Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
4125 lines (3634 sloc) 112 KB
// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/cb_pcidas64.c
* This is a driver for the ComputerBoards/MeasurementComputing PCI-DAS
* 64xx, 60xx, and 4020 cards.
*
* Author: Frank Mori Hess <fmhess@users.sourceforge.net>
* Copyright (C) 2001, 2002 Frank Mori Hess
*
* Thanks also go to the following people:
*
* Steve Rosenbluth, for providing the source code for
* his pci-das6402 driver, and source code for working QNX pci-6402
* drivers by Greg Laird and Mariusz Bogacz. None of the code was
* used directly here, but it was useful as an additional source of
* documentation on how to program the boards.
*
* John Sims, for much testing and feedback on pcidas-4020 support.
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 1997-8 David A. Schleef <ds@schleef.org>
*/
/*
* Driver: cb_pcidas64
* Description: MeasurementComputing PCI-DAS64xx, 60XX, and 4020 series
* with the PLX 9080 PCI controller
* Author: Frank Mori Hess <fmhess@users.sourceforge.net>
* Status: works
* Updated: Fri, 02 Nov 2012 18:58:55 +0000
* Devices: [Measurement Computing] PCI-DAS6402/16 (cb_pcidas64),
* PCI-DAS6402/12, PCI-DAS64/M1/16, PCI-DAS64/M2/16,
* PCI-DAS64/M3/16, PCI-DAS6402/16/JR, PCI-DAS64/M1/16/JR,
* PCI-DAS64/M2/16/JR, PCI-DAS64/M3/16/JR, PCI-DAS64/M1/14,
* PCI-DAS64/M2/14, PCI-DAS64/M3/14, PCI-DAS6013, PCI-DAS6014,
* PCI-DAS6023, PCI-DAS6025, PCI-DAS6030,
* PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6034,
* PCI-DAS6035, PCI-DAS6036, PCI-DAS6040, PCI-DAS6052,
* PCI-DAS6070, PCI-DAS6071, PCI-DAS4020/12
*
* Configuration options:
* None.
*
* Manual attachment of PCI cards with the comedi_config utility is not
* supported by this driver; they are attached automatically.
*
* These boards may be autocalibrated with the comedi_calibrate utility.
*
* To select the bnc trigger input on the 4020 (instead of the dio input),
* specify a nonzero channel in the chanspec. If you wish to use an external
* master clock on the 4020, you may do so by setting the scan_begin_src
* to TRIG_OTHER, and using an INSN_CONFIG_TIMER_1 configuration insn
* to configure the divisor to use for the external clock.
*
* Some devices are not identified because the PCI device IDs are not yet
* known. If you have such a board, please let the maintainers know.
*/
/*
* TODO:
* make it return error if user attempts an ai command that uses the
* external queue, and an ao command simultaneously user counter subdevice
* there are a number of boards this driver will support when they are
* fully released, but does not yet since the pci device id numbers
* are not yet available.
*
* support prescaled 100khz clock for slow pacing (not available on 6000
* series?)
*
* make ao fifo size adjustable like ai fifo
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include "../comedi_pci.h"
#include "8255.h"
#include "plx9080.h"
#define TIMER_BASE 25 /* 40MHz master clock */
/*
* 100kHz 'prescaled' clock for slow acquisition,
* maybe I'll support this someday
*/
#define PRESCALED_TIMER_BASE 10000
#define DMA_BUFFER_SIZE 0x1000
#define DAC_FIFO_SIZE 0x2000
/* maximum value that can be loaded into board's 24-bit counters */
static const int max_counter_value = 0xffffff;
/* PCI-DAS64xxx base addresses */
/* devpriv->main_iobase registers */
enum write_only_registers {
INTR_ENABLE_REG = 0x0, /* interrupt enable register */
HW_CONFIG_REG = 0x2, /* hardware config register */
DAQ_SYNC_REG = 0xc,
DAQ_ATRIG_LOW_4020_REG = 0xc,
ADC_CONTROL0_REG = 0x10, /* adc control register 0 */
ADC_CONTROL1_REG = 0x12, /* adc control register 1 */
CALIBRATION_REG = 0x14,
/* lower 16 bits of adc sample interval counter */
ADC_SAMPLE_INTERVAL_LOWER_REG = 0x16,
/* upper 8 bits of adc sample interval counter */
ADC_SAMPLE_INTERVAL_UPPER_REG = 0x18,
/* lower 16 bits of delay interval counter */
ADC_DELAY_INTERVAL_LOWER_REG = 0x1a,
/* upper 8 bits of delay interval counter */
ADC_DELAY_INTERVAL_UPPER_REG = 0x1c,
/* lower 16 bits of hardware conversion/scan counter */
ADC_COUNT_LOWER_REG = 0x1e,
/* upper 8 bits of hardware conversion/scan counter */
ADC_COUNT_UPPER_REG = 0x20,
ADC_START_REG = 0x22, /* software trigger to start acquisition */
ADC_CONVERT_REG = 0x24, /* initiates single conversion */
ADC_QUEUE_CLEAR_REG = 0x26, /* clears adc queue */
ADC_QUEUE_LOAD_REG = 0x28, /* loads adc queue */
ADC_BUFFER_CLEAR_REG = 0x2a,
/* high channel for internal queue, use adc_chan_bits() inline above */
ADC_QUEUE_HIGH_REG = 0x2c,
DAC_CONTROL0_REG = 0x50, /* dac control register 0 */
DAC_CONTROL1_REG = 0x52, /* dac control register 0 */
/* lower 16 bits of dac sample interval counter */
DAC_SAMPLE_INTERVAL_LOWER_REG = 0x54,
/* upper 8 bits of dac sample interval counter */
DAC_SAMPLE_INTERVAL_UPPER_REG = 0x56,
DAC_SELECT_REG = 0x60,
DAC_START_REG = 0x64,
DAC_BUFFER_CLEAR_REG = 0x66, /* clear dac buffer */
};
static inline unsigned int dac_convert_reg(unsigned int channel)
{
return 0x70 + (2 * (channel & 0x1));
}
static inline unsigned int dac_lsb_4020_reg(unsigned int channel)
{
return 0x70 + (4 * (channel & 0x1));
}
static inline unsigned int dac_msb_4020_reg(unsigned int channel)
{
return 0x72 + (4 * (channel & 0x1));
}
enum read_only_registers {
/*
* hardware status register,
* reading this apparently clears pending interrupts as well
*/
HW_STATUS_REG = 0x0,
PIPE1_READ_REG = 0x4,
ADC_READ_PNTR_REG = 0x8,
LOWER_XFER_REG = 0x10,
ADC_WRITE_PNTR_REG = 0xc,
PREPOST_REG = 0x14,
};
enum read_write_registers {
I8255_4020_REG = 0x48, /* 8255 offset, for 4020 only */
/* external channel/gain queue, uses same bits as ADC_QUEUE_LOAD_REG */
ADC_QUEUE_FIFO_REG = 0x100,
ADC_FIFO_REG = 0x200, /* adc data fifo */
/* dac data fifo, has weird interactions with external channel queue */
DAC_FIFO_REG = 0x300,
};
/* dev->mmio registers */
enum dio_counter_registers {
DIO_8255_OFFSET = 0x0,
DO_REG = 0x20,
DI_REG = 0x28,
DIO_DIRECTION_60XX_REG = 0x40,
DIO_DATA_60XX_REG = 0x48,
};
/* bit definitions for write-only registers */
enum intr_enable_contents {
ADC_INTR_SRC_MASK = 0x3, /* adc interrupt source mask */
ADC_INTR_QFULL_BITS = 0x0, /* interrupt fifo quarter full */
ADC_INTR_EOC_BITS = 0x1, /* interrupt end of conversion */
ADC_INTR_EOSCAN_BITS = 0x2, /* interrupt end of scan */
ADC_INTR_EOSEQ_BITS = 0x3, /* interrupt end of sequence mask */
EN_ADC_INTR_SRC_BIT = 0x4, /* enable adc interrupt source */
EN_ADC_DONE_INTR_BIT = 0x8, /* enable adc acquisition done intr */
DAC_INTR_SRC_MASK = 0x30,
DAC_INTR_QEMPTY_BITS = 0x0,
DAC_INTR_HIGH_CHAN_BITS = 0x10,
EN_DAC_INTR_SRC_BIT = 0x40, /* enable dac interrupt source */
EN_DAC_DONE_INTR_BIT = 0x80,
EN_ADC_ACTIVE_INTR_BIT = 0x200, /* enable adc active interrupt */
EN_ADC_STOP_INTR_BIT = 0x400, /* enable adc stop trigger interrupt */
EN_DAC_ACTIVE_INTR_BIT = 0x800, /* enable dac active interrupt */
EN_DAC_UNDERRUN_BIT = 0x4000, /* enable dac underrun status bit */
EN_ADC_OVERRUN_BIT = 0x8000, /* enable adc overrun status bit */
};
enum hw_config_contents {
MASTER_CLOCK_4020_MASK = 0x3, /* master clock source mask for 4020 */
INTERNAL_CLOCK_4020_BITS = 0x1, /* use 40 MHz internal master clock */
BNC_CLOCK_4020_BITS = 0x2, /* use BNC input for master clock */
EXT_CLOCK_4020_BITS = 0x3, /* use dio input for master clock */
EXT_QUEUE_BIT = 0x200, /* use external channel/gain queue */
/* use 225 nanosec strobe when loading dac instead of 50 nanosec */
SLOW_DAC_BIT = 0x400,
/*
* bit with unknown function yet given as default value in pci-das64
* manual
*/
HW_CONFIG_DUMMY_BITS = 0x2000,
/* bit selects channels 1/0 for analog input/output, otherwise 0/1 */
DMA_CH_SELECT_BIT = 0x8000,
FIFO_SIZE_REG = 0x4, /* allows adjustment of fifo sizes */
DAC_FIFO_SIZE_MASK = 0xff00, /* bits that set dac fifo size */
DAC_FIFO_BITS = 0xf800, /* 8k sample ao fifo */
};
enum daq_atrig_low_4020_contents {
/* use trig/ext clk bnc input for analog gate signal */
EXT_AGATE_BNC_BIT = 0x8000,
/* use trig/ext clk bnc input for external stop trigger signal */
EXT_STOP_TRIG_BNC_BIT = 0x4000,
/* use trig/ext clk bnc input for external start trigger signal */
EXT_START_TRIG_BNC_BIT = 0x2000,
};
static inline u16 analog_trig_low_threshold_bits(u16 threshold)
{
return threshold & 0xfff;
}
enum adc_control0_contents {
ADC_GATE_SRC_MASK = 0x3, /* bits that select gate */
ADC_SOFT_GATE_BITS = 0x1, /* software gate */
ADC_EXT_GATE_BITS = 0x2, /* external digital gate */
ADC_ANALOG_GATE_BITS = 0x3, /* analog level gate */
/* level-sensitive gate (for digital) */
ADC_GATE_LEVEL_BIT = 0x4,
ADC_GATE_POLARITY_BIT = 0x8, /* gate active low */
ADC_START_TRIG_SOFT_BITS = 0x10,
ADC_START_TRIG_EXT_BITS = 0x20,
ADC_START_TRIG_ANALOG_BITS = 0x30,
ADC_START_TRIG_MASK = 0x30,
ADC_START_TRIG_FALLING_BIT = 0x40, /* trig 1 uses falling edge */
/* external pacing uses falling edge */
ADC_EXT_CONV_FALLING_BIT = 0x800,
/* enable hardware scan counter */
ADC_SAMPLE_COUNTER_EN_BIT = 0x1000,
ADC_DMA_DISABLE_BIT = 0x4000, /* disables dma */
ADC_ENABLE_BIT = 0x8000, /* master adc enable */
};
enum adc_control1_contents {
/* should be set for boards with > 16 channels */
ADC_QUEUE_CONFIG_BIT = 0x1,
CONVERT_POLARITY_BIT = 0x10,
EOC_POLARITY_BIT = 0x20,
ADC_SW_GATE_BIT = 0x40, /* software gate of adc */
ADC_DITHER_BIT = 0x200, /* turn on extra noise for dithering */
RETRIGGER_BIT = 0x800,
ADC_LO_CHANNEL_4020_MASK = 0x300,
ADC_HI_CHANNEL_4020_MASK = 0xc00,
TWO_CHANNEL_4020_BITS = 0x1000, /* two channel mode for 4020 */
FOUR_CHANNEL_4020_BITS = 0x2000, /* four channel mode for 4020 */
CHANNEL_MODE_4020_MASK = 0x3000,
ADC_MODE_MASK = 0xf000,
};
static inline u16 adc_lo_chan_4020_bits(unsigned int channel)
{
return (channel & 0x3) << 8;
};
static inline u16 adc_hi_chan_4020_bits(unsigned int channel)
{
return (channel & 0x3) << 10;
};
static inline u16 adc_mode_bits(unsigned int mode)
{
return (mode & 0xf) << 12;
};
enum calibration_contents {
SELECT_8800_BIT = 0x1,
SELECT_8402_64XX_BIT = 0x2,
SELECT_1590_60XX_BIT = 0x2,
CAL_EN_64XX_BIT = 0x40, /* calibration enable for 64xx series */
SERIAL_DATA_IN_BIT = 0x80,
SERIAL_CLOCK_BIT = 0x100,
CAL_EN_60XX_BIT = 0x200, /* calibration enable for 60xx series */
CAL_GAIN_BIT = 0x800,
};
/*
* calibration sources for 6025 are:
* 0 : ground
* 1 : 10V
* 2 : 5V
* 3 : 0.5V
* 4 : 0.05V
* 5 : ground
* 6 : dac channel 0
* 7 : dac channel 1
*/
static inline u16 adc_src_bits(unsigned int source)
{
return (source & 0xf) << 3;
};
static inline u16 adc_convert_chan_4020_bits(unsigned int channel)
{
return (channel & 0x3) << 8;
};
enum adc_queue_load_contents {
UNIP_BIT = 0x800, /* unipolar/bipolar bit */
ADC_SE_DIFF_BIT = 0x1000, /* single-ended/ differential bit */
/* non-referenced single-ended (common-mode input) */
ADC_COMMON_BIT = 0x2000,
QUEUE_EOSEQ_BIT = 0x4000, /* queue end of sequence */
QUEUE_EOSCAN_BIT = 0x8000, /* queue end of scan */
};
static inline u16 adc_chan_bits(unsigned int channel)
{
return channel & 0x3f;
};
enum dac_control0_contents {
DAC_ENABLE_BIT = 0x8000, /* dac controller enable bit */
DAC_CYCLIC_STOP_BIT = 0x4000,
DAC_WAVEFORM_MODE_BIT = 0x100,
DAC_EXT_UPDATE_FALLING_BIT = 0x80,
DAC_EXT_UPDATE_ENABLE_BIT = 0x40,
WAVEFORM_TRIG_MASK = 0x30,
WAVEFORM_TRIG_DISABLED_BITS = 0x0,
WAVEFORM_TRIG_SOFT_BITS = 0x10,
WAVEFORM_TRIG_EXT_BITS = 0x20,
WAVEFORM_TRIG_ADC1_BITS = 0x30,
WAVEFORM_TRIG_FALLING_BIT = 0x8,
WAVEFORM_GATE_LEVEL_BIT = 0x4,
WAVEFORM_GATE_ENABLE_BIT = 0x2,
WAVEFORM_GATE_SELECT_BIT = 0x1,
};
enum dac_control1_contents {
DAC_WRITE_POLARITY_BIT = 0x800, /* board-dependent setting */
DAC1_EXT_REF_BIT = 0x200,
DAC0_EXT_REF_BIT = 0x100,
DAC_OUTPUT_ENABLE_BIT = 0x80, /* dac output enable bit */
DAC_UPDATE_POLARITY_BIT = 0x40, /* board-dependent setting */
DAC_SW_GATE_BIT = 0x20,
DAC1_UNIPOLAR_BIT = 0x8,
DAC0_UNIPOLAR_BIT = 0x2,
};
/* bit definitions for read-only registers */
enum hw_status_contents {
DAC_UNDERRUN_BIT = 0x1,
ADC_OVERRUN_BIT = 0x2,
DAC_ACTIVE_BIT = 0x4,
ADC_ACTIVE_BIT = 0x8,
DAC_INTR_PENDING_BIT = 0x10,
ADC_INTR_PENDING_BIT = 0x20,
DAC_DONE_BIT = 0x40,
ADC_DONE_BIT = 0x80,
EXT_INTR_PENDING_BIT = 0x100,
