Permalink
Cannot retrieve contributors at this time
Fetching contributors…
| /* | |
| * kernel/sched.c | |
| * | |
| * Kernel scheduler and related syscalls | |
| * | |
| * Copyright (C) 1991-2002 Linus Torvalds | |
| * | |
| * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
| * make semaphores SMP safe | |
| * 1998-11-19 Implemented schedule_timeout() and related stuff | |
| * by Andrea Arcangeli | |
| * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
| * hybrid priority-list and round-robin design with | |
| * an array-switch method of distributing timeslices | |
| * and per-CPU runqueues. Cleanups and useful suggestions | |
| * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
| * 2003-09-03 Interactivity tuning by Con Kolivas. | |
| * 2004-04-02 Scheduler domains code by Nick Piggin | |
| * 2007-04-15 Work begun on replacing all interactivity tuning with a | |
| * fair scheduling design by Con Kolivas. | |
| * 2007-05-05 Load balancing (smp-nice) and other improvements | |
| * by Peter Williams | |
| * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | |
| * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | |
| * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, | |
| * Thomas Gleixner, Mike Kravetz | |
| */ | |
| #include <linux/mm.h> | |
| #include <linux/module.h> | |
| #include <linux/nmi.h> | |
| #include <linux/init.h> | |
| #include <linux/uaccess.h> | |
| #include <linux/highmem.h> | |
| #include <linux/smp_lock.h> | |
| #include <asm/mmu_context.h> | |
| #include <linux/interrupt.h> | |
| #include <linux/capability.h> | |
| #include <linux/completion.h> | |
| #include <linux/kernel_stat.h> | |
| #include <linux/debug_locks.h> | |
| #include <linux/perf_event.h> | |
| #include <linux/security.h> | |
| #include <linux/notifier.h> | |
| #include <linux/profile.h> | |
| #include <linux/freezer.h> | |
| #include <linux/vmalloc.h> | |
| #include <linux/blkdev.h> | |
| #include <linux/delay.h> | |
| #include <linux/pid_namespace.h> | |
| #include <linux/smp.h> | |
| #include <linux/threads.h> | |
| #include <linux/timer.h> | |
| #include <linux/rcupdate.h> | |
| #include <linux/cpu.h> | |
| #include <linux/cpuset.h> | |
| #include <linux/percpu.h> | |
| #include <linux/kthread.h> | |
| #include <linux/proc_fs.h> | |
| #include <linux/seq_file.h> | |
| #include <linux/sysctl.h> | |
| #include <linux/syscalls.h> | |
| #include <linux/times.h> | |
| #include <linux/tsacct_kern.h> | |
| #include <linux/kprobes.h> | |
| #include <linux/delayacct.h> | |
| #include <linux/unistd.h> | |
| #include <linux/pagemap.h> | |
| #include <linux/hrtimer.h> | |
| #include <linux/tick.h> | |
| #include <linux/debugfs.h> | |
| #include <linux/ctype.h> | |
| #include <linux/ftrace.h> | |
| #include <linux/slab.h> | |
| #include <asm/tlb.h> | |
| #include <asm/irq_regs.h> | |
| #include "sched_cpupri.h" | |
| #define CREATE_TRACE_POINTS | |
| #include <trace/events/sched.h> | |
| /* | |
| * Convert user-nice values [ -20 ... 0 ... 19 ] | |
| * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
| * and back. | |
| */ | |
| #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
| #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
| #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
| /* | |
| * 'User priority' is the nice value converted to something we | |
| * can work with better when scaling various scheduler parameters, | |
| * it's a [ 0 ... 39 ] range. | |
| */ | |
| #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
| #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
| #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
| /* | |
| * Helpers for converting nanosecond timing to jiffy resolution | |
| */ | |
| #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | |
| #define NICE_0_LOAD SCHED_LOAD_SCALE | |
| #define NICE_0_SHIFT SCHED_LOAD_SHIFT | |
| /* | |
| * These are the 'tuning knobs' of the scheduler: | |
| * | |
| * default timeslice is 100 msecs (used only for SCHED_RR tasks). | |
| * Timeslices get refilled after they expire. | |
| */ | |
| #define DEF_TIMESLICE (100 * HZ / 1000) | |
| /* | |
