURE_SEP); | |
return 1; | |
} | |
__setup("nosep", x86_sep_setup); | |
/* Standard macro to see if a specific flag is changeable */ | |
static inline int flag_is_changeable_p(u32 flag) | |
{ | |
u32 f1, f2; | |
/* | |
* Cyrix and IDT cpus allow disabling of CPUID | |
* so the code below may return different results | |
* when it is executed before and after enabling | |
* the CPUID. Add "volatile" to not allow gcc to | |
* optimize the subsequent calls to this function. | |
*/ | |
asm volatile ("pushfl \n\t" | |
"pushfl \n\t" | |
"popl %0 \n\t" | |
"movl %0, %1 \n\t" | |
"xorl %2, %0 \n\t" | |
"pushl %0 \n\t" | |
"popfl \n\t" | |
"pushfl \n\t" | |
"popl %0 \n\t" | |
"popfl \n\t" | |
: "=&r" (f1), "=&r" (f2) | |
: "ir" (flag)); | |
return ((f1^f2) & flag) != 0; | |
} | |
/* Probe for the CPUID instruction */ | |
int have_cpuid_p(void) | |
{ | |
return flag_is_changeable_p(X86_EFLAGS_ID); | |
} | |
static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) | |
{ | |
unsigned long lo, hi; | |
if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) | |
return; | |
/* Disable processor serial number: */ | |
rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); | |
lo |= 0x200000; | |
wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); | |
pr_notice("CPU serial number disabled.\n"); | |
clear_cpu_cap(c, X86_FEATURE_PN); | |
/* Disabling the serial number may affect the cpuid level */ | |
c->cpuid_level = cpuid_eax(0); | |
} | |
static int __init x86_serial_nr_setup(char *s) | |
{ | |
disable_x86_serial_nr = 0; | |
return 1; | |
} | |
__setup("serialnumber", x86_serial_nr_setup); | |
#else | |
static inline int flag_is_changeable_p(u32 flag) | |
{ | |
return 1; | |
} | |
static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) | |
{ | |
} | |
#endif | |
static __init int setup_disable_smep(char *arg) | |
{ | |
setup_clear_cpu_cap(X86_FEATURE_SMEP); | |
/* Check for things that depend on SMEP being enabled: */ | |
check_mpx_erratum(&boot_cpu_data); | |
return 1; | |
} | |
__setup("nosmep", setup_disable_smep); | |
static __always_inline void setup_smep(struct cpuinfo_x86 *c) | |
{ | |
if (cpu_has(c, X86_FEATURE_SMEP)) | |
cr4_set_bits(X86_CR4_SMEP); | |
} | |
static __init int setup_disable_smap(char *arg) | |
{ | |
setup_clear_cpu_cap(X86_FEATURE_SMAP); | |
return 1; | |
} | |
__setup("nosmap", setup_disable_smap); | |
static __always_inline void setup_smap(struct cpuinfo_x86 *c) | |
{ | |
unsigned long eflags = native_save_fl(); | |
/* This should have been cleared long ago */ | |
BUG_ON(eflags & X86_EFLAGS_AC); | |
if (cpu_has(c, X86_FEATURE_SMAP)) { | |
#ifdef CONFIG_X86_SMAP | |
cr4_set_bits(X86_CR4_SMAP); | |
#else | |
cr4_clear_bits(X86_CR4_SMAP); | |
#endif | |
} | |
} | |
static __always_inline void setup_umip(struct cpuinfo_x86 *c) | |
{ | |
/* Check the boot processor, plus build option for UMIP. */ | |
if (!cpu_feature_enabled(X86_FEATURE_UMIP)) | |
goto out; | |
/* Check the current processor's cpuid bits. */ | |
if (!cpu_has(c, X86_FEATURE_UMIP)) | |
goto out; | |
cr4_set_bits(X86_CR4_UMIP); | |
pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); | |
return; | |
out: | |
/* | |
* Make sure UMIP is disabled in case it was enabled in a | |
* previous boot (e.g., via kexec). | |
*/ | |
cr4_clear_bits(X86_CR4_UMIP); | |
} | |
static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); | |
static unsigned long cr4_pinned_bits __ro_after_init; | |
void native_write_cr0(unsigned long val) | |
{ | |
unsigned long bits_missing = 0; | |
set_register: | |
asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order)); | |
if (static_branch_likely(&cr_pinning)) { | |
if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { | |
bits_missing = X86_CR0_WP; | |
val |= bits_missing; | |
goto set_register; | |
} | |
/* Warn after we've set the missing bits. */ | |
WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); | |
} | |
} | |
EXPORT_SYMBOL(native_write_cr0); | |
void native_write_cr4(unsigned long val) | |
{ | |
unsigned long bits_missing = 0; | |
set_register: | |
asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits)); | |
if (static_branch_likely(&cr_pinning)) { | |
if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) { | |
bits_missing = ~val & cr4_pinned_bits; | |
val |= bits_missing; | |
goto set_register; | |
} | |
/* Warn after we've set the missing bits. */ | |
WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n", | |
bits_missing); | |
} | |
} | |
EXPORT_SYMBOL(native_write_cr4); | |
void cr4_init(void) | |
{ | |
unsigned long cr4 = __read_cr4(); | |
if (boot_cpu_has(X86_FEATURE_PCID)) | |
cr4 |= X86_CR4_PCIDE; | |
if (static_branch_likely(&cr_pinning)) | |
cr4 |= cr4_pinned_bits; | |
__write_cr4(cr4); | |
/* Initialize cr4 shadow for this CPU. */ | |
this_cpu_write(cpu_tlbstate.cr4, cr4); | |
} | |
/* | |
* Once CPU feature detection is finished (and boot params have been | |
* parsed), record any of the sensitive CR bits that are set, and | |
* enable CR pinning. | |
*/ | |
static void __init setup_cr_pinning(void) | |
{ | |
unsigned long mask; | |
mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP); | |
cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask; | |
static_key_enable(&cr_pinning.key); | |
} | |
/* | |
* Protection Keys are not available in 32-bit mode. | |
*/ | |
static bool pku_disabled; | |
static __always_inline void setup_pku(struct cpuinfo_x86 *c) | |
{ | |
struct pkru_state *pk; | |
/* check the boot processor, plus compile options for PKU: */ | |
if (!cpu_feature_enabled(X86_FEATURE_PKU)) | |
return; | |
/* checks the actual processor's cpuid bits: */ | |
if (!cpu_has(c, X86_FEATURE_PKU)) | |
return; | |
if (pku_disabled) | |
return; | |
cr4_set_bits(X86_CR4_PKE); | |
pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU); | |
if (pk) | |
pk->pkru = init_pkru_value; | |