ADC_STOP_BIT = 0x200,
};
static inline u16 pipe_full_bits(u16 hw_status_bits)
{
return (hw_status_bits >> 10) & 0x3;
};
static inline unsigned int dma_chain_flag_bits(u16 prepost_bits)
{
return (prepost_bits >> 6) & 0x3;
}
static inline unsigned int adc_upper_read_ptr_code(u16 prepost_bits)
{
return (prepost_bits >> 12) & 0x3;
}
static inline unsigned int adc_upper_write_ptr_code(u16 prepost_bits)
{
return (prepost_bits >> 14) & 0x3;
}
/* I2C addresses for 4020 */
enum i2c_addresses {
RANGE_CAL_I2C_ADDR = 0x20,
CALDAC0_I2C_ADDR = 0xc,
CALDAC1_I2C_ADDR = 0xd,
};
enum range_cal_i2c_contents {
/* bits that set what source the adc converter measures */
ADC_SRC_4020_MASK = 0x70,
/* make bnc trig/ext clock threshold 0V instead of 2.5V */
BNC_TRIG_THRESHOLD_0V_BIT = 0x80,
};
static inline u8 adc_src_4020_bits(unsigned int source)
{
return (source << 4) & ADC_SRC_4020_MASK;
};
static inline u8 attenuate_bit(unsigned int channel)
{
/* attenuate channel (+-5V input range) */
return 1 << (channel & 0x3);
};
/* analog input ranges for 64xx boards */
static const struct comedi_lrange ai_ranges_64xx = {
8, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25)
}
};
static const u8 ai_range_code_64xx[8] = {
0x0, 0x1, 0x2, 0x3, /* bipolar 10, 5, 2,5, 1.25 */
0x8, 0x9, 0xa, 0xb /* unipolar 10, 5, 2.5, 1.25 */
};
/* analog input ranges for 64-Mx boards */
static const struct comedi_lrange ai_ranges_64_mx = {
7, {
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1.25),
BIP_RANGE(0.625),
UNI_RANGE(5),
UNI_RANGE(2.5),
UNI_RANGE(1.25)
}
};
static const u8 ai_range_code_64_mx[7] = {
0x0, 0x1, 0x2, 0x3, /* bipolar 5, 2.5, 1.25, 0.625 */
0x9, 0xa, 0xb /* unipolar 5, 2.5, 1.25 */
};
/* analog input ranges for 60xx boards */
static const struct comedi_lrange ai_ranges_60xx = {
4, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(0.5),
BIP_RANGE(0.05)
}
};
static const u8 ai_range_code_60xx[4] = {
0x0, 0x1, 0x4, 0x7 /* bipolar 10, 5, 0.5, 0.05 */
};
/* analog input ranges for 6030, etc boards */
static const struct comedi_lrange ai_ranges_6030 = {
14, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2),
BIP_RANGE(1),
BIP_RANGE(0.5),
BIP_RANGE(0.2),
BIP_RANGE(0.1),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2),
UNI_RANGE(1),
UNI_RANGE(0.5),
UNI_RANGE(0.2),
UNI_RANGE(0.1)
}
};
static const u8 ai_range_code_6030[14] = {
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, /* bip 10, 5, 2, 1, 0.5, 0.2, 0.1 */
0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf /* uni 10, 5, 2, 1, 0.5, 0.2, 0.1 */
};
/* analog input ranges for 6052, etc boards */
static const struct comedi_lrange ai_ranges_6052 = {
15, {
BIP_RANGE(10),
BIP_RANGE(5),
BIP_RANGE(2.5),
BIP_RANGE(1),
BIP_RANGE(0.5),
BIP_RANGE(0.25),
BIP_RANGE(0.1),
BIP_RANGE(0.05),
UNI_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(2),
UNI_RANGE(1),
UNI_RANGE(0.5),
UNI_RANGE(0.2),
UNI_RANGE(0.1)
}
};
static const u8 ai_range_code_6052[15] = {
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, /* bipolar 10 ... 0.05 */
0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf /* unipolar 10 ... 0.1 */
};
/* analog input ranges for 4020 board */
static const struct comedi_lrange ai_ranges_4020 = {
2, {
BIP_RANGE(5),
BIP_RANGE(1)
}
};
/* analog output ranges */
static const struct comedi_lrange ao_ranges_64xx = {
4, {
BIP_RANGE(5),
BIP_RANGE(10),
UNI_RANGE(5),
UNI_RANGE(10)
}
};
static const int ao_range_code_64xx[] = {
0x0,
0x1,
0x2,
0x3,
};
static const int ao_range_code_60xx[] = {
0x0,
};
static const struct comedi_lrange ao_ranges_6030 = {
2, {
BIP_RANGE(10),
UNI_RANGE(10)
}
};
static const int ao_range_code_6030[] = {
0x0,
0x2,
};
static const struct comedi_lrange ao_ranges_4020 = {
2, {
BIP_RANGE(5),
BIP_RANGE(10)
}
};
static const int ao_range_code_4020[] = {
0x1,
0x0,
};
enum register_layout {
LAYOUT_60XX,
LAYOUT_64XX,
LAYOUT_4020,
};
struct hw_fifo_info {
unsigned int num_segments;
unsigned int max_segment_length;
unsigned int sample_packing_ratio;
u16 fifo_size_reg_mask;
};
enum pcidas64_boardid {
BOARD_PCIDAS6402_16,
BOARD_PCIDAS6402_12,
BOARD_PCIDAS64_M1_16,
BOARD_PCIDAS64_M2_16,
BOARD_PCIDAS64_M3_16,
BOARD_PCIDAS6013,
BOARD_PCIDAS6014,
BOARD_PCIDAS6023,
BOARD_PCIDAS6025,
BOARD_PCIDAS6030,
BOARD_PCIDAS6031,
BOARD_PCIDAS6032,
BOARD_PCIDAS6033,
BOARD_PCIDAS6034,
BOARD_PCIDAS6035,
BOARD_PCIDAS6036,
BOARD_PCIDAS6040,
BOARD_PCIDAS6052,
BOARD_PCIDAS6070,
BOARD_PCIDAS6071,
BOARD_PCIDAS4020_12,
BOARD_PCIDAS6402_16_JR,
BOARD_PCIDAS64_M1_16_JR,
BOARD_PCIDAS64_M2_16_JR,
BOARD_PCIDAS64_M3_16_JR,
BOARD_PCIDAS64_M1_14,
BOARD_PCIDAS64_M2_14,
BOARD_PCIDAS64_M3_14,
};
struct pcidas64_board {
const char *name;
int ai_se_chans; /* number of ai inputs in single-ended mode */
int ai_bits; /* analog input resolution */
int ai_speed; /* fastest conversion period in ns */
const struct comedi_lrange *ai_range_table;
const u8 *ai_range_code;
int ao_nchan; /* number of analog out channels */
int ao_bits; /* analog output resolution */
int ao_scan_speed; /* analog output scan speed */
const struct comedi_lrange *ao_range_table;
const int *ao_range_code;
const struct hw_fifo_info *const ai_fifo;
/* different board families have slightly different registers */
enum register_layout layout;
unsigned has_8255:1;
};
static const struct hw_fifo_info ai_fifo_4020 = {
.num_segments = 2,
.max_segment_length = 0x8000,
.sample_packing_ratio = 2,
.fifo_size_reg_mask = 0x7f,
};
static const struct hw_fifo_info ai_fifo_64xx = {
.num_segments = 4,
.max_segment_length = 0x800,
.sample_packing_ratio = 1,
.fifo_size_reg_mask = 0x3f,
};
static const struct hw_fifo_info ai_fifo_60xx = {
.num_segments = 4,
.max_segment_length = 0x800,
.sample_packing_ratio = 1,
.fifo_size_reg_mask = 0x7f,
};
/*
* maximum number of dma transfers we will chain together into a ring
* (and the maximum number of dma buffers we maintain)
*/
#define MAX_AI_DMA_RING_COUNT (0x80000 / DMA_BUFFER_SIZE)
#define MIN_AI_DMA_RING_COUNT (0x10000 / DMA_BUFFER_SIZE)
#define AO_DMA_RING_COUNT (0x10000 / DMA_BUFFER_SIZE)
static inline unsigned int ai_dma_ring_count(const struct pcidas64_board *board)
{
if (board->layout == LAYOUT_4020)
return MAX_AI_DMA_RING_COUNT;
return MIN_AI_DMA_RING_COUNT;
}
static const int bytes_in_sample = 2;
static const struct pcidas64_board pcidas64_boards[] = {
[BOARD_PCIDAS6402_16] = {
.name = "pci-das6402/16",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64xx,
.ai_range_code = ai_range_code_64xx,
.ao_range_table = &ao_ranges_64xx,
.ao_range_code = ao_range_code_64xx,
.ai_fifo = &ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS6402_12] = {
.name = "pci-das6402/12", /* XXX check */
.ai_se_chans = 64,
.ai_bits = 12,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64xx,
.ai_range_code = ai_range_code_64xx,
.ao_range_table = &ao_ranges_64xx,
.ao_range_code = ao_range_code_64xx,
.ai_fifo = &ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M1_16] = {
.name = "pci-das64/m1/16",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 1000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ao_range_table = &ao_ranges_64xx,
.ao_range_code = ao_range_code_64xx,
.ai_fifo = &ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M2_16] = {
.name = "pci-das64/m2/16",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 500,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ao_range_table = &ao_ranges_64xx,
.ao_range_code = ao_range_code_64xx,
.ai_fifo = &ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M3_16] = {
.name = "pci-das64/m3/16",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 333,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ao_range_table = &ao_ranges_64xx,
.ao_range_code = ao_range_code_64xx,
.ai_fifo = &ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS6013] = {
.name = "pci-das6013",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 0,
.ao_bits = 16,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6014] = {
.name = "pci-das6014",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 100000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6023] = {
.name = "pci-das6023",
.ai_se_chans = 16,
.ai_bits = 12,
.ai_speed = 5000,
.ao_nchan = 0,
.ao_scan_speed = 100000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 1,
},
[BOARD_PCIDAS6025] = {
.name = "pci-das6025",
.ai_se_chans = 16,
.ai_bits = 12,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 100000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 1,
},
[BOARD_PCIDAS6030] = {
.name = "pci-das6030",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 10000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6030,
.ai_range_code = ai_range_code_6030,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6031] = {
.name = "pci-das6031",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 10000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 10000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6030,
.ai_range_code = ai_range_code_6030,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6032] = {
.name = "pci-das6032",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 10000,
.ao_nchan = 0,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6030,
.ai_range_code = ai_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6033] = {
.name = "pci-das6033",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 10000,
.ao_nchan = 0,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6030,
.ai_range_code = ai_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6034] = {
.name = "pci-das6034",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 0,
.ao_scan_speed = 0,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6035] = {
.name = "pci-das6035",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 100000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6036] = {
.name = "pci-das6036",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 100000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_60xx,
.ai_range_code = ai_range_code_60xx,
.ao_range_table = &range_bipolar10,
.ao_range_code = ao_range_code_60xx,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6040] = {
.name = "pci-das6040",
.ai_se_chans = 16,
.ai_bits = 12,
.ai_speed = 2000,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 1000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6052,
.ai_range_code = ai_range_code_6052,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6052] = {
.name = "pci-das6052",
.ai_se_chans = 16,
.ai_bits = 16,
.ai_speed = 3333,
.ao_nchan = 2,
.ao_bits = 16,
.ao_scan_speed = 3333,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6052,
.ai_range_code = ai_range_code_6052,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6070] = {
.name = "pci-das6070",
.ai_se_chans = 16,
.ai_bits = 12,
.ai_speed = 800,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 1000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6052,
.ai_range_code = ai_range_code_6052,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS6071] = {
.name = "pci-das6071",
.ai_se_chans = 64,
.ai_bits = 12,
.ai_speed = 800,
.ao_nchan = 2,
.ao_bits = 12,
.ao_scan_speed = 1000,
.layout = LAYOUT_60XX,
.ai_range_table = &ai_ranges_6052,
.ai_range_code = ai_range_code_6052,
.ao_range_table = &ao_ranges_6030,
.ao_range_code = ao_range_code_6030,
.ai_fifo = &ai_fifo_60xx,
.has_8255 = 0,
},
[BOARD_PCIDAS4020_12] = {
.name = "pci-das4020/12",
.ai_se_chans = 4,
.ai_bits = 12,
.ai_speed = 50,
.ao_bits = 12,
.ao_nchan = 2,
.ao_scan_speed = 0, /* no hardware pacing on ao */
.layout = LAYOUT_4020,
.ai_range_table = &ai_ranges_4020,
.ao_range_table = &ao_ranges_4020,
.ao_range_code = ao_range_code_4020,
.ai_fifo = &ai_fifo_4020,
.has_8255 = 1,
},
#if 0
/* The device id for these boards is unknown */
[BOARD_PCIDAS6402_16_JR] = {
.name = "pci-das6402/16/jr",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 5000,
.ao_nchan = 0,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64xx,
.ai_range_code = ai_range_code_64xx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M1_16_JR] = {