| * single value that denotes runtime == period, ie unlimited time. | |
| */ | |
| #define RUNTIME_INF ((u64)~0ULL) | |
| static inline int rt_policy(int policy) | |
| { | |
| if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | |
| return 1; | |
| return 0; | |
| } | |
| static inline int task_has_rt_policy(struct task_struct *p) | |
| { | |
| return rt_policy(p->policy); | |
| } | |
| /* | |
| * This is the priority-queue data structure of the RT scheduling class: | |
| */ | |
| struct rt_prio_array { | |
| DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | |
| struct list_head queue[MAX_RT_PRIO]; | |
| }; | |
| struct rt_bandwidth { | |
| /* nests inside the rq lock: */ | |
| raw_spinlock_t rt_runtime_lock; | |
| ktime_t rt_period; | |
| u64 rt_runtime; | |
| struct hrtimer rt_period_timer; | |
| }; | |
| static struct rt_bandwidth def_rt_bandwidth; | |
| static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
| static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
| { | |
| struct rt_bandwidth *rt_b = | |
| container_of(timer, struct rt_bandwidth, rt_period_timer); | |
| ktime_t now; | |
| int overrun; | |
| int idle = 0; | |
| for (;;) { | |
| now = hrtimer_cb_get_time(timer); | |
| overrun = hrtimer_forward(timer, now, rt_b->rt_period); | |
| if (!overrun) | |
| break; | |
| idle = do_sched_rt_period_timer(rt_b, overrun); | |
| } | |
| return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
| } | |
| static | |
| void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
| { | |
| rt_b->rt_period = ns_to_ktime(period); | |
| rt_b->rt_runtime = runtime; | |
| raw_spin_lock_init(&rt_b->rt_runtime_lock); | |
| hrtimer_init(&rt_b->rt_period_timer, | |
| CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
| rt_b->rt_period_timer.function = sched_rt_period_timer; | |
| } | |
| static inline int rt_bandwidth_enabled(void) | |
| { | |
| return sysctl_sched_rt_runtime >= 0; | |
| } | |
| static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
| { | |
| ktime_t now; | |
| if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | |
| return; | |
| if (hrtimer_active(&rt_b->rt_period_timer)) | |
| return; | |
| raw_spin_lock(&rt_b->rt_runtime_lock); | |
| for (;;) { | |
| unsigned long delta; | |
| ktime_t soft, hard; | |
| if (hrtimer_active(&rt_b->rt_period_timer)) | |
| break; | |
| now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | |
| hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | |
| soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); | |
| hard = hrtimer_get_expires(&rt_b->rt_period_timer); | |
| delta = ktime_to_ns(ktime_sub(hard, soft)); | |
| __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, | |
| HRTIMER_MODE_ABS_PINNED, 0); | |
| } | |
| raw_spin_unlock(&rt_b->rt_runtime_lock); | |
| } | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | |
| { | |
| hrtimer_cancel(&rt_b->rt_period_timer); | |
| } | |
| #endif | |
| /* | |
| * sched_domains_mutex serializes calls to arch_init_sched_domains, | |
| * detach_destroy_domains and partition_sched_domains. | |
| */ | |
| static DEFINE_MUTEX(sched_domains_mutex); | |
| #ifdef CONFIG_CGROUP_SCHED | |
| #include <linux/cgroup.h> | |
| struct cfs_rq; | |
| static LIST_HEAD(task_groups); | |
| /* task group related information */ | |
| struct task_group { | |
| struct cgroup_subsys_state css; | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| /* schedulable entities of this group on each cpu */ | |
| struct sched_entity **se; | |
| /* runqueue "owned" by this group on each cpu */ | |
| struct cfs_rq **cfs_rq; | |
| unsigned long shares; | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| struct sched_rt_entity **rt_se; | |
| struct rt_rq **rt_rq; | |
| struct rt_bandwidth rt_bandwidth; | |
| #endif | |
| struct rcu_head rcu; | |
| struct list_head list; | |
| struct task_group *parent; | |
| struct list_head siblings; | |
| struct list_head children; | |
| }; | |
| #define root_task_group init_task_group | |
| /* task_group_lock serializes add/remove of task groups and also changes to | |
| * a task group's cpu shares. | |
| */ | |