/* | |
* Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE | |
* cpuid bit to be set. We need to ensure that we | |
* update that bit in this CPU's "cpu_info". | |
*/ | |
get_cpu_cap(c); | |
} | |
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | |
static __init int setup_disable_pku(char *arg) | |
{ | |
/* | |
* Do not clear the X86_FEATURE_PKU bit. All of the | |
* runtime checks are against OSPKE so clearing the | |
* bit does nothing. | |
* | |
* This way, we will see "pku" in cpuinfo, but not | |
* "ospke", which is exactly what we want. It shows | |
* that the CPU has PKU, but the OS has not enabled it. | |
* This happens to be exactly how a system would look | |
* if we disabled the config option. | |
*/ | |
pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); | |
pku_disabled = true; | |
return 1; | |
} | |
__setup("nopku", setup_disable_pku); | |
#endif /* CONFIG_X86_64 */ | |
/* | |
* Some CPU features depend on higher CPUID levels, which may not always | |
* be available due to CPUID level capping or broken virtualization | |
* software. Add those features to this table to auto-disable them. | |
*/ | |
struct cpuid_dependent_feature { | |
u32 feature; | |
u32 level; | |
}; | |
static const struct cpuid_dependent_feature | |
cpuid_dependent_features[] = { | |
{ X86_FEATURE_MWAIT, 0x00000005 }, | |
{ X86_FEATURE_DCA, 0x00000009 }, | |
{ X86_FEATURE_XSAVE, 0x0000000d }, | |
{ 0, 0 } | |
}; | |
static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) | |
{ | |
const struct cpuid_dependent_feature *df; | |
for (df = cpuid_dependent_features; df->feature; df++) { | |
if (!cpu_has(c, df->feature)) | |
continue; | |
/* | |
* Note: cpuid_level is set to -1 if unavailable, but | |
* extended_extended_level is set to 0 if unavailable | |
* and the legitimate extended levels are all negative | |
* when signed; hence the weird messing around with | |
* signs here... | |
*/ | |
if (!((s32)df->level < 0 ? | |
(u32)df->level > (u32)c->extended_cpuid_level : | |
(s32)df->level > (s32)c->cpuid_level)) | |
continue; | |
clear_cpu_cap(c, df->feature); | |
if (!warn) | |
continue; | |
pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n", | |
x86_cap_flag(df->feature), df->level); | |
} | |
} | |
/* | |
* Naming convention should be: <Name> [(<Codename>)] | |
* This table only is used unless init_<vendor>() below doesn't set it; | |
* in particular, if CPUID levels 0x80000002..4 are supported, this | |
* isn't used | |
*/ | |
/* Look up CPU names by table lookup. */ | |
static const char *table_lookup_model(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_X86_32 | |
const struct legacy_cpu_model_info *info; | |
if (c->x86_model >= 16) | |
return NULL; /* Range check */ | |
if (!this_cpu) | |
return NULL; | |
info = this_cpu->legacy_models; | |
while (info->family) { | |
if (info->family == c->x86) | |
return info->model_names[c->x86_model]; | |
info++; | |
} | |
#endif | |
return NULL; /* Not found */ | |
} | |
/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ | |
__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); | |
__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); | |
void load_percpu_segment(int cpu) | |
{ | |
#ifdef CONFIG_X86_32 | |
loadsegment(fs, __KERNEL_PERCPU); | |
#else | |
__loadsegment_simple(gs, 0); | |
wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); | |
#endif | |
load_stack_canary_segment(); | |
} | |
#ifdef CONFIG_X86_32 | |
/* The 32-bit entry code needs to find cpu_entry_area. */ | |
DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); | |
#endif | |
/* Load the original GDT from the per-cpu structure */ | |
void load_direct_gdt(int cpu) | |
{ | |
struct desc_ptr gdt_descr; | |
gdt_descr.address = (long)get_cpu_gdt_rw(cpu); | |
gdt_descr.size = GDT_SIZE - 1; | |
load_gdt(&gdt_descr); | |
} | |
EXPORT_SYMBOL_GPL(load_direct_gdt); | |
/* Load a fixmap remapping of the per-cpu GDT */ | |
void load_fixmap_gdt(int cpu) | |
{ | |
struct desc_ptr gdt_descr; | |
gdt_descr.address = (long)get_cpu_gdt_ro(cpu); | |
gdt_descr.size = GDT_SIZE - 1; | |
load_gdt(&gdt_descr); | |
} | |
EXPORT_SYMBOL_GPL(load_fixmap_gdt); | |
/* | |
* Current gdt points %fs at the "master" per-cpu area: after this, | |
* it's on the real one. | |
*/ | |
void switch_to_new_gdt(int cpu) | |
{ | |
/* Load the original GDT */ | |
load_direct_gdt(cpu); | |
/* Reload the per-cpu base */ | |
load_percpu_segment(cpu); | |
} | |
static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; | |
static void get_model_name(struct cpuinfo_x86 *c) | |
{ | |
unsigned int *v; | |
char *p, *q, *s; | |
if (c->extended_cpuid_level < 0x80000004) | |
return; | |
v = (unsigned int *)c->x86_model_id; | |
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); | |
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); | |
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); | |
c->x86_model_id[48] = 0; | |
/* Trim whitespace */ | |
p = q = s = &c->x86_model_id[0]; | |
while (*p == ' ') | |
p++; | |
while (*p) { | |
/* Note the last non-whitespace index */ | |
if (!isspace(*p)) | |
s = q; | |
*q++ = *p++; | |
} | |
*(s + 1) = '\0'; | |
} | |
void detect_num_cpu_cores(struct cpuinfo_x86 *c) | |
{ | |
unsigned int eax, ebx, ecx, edx; | |
c->x86_max_cores = 1; | |
if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4) | |
return; | |
cpuid_count(4, 0, &eax, &ebx, &ecx, &edx); | |
if (eax & 0x1f) | |
c->x86_max_cores = (eax >> 26) + 1; | |
} | |
void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) | |
{ | |
unsigned int n, dummy, ebx, ecx, edx, l2size; | |
n = c->extended_cpuid_level; | |
if (n >= 0x80000005) { | |
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); | |
c->x86_cache_size = (ecx>>24) + (edx>>24); | |
#ifdef CONFIG_X86_64 | |
/* On K8 L1 TLB is inclusive, so don't count it */ | |
c->x86_tlbsize = 0; | |