.name = "pci-das64/m1/16/jr",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 1000,
.ao_nchan = 0,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M2_16_JR] = {
.name = "pci-das64/m2/16/jr",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 500,
.ao_nchan = 0,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M3_16_JR] = {
.name = "pci-das64/m3/16/jr",
.ai_se_chans = 64,
.ai_bits = 16,
.ai_speed = 333,
.ao_nchan = 0,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M1_14] = {
.name = "pci-das64/m1/14",
.ai_se_chans = 64,
.ai_bits = 14,
.ai_speed = 1000,
.ao_nchan = 2,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M2_14] = {
.name = "pci-das64/m2/14",
.ai_se_chans = 64,
.ai_bits = 14,
.ai_speed = 500,
.ao_nchan = 2,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
[BOARD_PCIDAS64_M3_14] = {
.name = "pci-das64/m3/14",
.ai_se_chans = 64,
.ai_bits = 14,
.ai_speed = 333,
.ao_nchan = 2,
.ao_scan_speed = 10000,
.layout = LAYOUT_64XX,
.ai_range_table = &ai_ranges_64_mx,
.ai_range_code = ai_range_code_64_mx,
.ai_fifo = ai_fifo_64xx,
.has_8255 = 1,
},
#endif
};
static inline unsigned short se_diff_bit_6xxx(struct comedi_device *dev,
int use_differential)
{
const struct pcidas64_board *board = dev->board_ptr;
if ((board->layout == LAYOUT_64XX && !use_differential) ||
(board->layout == LAYOUT_60XX && use_differential))
return ADC_SE_DIFF_BIT;
return 0;
}
struct ext_clock_info {
/* master clock divisor to use for scans with external master clock */
unsigned int divisor;
/* chanspec for master clock input when used as scan begin src */
unsigned int chanspec;
};
/* this structure is for data unique to this hardware driver. */
struct pcidas64_private {
/* base addresses (physical) */
resource_size_t main_phys_iobase;
resource_size_t dio_counter_phys_iobase;
/* base addresses (ioremapped) */
void __iomem *plx9080_iobase;
void __iomem *main_iobase;
/* local address (used by dma controller) */
u32 local0_iobase;
u32 local1_iobase;
/* dma buffers for analog input */
u16 *ai_buffer[MAX_AI_DMA_RING_COUNT];
/* physical addresses of ai dma buffers */
dma_addr_t ai_buffer_bus_addr[MAX_AI_DMA_RING_COUNT];
/*
* array of ai dma descriptors read by plx9080,
* allocated to get proper alignment
*/
struct plx_dma_desc *ai_dma_desc;
/* physical address of ai dma descriptor array */
dma_addr_t ai_dma_desc_bus_addr;
/*
* index of the ai dma descriptor/buffer
* that is currently being used
*/
unsigned int ai_dma_index;
/* dma buffers for analog output */
u16 *ao_buffer[AO_DMA_RING_COUNT];
/* physical addresses of ao dma buffers */
dma_addr_t ao_buffer_bus_addr[AO_DMA_RING_COUNT];
struct plx_dma_desc *ao_dma_desc;
dma_addr_t ao_dma_desc_bus_addr;
/* keeps track of buffer where the next ao sample should go */
unsigned int ao_dma_index;
unsigned int hw_revision; /* stc chip hardware revision number */
/* last bits sent to INTR_ENABLE_REG register */
unsigned int intr_enable_bits;
/* last bits sent to ADC_CONTROL1_REG register */
u16 adc_control1_bits;
/* last bits sent to FIFO_SIZE_REG register */
u16 fifo_size_bits;
/* last bits sent to HW_CONFIG_REG register */
u16 hw_config_bits;
u16 dac_control1_bits;
/* last bits written to plx9080 control register */
u32 plx_control_bits;
/* last bits written to plx interrupt control and status register */
u32 plx_intcsr_bits;
/* index of calibration source readable through ai ch0 */
int calibration_source;
/* bits written to i2c calibration/range register */
u8 i2c_cal_range_bits;
/* configure digital triggers to trigger on falling edge */
unsigned int ext_trig_falling;
short ai_cmd_running;
unsigned int ai_fifo_segment_length;
struct ext_clock_info ext_clock;
unsigned short ao_bounce_buffer[DAC_FIFO_SIZE];
};
static unsigned int ai_range_bits_6xxx(const struct comedi_device *dev,
unsigned int range_index)
{
const struct pcidas64_board *board = dev->board_ptr;
return board->ai_range_code[range_index] << 8;
}
static unsigned int hw_revision(const struct comedi_device *dev,
u16 hw_status_bits)
{
const struct pcidas64_board *board = dev->board_ptr;
if (board->layout == LAYOUT_4020)
return (hw_status_bits >> 13) & 0x7;
return (hw_status_bits >> 12) & 0xf;
}
static void set_dac_range_bits(struct comedi_device *dev,
u16 *bits, unsigned int channel,
unsigned int range)
{
const struct pcidas64_board *board = dev->board_ptr;
unsigned int code = board->ao_range_code[range];
if (channel > 1)
dev_err(dev->class_dev, "bug! bad channel?\n");
if (code & ~0x3)
dev_err(dev->class_dev, "bug! bad range code?\n");
*bits &= ~(0x3 << (2 * channel));
*bits |= code << (2 * channel);
};
static inline int ao_cmd_is_supported(const struct pcidas64_board *board)
{
return board->ao_nchan && board->layout != LAYOUT_4020;
}
static void abort_dma(struct comedi_device *dev, unsigned int channel)
{
struct pcidas64_private *devpriv = dev->private;
unsigned long flags;
/* spinlock for plx dma control/status reg */
spin_lock_irqsave(&dev->spinlock, flags);
plx9080_abort_dma(devpriv->plx9080_iobase, channel);
spin_unlock_irqrestore(&dev->spinlock, flags);
}
static void disable_plx_interrupts(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
devpriv->plx_intcsr_bits = 0;
writel(devpriv->plx_intcsr_bits,
devpriv->plx9080_iobase + PLX_REG_INTCSR);
}
static void disable_ai_interrupts(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
unsigned long flags;
spin_lock_irqsave(&dev->spinlock, flags);
devpriv->intr_enable_bits &=
~EN_ADC_INTR_SRC_BIT & ~EN_ADC_DONE_INTR_BIT &
~EN_ADC_ACTIVE_INTR_BIT & ~EN_ADC_STOP_INTR_BIT &
~EN_ADC_OVERRUN_BIT & ~ADC_INTR_SRC_MASK;
writew(devpriv->intr_enable_bits,
devpriv->main_iobase + INTR_ENABLE_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
}
static void enable_ai_interrupts(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
u32 bits;
unsigned long flags;
bits = EN_ADC_OVERRUN_BIT | EN_ADC_DONE_INTR_BIT |
EN_ADC_ACTIVE_INTR_BIT | EN_ADC_STOP_INTR_BIT;
/*
* Use pio transfer and interrupt on end of conversion
* if CMDF_WAKE_EOS flag is set.
*/
if (cmd->flags & CMDF_WAKE_EOS) {
/* 4020 doesn't support pio transfers except for fifo dregs */
if (board->layout != LAYOUT_4020)
bits |= ADC_INTR_EOSCAN_BITS | EN_ADC_INTR_SRC_BIT;
}
spin_lock_irqsave(&dev->spinlock, flags);
devpriv->intr_enable_bits |= bits;
writew(devpriv->intr_enable_bits,
devpriv->main_iobase + INTR_ENABLE_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
}
/* initialize plx9080 chip */
static void init_plx9080(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
u32 bits;
void __iomem *plx_iobase = devpriv->plx9080_iobase;
devpriv->plx_control_bits =
readl(devpriv->plx9080_iobase + PLX_REG_CNTRL);
#ifdef __BIG_ENDIAN
bits = PLX_BIGEND_DMA0 | PLX_BIGEND_DMA1;
#else
bits = 0;
#endif
writel(bits, devpriv->plx9080_iobase + PLX_REG_BIGEND);
disable_plx_interrupts(dev);
abort_dma(dev, 0);
abort_dma(dev, 1);
/* configure dma0 mode */
bits = 0;
/* enable ready input, not sure if this is necessary */
bits |= PLX_DMAMODE_READYIEN;
/* enable bterm, not sure if this is necessary */
bits |= PLX_DMAMODE_BTERMIEN;
/* enable dma chaining */
bits |= PLX_DMAMODE_CHAINEN;
/*
* enable interrupt on dma done
* (probably don't need this, since chain never finishes)
*/
bits |= PLX_DMAMODE_DONEIEN;
/*
* don't increment local address during transfers
* (we are transferring from a fixed fifo register)
*/
bits |= PLX_DMAMODE_LACONST;
/* route dma interrupt to pci bus */
bits |= PLX_DMAMODE_INTRPCI;
/* enable demand mode */
bits |= PLX_DMAMODE_DEMAND;
/* enable local burst mode */
bits |= PLX_DMAMODE_BURSTEN;
/* 4020 uses 32 bit dma */
if (board->layout == LAYOUT_4020)
bits |= PLX_DMAMODE_WIDTH_32;
else /* localspace0 bus is 16 bits wide */
bits |= PLX_DMAMODE_WIDTH_16;
writel(bits, plx_iobase + PLX_REG_DMAMODE1);
if (ao_cmd_is_supported(board))
writel(bits, plx_iobase + PLX_REG_DMAMODE0);
/* enable interrupts on plx 9080 */
devpriv->plx_intcsr_bits |=
PLX_INTCSR_LSEABORTEN | PLX_INTCSR_LSEPARITYEN | PLX_INTCSR_PIEN |
PLX_INTCSR_PLIEN | PLX_INTCSR_PABORTIEN | PLX_INTCSR_LIOEN |
PLX_INTCSR_DMA0IEN | PLX_INTCSR_DMA1IEN;
writel(devpriv->plx_intcsr_bits,
devpriv->plx9080_iobase + PLX_REG_INTCSR);
}
static void disable_ai_pacing(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
unsigned long flags;
disable_ai_interrupts(dev);
spin_lock_irqsave(&dev->spinlock, flags);
devpriv->adc_control1_bits &= ~ADC_SW_GATE_BIT;
writew(devpriv->adc_control1_bits,
devpriv->main_iobase + ADC_CONTROL1_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
/* disable pacing, triggering, etc */
writew(ADC_DMA_DISABLE_BIT | ADC_SOFT_GATE_BITS | ADC_GATE_LEVEL_BIT,
devpriv->main_iobase + ADC_CONTROL0_REG);
}
static int set_ai_fifo_segment_length(struct comedi_device *dev,
unsigned int num_entries)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
static const int increment_size = 0x100;
const struct hw_fifo_info *const fifo = board->ai_fifo;
unsigned int num_increments;
u16 bits;
if (num_entries < increment_size)
num_entries = increment_size;
if (num_entries > fifo->max_segment_length)
num_entries = fifo->max_segment_length;
/* 1 == 256 entries, 2 == 512 entries, etc */
num_increments = DIV_ROUND_CLOSEST(num_entries, increment_size);
bits = (~(num_increments - 1)) & fifo->fifo_size_reg_mask;
devpriv->fifo_size_bits &= ~fifo->fifo_size_reg_mask;
devpriv->fifo_size_bits |= bits;
writew(devpriv->fifo_size_bits,
devpriv->main_iobase + FIFO_SIZE_REG);
devpriv->ai_fifo_segment_length = num_increments * increment_size;
return devpriv->ai_fifo_segment_length;
}
/*
* adjusts the size of hardware fifo (which determines block size for dma xfers)
*/
static int set_ai_fifo_size(struct comedi_device *dev, unsigned int num_samples)
{
const struct pcidas64_board *board = dev->board_ptr;
unsigned int num_fifo_entries;
int retval;
const struct hw_fifo_info *const fifo = board->ai_fifo;
num_fifo_entries = num_samples / fifo->sample_packing_ratio;
retval = set_ai_fifo_segment_length(dev,
num_fifo_entries /
fifo->num_segments);
if (retval < 0)
return retval;
return retval * fifo->num_segments * fifo->sample_packing_ratio;
}
/* query length of fifo */
static unsigned int ai_fifo_size(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
return devpriv->ai_fifo_segment_length *
board->ai_fifo->num_segments *
board->ai_fifo->sample_packing_ratio;
}
static void init_stc_registers(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
u16 bits;
unsigned long flags;
spin_lock_irqsave(&dev->spinlock, flags);
/*
* bit should be set for 6025,
* although docs say boards with <= 16 chans should be cleared XXX
*/
if (1)
devpriv->adc_control1_bits |= ADC_QUEUE_CONFIG_BIT;
writew(devpriv->adc_control1_bits,
devpriv->main_iobase + ADC_CONTROL1_REG);
/* 6402/16 manual says this register must be initialized to 0xff? */
writew(0xff, devpriv->main_iobase + ADC_SAMPLE_INTERVAL_UPPER_REG);
bits = SLOW_DAC_BIT | DMA_CH_SELECT_BIT;
if (board->layout == LAYOUT_4020)
bits |= INTERNAL_CLOCK_4020_BITS;
devpriv->hw_config_bits |= bits;
writew(devpriv->hw_config_bits,
devpriv->main_iobase + HW_CONFIG_REG);
writew(0, devpriv->main_iobase + DAQ_SYNC_REG);
writew(0, devpriv->main_iobase + CALIBRATION_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
/* set fifos to maximum size */
devpriv->fifo_size_bits |= DAC_FIFO_BITS;
set_ai_fifo_segment_length(dev, board->ai_fifo->max_segment_length);
devpriv->dac_control1_bits = DAC_OUTPUT_ENABLE_BIT;
devpriv->intr_enable_bits =
/* EN_DAC_INTR_SRC_BIT | DAC_INTR_QEMPTY_BITS | */
EN_DAC_DONE_INTR_BIT | EN_DAC_UNDERRUN_BIT;
writew(devpriv->intr_enable_bits,
devpriv->main_iobase + INTR_ENABLE_REG);
disable_ai_pacing(dev);
};
static int alloc_and_init_dma_members(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct pcidas64_private *devpriv = dev->private;
int i;
/* allocate pci dma buffers */
for (i = 0; i < ai_dma_ring_count(board); i++) {
devpriv->ai_buffer[i] =
dma_alloc_coherent(&pcidev->dev, DMA_BUFFER_SIZE,
&devpriv->ai_buffer_bus_addr[i],
GFP_KERNEL);
if (!devpriv->ai_buffer[i])
return -ENOMEM;
}
for (i = 0; i < AO_DMA_RING_COUNT; i++) {
if (ao_cmd_is_supported(board)) {
devpriv->ao_buffer[i] =