| static DEFINE_SPINLOCK(task_group_lock); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| #ifdef CONFIG_SMP | |
| static int root_task_group_empty(void) | |
| { | |
| return list_empty(&root_task_group.children); | |
| } | |
| #endif | |
| # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | |
| /* | |
| * A weight of 0 or 1 can cause arithmetics problems. | |
| * A weight of a cfs_rq is the sum of weights of which entities | |
| * are queued on this cfs_rq, so a weight of a entity should not be | |
| * too large, so as the shares value of a task group. | |
| * (The default weight is 1024 - so there's no practical | |
| * limitation from this.) | |
| */ | |
| #define MIN_SHARES 2 | |
| #define MAX_SHARES (1UL << 18) | |
| static int init_task_group_load = INIT_TASK_GROUP_LOAD; | |
| #endif | |
| /* Default task group. | |
| * Every task in system belong to this group at bootup. | |
| */ | |
| struct task_group init_task_group; | |
| /* return group to which a task belongs */ | |
| static inline struct task_group *task_group(struct task_struct *p) | |
| { | |
| struct task_group *tg; | |
| #ifdef CONFIG_CGROUP_SCHED | |
| tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | |
| struct task_group, css); | |
| #else | |
| tg = &init_task_group; | |
| #endif | |
| return tg; | |
| } | |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |
| { | |
| /* | |
| * Strictly speaking this rcu_read_lock() is not needed since the | |
| * task_group is tied to the cgroup, which in turn can never go away | |
| * as long as there are tasks attached to it. | |
| * | |
| * However since task_group() uses task_subsys_state() which is an | |
| * rcu_dereference() user, this quiets CONFIG_PROVE_RCU. | |
| */ | |
| rcu_read_lock(); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | |
| p->se.parent = task_group(p)->se[cpu]; | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | |
| p->rt.parent = task_group(p)->rt_se[cpu]; | |
| #endif | |
| rcu_read_unlock(); | |
| } | |
| #else | |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | |
| static inline struct task_group *task_group(struct task_struct *p) | |
| { | |
| return NULL; | |
| } | |
| #endif /* CONFIG_CGROUP_SCHED */ | |
| /* CFS-related fields in a runqueue */ | |
| struct cfs_rq { | |
| struct load_weight load; | |
| unsigned long nr_running; | |
| u64 exec_clock; | |
| u64 min_vruntime; | |
| struct rb_root tasks_timeline; | |
| struct rb_node *rb_leftmost; | |
| struct list_head tasks; | |
| struct list_head *balance_iterator; | |
| /* | |
| * 'curr' points to currently running entity on this cfs_rq. | |
| * It is set to NULL otherwise (i.e when none are currently running). | |
| */ | |
| struct sched_entity *curr, *next, *last; | |
| unsigned int nr_spread_over; | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | |
| /* | |
| * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | |
| * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | |
| * (like users, containers etc.) | |
| * | |
| * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | |
| * list is used during load balance. | |
| */ | |
| struct list_head leaf_cfs_rq_list; | |
| struct task_group *tg; /* group that "owns" this runqueue */ | |
| #ifdef CONFIG_SMP | |
| /* | |
| * the part of load.weight contributed by tasks | |
| */ | |
| unsigned long task_weight; | |
| /* | |
| * h_load = weight * f(tg) | |
| * | |
| * Where f(tg) is the recursive weight fraction assigned to | |
| * this group. | |
| */ | |
| unsigned long h_load; | |
| /* | |
| * this cpu's part of tg->shares | |
| */ | |
| unsigned long shares; | |
| /* | |
| * load.weight at the time we set shares | |
| */ | |
| unsigned long rq_weight; | |
| #endif | |
| #endif | |
| }; | |
| /* Real-Time classes' related field in a runqueue: */ | |
| struct rt_rq { | |
| struct rt_prio_array active; | |
| unsigned long rt_nr_running; | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | |
| struct { | |
| int curr; /* highest queued rt task prio */ | |
| #ifdef CONFIG_SMP | |
| int next; /* next highest */ | |
| #endif | |
| } highest_prio; | |
| #endif | |
| #ifdef CONFIG_SMP | |