#endif | |
} | |
if (n < 0x80000006) /* Some chips just has a large L1. */ | |
return; | |
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); | |
l2size = ecx >> 16; | |
#ifdef CONFIG_X86_64 | |
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); | |
#else | |
/* do processor-specific cache resizing */ | |
if (this_cpu->legacy_cache_size) | |
l2size = this_cpu->legacy_cache_size(c, l2size); | |
/* Allow user to override all this if necessary. */ | |
if (cachesize_override != -1) | |
l2size = cachesize_override; | |
if (l2size == 0) | |
return; /* Again, no L2 cache is possible */ | |
#endif | |
c->x86_cache_size = l2size; | |
} | |
u16 __read_mostly tlb_lli_4k[NR_INFO]; | |
u16 __read_mostly tlb_lli_2m[NR_INFO]; | |
u16 __read_mostly tlb_lli_4m[NR_INFO]; | |
u16 __read_mostly tlb_lld_4k[NR_INFO]; | |
u16 __read_mostly tlb_lld_2m[NR_INFO]; | |
u16 __read_mostly tlb_lld_4m[NR_INFO]; | |
u16 __read_mostly tlb_lld_1g[NR_INFO]; | |
static void cpu_detect_tlb(struct cpuinfo_x86 *c) | |
{ | |
if (this_cpu->c_detect_tlb) | |
this_cpu->c_detect_tlb(c); | |
pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", | |
tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES], | |
tlb_lli_4m[ENTRIES]); | |
pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", | |
tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES], | |
tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]); | |
} | |
int detect_ht_early(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_SMP | |
u32 eax, ebx, ecx, edx; | |
if (!cpu_has(c, X86_FEATURE_HT)) | |
return -1; | |
if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) | |
return -1; | |
if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) | |
return -1; | |
cpuid(1, &eax, &ebx, &ecx, &edx); | |
smp_num_siblings = (ebx & 0xff0000) >> 16; | |
if (smp_num_siblings == 1) | |
pr_info_once("CPU0: Hyper-Threading is disabled\n"); | |
#endif | |
return 0; | |
} | |
void detect_ht(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_SMP | |
int index_msb, core_bits; | |
if (detect_ht_early(c) < 0) | |
return; | |
index_msb = get_count_order(smp_num_siblings); | |
c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); | |
smp_num_siblings = smp_num_siblings / c->x86_max_cores; | |
index_msb = get_count_order(smp_num_siblings); | |
core_bits = get_count_order(c->x86_max_cores); | |
c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & | |
((1 << core_bits) - 1); | |
#endif | |
} | |
static void get_cpu_vendor(struct cpuinfo_x86 *c) | |
{ | |
char *v = c->x86_vendor_id; | |
int i; | |
for (i = 0; i < X86_VENDOR_NUM; i++) { | |
if (!cpu_devs[i]) | |
break; | |
if (!strcmp(v, cpu_devs[i]->c_ident[0]) || | |
(cpu_devs[i]->c_ident[1] && | |
!strcmp(v, cpu_devs[i]->c_ident[1]))) { | |
this_cpu = cpu_devs[i]; | |
c->x86_vendor = this_cpu->c_x86_vendor; | |
return; | |
} | |
} | |
pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ | |
"CPU: Your system may be unstable.\n", v); | |
c->x86_vendor = X86_VENDOR_UNKNOWN; | |
this_cpu = &default_cpu; | |
} | |
void cpu_detect(struct cpuinfo_x86 *c) | |
{ | |
/* Get vendor name */ | |
cpuid(0x00000000, (unsigned int *)&c->cpuid_level, | |
(unsigned int *)&c->x86_vendor_id[0], | |
(unsigned int *)&c->x86_vendor_id[8], | |
(unsigned int *)&c->x86_vendor_id[4]); | |
c->x86 = 4; | |
/* Intel-defined flags: level 0x00000001 */ | |
if (c->cpuid_level >= 0x00000001) { | |
u32 junk, tfms, cap0, misc; | |
cpuid(0x00000001, &tfms, &misc, &junk, &cap0); | |
c->x86 = x86_family(tfms); | |
c->x86_model = x86_model(tfms); | |
c->x86_stepping = x86_stepping(tfms); | |
if (cap0 & (1<<19)) { | |
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; | |
c->x86_cache_alignment = c->x86_clflush_size; | |
} | |
} | |
} | |
static void apply_forced_caps(struct cpuinfo_x86 *c) | |
{ | |
int i; | |
for (i = 0; i < NCAPINTS + NBUGINTS; i++) { | |
c->x86_capability[i] &= ~cpu_caps_cleared[i]; | |
c->x86_capability[i] |= cpu_caps_set[i]; | |
} | |
} | |
static void init_speculation_control(struct cpuinfo_x86 *c) | |
{ | |
/* | |
* The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, | |
* and they also have a different bit for STIBP support. Also, | |
* a hypervisor might have set the individual AMD bits even on | |
* Intel CPUs, for finer-grained selection of what's available. | |
*/ | |
if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { | |
set_cpu_cap(c, X86_FEATURE_IBRS); | |
set_cpu_cap(c, X86_FEATURE_IBPB); | |
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); | |
} | |
if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) | |
set_cpu_cap(c, X86_FEATURE_STIBP); | |
if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || | |
cpu_has(c, X86_FEATURE_VIRT_SSBD)) | |
set_cpu_cap(c, X86_FEATURE_SSBD); | |
if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { | |
set_cpu_cap(c, X86_FEATURE_IBRS); | |
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); | |
} | |
if (cpu_has(c, X86_FEATURE_AMD_IBPB)) | |
set_cpu_cap(c, X86_FEATURE_IBPB); | |
if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { | |
set_cpu_cap(c, X86_FEATURE_STIBP); | |
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); | |
} | |
if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { | |
set_cpu_cap(c, X86_FEATURE_SSBD); | |
set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); | |
clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); | |
} | |
} | |
static void init_cqm(struct cpuinfo_x86 *c) | |
{ | |
if (!cpu_has(c, X86_FEATURE_CQM_LLC)) { | |
c->x86_cache_max_rmid = -1; | |
c->x86_cache_occ_scale = -1; | |
return; | |
} | |
/* will be overridden if occupancy monitoring exists */ | |
c->x86_cache_max_rmid = cpuid_ebx(0xf); | |
if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) || | |
cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) || | |
cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) { | |
u32 eax, ebx, ecx, edx; | |
/* QoS sub-leaf, EAX=0Fh, ECX=1 */ | |
cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx); | |
c->x86_cache_max_rmid = ecx; | |
c->x86_cache_occ_scale = ebx; | |
} | |
} | |
void get_cpu_cap(struct cpuinfo_x86 *c) | |
{ | |
u32 eax, ebx, ecx, edx; | |
/* Intel-defined flags: level 0x00000001 */ | |
if (c->cpuid_level >= 0x00000001) { | |
cpuid(0x00000001, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_1_ECX] = ecx; | |
c->x86_capability[CPUID_1_EDX] = edx; | |
} | |
/* Thermal and Power Management Leaf: level 0x00000006 (eax) */ | |
if (c->cpuid_level >= 0x00000006) | |
c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); | |
/* Additional Intel-defined flags: level 0x00000007 */ | |
if (c->cpuid_level >= 0x00000007) { | |
cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_7_0_EBX] = ebx; | |
c->x86_capability[CPUID_7_ECX] = ecx; | |
c->x86_capability[CPUID_7_EDX] = edx; | |
/* Check valid sub-leaf index before accessing it */ | |
if (eax >= 1) { | |
cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_7_1_EAX] = eax; | |
} | |
} | |
/* Extended state features: level 0x0000000d */ | |
if (c->cpuid_level >= 0x0000000d) { | |
cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_D_1_EAX] = eax; | |
} | |
/* AMD-defined flags: level 0x80000001 */ | |
eax = cpuid_eax(0x80000000); | |
c->extended_cpuid_level = eax; | |
if ((eax & 0xffff0000) == 0x80000000) { | |
if (eax >= 0x80000001) { | |
cpuid(0x80000001, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_8000_0001_ECX] = ecx; | |
c->x86_capability[CPUID_8000_0001_EDX] = edx; | |
} | |
} | |
if (c->extended_cpuid_level >= 0x80000007) { | |
cpuid(0x80000007, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_8000_0007_EBX] = ebx; | |
c->x86_power = edx; | |
} | |
if (c->extended_cpuid_level >= 0x80000008) { | |
cpuid(0x80000008, &eax, &ebx, &ecx, &edx); | |
c->x86_capability[CPUID_8000_0008_EBX] = ebx; | |
} | |
if (c->extended_cpuid_level >= 0x8000000a) | |
c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); | |
init_scattered_cpuid_features(c); | |
init_speculation_control(c); | |
init_cqm(c); | |
/* | |
* Clear/Set all flags overridden by options, after probe. | |
* This needs to happen each time we re-probe, which may happen | |
* several times during CPU initialization. | |
*/ | |
apply_forced_caps(c); | |
} | |
void get_cpu_address_sizes(struct cpuinfo_x86 *c) | |
{ | |
u32 eax, ebx, ecx, edx; | |
if (c->extended_cpuid_level >= 0x80000008) { | |
cpuid(0x80000008, &eax, &ebx, &ecx, &edx); | |
c->x86_virt_bits = (eax >> 8) & 0xff; | |
c->x86_phys_bits = eax & 0xff; | |
} | |
#ifdef CONFIG_X86_32 | |
else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) | |
c->x86_phys_bits = 36; | |
#endif | |
c->x86_cache_bits = c->x86_phys_bits; | |
} | |
static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_X86_32 | |
int i; | |
/* | |
* First of all, decide if this is a 486 or higher | |
* It's a 486 if we can modify the AC flag | |
*/ | |
if (flag_is_changeable_p(X86_EFLAGS_AC)) | |
c->x86 = 4; | |
else | |
c->x86 = 3; | |
for (i = 0; i < X86_VENDOR_NUM; i++) | |
if (cpu_devs[i] && cpu_devs[i]->c_identify) { | |
c->x86_vendor_id[0] = 0; | |
cpu_devs[i]->c_identify(c); | |
if (c->x86_vendor_id[0]) { | |
get_cpu_vendor(c); | |
break; | |
} | |
} | |
#endif | |
} | |
#define NO_SPECULATION BIT(0) | |
#define NO_MELTDOWN BIT(1) | |
#define NO_SSB BIT(2) | |
#define NO_L1TF BIT(3) | |
#define NO_MDS BIT(4) | |
#define MSBDS_ONLY BIT(5) | |
#define NO_SWAPGS BIT(6) | |
#define NO_ITLB_MULTIHIT BIT(7) | |
#define VULNWL(_vendor, _family, _model, _whitelist) \ | |
{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist } | |
#define VULNWL_INTEL(model, whitelist) \ | |
VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist) | |
#define VULNWL_AMD(family, whitelist) \ | |
VULNWL(AMD, family, X86_MODEL_ANY, whitelist) | |
#define VULNWL_HYGON(family, whitelist) \ | |
VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) | |
static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { | |
VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), | |
VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), | |
VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), | |
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), | |
/* Intel Family 6 */ | |
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(CORE_YONAH, NO_SSB), | |
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
/* | |
* Technically, swapgs isn't serializing on AMD (despite it previously | |
* being documented as such in the APM). But according to AMD, %gs is | |
* updated non-speculatively, and the issuing of %gs-relative memory | |
* operands will be blocked until the %gs update completes, which is | |
* good enough for our purposes. | |
*/ | |
VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT), | |
/* AMD Family 0xf - 0x12 */ | |
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ | |
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT), | |
{} | |
}; | |
static bool __init cpu_matches(unsigned long which) | |
{ | |
const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist); | |
return m && !!(m->driver_data & which); | |
} | |
u64 x86_read_arch_cap_msr(void) | |
{ | |
u64 ia32_cap = 0; | |
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) | |
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap); | |
return ia32_cap; | |
} | |
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) | |
{ | |
u64 ia32_cap = x86_read_arch_cap_msr(); | |
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ | |
if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO)) | |
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); | |
if (cpu_matches(NO_SPECULATION)) | |
return; | |
setup_force_cpu_bug(X86_BUG_SPECTRE_V1); | |