dma_alloc_coherent(&pcidev->dev,
DMA_BUFFER_SIZE,
&devpriv->ao_buffer_bus_addr[i],
GFP_KERNEL);
if (!devpriv->ao_buffer[i])
return -ENOMEM;
}
}
/* allocate dma descriptors */
devpriv->ai_dma_desc =
dma_alloc_coherent(&pcidev->dev, sizeof(struct plx_dma_desc) *
ai_dma_ring_count(board),
&devpriv->ai_dma_desc_bus_addr, GFP_KERNEL);
if (!devpriv->ai_dma_desc)
return -ENOMEM;
if (ao_cmd_is_supported(board)) {
devpriv->ao_dma_desc =
dma_alloc_coherent(&pcidev->dev,
sizeof(struct plx_dma_desc) *
AO_DMA_RING_COUNT,
&devpriv->ao_dma_desc_bus_addr,
GFP_KERNEL);
if (!devpriv->ao_dma_desc)
return -ENOMEM;
}
/* initialize dma descriptors */
for (i = 0; i < ai_dma_ring_count(board); i++) {
devpriv->ai_dma_desc[i].pci_start_addr =
cpu_to_le32(devpriv->ai_buffer_bus_addr[i]);
if (board->layout == LAYOUT_4020)
devpriv->ai_dma_desc[i].local_start_addr =
cpu_to_le32(devpriv->local1_iobase +
ADC_FIFO_REG);
else
devpriv->ai_dma_desc[i].local_start_addr =
cpu_to_le32(devpriv->local0_iobase +
ADC_FIFO_REG);
devpriv->ai_dma_desc[i].transfer_size = cpu_to_le32(0);
devpriv->ai_dma_desc[i].next =
cpu_to_le32((devpriv->ai_dma_desc_bus_addr +
((i + 1) % ai_dma_ring_count(board)) *
sizeof(devpriv->ai_dma_desc[0])) |
PLX_DMADPR_DESCPCI | PLX_DMADPR_TCINTR |
PLX_DMADPR_XFERL2P);
}
if (ao_cmd_is_supported(board)) {
for (i = 0; i < AO_DMA_RING_COUNT; i++) {
devpriv->ao_dma_desc[i].pci_start_addr =
cpu_to_le32(devpriv->ao_buffer_bus_addr[i]);
devpriv->ao_dma_desc[i].local_start_addr =
cpu_to_le32(devpriv->local0_iobase +
DAC_FIFO_REG);
devpriv->ao_dma_desc[i].transfer_size = cpu_to_le32(0);
devpriv->ao_dma_desc[i].next =
cpu_to_le32((devpriv->ao_dma_desc_bus_addr +
((i + 1) % (AO_DMA_RING_COUNT)) *
sizeof(devpriv->ao_dma_desc[0])) |
PLX_DMADPR_DESCPCI |
PLX_DMADPR_TCINTR);
}
}
return 0;
}
static void cb_pcidas64_free_dma(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct pcidas64_private *devpriv = dev->private;
int i;
if (!devpriv)
return;
/* free pci dma buffers */
for (i = 0; i < ai_dma_ring_count(board); i++) {
if (devpriv->ai_buffer[i])
dma_free_coherent(&pcidev->dev,
DMA_BUFFER_SIZE,
devpriv->ai_buffer[i],
devpriv->ai_buffer_bus_addr[i]);
}
for (i = 0; i < AO_DMA_RING_COUNT; i++) {
if (devpriv->ao_buffer[i])
dma_free_coherent(&pcidev->dev,
DMA_BUFFER_SIZE,
devpriv->ao_buffer[i],
devpriv->ao_buffer_bus_addr[i]);
}
/* free dma descriptors */
if (devpriv->ai_dma_desc)
dma_free_coherent(&pcidev->dev,
sizeof(struct plx_dma_desc) *
ai_dma_ring_count(board),
devpriv->ai_dma_desc,
devpriv->ai_dma_desc_bus_addr);
if (devpriv->ao_dma_desc)
dma_free_coherent(&pcidev->dev,
sizeof(struct plx_dma_desc) *
AO_DMA_RING_COUNT,
devpriv->ao_dma_desc,
devpriv->ao_dma_desc_bus_addr);
}
static inline void warn_external_queue(struct comedi_device *dev)
{
dev_err(dev->class_dev,
"AO command and AI external channel queue cannot be used simultaneously\n");
dev_err(dev->class_dev,
"Use internal AI channel queue (channels must be consecutive and use same range/aref)\n");
}
/*
* their i2c requires a huge delay on setting clock or data high for some reason
*/
static const int i2c_high_udelay = 1000;
static const int i2c_low_udelay = 10;
/* set i2c data line high or low */
static void i2c_set_sda(struct comedi_device *dev, int state)
{
struct pcidas64_private *devpriv = dev->private;
static const int data_bit = PLX_CNTRL_EEWB;
void __iomem *plx_control_addr = devpriv->plx9080_iobase +
PLX_REG_CNTRL;
if (state) { /* set data line high */
devpriv->plx_control_bits &= ~data_bit;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(i2c_high_udelay);
} else { /* set data line low */
devpriv->plx_control_bits |= data_bit;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(i2c_low_udelay);
}
}
/* set i2c clock line high or low */
static void i2c_set_scl(struct comedi_device *dev, int state)
{
struct pcidas64_private *devpriv = dev->private;
static const int clock_bit = PLX_CNTRL_USERO;
void __iomem *plx_control_addr = devpriv->plx9080_iobase +
PLX_REG_CNTRL;
if (state) { /* set clock line high */
devpriv->plx_control_bits &= ~clock_bit;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(i2c_high_udelay);
} else { /* set clock line low */
devpriv->plx_control_bits |= clock_bit;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(i2c_low_udelay);
}
}
static void i2c_write_byte(struct comedi_device *dev, u8 byte)
{
u8 bit;
unsigned int num_bits = 8;
for (bit = 1 << (num_bits - 1); bit; bit >>= 1) {
i2c_set_scl(dev, 0);
if ((byte & bit))
i2c_set_sda(dev, 1);
else
i2c_set_sda(dev, 0);
i2c_set_scl(dev, 1);
}
}
/* we can't really read the lines, so fake it */
static int i2c_read_ack(struct comedi_device *dev)
{
i2c_set_scl(dev, 0);
i2c_set_sda(dev, 1);
i2c_set_scl(dev, 1);
return 0; /* return fake acknowledge bit */
}
/* send start bit */
static void i2c_start(struct comedi_device *dev)
{
i2c_set_scl(dev, 1);
i2c_set_sda(dev, 1);
i2c_set_sda(dev, 0);
}
/* send stop bit */
static void i2c_stop(struct comedi_device *dev)
{
i2c_set_scl(dev, 0);
i2c_set_sda(dev, 0);
i2c_set_scl(dev, 1);
i2c_set_sda(dev, 1);
}
static void i2c_write(struct comedi_device *dev, unsigned int address,
const u8 *data, unsigned int length)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int i;
u8 bitstream;
static const int read_bit = 0x1;
/*
* XXX need mutex to prevent simultaneous attempts to access
* eeprom and i2c bus
*/
/* make sure we don't send anything to eeprom */
devpriv->plx_control_bits &= ~PLX_CNTRL_EECS;
i2c_stop(dev);
i2c_start(dev);
/* send address and write bit */
bitstream = (address << 1) & ~read_bit;
i2c_write_byte(dev, bitstream);
/* get acknowledge */
if (i2c_read_ack(dev) != 0) {
dev_err(dev->class_dev, "failed: no acknowledge\n");
i2c_stop(dev);
return;
}
/* write data bytes */
for (i = 0; i < length; i++) {
i2c_write_byte(dev, data[i]);
if (i2c_read_ack(dev) != 0) {
dev_err(dev->class_dev, "failed: no acknowledge\n");
i2c_stop(dev);
return;
}
}
i2c_stop(dev);
}
static int cb_pcidas64_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned int status;
status = readw(devpriv->main_iobase + HW_STATUS_REG);
if (board->layout == LAYOUT_4020) {
status = readw(devpriv->main_iobase + ADC_WRITE_PNTR_REG);
if (status)
return 0;
} else {
if (pipe_full_bits(status))
return 0;
}
return -EBUSY;
}
static int ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned int bits = 0, n;
unsigned int channel, range, aref;
unsigned long flags;
int ret;
channel = CR_CHAN(insn->chanspec);
range = CR_RANGE(insn->chanspec);
aref = CR_AREF(insn->chanspec);
/* disable card's analog input interrupt sources and pacing */
/* 4020 generates dac done interrupts even though they are disabled */
disable_ai_pacing(dev);
spin_lock_irqsave(&dev->spinlock, flags);
if (insn->chanspec & CR_ALT_FILTER)
devpriv->adc_control1_bits |= ADC_DITHER_BIT;
else
devpriv->adc_control1_bits &= ~ADC_DITHER_BIT;
writew(devpriv->adc_control1_bits,
devpriv->main_iobase + ADC_CONTROL1_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
if (board->layout != LAYOUT_4020) {
/* use internal queue */
devpriv->hw_config_bits &= ~EXT_QUEUE_BIT;
writew(devpriv->hw_config_bits,
devpriv->main_iobase + HW_CONFIG_REG);
/* ALT_SOURCE is internal calibration reference */
if (insn->chanspec & CR_ALT_SOURCE) {
unsigned int cal_en_bit;
if (board->layout == LAYOUT_60XX)
cal_en_bit = CAL_EN_60XX_BIT;
else
cal_en_bit = CAL_EN_64XX_BIT;
/*
* select internal reference source to connect
* to channel 0
*/
writew(cal_en_bit |
adc_src_bits(devpriv->calibration_source),
devpriv->main_iobase + CALIBRATION_REG);
} else {
/*
* make sure internal calibration source
* is turned off
*/
writew(0, devpriv->main_iobase + CALIBRATION_REG);
}
/* load internal queue */
bits = 0;
/* set gain */
bits |= ai_range_bits_6xxx(dev, CR_RANGE(insn->chanspec));
/* set single-ended / differential */
bits |= se_diff_bit_6xxx(dev, aref == AREF_DIFF);
if (aref == AREF_COMMON)
bits |= ADC_COMMON_BIT;
bits |= adc_chan_bits(channel);
/* set stop channel */
writew(adc_chan_bits(channel),
devpriv->main_iobase + ADC_QUEUE_HIGH_REG);
/* set start channel, and rest of settings */
writew(bits, devpriv->main_iobase + ADC_QUEUE_LOAD_REG);
} else {
u8 old_cal_range_bits = devpriv->i2c_cal_range_bits;
devpriv->i2c_cal_range_bits &= ~ADC_SRC_4020_MASK;
if (insn->chanspec & CR_ALT_SOURCE) {
devpriv->i2c_cal_range_bits |=
adc_src_4020_bits(devpriv->calibration_source);
} else { /* select BNC inputs */
devpriv->i2c_cal_range_bits |= adc_src_4020_bits(4);
}
/* select range */
if (range == 0)
devpriv->i2c_cal_range_bits |= attenuate_bit(channel);
else
devpriv->i2c_cal_range_bits &= ~attenuate_bit(channel);
/*
* update calibration/range i2c register only if necessary,
* as it is very slow
*/
if (old_cal_range_bits != devpriv->i2c_cal_range_bits) {
u8 i2c_data = devpriv->i2c_cal_range_bits;
i2c_write(dev, RANGE_CAL_I2C_ADDR, &i2c_data,
sizeof(i2c_data));
}
/*
* 4020 manual asks that sample interval register to be set
* before writing to convert register.
* Using somewhat arbitrary setting of 4 master clock ticks
* = 0.1 usec
*/
writew(0, devpriv->main_iobase + ADC_SAMPLE_INTERVAL_UPPER_REG);
writew(2, devpriv->main_iobase + ADC_SAMPLE_INTERVAL_LOWER_REG);
}
for (n = 0; n < insn->n; n++) {
/* clear adc buffer (inside loop for 4020 sake) */
writew(0, devpriv->main_iobase + ADC_BUFFER_CLEAR_REG);
/* trigger conversion, bits sent only matter for 4020 */
writew(adc_convert_chan_4020_bits(CR_CHAN(insn->chanspec)),
devpriv->main_iobase + ADC_CONVERT_REG);
/* wait for data */
ret = comedi_timeout(dev, s, insn, cb_pcidas64_ai_eoc, 0);
if (ret)
return ret;
if (board->layout == LAYOUT_4020)
data[n] = readl(dev->mmio + ADC_FIFO_REG) & 0xffff;
else
data[n] = readw(devpriv->main_iobase + PIPE1_READ_REG);
}
return n;
}
static int ai_config_calibration_source(struct comedi_device *dev,
unsigned int *data)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned int source = data[1];
int num_calibration_sources;
if (board->layout == LAYOUT_60XX)
num_calibration_sources = 16;
else
num_calibration_sources = 8;
if (source >= num_calibration_sources) {
dev_dbg(dev->class_dev, "invalid calibration source: %i\n",
source);
return -EINVAL;
}
devpriv->calibration_source = source;
return 2;
}
static int ai_config_block_size(struct comedi_device *dev, unsigned int *data)
{
const struct pcidas64_board *board = dev->board_ptr;
int fifo_size;
const struct hw_fifo_info *const fifo = board->ai_fifo;
unsigned int block_size, requested_block_size;
int retval;
requested_block_size = data[1];
if (requested_block_size) {
fifo_size = requested_block_size * fifo->num_segments /
bytes_in_sample;
retval = set_ai_fifo_size(dev, fifo_size);
if (retval < 0)
return retval;
}
block_size = ai_fifo_size(dev) / fifo->num_segments * bytes_in_sample;
data[1] = block_size;
return 2;
}
static int ai_config_master_clock_4020(struct comedi_device *dev,
unsigned int *data)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int divisor = data[4];
int retval = 0;
if (divisor < 2) {
divisor = 2;
retval = -EAGAIN;
}
switch (data[1]) {
case COMEDI_EV_SCAN_BEGIN:
devpriv->ext_clock.divisor = divisor;
devpriv->ext_clock.chanspec = data[2];
break;
default:
return -EINVAL;
}
data[4] = divisor;
return retval ? retval : 5;
}
/* XXX could add support for 60xx series */
static int ai_config_master_clock(struct comedi_device *dev, unsigned int *data)
{
const struct pcidas64_board *board = dev->board_ptr;
switch (board->layout) {
case LAYOUT_4020:
return ai_config_master_clock_4020(dev, data);
default:
return -EINVAL;
}
return -EINVAL;
}
static int ai_config_insn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int id = data[0];
switch (id) {
case INSN_CONFIG_ALT_SOURCE:
return ai_config_calibration_source(dev, data);
case INSN_CONFIG_BLOCK_SIZE:
return ai_config_block_size(dev, data);
case INSN_CONFIG_TIMER_1:
return ai_config_master_clock(dev, data);
default:
return -EINVAL;
}
return -EINVAL;
}
/*
* Gets nearest achievable timing given master clock speed, does not
* take into account possible minimum/maximum divisor values. Used
* by other timing checking functions.