| unsigned long rt_nr_migratory; | |
| unsigned long rt_nr_total; | |
| int overloaded; | |
| struct plist_head pushable_tasks; | |
| #endif | |
| int rt_throttled; | |
| u64 rt_time; | |
| u64 rt_runtime; | |
| /* Nests inside the rq lock: */ | |
| raw_spinlock_t rt_runtime_lock; | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| unsigned long rt_nr_boosted; | |
| struct rq *rq; | |
| struct list_head leaf_rt_rq_list; | |
| struct task_group *tg; | |
| #endif | |
| }; | |
| #ifdef CONFIG_SMP | |
| /* | |
| * We add the notion of a root-domain which will be used to define per-domain | |
| * variables. Each exclusive cpuset essentially defines an island domain by | |
| * fully partitioning the member cpus from any other cpuset. Whenever a new | |
| * exclusive cpuset is created, we also create and attach a new root-domain | |
| * object. | |
| * | |
| */ | |
| struct root_domain { | |
| atomic_t refcount; | |
| cpumask_var_t span; | |
| cpumask_var_t online; | |
| /* | |
| * The "RT overload" flag: it gets set if a CPU has more than | |
| * one runnable RT task. | |
| */ | |
| cpumask_var_t rto_mask; | |
| atomic_t rto_count; | |
| #ifdef CONFIG_SMP | |
| struct cpupri cpupri; | |
| #endif | |
| }; | |
| /* | |
| * By default the system creates a single root-domain with all cpus as | |
| * members (mimicking the global state we have today). | |
| */ | |
| static struct root_domain def_root_domain; | |
| #endif | |
| /* | |
| * This is the main, per-CPU runqueue data structure. | |
| * | |
| * Locking rule: those places that want to lock multiple runqueues | |
| * (such as the load balancing or the thread migration code), lock | |
| * acquire operations must be ordered by ascending &runqueue. | |
| */ | |
| struct rq { | |
| /* runqueue lock: */ | |
| raw_spinlock_t lock; | |
| /* | |
| * nr_running and cpu_load should be in the same cacheline because | |
| * remote CPUs use both these fields when doing load calculation. | |
| */ | |
| unsigned long nr_running; | |
| #define CPU_LOAD_IDX_MAX 5 | |
| unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | |
| #ifdef CONFIG_NO_HZ | |
| unsigned char in_nohz_recently; | |
| #endif | |
| /* capture load from *all* tasks on this cpu: */ | |
| struct load_weight load; | |
| unsigned long nr_load_updates; | |
| u64 nr_switches; | |
| struct cfs_rq cfs; | |
| struct rt_rq rt; | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| /* list of leaf cfs_rq on this cpu: */ | |
| struct list_head leaf_cfs_rq_list; | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| struct list_head leaf_rt_rq_list; | |
| #endif | |
| /* | |
| * This is part of a global counter where only the total sum | |
| * over all CPUs matters. A task can increase this counter on | |
| * one CPU and if it got migrated afterwards it may decrease | |
| * it on another CPU. Always updated under the runqueue lock: | |
| */ | |
| unsigned long nr_uninterruptible; | |
| struct task_struct *curr, *idle; | |
| unsigned long next_balance; | |
| struct mm_struct *prev_mm; | |
| u64 clock; | |
| atomic_t nr_iowait; | |
| #ifdef CONFIG_SMP | |
| struct root_domain *rd; | |
| struct sched_domain *sd; | |
| unsigned char idle_at_tick; | |
| /* For active balancing */ | |
| int post_schedule; | |
| int active_balance; | |
| int push_cpu; | |
| /* cpu of this runqueue: */ | |
| int cpu; | |
| int online; | |
| unsigned long avg_load_per_task; | |
| struct task_struct *migration_thread; | |
| struct list_head migration_queue; | |
| u64 rt_avg; | |
| u64 age_stamp; | |
| u64 idle_stamp; | |
| u64 avg_idle; | |
| #endif | |
| /* calc_load related fields */ | |
| unsigned long calc_load_update; | |
| long calc_load_active; | |
| #ifdef CONFIG_SCHED_HRTICK | |
| #ifdef CONFIG_SMP | |
| int hrtick_csd_pending; | |
| struct call_single_data hrtick_csd; | |
| #endif | |
| struct hrtimer hrtick_timer; | |
| #endif | |
| #ifdef CONFIG_SCHEDSTATS | |
| /* latency stats */ | |
| struct sched_info rq_sched_info; | |
| unsigned long long rq_cpu_time; | |
| /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | |
| /* sys_sched_yield() stats */ | |
| unsigned int yld_count; | |