setup_force_cpu_bug(X86_BUG_SPECTRE_V2); | |
if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) && | |
!cpu_has(c, X86_FEATURE_AMD_SSB_NO)) | |
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); | |
if (ia32_cap & ARCH_CAP_IBRS_ALL) | |
setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); | |
if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) { | |
setup_force_cpu_bug(X86_BUG_MDS); | |
if (cpu_matches(MSBDS_ONLY)) | |
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); | |
} | |
if (!cpu_matches(NO_SWAPGS)) | |
setup_force_cpu_bug(X86_BUG_SWAPGS); | |
/* | |
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: | |
* - TSX is supported or | |
* - TSX_CTRL is present | |
* | |
* TSX_CTRL check is needed for cases when TSX could be disabled before | |
* the kernel boot e.g. kexec. | |
* TSX_CTRL check alone is not sufficient for cases when the microcode | |
* update is not present or running as guest that don't get TSX_CTRL. | |
*/ | |
if (!(ia32_cap & ARCH_CAP_TAA_NO) && | |
(cpu_has(c, X86_FEATURE_RTM) || | |
(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))) | |
setup_force_cpu_bug(X86_BUG_TAA); | |
if (cpu_matches(NO_MELTDOWN)) | |
return; | |
/* Rogue Data Cache Load? No! */ | |
if (ia32_cap & ARCH_CAP_RDCL_NO) | |
return; | |
setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); | |
if (cpu_matches(NO_L1TF)) | |
return; | |
setup_force_cpu_bug(X86_BUG_L1TF); | |
} | |
/* | |
* The NOPL instruction is supposed to exist on all CPUs of family >= 6; | |
* unfortunately, that's not true in practice because of early VIA | |
* chips and (more importantly) broken virtualizers that are not easy | |
* to detect. In the latter case it doesn't even *fail* reliably, so | |
* probing for it doesn't even work. Disable it completely on 32-bit | |
* unless we can find a reliable way to detect all the broken cases. | |
* Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). | |
*/ | |
static void detect_nopl(void) | |
{ | |
#ifdef CONFIG_X86_32 | |
setup_clear_cpu_cap(X86_FEATURE_NOPL); | |
#else | |
setup_force_cpu_cap(X86_FEATURE_NOPL); | |
#endif | |
} | |
/* | |
* Do minimum CPU detection early. | |
* Fields really needed: vendor, cpuid_level, family, model, mask, | |
* cache alignment. | |
* The others are not touched to avoid unwanted side effects. | |
* | |
* WARNING: this function is only called on the boot CPU. Don't add code | |
* here that is supposed to run on all CPUs. | |
*/ | |
static void __init early_identify_cpu(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_X86_64 | |
c->x86_clflush_size = 64; | |
c->x86_phys_bits = 36; | |
c->x86_virt_bits = 48; | |
#else | |
c->x86_clflush_size = 32; | |
c->x86_phys_bits = 32; | |
c->x86_virt_bits = 32; | |
#endif | |
c->x86_cache_alignment = c->x86_clflush_size; | |
memset(&c->x86_capability, 0, sizeof(c->x86_capability)); | |
c->extended_cpuid_level = 0; | |
if (!have_cpuid_p()) | |
identify_cpu_without_cpuid(c); | |
/* cyrix could have cpuid enabled via c_identify()*/ | |
if (have_cpuid_p()) { | |
cpu_detect(c); | |
get_cpu_vendor(c); | |
get_cpu_cap(c); | |
get_cpu_address_sizes(c); | |
setup_force_cpu_cap(X86_FEATURE_CPUID); | |
if (this_cpu->c_early_init) | |
this_cpu->c_early_init(c); | |
c->cpu_index = 0; | |
filter_cpuid_features(c, false); | |
if (this_cpu->c_bsp_init) | |
this_cpu->c_bsp_init(c); | |
} else { | |
setup_clear_cpu_cap(X86_FEATURE_CPUID); | |
} | |
setup_force_cpu_cap(X86_FEATURE_ALWAYS); | |
cpu_set_bug_bits(c); | |
fpu__init_system(c); | |
#ifdef CONFIG_X86_32 | |
/* | |
* Regardless of whether PCID is enumerated, the SDM says | |
* that it can't be enabled in 32-bit mode. | |
*/ | |
setup_clear_cpu_cap(X86_FEATURE_PCID); | |
#endif | |
/* | |
* Later in the boot process pgtable_l5_enabled() relies on | |
* cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not | |
* enabled by this point we need to clear the feature bit to avoid | |
* false-positives at the later stage. | |
* | |
* pgtable_l5_enabled() can be false here for several reasons: | |
* - 5-level paging is disabled compile-time; | |
* - it's 32-bit kernel; | |
* - machine doesn't support 5-level paging; | |
* - user specified 'no5lvl' in kernel command line. | |
*/ | |
if (!pgtable_l5_enabled()) | |
setup_clear_cpu_cap(X86_FEATURE_LA57); | |
detect_nopl(); | |
} | |
void __init early_cpu_init(void) | |
{ | |
const struct cpu_dev *const *cdev; | |
int count = 0; | |
#ifdef CONFIG_PROCESSOR_SELECT | |
pr_info("KERNEL supported cpus:\n"); | |
#endif | |
for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { | |
const struct cpu_dev *cpudev = *cdev; | |
if (count >= X86_VENDOR_NUM) | |
break; | |
cpu_devs[count] = cpudev; | |
count++; | |
#ifdef CONFIG_PROCESSOR_SELECT | |
{ | |
unsigned int j; | |
for (j = 0; j < 2; j++) { | |
if (!cpudev->c_ident[j]) | |
continue; | |
pr_info(" %s %s\n", cpudev->c_vendor, | |
cpudev->c_ident[j]); | |
} | |
} | |
#endif | |
} | |
early_identify_cpu(&boot_cpu_data); | |
} | |
static void detect_null_seg_behavior(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_X86_64 | |
/* | |
* Empirically, writing zero to a segment selector on AMD does | |
* not clear the base, whereas writing zero to a segment | |
* selector on Intel does clear the base. Intel's behavior | |
* allows slightly faster context switches in the common case | |
* where GS is unused by the prev and next threads. | |
* | |
* Since neither vendor documents this anywhere that I can see, | |
* detect it directly instead of hardcoding the choice by | |
* vendor. | |
* | |
* I've designated AMD's behavior as the "bug" because it's | |
* counterintuitive and less friendly. | |
*/ | |
unsigned long old_base, tmp; | |
rdmsrl(MSR_FS_BASE, old_base); | |
wrmsrl(MSR_FS_BASE, 1); | |
loadsegment(fs, 0); | |
rdmsrl(MSR_FS_BASE, tmp); | |
if (tmp != 0) | |