*/
static unsigned int get_divisor(unsigned int ns, unsigned int flags)
{
unsigned int divisor;
switch (flags & CMDF_ROUND_MASK) {
case CMDF_ROUND_UP:
divisor = DIV_ROUND_UP(ns, TIMER_BASE);
break;
case CMDF_ROUND_DOWN:
divisor = ns / TIMER_BASE;
break;
case CMDF_ROUND_NEAREST:
default:
divisor = DIV_ROUND_CLOSEST(ns, TIMER_BASE);
break;
}
return divisor;
}
/*
* utility function that rounds desired timing to an achievable time, and
* sets cmd members appropriately.
* adc paces conversions from master clock by dividing by (x + 3) where x is
* 24 bit number
*/
static void check_adc_timing(struct comedi_device *dev, struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
unsigned long long convert_divisor = 0;
unsigned int scan_divisor;
static const int min_convert_divisor = 3;
static const int max_convert_divisor =
max_counter_value + min_convert_divisor;
static const int min_scan_divisor_4020 = 2;
unsigned long long max_scan_divisor, min_scan_divisor;
if (cmd->convert_src == TRIG_TIMER) {
if (board->layout == LAYOUT_4020) {
cmd->convert_arg = 0;
} else {
convert_divisor = get_divisor(cmd->convert_arg,
cmd->flags);
if (convert_divisor > max_convert_divisor)
convert_divisor = max_convert_divisor;
if (convert_divisor < min_convert_divisor)
convert_divisor = min_convert_divisor;
cmd->convert_arg = convert_divisor * TIMER_BASE;
}
} else if (cmd->convert_src == TRIG_NOW) {
cmd->convert_arg = 0;
}
if (cmd->scan_begin_src == TRIG_TIMER) {
scan_divisor = get_divisor(cmd->scan_begin_arg, cmd->flags);
if (cmd->convert_src == TRIG_TIMER) {
min_scan_divisor = convert_divisor * cmd->chanlist_len;
max_scan_divisor =
(convert_divisor * cmd->chanlist_len - 1) +
max_counter_value;
} else {
min_scan_divisor = min_scan_divisor_4020;
max_scan_divisor = max_counter_value + min_scan_divisor;
}
if (scan_divisor > max_scan_divisor)
scan_divisor = max_scan_divisor;
if (scan_divisor < min_scan_divisor)
scan_divisor = min_scan_divisor;
cmd->scan_begin_arg = scan_divisor * TIMER_BASE;
}
}
static int cb_pcidas64_ai_check_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
unsigned int aref0 = CR_AREF(cmd->chanlist[0]);
int i;
for (i = 1; i < cmd->chanlist_len; i++) {
unsigned int aref = CR_AREF(cmd->chanlist[i]);
if (aref != aref0) {
dev_dbg(dev->class_dev,
"all elements in chanlist must use the same analog reference\n");
return -EINVAL;
}
}
if (board->layout == LAYOUT_4020) {
unsigned int chan0 = CR_CHAN(cmd->chanlist[0]);
for (i = 1; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
if (chan != (chan0 + i)) {
dev_dbg(dev->class_dev,
"chanlist must use consecutive channels\n");
return -EINVAL;
}
}
if (cmd->chanlist_len == 3) {
dev_dbg(dev->class_dev,
"chanlist cannot be 3 channels long, use 1, 2, or 4 channels\n");
return -EINVAL;
}
}
return 0;
}
static int ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
int err = 0;
unsigned int tmp_arg, tmp_arg2;
unsigned int triggers;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_EXT);
triggers = TRIG_TIMER;
if (board->layout == LAYOUT_4020)
triggers |= TRIG_OTHER;
else
triggers |= TRIG_FOLLOW;
err |= comedi_check_trigger_src(&cmd->scan_begin_src, triggers);
triggers = TRIG_TIMER;
if (board->layout == LAYOUT_4020)
triggers |= TRIG_NOW;
else
triggers |= TRIG_EXT;
err |= comedi_check_trigger_src(&cmd->convert_src, triggers);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src,
TRIG_COUNT | TRIG_EXT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
err |= comedi_check_trigger_is_unique(cmd->convert_src);
err |= comedi_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (cmd->convert_src == TRIG_EXT && cmd->scan_begin_src == TRIG_TIMER)
err |= -EINVAL;
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
switch (cmd->start_src) {
case TRIG_NOW:
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
break;
case TRIG_EXT:
/*
* start_arg is the CR_CHAN | CR_INVERT of the
* external trigger.
*/
break;
}
if (cmd->convert_src == TRIG_TIMER) {
if (board->layout == LAYOUT_4020) {
err |= comedi_check_trigger_arg_is(&cmd->convert_arg,
0);
} else {
err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
board->ai_speed);
/*
* if scans are timed faster than conversion rate
* allows
*/
if (cmd->scan_begin_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(
&cmd->scan_begin_arg,
cmd->convert_arg *
cmd->chanlist_len);
}
}
}
err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
switch (cmd->stop_src) {
case TRIG_EXT:
break;
case TRIG_COUNT:
err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
break;
case TRIG_NONE:
err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
break;
default:
break;
}
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->convert_src == TRIG_TIMER) {
tmp_arg = cmd->convert_arg;
tmp_arg2 = cmd->scan_begin_arg;
check_adc_timing(dev, cmd);
if (tmp_arg != cmd->convert_arg)
err++;
if (tmp_arg2 != cmd->scan_begin_arg)
err++;
}
if (err)
return 4;
/* Step 5: check channel list if it exists */
if (cmd->chanlist && cmd->chanlist_len > 0)
err |= cb_pcidas64_ai_check_chanlist(dev, s, cmd);
if (err)
return 5;
return 0;
}
static int use_hw_sample_counter(struct comedi_cmd *cmd)
{
/* disable for now until I work out a race */
return 0;
if (cmd->stop_src == TRIG_COUNT && cmd->stop_arg <= max_counter_value)
return 1;
return 0;
}
static void setup_sample_counters(struct comedi_device *dev,
struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
/* load hardware conversion counter */
if (use_hw_sample_counter(cmd)) {
writew(cmd->stop_arg & 0xffff,
devpriv->main_iobase + ADC_COUNT_LOWER_REG);
writew((cmd->stop_arg >> 16) & 0xff,
devpriv->main_iobase + ADC_COUNT_UPPER_REG);
} else {
writew(1, devpriv->main_iobase + ADC_COUNT_LOWER_REG);
}
}
static inline unsigned int dma_transfer_size(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned int num_samples;
num_samples = devpriv->ai_fifo_segment_length *
board->ai_fifo->sample_packing_ratio;
if (num_samples > DMA_BUFFER_SIZE / sizeof(u16))
num_samples = DMA_BUFFER_SIZE / sizeof(u16);
return num_samples;
}
static u32 ai_convert_counter_6xxx(const struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
/* supposed to load counter with desired divisor minus 3 */
return cmd->convert_arg / TIMER_BASE - 3;
}
static u32 ai_scan_counter_6xxx(struct comedi_device *dev,
struct comedi_cmd *cmd)
{
u32 count;
/* figure out how long we need to delay at end of scan */
switch (cmd->scan_begin_src) {
case TRIG_TIMER:
count = (cmd->scan_begin_arg -
(cmd->convert_arg * (cmd->chanlist_len - 1))) /
TIMER_BASE;
break;
case TRIG_FOLLOW:
count = cmd->convert_arg / TIMER_BASE;
break;
default:
return 0;
}
return count - 3;
}
static u32 ai_convert_counter_4020(struct comedi_device *dev,
struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int divisor;
switch (cmd->scan_begin_src) {
case TRIG_TIMER:
divisor = cmd->scan_begin_arg / TIMER_BASE;
break;
case TRIG_OTHER:
divisor = devpriv->ext_clock.divisor;
break;
default: /* should never happen */
dev_err(dev->class_dev, "bug! failed to set ai pacing!\n");
divisor = 1000;
break;
}
/* supposed to load counter with desired divisor minus 2 for 4020 */
return divisor - 2;
}
static void select_master_clock_4020(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
/* select internal/external master clock */
devpriv->hw_config_bits &= ~MASTER_CLOCK_4020_MASK;
if (cmd->scan_begin_src == TRIG_OTHER) {
int chanspec = devpriv->ext_clock.chanspec;
if (CR_CHAN(chanspec))
devpriv->hw_config_bits |= BNC_CLOCK_4020_BITS;
else
devpriv->hw_config_bits |= EXT_CLOCK_4020_BITS;
} else {
devpriv->hw_config_bits |= INTERNAL_CLOCK_4020_BITS;
}
writew(devpriv->hw_config_bits,
devpriv->main_iobase + HW_CONFIG_REG);
}
static void select_master_clock(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
switch (board->layout) {
case LAYOUT_4020:
select_master_clock_4020(dev, cmd);
break;
default:
break;
}
}
static inline void dma_start_sync(struct comedi_device *dev,
unsigned int channel)
{
struct pcidas64_private *devpriv = dev->private;
unsigned long flags;
/* spinlock for plx dma control/status reg */
spin_lock_irqsave(&dev->spinlock, flags);
writeb(PLX_DMACSR_ENABLE | PLX_DMACSR_START | PLX_DMACSR_CLEARINTR,
devpriv->plx9080_iobase + PLX_REG_DMACSR(channel));
spin_unlock_irqrestore(&dev->spinlock, flags);
}
static void set_ai_pacing(struct comedi_device *dev, struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
u32 convert_counter = 0, scan_counter = 0;
check_adc_timing(dev, cmd);
select_master_clock(dev, cmd);
if (board->layout == LAYOUT_4020) {
convert_counter = ai_convert_counter_4020(dev, cmd);
} else {
convert_counter = ai_convert_counter_6xxx(dev, cmd);
scan_counter = ai_scan_counter_6xxx(dev, cmd);
}
/* load lower 16 bits of convert interval */
writew(convert_counter & 0xffff,
devpriv->main_iobase + ADC_SAMPLE_INTERVAL_LOWER_REG);
/* load upper 8 bits of convert interval */
writew((convert_counter >> 16) & 0xff,
devpriv->main_iobase + ADC_SAMPLE_INTERVAL_UPPER_REG);
/* load lower 16 bits of scan delay */
writew(scan_counter & 0xffff,
devpriv->main_iobase + ADC_DELAY_INTERVAL_LOWER_REG);
/* load upper 8 bits of scan delay */
writew((scan_counter >> 16) & 0xff,
devpriv->main_iobase + ADC_DELAY_INTERVAL_UPPER_REG);
}
static int use_internal_queue_6xxx(const struct comedi_cmd *cmd)
{
int i;
for (i = 0; i + 1 < cmd->chanlist_len; i++) {
if (CR_CHAN(cmd->chanlist[i + 1]) !=
CR_CHAN(cmd->chanlist[i]) + 1)
return 0;
if (CR_RANGE(cmd->chanlist[i + 1]) !=
CR_RANGE(cmd->chanlist[i]))
return 0;
if (CR_AREF(cmd->chanlist[i + 1]) != CR_AREF(cmd->chanlist[i]))
return 0;
}
return 1;
}
static int setup_channel_queue(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned short bits;
int i;
if (board->layout != LAYOUT_4020) {
if (use_internal_queue_6xxx(cmd)) {
devpriv->hw_config_bits &= ~EXT_QUEUE_BIT;
writew(devpriv->hw_config_bits,
devpriv->main_iobase + HW_CONFIG_REG);
bits = 0;
/* set channel */
bits |= adc_chan_bits(CR_CHAN(cmd->chanlist[0]));
/* set gain */
bits |= ai_range_bits_6xxx(dev,
CR_RANGE(cmd->chanlist[0]));
/* set single-ended / differential */
bits |= se_diff_bit_6xxx(dev,
CR_AREF(cmd->chanlist[0]) ==
AREF_DIFF);
if (CR_AREF(cmd->chanlist[0]) == AREF_COMMON)
bits |= ADC_COMMON_BIT;
/* set stop channel */
writew(adc_chan_bits
(CR_CHAN(cmd->chanlist[cmd->chanlist_len - 1])),
devpriv->main_iobase + ADC_QUEUE_HIGH_REG);
/* set start channel, and rest of settings */
writew(bits,
devpriv->main_iobase + ADC_QUEUE_LOAD_REG);
} else {
/* use external queue */
if (dev->write_subdev && dev->write_subdev->busy) {
warn_external_queue(dev);
return -EBUSY;
}
devpriv->hw_config_bits |= EXT_QUEUE_BIT;
writew(devpriv->hw_config_bits,
devpriv->main_iobase + HW_CONFIG_REG);
/* clear DAC buffer to prevent weird interactions */
writew(0,
devpriv->main_iobase + DAC_BUFFER_CLEAR_REG);
/* clear queue pointer */
writew(0, devpriv->main_iobase + ADC_QUEUE_CLEAR_REG);
/* load external queue */
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned int chanspec = cmd->chanlist[i];
int use_differential;
bits = 0;
/* set channel */
bits |= adc_chan_bits(CR_CHAN(chanspec));
/* set gain */
bits |= ai_range_bits_6xxx(dev,
CR_RANGE(chanspec));
/* set single-ended / differential */
use_differential = 0;
if (CR_AREF(chanspec) == AREF_DIFF)
use_differential = 1;
bits |= se_diff_bit_6xxx(dev, use_differential);
if (CR_AREF(cmd->chanlist[i]) == AREF_COMMON)
bits |= ADC_COMMON_BIT;
/* mark end of queue */
if (i == cmd->chanlist_len - 1)
bits |= QUEUE_EOSCAN_BIT |
QUEUE_EOSEQ_BIT;
writew(bits,
devpriv->main_iobase +
ADC_QUEUE_FIFO_REG);
}
/*
* doing a queue clear is not specified in board docs,
* but required for reliable operation
*/
writew(0, devpriv->main_iobase + ADC_QUEUE_CLEAR_REG);
/* prime queue holding register */
writew(0, devpriv->main_iobase + ADC_QUEUE_LOAD_REG);
}
} else {
unsigned short old_cal_range_bits = devpriv->i2c_cal_range_bits;
devpriv->i2c_cal_range_bits &= ~ADC_SRC_4020_MASK;
/* select BNC inputs */
devpriv->i2c_cal_range_bits |= adc_src_4020_bits(4);
/* select ranges */
for (i = 0; i < cmd->chanlist_len; i++) {
unsigned int channel = CR_CHAN(cmd->chanlist[i]);
unsigned int range = CR_RANGE(cmd->chanlist[i]);
if (range == 0)
devpriv->i2c_cal_range_bits |=
attenuate_bit(channel);
else
devpriv->i2c_cal_range_bits &=
~attenuate_bit(channel);
}
/*
* update calibration/range i2c register only if necessary,
* as it is very slow
*/
if (old_cal_range_bits != devpriv->i2c_cal_range_bits) {
u8 i2c_data = devpriv->i2c_cal_range_bits;
i2c_write(dev, RANGE_CAL_I2C_ADDR, &i2c_data,
sizeof(i2c_data));
}
}
return 0;
}
static inline void load_first_dma_descriptor(struct comedi_device *dev,
unsigned int dma_channel,
unsigned int descriptor_bits)
{
struct pcidas64_private *devpriv = dev->private;
/*
* The transfer size, pci address, and local address registers
* are supposedly unused during chained dma,
* but I have found that left over values from last operation
* occasionally cause problems with transfer of first dma
* block. Initializing them to zero seems to fix the problem.
*/
if (dma_channel) {
writel(0, devpriv->plx9080_iobase + PLX_REG_DMASIZ1);
writel(0, devpriv->plx9080_iobase + PLX_REG_DMAPADR1);
writel(0, devpriv->plx9080_iobase + PLX_REG_DMALADR1);
writel(descriptor_bits,
devpriv->plx9080_iobase + PLX_REG_DMADPR1);
} else {
writel(0, devpriv->plx9080_iobase + PLX_REG_DMASIZ0);
writel(0, devpriv->plx9080_iobase + PLX_REG_DMAPADR0);
writel(0, devpriv->plx9080_iobase + PLX_REG_DMALADR0);
writel(descriptor_bits,
devpriv->plx9080_iobase + PLX_REG_DMADPR0);
}
}
static int ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
u32 bits;
unsigned int i;
unsigned long flags;
int retval;
disable_ai_pacing(dev);
abort_dma(dev, 1);
retval = setup_channel_queue(dev, cmd);
if (retval < 0)
return retval;
/* make sure internal calibration source is turned off */
writew(0, devpriv->main_iobase + CALIBRATION_REG);
set_ai_pacing(dev, cmd);
setup_sample_counters(dev, cmd);
enable_ai_interrupts(dev, cmd);
spin_lock_irqsave(&dev->spinlock, flags);
/* set mode, allow conversions through software gate */
devpriv->adc_control1_bits |= ADC_SW_GATE_BIT;
devpriv->adc_control1_bits &= ~ADC_DITHER_BIT;
if (board->layout != LAYOUT_4020) {
devpriv->adc_control1_bits &= ~ADC_MODE_MASK;
if (cmd->convert_src == TRIG_EXT)
/* good old mode 13 */
devpriv->adc_control1_bits |= adc_mode_bits(13);
else
/* mode 8. What else could you need? */
devpriv->adc_control1_bits |= adc_mode_bits(8);
} else {
devpriv->adc_control1_bits &= ~CHANNEL_MODE_4020_MASK;
if (cmd->chanlist_len == 4)
devpriv->adc_control1_bits |= FOUR_CHANNEL_4020_BITS;
else if (cmd->chanlist_len == 2)
devpriv->adc_control1_bits |= TWO_CHANNEL_4020_BITS;
devpriv->adc_control1_bits &= ~ADC_LO_CHANNEL_4020_MASK;
devpriv->adc_control1_bits |=
adc_lo_chan_4020_bits(CR_CHAN(cmd->chanlist[0]));
devpriv->adc_control1_bits &= ~ADC_HI_CHANNEL_4020_MASK;
devpriv->adc_control1_bits |=
adc_hi_chan_4020_bits(CR_CHAN(cmd->chanlist
[cmd->chanlist_len - 1]));
}
writew(devpriv->adc_control1_bits,
devpriv->main_iobase + ADC_CONTROL1_REG);
spin_unlock_irqrestore(&dev->spinlock, flags);
/* clear adc buffer */
writew(0, devpriv->main_iobase + ADC_BUFFER_CLEAR_REG);
if ((cmd->flags & CMDF_WAKE_EOS) == 0 ||
board->layout == LAYOUT_4020) {
devpriv->ai_dma_index = 0;
/* set dma transfer size */
for (i = 0; i < ai_dma_ring_count(board); i++)
devpriv->ai_dma_desc[i].transfer_size =
cpu_to_le32(dma_transfer_size(dev) *
sizeof(u16));
/* give location of first dma descriptor */
load_first_dma_descriptor(dev, 1,
devpriv->ai_dma_desc_bus_addr |
PLX_DMADPR_DESCPCI |
PLX_DMADPR_TCINTR |
PLX_DMADPR_XFERL2P);
dma_start_sync(dev, 1);
}
if (board->layout == LAYOUT_4020) {
/* set source for external triggers */
bits = 0;
if (cmd->start_src == TRIG_EXT && CR_CHAN(cmd->start_arg))
bits |= EXT_START_TRIG_BNC_BIT;
if (cmd->stop_src == TRIG_EXT && CR_CHAN(cmd->stop_arg))
bits |= EXT_STOP_TRIG_BNC_BIT;
writew(bits, devpriv->main_iobase + DAQ_ATRIG_LOW_4020_REG);
}
spin_lock_irqsave(&dev->spinlock, flags);
/* enable pacing, triggering, etc */
bits = ADC_ENABLE_BIT | ADC_SOFT_GATE_BITS | ADC_GATE_LEVEL_BIT;
if (cmd->flags & CMDF_WAKE_EOS)
bits |= ADC_DMA_DISABLE_BIT;
/* set start trigger */
if (cmd->start_src == TRIG_EXT) {
bits |= ADC_START_TRIG_EXT_BITS;
if (cmd->start_arg & CR_INVERT)
bits |= ADC_START_TRIG_FALLING_BIT;
} else if (cmd->start_src == TRIG_NOW) {
bits |= ADC_START_TRIG_SOFT_BITS;
}
if (use_hw_sample_counter(cmd))
bits |= ADC_SAMPLE_COUNTER_EN_BIT;
writew(bits, devpriv->main_iobase + ADC_CONTROL0_REG);
devpriv->ai_cmd_running = 1;
spin_unlock_irqrestore(&dev->spinlock, flags);
/* start acquisition */
if (cmd->start_src == TRIG_NOW)
writew(0, devpriv->main_iobase + ADC_START_REG);
return 0;
}
/* read num_samples from 16 bit wide ai fifo */
static void pio_drain_ai_fifo_16(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
unsigned int i;
u16 prepost_bits;
int read_segment, read_index, write_segment, write_index;
int num_samples;
do {
/* get least significant 15 bits */
read_index = readw(devpriv->main_iobase + ADC_READ_PNTR_REG) &
0x7fff;
write_index = readw(devpriv->main_iobase + ADC_WRITE_PNTR_REG) &
0x7fff;
/*
* Get most significant bits (grey code).
* Different boards use different code so use a scheme
* that doesn't depend on encoding. This read must
* occur after reading least significant 15 bits to avoid race
* with fifo switching to next segment.
*/
prepost_bits = readw(devpriv->main_iobase + PREPOST_REG);
/*
* if read and write pointers are not on the same fifo segment,
* read to the end of the read segment
*/
read_segment = adc_upper_read_ptr_code(prepost_bits);
write_segment = adc_upper_write_ptr_code(prepost_bits);
if (read_segment != write_segment)
num_samples =
devpriv->ai_fifo_segment_length - read_index;
else
num_samples = write_index - read_index;
if (num_samples < 0) {
dev_err(dev->class_dev,
"cb_pcidas64: bug! num_samples < 0\n");
break;
}
num_samples = comedi_nsamples_left(s, num_samples);
if (num_samples == 0)
break;
for (i = 0; i < num_samples; i++) {
unsigned short val;
val = readw(devpriv->main_iobase + ADC_FIFO_REG);
comedi_buf_write_samples(s, &val, 1);
}
} while (read_segment != write_segment);
}
/*
* Read from 32 bit wide ai fifo of 4020 - deal with insane grey coding of
* pointers. The pci-4020 hardware only supports dma transfers (it only
* supports the use of pio for draining the last remaining points from the
* fifo when a data acquisition operation has completed).
*/
static void pio_drain_ai_fifo_32(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
unsigned int nsamples;
unsigned int i;
u32 fifo_data;
int write_code =
readw(devpriv->main_iobase + ADC_WRITE_PNTR_REG) & 0x7fff;
int read_code =
readw(devpriv->main_iobase + ADC_READ_PNTR_REG) & 0x7fff;
nsamples = comedi_nsamples_left(s, 100000);
for (i = 0; read_code != write_code && i < nsamples;) {
unsigned short val;
fifo_data = readl(dev->mmio + ADC_FIFO_REG);
val = fifo_data & 0xffff;
comedi_buf_write_samples(s, &val, 1);
i++;
if (i < nsamples) {
val = (fifo_data >> 16) & 0xffff;
comedi_buf_write_samples(s, &val, 1);
i++;
}
read_code = readw(devpriv->main_iobase + ADC_READ_PNTR_REG) &
0x7fff;
}
}
/* empty fifo */
static void pio_drain_ai_fifo(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
if (board->layout == LAYOUT_4020)
pio_drain_ai_fifo_32(dev);
else
pio_drain_ai_fifo_16(dev);
}
static void drain_dma_buffers(struct comedi_device *dev, unsigned int channel)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
u32 next_transfer_addr;
int j;
int num_samples = 0;
void __iomem *pci_addr_reg;
pci_addr_reg = devpriv->plx9080_iobase + PLX_REG_DMAPADR(channel);
/* loop until we have read all the full buffers */
for (j = 0, next_transfer_addr = readl(pci_addr_reg);
(next_transfer_addr <
devpriv->ai_buffer_bus_addr[devpriv->ai_dma_index] ||
next_transfer_addr >=
devpriv->ai_buffer_bus_addr[devpriv->ai_dma_index] +
DMA_BUFFER_SIZE) && j < ai_dma_ring_count(board); j++) {
/* transfer data from dma buffer to comedi buffer */
num_samples = comedi_nsamples_left(s, dma_transfer_size(dev));
comedi_buf_write_samples(s,
devpriv->ai_buffer[devpriv->ai_dma_index],
num_samples);
devpriv->ai_dma_index = (devpriv->ai_dma_index + 1) %
ai_dma_ring_count(board);
}
/*
* XXX check for dma ring buffer overrun
* (use end-of-chain bit to mark last unused buffer)
*/
}
static void handle_ai_interrupt(struct comedi_device *dev,
unsigned short status,
unsigned int plx_status)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
u8 dma1_status;
unsigned long flags;
/* check for fifo overrun */
if (status & ADC_OVERRUN_BIT) {
dev_err(dev->class_dev, "fifo overrun\n");
async->events |= COMEDI_CB_ERROR;
}
/* spin lock makes sure no one else changes plx dma control reg */
spin_lock_irqsave(&dev->spinlock, flags);
dma1_status = readb(devpriv->plx9080_iobase + PLX_REG_DMACSR1);
if (plx_status & PLX_INTCSR_DMA1IA) { /* dma chan 1 interrupt */
writeb((dma1_status & PLX_DMACSR_ENABLE) | PLX_DMACSR_CLEARINTR,
devpriv->plx9080_iobase + PLX_REG_DMACSR1);
if (dma1_status & PLX_DMACSR_ENABLE)
drain_dma_buffers(dev, 1);
}
spin_unlock_irqrestore(&dev->spinlock, flags);
/* drain fifo with pio */
if ((status & ADC_DONE_BIT) ||
((cmd->flags & CMDF_WAKE_EOS) &&
(status & ADC_INTR_PENDING_BIT) &&
(board->layout != LAYOUT_4020))) {
spin_lock_irqsave(&dev->spinlock, flags);
if (devpriv->ai_cmd_running) {
spin_unlock_irqrestore(&dev->spinlock, flags);
pio_drain_ai_fifo(dev);
} else {
spin_unlock_irqrestore(&dev->spinlock, flags);
}
}
/* if we are have all the data, then quit */
if ((cmd->stop_src == TRIG_COUNT &&
async->scans_done >= cmd->stop_arg) ||
(cmd->stop_src == TRIG_EXT && (status & ADC_STOP_BIT)))
async->events |= COMEDI_CB_EOA;
comedi_handle_events(dev, s);
}
static inline unsigned int prev_ao_dma_index(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int buffer_index;
if (devpriv->ao_dma_index == 0)
buffer_index = AO_DMA_RING_COUNT - 1;
else
buffer_index = devpriv->ao_dma_index - 1;
return buffer_index;
}
static int last_ao_dma_load_completed(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int buffer_index;
unsigned int transfer_address;
unsigned short dma_status;
buffer_index = prev_ao_dma_index(dev);
dma_status = readb(devpriv->plx9080_iobase + PLX_REG_DMACSR0);
if ((dma_status & PLX_DMACSR_DONE) == 0)
return 0;
transfer_address =
readl(devpriv->plx9080_iobase + PLX_REG_DMAPADR0);
if (transfer_address != devpriv->ao_buffer_bus_addr[buffer_index])
return 0;
return 1;
}
static inline int ao_dma_needs_restart(struct comedi_device *dev,
unsigned short dma_status)
{
if ((dma_status & PLX_DMACSR_DONE) == 0 ||
(dma_status & PLX_DMACSR_ENABLE) == 0)
return 0;
if (last_ao_dma_load_completed(dev))
return 0;
return 1;
}
static void restart_ao_dma(struct comedi_device *dev)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int dma_desc_bits;
dma_desc_bits = readl(devpriv->plx9080_iobase + PLX_REG_DMADPR0);
dma_desc_bits &= ~PLX_DMADPR_CHAINEND;
load_first_dma_descriptor(dev, 0, dma_desc_bits);
dma_start_sync(dev, 0);
}
static unsigned int cb_pcidas64_ao_fill_buffer(struct comedi_device *dev,
struct comedi_subdevice *s,
unsigned short *dest,
unsigned int max_bytes)
{
unsigned int nsamples = comedi_bytes_to_samples(s, max_bytes);
unsigned int actual_bytes;
nsamples = comedi_nsamples_left(s, nsamples);
actual_bytes = comedi_buf_read_samples(s, dest, nsamples);
return comedi_bytes_to_samples(s, actual_bytes);
}
static unsigned int load_ao_dma_buffer(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->write_subdev;
unsigned int buffer_index = devpriv->ao_dma_index;
unsigned int prev_buffer_index = prev_ao_dma_index(dev);
unsigned int nsamples;
unsigned int nbytes;
unsigned int next_bits;
nsamples = cb_pcidas64_ao_fill_buffer(dev, s,
devpriv->ao_buffer[buffer_index],
DMA_BUFFER_SIZE);
if (nsamples == 0)
return 0;
nbytes = comedi_samples_to_bytes(s, nsamples);
devpriv->ao_dma_desc[buffer_index].transfer_size = cpu_to_le32(nbytes);
/* set end of chain bit so we catch underruns */
next_bits = le32_to_cpu(devpriv->ao_dma_desc[buffer_index].next);
next_bits |= PLX_DMADPR_CHAINEND;
devpriv->ao_dma_desc[buffer_index].next = cpu_to_le32(next_bits);
/*
* clear end of chain bit on previous buffer now that we have set it
* for the last buffer
*/
next_bits = le32_to_cpu(devpriv->ao_dma_desc[prev_buffer_index].next);
next_bits &= ~PLX_DMADPR_CHAINEND;
devpriv->ao_dma_desc[prev_buffer_index].next = cpu_to_le32(next_bits);
devpriv->ao_dma_index = (buffer_index + 1) % AO_DMA_RING_COUNT;
return nbytes;
}
static void load_ao_dma(struct comedi_device *dev, const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int num_bytes;