set_cpu_bug(c, X86_BUG_NULL_SEG); | |
wrmsrl(MSR_FS_BASE, old_base); | |
#endif | |
} | |
static void generic_identify(struct cpuinfo_x86 *c) | |
{ | |
c->extended_cpuid_level = 0; | |
if (!have_cpuid_p()) | |
identify_cpu_without_cpuid(c); | |
/* cyrix could have cpuid enabled via c_identify()*/ | |
if (!have_cpuid_p()) | |
return; | |
cpu_detect(c); | |
get_cpu_vendor(c); | |
get_cpu_cap(c); | |
get_cpu_address_sizes(c); | |
if (c->cpuid_level >= 0x00000001) { | |
c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; | |
#ifdef CONFIG_X86_32 | |
# ifdef CONFIG_SMP | |
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); | |
# else | |
c->apicid = c->initial_apicid; | |
# endif | |
#endif | |
c->phys_proc_id = c->initial_apicid; | |
} | |
get_model_name(c); /* Default name */ | |
detect_null_seg_behavior(c); | |
/* | |
* ESPFIX is a strange bug. All real CPUs have it. Paravirt | |
* systems that run Linux at CPL > 0 may or may not have the | |
* issue, but, even if they have the issue, there's absolutely | |
* nothing we can do about it because we can't use the real IRET | |
* instruction. | |
* | |
* NB: For the time being, only 32-bit kernels support | |
* X86_BUG_ESPFIX as such. 64-bit kernels directly choose | |
* whether to apply espfix using paravirt hooks. If any | |
* non-paravirt system ever shows up that does *not* have the | |
* ESPFIX issue, we can change this. | |
*/ | |
#ifdef CONFIG_X86_32 | |
# ifdef CONFIG_PARAVIRT_XXL | |
do { | |
extern void native_iret(void); | |
if (pv_ops.cpu.iret == native_iret) | |
set_cpu_bug(c, X86_BUG_ESPFIX); | |
} while (0); | |
# else | |
set_cpu_bug(c, X86_BUG_ESPFIX); | |
# endif | |
#endif | |
} | |
static void x86_init_cache_qos(struct cpuinfo_x86 *c) | |
{ | |
/* | |
* The heavy lifting of max_rmid and cache_occ_scale are handled | |
* in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu | |
* in case CQM bits really aren't there in this CPU. | |
*/ | |
if (c != &boot_cpu_data) { | |
boot_cpu_data.x86_cache_max_rmid = | |
min(boot_cpu_data.x86_cache_max_rmid, | |
c->x86_cache_max_rmid); | |
} | |
} | |
/* | |
* Validate that ACPI/mptables have the same information about the | |
* effective APIC id and update the package map. | |
*/ | |
static void validate_apic_and_package_id(struct cpuinfo_x86 *c) | |
{ | |
#ifdef CONFIG_SMP | |
unsigned int apicid, cpu = smp_processor_id(); | |
apicid = apic->cpu_present_to_apicid(cpu); | |
if (apicid != c->apicid) { | |
pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n", | |
cpu, apicid, c->initial_apicid); | |
} | |
BUG_ON(topology_update_package_map(c->phys_proc_id, cpu)); | |
BUG_ON(topology_update_die_map(c->cpu_die_id, cpu)); | |
#else | |
c->logical_proc_id = 0; | |
#endif | |
} | |
/* | |
* This does the hard work of actually picking apart the CPU stuff... | |
*/ | |
static void identify_cpu(struct cpuinfo_x86 *c) | |
{ | |
int i; | |
c->loops_per_jiffy = loops_per_jiffy; | |
c->x86_cache_size = 0; | |
c->x86_vendor = X86_VENDOR_UNKNOWN; | |
c->x86_model = c->x86_stepping = 0; /* So far unknown... */ | |
c->x86_vendor_id[0] = '\0'; /* Unset */ | |
c->x86_model_id[0] = '\0'; /* Unset */ | |
c->x86_max_cores = 1; | |
c->x86_coreid_bits = 0; | |
c->cu_id = 0xff; | |
#ifdef CONFIG_X86_64 | |
c->x86_clflush_size = 64; | |
c->x86_phys_bits = 36; | |
c->x86_virt_bits = 48; | |
#else | |
c->cpuid_level = -1; /* CPUID not detected */ | |
c->x86_clflush_size = 32; | |
c->x86_phys_bits = 32; | |
c->x86_virt_bits = 32; | |
#endif | |
c->x86_cache_alignment = c->x86_clflush_size; | |
memset(&c->x86_capability, 0, sizeof(c->x86_capability)); | |
generic_identify(c); | |
if (this_cpu->c_identify) | |
this_cpu->c_identify(c); | |
/* Clear/Set all flags overridden by options, after probe */ | |
apply_forced_caps(c); | |
#ifdef CONFIG_X86_64 | |
c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); | |
#endif | |
/* | |
* Vendor-specific initialization. In this section we | |
* canonicalize the feature flags, meaning if there are | |
* features a certain CPU supports which CPUID doesn't | |
* tell us, CPUID claiming incorrect flags, or other bugs, | |
* we handle them here. | |
* | |
* At the end of this section, c->x86_capability better | |
* indicate the features this CPU genuinely supports! | |
*/ | |
if (this_cpu->c_init) | |
this_cpu->c_init(c); | |
/* Disable the PN if appropriate */ | |
squash_the_stupid_serial_number(c); | |
/* Set up SMEP/SMAP/UMIP */ | |
setup_smep(c); | |
setup_smap(c); | |
setup_umip(c); | |
/* | |
* The vendor-specific functions might have changed features. | |
* Now we do "generic changes." | |
*/ | |
/* Filter out anything that depends on CPUID levels we don't have */ | |
filter_cpuid_features(c, true); | |
/* If the model name is still unset, do table lookup. */ | |
if (!c->x86_model_id[0]) { | |
const char *p; | |
p = table_lookup_model(c); | |
if (p) | |
strcpy(c->x86_model_id, p); | |
else | |
/* Last resort... */ | |
sprintf(c->x86_model_id, "%02x/%02x", | |
c->x86, c->x86_model); | |
} | |
#ifdef CONFIG_X86_64 | |
detect_ht(c); | |
#endif | |
x86_init_rdrand(c); | |
x86_init_cache_qos(c); | |
setup_pku(c); | |
/* | |
* Clear/Set all flags overridden by options, need do it | |
* before following smp all cpus cap AND. | |
*/ | |
apply_forced_caps(c); | |
/* | |
* On SMP, boot_cpu_data holds the common feature set between | |
* all CPUs; so make sure that we indicate which features are | |
* common between the CPUs. The first time this routine gets | |
* executed, c == &boot_cpu_data. | |
*/ | |
if (c != &boot_cpu_data) { | |
/* AND the already accumulated flags with these */ | |
for (i = 0; i < NCAPINTS; i++) | |
boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; | |
/* OR, i.e. replicate the bug flags */ | |
for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) | |
c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; | |