unsigned int next_transfer_addr;
void __iomem *pci_addr_reg = devpriv->plx9080_iobase + PLX_REG_DMAPADR0;
unsigned int buffer_index;
do {
buffer_index = devpriv->ao_dma_index;
/* don't overwrite data that hasn't been transferred yet */
next_transfer_addr = readl(pci_addr_reg);
if (next_transfer_addr >=
devpriv->ao_buffer_bus_addr[buffer_index] &&
next_transfer_addr <
devpriv->ao_buffer_bus_addr[buffer_index] +
DMA_BUFFER_SIZE)
return;
num_bytes = load_ao_dma_buffer(dev, cmd);
} while (num_bytes >= DMA_BUFFER_SIZE);
}
static void handle_ao_interrupt(struct comedi_device *dev,
unsigned short status, unsigned int plx_status)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->write_subdev;
struct comedi_async *async;
struct comedi_cmd *cmd;
u8 dma0_status;
unsigned long flags;
/* board might not support ao, in which case write_subdev is NULL */
if (!s)
return;
async = s->async;
cmd = &async->cmd;
/* spin lock makes sure no one else changes plx dma control reg */
spin_lock_irqsave(&dev->spinlock, flags);
dma0_status = readb(devpriv->plx9080_iobase + PLX_REG_DMACSR0);
if (plx_status & PLX_INTCSR_DMA0IA) { /* dma chan 0 interrupt */
if ((dma0_status & PLX_DMACSR_ENABLE) &&
!(dma0_status & PLX_DMACSR_DONE)) {
writeb(PLX_DMACSR_ENABLE | PLX_DMACSR_CLEARINTR,
devpriv->plx9080_iobase + PLX_REG_DMACSR0);
} else {
writeb(PLX_DMACSR_CLEARINTR,
devpriv->plx9080_iobase + PLX_REG_DMACSR0);
}
spin_unlock_irqrestore(&dev->spinlock, flags);
if (dma0_status & PLX_DMACSR_ENABLE) {
load_ao_dma(dev, cmd);
/* try to recover from dma end-of-chain event */
if (ao_dma_needs_restart(dev, dma0_status))
restart_ao_dma(dev);
}
} else {
spin_unlock_irqrestore(&dev->spinlock, flags);
}
if ((status & DAC_DONE_BIT)) {
if ((cmd->stop_src == TRIG_COUNT &&
async->scans_done >= cmd->stop_arg) ||
last_ao_dma_load_completed(dev))
async->events |= COMEDI_CB_EOA;
else
async->events |= COMEDI_CB_ERROR;
}
comedi_handle_events(dev, s);
}
static irqreturn_t handle_interrupt(int irq, void *d)
{
struct comedi_device *dev = d;
struct pcidas64_private *devpriv = dev->private;
unsigned short status;
u32 plx_status;
u32 plx_bits;
plx_status = readl(devpriv->plx9080_iobase + PLX_REG_INTCSR);
status = readw(devpriv->main_iobase + HW_STATUS_REG);
/*
* an interrupt before all the postconfig stuff gets done could
* cause a NULL dereference if we continue through the
* interrupt handler
*/
if (!dev->attached)
return IRQ_HANDLED;
handle_ai_interrupt(dev, status, plx_status);
handle_ao_interrupt(dev, status, plx_status);
/* clear possible plx9080 interrupt sources */
if (plx_status & PLX_INTCSR_LDBIA) {
/* clear local doorbell interrupt */
plx_bits = readl(devpriv->plx9080_iobase + PLX_REG_L2PDBELL);
writel(plx_bits, devpriv->plx9080_iobase + PLX_REG_L2PDBELL);
}
return IRQ_HANDLED;
}
static int ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct pcidas64_private *devpriv = dev->private;
unsigned long flags;
spin_lock_irqsave(&dev->spinlock, flags);
if (devpriv->ai_cmd_running == 0) {
spin_unlock_irqrestore(&dev->spinlock, flags);
return 0;
}
devpriv->ai_cmd_running = 0;
spin_unlock_irqrestore(&dev->spinlock, flags);
disable_ai_pacing(dev);
abort_dma(dev, 1);
return 0;
}
static int ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int range = CR_RANGE(insn->chanspec);
unsigned int val = s->readback[chan];
unsigned int i;
/* do some initializing */
writew(0, devpriv->main_iobase + DAC_CONTROL0_REG);
/* set range */
set_dac_range_bits(dev, &devpriv->dac_control1_bits, chan, range);
writew(devpriv->dac_control1_bits,
devpriv->main_iobase + DAC_CONTROL1_REG);
for (i = 0; i < insn->n; i++) {
/* write to channel */
val = data[i];
if (board->layout == LAYOUT_4020) {
writew(val & 0xff,
devpriv->main_iobase + dac_lsb_4020_reg(chan));
writew((val >> 8) & 0xf,
devpriv->main_iobase + dac_msb_4020_reg(chan));
} else {
writew(val,
devpriv->main_iobase + dac_convert_reg(chan));
}
}
/* remember last output value */
s->readback[chan] = val;
return insn->n;
}
static void set_dac_control0_reg(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int bits = DAC_ENABLE_BIT | WAVEFORM_GATE_LEVEL_BIT |
WAVEFORM_GATE_ENABLE_BIT | WAVEFORM_GATE_SELECT_BIT;
if (cmd->start_src == TRIG_EXT) {
bits |= WAVEFORM_TRIG_EXT_BITS;
if (cmd->start_arg & CR_INVERT)
bits |= WAVEFORM_TRIG_FALLING_BIT;
} else {
bits |= WAVEFORM_TRIG_SOFT_BITS;
}
if (cmd->scan_begin_src == TRIG_EXT) {
bits |= DAC_EXT_UPDATE_ENABLE_BIT;
if (cmd->scan_begin_arg & CR_INVERT)
bits |= DAC_EXT_UPDATE_FALLING_BIT;
}
writew(bits, devpriv->main_iobase + DAC_CONTROL0_REG);
}
static void set_dac_control1_reg(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
int i;
for (i = 0; i < cmd->chanlist_len; i++) {
int channel, range;
channel = CR_CHAN(cmd->chanlist[i]);
range = CR_RANGE(cmd->chanlist[i]);
set_dac_range_bits(dev, &devpriv->dac_control1_bits, channel,
range);
}
devpriv->dac_control1_bits |= DAC_SW_GATE_BIT;
writew(devpriv->dac_control1_bits,
devpriv->main_iobase + DAC_CONTROL1_REG);
}
static void set_dac_select_reg(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
u16 bits;
unsigned int first_channel, last_channel;
first_channel = CR_CHAN(cmd->chanlist[0]);
last_channel = CR_CHAN(cmd->chanlist[cmd->chanlist_len - 1]);
if (last_channel < first_channel)
dev_err(dev->class_dev,
"bug! last ao channel < first ao channel\n");
bits = (first_channel & 0x7) | (last_channel & 0x7) << 3;
writew(bits, devpriv->main_iobase + DAC_SELECT_REG);
}
static unsigned int get_ao_divisor(unsigned int ns, unsigned int flags)
{
return get_divisor(ns, flags) - 2;
}
static void set_dac_interval_regs(struct comedi_device *dev,
const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
unsigned int divisor;
if (cmd->scan_begin_src != TRIG_TIMER)
return;
divisor = get_ao_divisor(cmd->scan_begin_arg, cmd->flags);
if (divisor > max_counter_value) {
dev_err(dev->class_dev, "bug! ao divisor too big\n");
divisor = max_counter_value;
}
writew(divisor & 0xffff,
devpriv->main_iobase + DAC_SAMPLE_INTERVAL_LOWER_REG);
writew((divisor >> 16) & 0xff,
devpriv->main_iobase + DAC_SAMPLE_INTERVAL_UPPER_REG);
}
static int prep_ao_dma(struct comedi_device *dev, const struct comedi_cmd *cmd)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s = dev->write_subdev;
unsigned int nsamples;
unsigned int nbytes;
int i;
/*
* clear queue pointer too, since external queue has
* weird interactions with ao fifo
*/
writew(0, devpriv->main_iobase + ADC_QUEUE_CLEAR_REG);
writew(0, devpriv->main_iobase + DAC_BUFFER_CLEAR_REG);
nsamples = cb_pcidas64_ao_fill_buffer(dev, s,
devpriv->ao_bounce_buffer,
DAC_FIFO_SIZE);
if (nsamples == 0)
return -1;
for (i = 0; i < nsamples; i++) {
writew(devpriv->ao_bounce_buffer[i],
devpriv->main_iobase + DAC_FIFO_REG);
}
if (cmd->stop_src == TRIG_COUNT &&
s->async->scans_done >= cmd->stop_arg)
return 0;
nbytes = load_ao_dma_buffer(dev, cmd);
if (nbytes == 0)
return -1;
load_ao_dma(dev, cmd);
dma_start_sync(dev, 0);
return 0;
}
static inline int external_ai_queue_in_use(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
if (!dev->read_subdev->busy)
return 0;
if (board->layout == LAYOUT_4020)
return 0;
else if (use_internal_queue_6xxx(&dev->read_subdev->async->cmd))
return 0;
return 1;
}
static int ao_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
unsigned int trig_num)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
int retval;
if (trig_num != cmd->start_arg)
return -EINVAL;
retval = prep_ao_dma(dev, cmd);
if (retval < 0)
return -EPIPE;
set_dac_control0_reg(dev, cmd);
if (cmd->start_src == TRIG_INT)
writew(0, devpriv->main_iobase + DAC_START_REG);
s->async->inttrig = NULL;
return 0;
}
static int ao_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct pcidas64_private *devpriv = dev->private;
struct comedi_cmd *cmd = &s->async->cmd;
if (external_ai_queue_in_use(dev)) {
warn_external_queue(dev);
return -EBUSY;
}
/* disable analog output system during setup */
writew(0x0, devpriv->main_iobase + DAC_CONTROL0_REG);
devpriv->ao_dma_index = 0;
set_dac_select_reg(dev, cmd);
set_dac_interval_regs(dev, cmd);
load_first_dma_descriptor(dev, 0, devpriv->ao_dma_desc_bus_addr |
PLX_DMADPR_DESCPCI | PLX_DMADPR_TCINTR);
set_dac_control1_reg(dev, cmd);
s->async->inttrig = ao_inttrig;
return 0;
}
static int cb_pcidas64_ao_check_chanlist(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
unsigned int chan0 = CR_CHAN(cmd->chanlist[0]);
int i;
for (i = 1; i < cmd->chanlist_len; i++) {
unsigned int chan = CR_CHAN(cmd->chanlist[i]);
if (chan != (chan0 + i)) {
dev_dbg(dev->class_dev,
"chanlist must use consecutive channels\n");
return -EINVAL;
}
}
return 0;
}
static int ao_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
const struct pcidas64_board *board = dev->board_ptr;
int err = 0;
unsigned int tmp_arg;
/* Step 1 : check if triggers are trivially valid */
err |= comedi_check_trigger_src(&cmd->start_src, TRIG_INT | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_EXT);
err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_NOW);
err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= comedi_check_trigger_is_unique(cmd->start_src);
err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
/* Step 2b : and mutually compatible */
if (cmd->convert_src == TRIG_EXT && cmd->scan_begin_src == TRIG_TIMER)
err |= -EINVAL;
if (cmd->stop_src != TRIG_COUNT &&
cmd->stop_src != TRIG_NONE && cmd->stop_src != TRIG_EXT)
err |= -EINVAL;
if (err)
return 2;
/* Step 3: check if arguments are trivially valid */
err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->scan_begin_src == TRIG_TIMER) {
err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
board->ao_scan_speed);
if (get_ao_divisor(cmd->scan_begin_arg, cmd->flags) >
max_counter_value) {
cmd->scan_begin_arg = (max_counter_value + 2) *
TIMER_BASE;
err |= -EINVAL;
}
}
err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1);
err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
cmd->chanlist_len);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp_arg = cmd->scan_begin_arg;
cmd->scan_begin_arg = get_divisor(cmd->scan_begin_arg,
cmd->flags) * TIMER_BASE;
if (tmp_arg != cmd->scan_begin_arg)
err++;
}
if (err)
return 4;
/* Step 5: check channel list if it exists */
if (cmd->chanlist && cmd->chanlist_len > 0)
err |= cb_pcidas64_ao_check_chanlist(dev, s, cmd);
if (err)
return 5;
return 0;
}
static int ao_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct pcidas64_private *devpriv = dev->private;
writew(0x0, devpriv->main_iobase + DAC_CONTROL0_REG);
abort_dma(dev, 0);
return 0;
}
static int dio_callback_4020(struct comedi_device *dev,
int dir, int port, int data, unsigned long iobase)
{
struct pcidas64_private *devpriv = dev->private;
if (dir) {
writew(data, devpriv->main_iobase + iobase + 2 * port);
return 0;
}
return readw(devpriv->main_iobase + iobase + 2 * port);
}
static int di_rbits(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int bits;
bits = readb(dev->mmio + DI_REG);
bits &= 0xf;
data[1] = bits;
data[0] = 0;
return insn->n;
}
static int do_wbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data))
writeb(s->state, dev->mmio + DO_REG);
data[1] = s->state;
return insn->n;
}
static int dio_60xx_config_insn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
int ret;
ret = comedi_dio_insn_config(dev, s, insn, data, 0);
if (ret)
return ret;
writeb(s->io_bits, dev->mmio + DIO_DIRECTION_60XX_REG);
return insn->n;
}
static int dio_60xx_wbits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data))
writeb(s->state, dev->mmio + DIO_DATA_60XX_REG);
data[1] = readb(dev->mmio + DIO_DATA_60XX_REG);
return insn->n;
}
/*
* pci-6025 8800 caldac:
* address 0 == dac channel 0 offset
* address 1 == dac channel 0 gain
* address 2 == dac channel 1 offset
* address 3 == dac channel 1 gain
* address 4 == fine adc offset
* address 5 == coarse adc offset
* address 6 == coarse adc gain
* address 7 == fine adc gain
*/
/*
* pci-6402/16 uses all 8 channels for dac:
* address 0 == dac channel 0 fine gain
* address 1 == dac channel 0 coarse gain
* address 2 == dac channel 0 coarse offset
* address 3 == dac channel 1 coarse offset
* address 4 == dac channel 1 fine gain
* address 5 == dac channel 1 coarse gain
* address 6 == dac channel 0 fine offset
* address 7 == dac channel 1 fine offset
*/
static int caldac_8800_write(struct comedi_device *dev, unsigned int address,
u8 value)
{
struct pcidas64_private *devpriv = dev->private;
static const int num_caldac_channels = 8;
static const int bitstream_length = 11;
unsigned int bitstream = ((address & 0x7) << 8) | value;
unsigned int bit, register_bits;
static const int caldac_8800_udelay = 1;
if (address >= num_caldac_channels) {
dev_err(dev->class_dev, "illegal caldac channel\n");
return -1;
}
for (bit = 1 << (bitstream_length - 1); bit; bit >>= 1) {
register_bits = 0;
if (bitstream & bit)
register_bits |= SERIAL_DATA_IN_BIT;
udelay(caldac_8800_udelay);
writew(register_bits, devpriv->main_iobase + CALIBRATION_REG);
register_bits |= SERIAL_CLOCK_BIT;
udelay(caldac_8800_udelay);
writew(register_bits, devpriv->main_iobase + CALIBRATION_REG);
}
udelay(caldac_8800_udelay);
writew(SELECT_8800_BIT, devpriv->main_iobase + CALIBRATION_REG);
udelay(caldac_8800_udelay);
writew(0, devpriv->main_iobase + CALIBRATION_REG);
udelay(caldac_8800_udelay);
return 0;
}
/* 4020 caldacs */
static int caldac_i2c_write(struct comedi_device *dev,
unsigned int caldac_channel, unsigned int value)
{
u8 serial_bytes[3];
u8 i2c_addr;
enum pointer_bits {
/* manual has gain and offset bits switched */
OFFSET_0_2 = 0x1,
GAIN_0_2 = 0x2,
OFFSET_1_3 = 0x4,
GAIN_1_3 = 0x8,
};
enum data_bits {
NOT_CLEAR_REGISTERS = 0x20,
};
switch (caldac_channel) {
case 0: /* chan 0 offset */
i2c_addr = CALDAC0_I2C_ADDR;
serial_bytes[0] = OFFSET_0_2;
break;
case 1: /* chan 1 offset */
i2c_addr = CALDAC0_I2C_ADDR;
serial_bytes[0] = OFFSET_1_3;
break;
case 2: /* chan 2 offset */
i2c_addr = CALDAC1_I2C_ADDR;
serial_bytes[0] = OFFSET_0_2;
break;
case 3: /* chan 3 offset */
i2c_addr = CALDAC1_I2C_ADDR;
serial_bytes[0] = OFFSET_1_3;
break;
case 4: /* chan 0 gain */
i2c_addr = CALDAC0_I2C_ADDR;
serial_bytes[0] = GAIN_0_2;
break;
case 5: /* chan 1 gain */
i2c_addr = CALDAC0_I2C_ADDR;
serial_bytes[0] = GAIN_1_3;
break;
case 6: /* chan 2 gain */
i2c_addr = CALDAC1_I2C_ADDR;
serial_bytes[0] = GAIN_0_2;
break;
case 7: /* chan 3 gain */
i2c_addr = CALDAC1_I2C_ADDR;
serial_bytes[0] = GAIN_1_3;
break;
default:
dev_err(dev->class_dev, "invalid caldac channel\n");
return -1;
}
serial_bytes[1] = NOT_CLEAR_REGISTERS | ((value >> 8) & 0xf);
serial_bytes[2] = value & 0xff;
i2c_write(dev, i2c_addr, serial_bytes, 3);
return 0;
}
static void caldac_write(struct comedi_device *dev, unsigned int channel,
unsigned int value)
{
const struct pcidas64_board *board = dev->board_ptr;
switch (board->layout) {
case LAYOUT_60XX:
case LAYOUT_64XX:
caldac_8800_write(dev, channel, value);
break;
case LAYOUT_4020:
caldac_i2c_write(dev, channel, value);
break;
default:
break;
}
}
static int cb_pcidas64_calib_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
/*
* Programming the calib device is slow. Only write the
* last data value if the value has changed.
*/
if (insn->n) {
unsigned int val = data[insn->n - 1];
if (s->readback[chan] != val) {
caldac_write(dev, chan, val);
s->readback[chan] = val;
}
}
return insn->n;
}
static void ad8402_write(struct comedi_device *dev, unsigned int channel,
unsigned int value)
{
struct pcidas64_private *devpriv = dev->private;
static const int bitstream_length = 10;
unsigned int bit, register_bits;
unsigned int bitstream = ((channel & 0x3) << 8) | (value & 0xff);
static const int ad8402_udelay = 1;
register_bits = SELECT_8402_64XX_BIT;
udelay(ad8402_udelay);
writew(register_bits, devpriv->main_iobase + CALIBRATION_REG);
for (bit = 1 << (bitstream_length - 1); bit; bit >>= 1) {
if (bitstream & bit)
register_bits |= SERIAL_DATA_IN_BIT;
else
register_bits &= ~SERIAL_DATA_IN_BIT;
udelay(ad8402_udelay);
writew(register_bits, devpriv->main_iobase + CALIBRATION_REG);
udelay(ad8402_udelay);
writew(register_bits | SERIAL_CLOCK_BIT,
devpriv->main_iobase + CALIBRATION_REG);
}
udelay(ad8402_udelay);
writew(0, devpriv->main_iobase + CALIBRATION_REG);
}
/* for pci-das6402/16, channel 0 is analog input gain and channel 1 is offset */
static int cb_pcidas64_ad8402_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
unsigned int chan = CR_CHAN(insn->chanspec);
/*
* Programming the calib device is slow. Only write the
* last data value if the value has changed.
*/
if (insn->n) {
unsigned int val = data[insn->n - 1];
if (s->readback[chan] != val) {
ad8402_write(dev, chan, val);
s->readback[chan] = val;
}
}
return insn->n;
}
static u16 read_eeprom(struct comedi_device *dev, u8 address)
{
struct pcidas64_private *devpriv = dev->private;
static const int bitstream_length = 11;
static const int read_command = 0x6;
unsigned int bitstream = (read_command << 8) | address;
unsigned int bit;
void __iomem * const plx_control_addr =
devpriv->plx9080_iobase + PLX_REG_CNTRL;
u16 value;
static const int value_length = 16;
static const int eeprom_udelay = 1;
udelay(eeprom_udelay);
devpriv->plx_control_bits &= ~PLX_CNTRL_EESK & ~PLX_CNTRL_EECS;
/* make sure we don't send anything to the i2c bus on 4020 */
devpriv->plx_control_bits |= PLX_CNTRL_USERO;
writel(devpriv->plx_control_bits, plx_control_addr);
/* activate serial eeprom */
udelay(eeprom_udelay);
devpriv->plx_control_bits |= PLX_CNTRL_EECS;
writel(devpriv->plx_control_bits, plx_control_addr);
/* write read command and desired memory address */
for (bit = 1 << (bitstream_length - 1); bit; bit >>= 1) {
/* set bit to be written */
udelay(eeprom_udelay);
if (bitstream & bit)
devpriv->plx_control_bits |= PLX_CNTRL_EEWB;
else
devpriv->plx_control_bits &= ~PLX_CNTRL_EEWB;
writel(devpriv->plx_control_bits, plx_control_addr);
/* clock in bit */
udelay(eeprom_udelay);
devpriv->plx_control_bits |= PLX_CNTRL_EESK;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(eeprom_udelay);
devpriv->plx_control_bits &= ~PLX_CNTRL_EESK;
writel(devpriv->plx_control_bits, plx_control_addr);
}
/* read back value from eeprom memory location */
value = 0;
for (bit = 1 << (value_length - 1); bit; bit >>= 1) {
/* clock out bit */
udelay(eeprom_udelay);
devpriv->plx_control_bits |= PLX_CNTRL_EESK;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(eeprom_udelay);
devpriv->plx_control_bits &= ~PLX_CNTRL_EESK;
writel(devpriv->plx_control_bits, plx_control_addr);
udelay(eeprom_udelay);
if (readl(plx_control_addr) & PLX_CNTRL_EERB)
value |= bit;
}
/* deactivate eeprom serial input */
udelay(eeprom_udelay);
devpriv->plx_control_bits &= ~PLX_CNTRL_EECS;
writel(devpriv->plx_control_bits, plx_control_addr);
return value;
}
static int eeprom_read_insn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned int val;
unsigned int i;
if (insn->n) {
/* No point reading the same EEPROM location more than once. */
val = read_eeprom(dev, CR_CHAN(insn->chanspec));
for (i = 0; i < insn->n; i++)
data[i] = val;
}
return insn->n;
}
/* Allocate and initialize the subdevice structures. */
static int setup_subdevices(struct comedi_device *dev)
{
const struct pcidas64_board *board = dev->board_ptr;
struct pcidas64_private *devpriv = dev->private;
struct comedi_subdevice *s;
int i;
int ret;
ret = comedi_alloc_subdevices(dev, 10);
if (ret)
return ret;
s = &dev->subdevices[0];
/* analog input subdevice */
dev->read_subdev = s;
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DITHER | SDF_CMD_READ;
if (board->layout == LAYOUT_60XX)
s->subdev_flags |= SDF_COMMON | SDF_DIFF;
else if (board->layout == LAYOUT_64XX)
s->subdev_flags |= SDF_DIFF;
/* XXX Number of inputs in differential mode is ignored */
s->n_chan = board->ai_se_chans;
s->len_chanlist = 0x2000;
s->maxdata = (1 << board->ai_bits) - 1;
s->range_table = board->ai_range_table;
s->insn_read = ai_rinsn;
s->insn_config = ai_config_insn;
s->do_cmd = ai_cmd;
s->do_cmdtest = ai_cmdtest;
s->cancel = ai_cancel;
if (board->layout == LAYOUT_4020) {
u8 data;
/*
* set adc to read from inputs
* (not internal calibration sources)
*/
devpriv->i2c_cal_range_bits = adc_src_4020_bits(4);
/* set channels to +-5 volt input ranges */
for (i = 0; i < s->n_chan; i++)
devpriv->i2c_cal_range_bits |= attenuate_bit(i);
data = devpriv->i2c_cal_range_bits;
i2c_write(dev, RANGE_CAL_I2C_ADDR, &data, sizeof(data));
}
/* analog output subdevice */
s = &dev->subdevices[1];
if (board->ao_nchan) {
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE |
SDF_GROUND | SDF_CMD_WRITE;
s->n_chan = board->ao_nchan;
s->maxdata = (1 << board->ao_bits) - 1;
s->range_table = board->ao_range_table;
s->insn_write = ao_winsn;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
if (ao_cmd_is_supported(board)) {
dev->write_subdev = s;
s->do_cmdtest = ao_cmdtest;
s->do_cmd = ao_cmd;
s->len_chanlist = board->ao_nchan;
s->cancel = ao_cancel;
}
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* digital input */
s = &dev->subdevices[2];
if (board->layout == LAYOUT_64XX) {
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 4;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = di_rbits;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* digital output */
if (board->layout == LAYOUT_64XX) {
s = &dev->subdevices[3];
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 4;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = do_wbits;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* 8255 */
s = &dev->subdevices[4];
if (board->has_8255) {
if (board->layout == LAYOUT_4020) {
ret = subdev_8255_init(dev, s, dio_callback_4020,
I8255_4020_REG);
} else {
ret = subdev_8255_mm_init(dev, s, NULL,
DIO_8255_OFFSET);
}
if (ret)
return ret;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* 8 channel dio for 60xx */
s = &dev->subdevices[5];
if (board->layout == LAYOUT_60XX) {
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_config = dio_60xx_config_insn;
s->insn_bits = dio_60xx_wbits;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* caldac */
s = &dev->subdevices[6];
s->type = COMEDI_SUBD_CALIB;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_INTERNAL;
s->n_chan = 8;
if (board->layout == LAYOUT_4020)
s->maxdata = 0xfff;
else
s->maxdata = 0xff;
s->insn_write = cb_pcidas64_calib_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
for (i = 0; i < s->n_chan; i++) {
caldac_write(dev, i, s->maxdata / 2);
s->readback[i] = s->maxdata / 2;
}
/* 2 channel ad8402 potentiometer */
s = &dev->subdevices[7];
if (board->layout == LAYOUT_64XX) {
s->type = COMEDI_SUBD_CALIB;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE | SDF_INTERNAL;
s->n_chan = 2;
s->maxdata = 0xff;
s->insn_write = cb_pcidas64_ad8402_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
for (i = 0; i < s->n_chan; i++) {
ad8402_write(dev, i, s->maxdata / 2);
s->readback[i] = s->maxdata / 2;
}
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* serial EEPROM, if present */
s = &dev->subdevices[8];
if (readl(devpriv->plx9080_iobase + PLX_REG_CNTRL) &
PLX_CNTRL_EEPRESENT) {
s->type = COMEDI_SUBD_MEMORY;
s->subdev_flags = SDF_READABLE | SDF_INTERNAL;
s->n_chan = 128;
s->maxdata = 0xffff;
s->insn_read = eeprom_read_insn;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* user counter subd XXX