} | |
/* Init Machine Check Exception if available. */ | |
mcheck_cpu_init(c); | |
select_idle_routine(c); | |
#ifdef CONFIG_NUMA | |
numa_add_cpu(smp_processor_id()); | |
#endif | |
} | |
/* | |
* Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions | |
* on 32-bit kernels: | |
*/ | |
#ifdef CONFIG_X86_32 | |
void enable_sep_cpu(void) | |
{ | |
struct tss_struct *tss; | |
int cpu; | |
if (!boot_cpu_has(X86_FEATURE_SEP)) | |
return; | |
cpu = get_cpu(); | |
tss = &per_cpu(cpu_tss_rw, cpu); | |
/* | |
* We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- | |
* see the big comment in struct x86_hw_tss's definition. | |
*/ | |
tss->x86_tss.ss1 = __KERNEL_CS; | |
wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0); | |
wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0); | |
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0); | |
put_cpu(); | |
} | |
#endif | |
void __init identify_boot_cpu(void) | |
{ | |
identify_cpu(&boot_cpu_data); | |
#ifdef CONFIG_X86_32 | |
sysenter_setup(); | |
enable_sep_cpu(); | |
#endif | |
cpu_detect_tlb(&boot_cpu_data); | |
setup_cr_pinning(); | |
tsx_init(); | |
} | |
void identify_secondary_cpu(struct cpuinfo_x86 *c) | |
{ | |
BUG_ON(c == &boot_cpu_data); | |
identify_cpu(c); | |
#ifdef CONFIG_X86_32 | |
enable_sep_cpu(); | |
#endif | |
mtrr_ap_init(); | |
validate_apic_and_package_id(c); | |
x86_spec_ctrl_setup_ap(); | |
} | |
static __init int setup_noclflush(char *arg) | |
{ | |
setup_clear_cpu_cap(X86_FEATURE_CLFLUSH); | |
setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT); | |
return 1; | |
} | |
__setup("noclflush", setup_noclflush); | |
void print_cpu_info(struct cpuinfo_x86 *c) | |
{ | |
const char *vendor = NULL; | |
if (c->x86_vendor < X86_VENDOR_NUM) { | |
vendor = this_cpu->c_vendor; | |
} else { | |
if (c->cpuid_level >= 0) | |
vendor = c->x86_vendor_id; | |
} | |
if (vendor && !strstr(c->x86_model_id, vendor)) | |
pr_cont("%s ", vendor); | |
if (c->x86_model_id[0]) | |
pr_cont("%s", c->x86_model_id); | |
else | |
pr_cont("%d86", c->x86); | |
pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); | |
if (c->x86_stepping || c->cpuid_level >= 0) | |
pr_cont(", stepping: 0x%x)\n", c->x86_stepping); | |
else | |
pr_cont(")\n"); | |
} | |
/* | |
* clearcpuid= was already parsed in fpu__init_parse_early_param. | |
* But we need to keep a dummy __setup around otherwise it would | |
* show up as an environment variable for init. | |
*/ | |
static __init int setup_clearcpuid(char *arg) | |
{ | |
return 1; | |
} | |
__setup("clearcpuid=", setup_clearcpuid); | |
#ifdef CONFIG_X86_64 | |
DEFINE_PER_CPU_FIRST(struct fixed_percpu_data, | |
fixed_percpu_data) __aligned(PAGE_SIZE) __visible; | |
EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data); | |
/* | |
* The following percpu variables are hot. Align current_task to | |
* cacheline size such that they fall in the same cacheline. | |
*/ | |
DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = | |
&init_task; | |
EXPORT_PER_CPU_SYMBOL(current_task); | |
DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); | |
DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1; | |
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; | |
EXPORT_PER_CPU_SYMBOL(__preempt_count); | |
/* May not be marked __init: used by software suspend */ | |
void syscall_init(void) | |
{ | |
wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); | |
wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); | |
#ifdef CONFIG_IA32_EMULATION | |
wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat); | |
/* | |
* This only works on Intel CPUs. | |
* On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. | |
* This does not cause SYSENTER to jump to the wrong location, because | |
* AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). | |
*/ | |
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); | |
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, | |
(unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); | |
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); | |
#else | |
wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret); | |
wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); | |
wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL); | |
wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL); | |
#endif | |
/* Flags to clear on syscall */ | |
wrmsrl(MSR_SYSCALL_MASK, | |
X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF| | |
X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT); | |
} | |
DEFINE_PER_CPU(int, debug_stack_usage); | |
DEFINE_PER_CPU(u32, debug_idt_ctr); | |
void debug_stack_set_zero(void) | |
{ | |
this_cpu_inc(debug_idt_ctr); | |
load_current_idt(); | |
} | |
NOKPROBE_SYMBOL(debug_stack_set_zero); | |
void debug_stack_reset(void) | |
{ | |
if (WARN_ON(!this_cpu_read(debug_idt_ctr))) | |
return; | |
if (this_cpu_dec_return(debug_idt_ctr) == 0) | |
load_current_idt(); | |
} | |
NOKPROBE_SYMBOL(debug_stack_reset); | |
#else /* CONFIG_X86_64 */ | |
DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; | |
EXPORT_PER_CPU_SYMBOL(current_task); | |
DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT; | |
EXPORT_PER_CPU_SYMBOL(__preempt_count); | |
/* | |
* On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find | |
* the top of the kernel stack. Use an extra percpu variable to track the | |
* top of the kernel stack directly. | |
*/ | |
DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = | |
(unsigned long)&init_thread_union + THREAD_SIZE; | |
EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack); | |
#ifdef CONFIG_STACKPROTECTOR | |
DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); | |
#endif | |
#endif /* CONFIG_X86_64 */ | |
/* | |
* Clear all 6 debug registers: | |
*/ | |
static void clear_all_debug_regs(void) | |
{ | |
int i; | |
for (i = 0; i < 8; i++) { | |
/* Ignore db4, db5 */ | |
if ((i == 4) || (i == 5)) | |
continue; | |
set_debugreg(0, i); | |
} | |
} | |
#ifdef CONFIG_KGDB | |
/* | |
* Restore debug regs if using kgdbwait and you have a kernel debugger | |
* connection established. | |
*/ | |
static void dbg_restore_debug_regs(void) | |
{ | |
if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) | |
arch_kgdb_ops.correct_hw_break(); | |
} | |
#else /* ! CONFIG_KGDB */ | |
#define dbg_restore_debug_regs() | |
#endif /* ! CONFIG_KGDB */ | |
static void wait_for_master_cpu(int cpu) | |
{ | |
#ifdef CONFIG_SMP | |
/* | |
* wait for ACK from master CPU before continuing | |
* with AP initialization | |
*/ | |
WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)); | |
while (!cpumask_test_cpu(cpu, cpu_callout_mask)) | |
cpu_relax(); | |
#endif | |
} | |
#ifdef CONFIG_X86_64 | |
static inline void setup_getcpu(int cpu) | |
{ | |
unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); | |
struct desc_struct d = { }; | |
if (boot_cpu_has(X86_FEATURE_RDTSCP)) | |
write_rdtscp_aux(cpudata); | |
/* Store CPU and node number in limit. */ | |
d.limit0 = cpudata; | |
d.limit1 = cpudata >> 16; | |
d.type = 5; /* RO data, expand down, accessed */ | |
d.dpl = 3; /* Visible to user code */ | |
d.s = 1; /* Not a system segment */ | |
d.p = 1; /* Present */ | |
d.d = 1; /* 32-bit */ | |
write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); | |
} | |
static inline void ucode_cpu_init(int cpu) | |
{ | |
if (cpu) | |
load_ucode_ap(); | |
} | |
static inline void tss_setup_ist(struct tss_struct *tss) | |
{ | |
/* Set up the per-CPU TSS IST stacks */ | |
tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); | |
tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); | |
tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); | |
tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); | |
} | |
#else /* CONFIG_X86_64 */ | |
static inline void setup_getcpu(int cpu) { } | |
static inline void ucode_cpu_init(int cpu) | |
{ | |
show_ucode_info_early(); | |
} | |
static inline void tss_setup_ist(struct tss_struct *tss) { } | |
#endif /* !CONFIG_X86_64 */ | |
static inline void tss_setup_io_bitmap(struct tss_struct *tss) | |
{ | |
tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; | |
#ifdef CONFIG_X86_IOPL_IOPERM | |
tss->io_bitmap.prev_max = 0; | |
tss->io_bitmap.prev_sequence = 0; | |
memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); | |
/* | |
* Invalidate the extra array entry past the end of the all | |
* permission bitmap as required by the hardware. | |
*/ | |
tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; | |
#endif | |
} | |
/* | |
* cpu_init() initializes state that is per-CPU. Some data is already | |
* initialized (naturally) in the bootstrap process, such as the GDT | |
* and IDT. We reload them nevertheless, this function acts as a | |
* 'CPU state barrier', nothing should get across. | |
*/ | |
void cpu_init(void) | |
{ | |
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); | |
struct task_struct *cur = current; | |
int cpu = raw_smp_processor_id(); | |
wait_for_master_cpu(cpu); | |
ucode_cpu_init(cpu); | |
#ifdef CONFIG_NUMA | |
if (this_cpu_read(numa_node) == 0 && | |
early_cpu_to_node(cpu) != NUMA_NO_NODE) | |
set_numa_node(early_cpu_to_node(cpu)); | |
#endif | |
setup_getcpu(cpu); | |
pr_debug("Initializing CPU#%d\n", cpu); | |
if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || | |
boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) | |
cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); | |
/* | |
* Initialize the per-CPU GDT with the boot GDT, | |
* and set up the GDT descriptor: | |
*/ | |
switch_to_new_gdt(cpu); | |
load_current_idt(); | |
if (IS_ENABLED(CONFIG_X86_64)) { | |
loadsegment(fs, 0); | |
memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); | |
syscall_init(); | |
wrmsrl(MSR_FS_BASE, 0); | |
wrmsrl(MSR_KERNEL_GS_BASE, 0); | |
barrier(); | |
x2apic_setup(); | |
} | |
mmgrab(&init_mm); | |
cur->active_mm = &init_mm; | |
BUG_ON(cur->mm); | |
initialize_tlbstate_and_flush(); | |
enter_lazy_tlb(&init_mm, cur); | |
/* Initialize the TSS. */ | |
tss_setup_ist(tss); | |
tss_setup_io_bitmap(tss); | |
set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); | |
load_TR_desc(); | |
/* | |
* sp0 points to the entry trampoline stack regardless of what task | |
* is running. | |
*/ | |
load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); | |
load_mm_ldt(&init_mm); | |
clear_all_debug_regs(); | |
dbg_restore_debug_regs(); | |
doublefault_init_cpu_tss(); | |
fpu__init_cpu(); | |
if (is_uv_system()) | |
uv_cpu_init(); | |
load_fixmap_gdt(cpu); | |
} | |
/* | |
* The microcode loader calls this upon late microcode load to recheck features, | |
* only when microcode has been updated. Caller holds microcode_mutex and CPU | |
* hotplug lock. | |
*/ | |
void microcode_check(void) | |
{ | |
struct cpuinfo_x86 info; | |
perf_check_microcode(); | |
/* Reload CPUID max function as it might've changed. */ | |
info.cpuid_level = cpuid_eax(0); | |
/* | |
* Copy all capability leafs to pick up the synthetic ones so that | |
* memcmp() below doesn't fail on that. The ones coming from CPUID will | |
* get overwritten in get_cpu_cap(). | |
*/ | |
memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)); | |
get_cpu_cap(&info); | |
if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability))) | |
return; | |
pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); | |
pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); | |
} | |
/* | |
* Invoked from core CPU hotplug code after hotplug operations | |
*/ | |
void arch_smt_update(void) | |
{ | |
/* Handle the speculative execution misfeatures */ | |
cpu_bugs_smt_update(); | |
/* Check whether IPI broadcasting can be enabled */ | |
apic_smt_update(); | |
} |