| /* schedule() stats */ | |
| unsigned int sched_switch; | |
| unsigned int sched_count; | |
| unsigned int sched_goidle; | |
| /* try_to_wake_up() stats */ | |
| unsigned int ttwu_count; | |
| unsigned int ttwu_local; | |
| /* BKL stats */ | |
| unsigned int bkl_count; | |
| #endif | |
| }; | |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | |
| static inline | |
| void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | |
| { | |
| rq->curr->sched_class->check_preempt_curr(rq, p, flags); | |
| } | |
| static inline int cpu_of(struct rq *rq) | |
| { | |
| #ifdef CONFIG_SMP | |
| return rq->cpu; | |
| #else | |
| return 0; | |
| #endif | |
| } | |
| #define rcu_dereference_check_sched_domain(p) \ | |
| rcu_dereference_check((p), \ | |
| rcu_read_lock_sched_held() || \ | |
| lockdep_is_held(&sched_domains_mutex)) | |
| /* | |
| * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
| * See detach_destroy_domains: synchronize_sched for details. | |
| * | |
| * The domain tree of any CPU may only be accessed from within | |
| * preempt-disabled sections. | |
| */ | |
| #define for_each_domain(cpu, __sd) \ | |
| for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
| #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
| #define this_rq() (&__get_cpu_var(runqueues)) | |
| #define task_rq(p) cpu_rq(task_cpu(p)) | |
| #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
| #define raw_rq() (&__raw_get_cpu_var(runqueues)) | |
| inline void update_rq_clock(struct rq *rq) | |
| { | |
| rq->clock = sched_clock_cpu(cpu_of(rq)); | |
| } | |
| /* | |
| * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | |
| */ | |
| #ifdef CONFIG_SCHED_DEBUG | |
| # define const_debug __read_mostly | |
| #else | |
| # define const_debug static const | |
| #endif | |
| /** | |
| * runqueue_is_locked | |
| * @cpu: the processor in question. | |
| * | |
| * Returns true if the current cpu runqueue is locked. | |
| * This interface allows printk to be called with the runqueue lock | |
| * held and know whether or not it is OK to wake up the klogd. | |
| */ | |
| int runqueue_is_locked(int cpu) | |
| { | |
| return raw_spin_is_locked(&cpu_rq(cpu)->lock); | |
| } | |
| /* | |
| * Debugging: various feature bits | |
| */ | |
| #define SCHED_FEAT(name, enabled) \ | |
| __SCHED_FEAT_##name , | |
| enum { | |
| #include "sched_features.h" | |
| }; | |
| #undef SCHED_FEAT | |
| #define SCHED_FEAT(name, enabled) \ | |
| (1UL << __SCHED_FEAT_##name) * enabled | | |
| const_debug unsigned int sysctl_sched_features = | |
| #include "sched_features.h" | |
| 0; | |
| #undef SCHED_FEAT | |
| #ifdef CONFIG_SCHED_DEBUG | |
| #define SCHED_FEAT(name, enabled) \ | |
| #name , | |
| static __read_mostly char *sched_feat_names[] = { | |
| #include "sched_features.h" | |
| NULL | |
| }; | |
| #undef SCHED_FEAT | |
| static int sched_feat_show(struct seq_file *m, void *v) | |
| { | |
| int i; | |
| for (i = 0; sched_feat_names[i]; i++) { | |
| if (!(sysctl_sched_features & (1UL << i))) | |
| seq_puts(m, "NO_"); | |
| seq_printf(m, "%s ", sched_feat_names[i]); | |
| } | |
| seq_puts(m, "\n"); | |
| return 0; | |
| } | |
| static ssize_t | |
| sched_feat_write(struct file *filp, const char __user *ubuf, | |
| size_t cnt, loff_t *ppos) | |
| { | |
| char buf[64]; | |
| char *cmp = buf; | |
| int neg = 0; | |
| int i; | |
| if (cnt > 63) | |
| cnt = 63; | |
| if (copy_from_user(&buf, ubuf, cnt)) | |
| return -EFAULT; | |
| buf[cnt] = 0; | |
| if (strncmp(buf, "NO_", 3) == 0) { | |
| neg = 1; | |
| cmp += 3; | |
| } | |
| for (i = 0; sched_feat_names[i]; i++) { | |
| int len = strlen(sched_feat_names[i]); | |
| if (strncmp(cmp, sched_feat_names[i], len) == 0) { | |
| if (neg) | |
| sysctl_sched_features &= ~(1UL << i); | |
| else | |
| sysctl_sched_features |= (1UL << i); | |
| break; | |
| } | |
| } | |
| if (!sched_feat_names[i]) | |
| return -EINVAL; | |
| *ppos += cnt; | |
| return cnt; | |
| } | |
| static int sched_feat_open(struct inode *inode, struct file *filp) | |
| { | |
| return single_open(filp, sched_feat_show, NULL); | |
| } | |
| static const struct file_operations sched_feat_fops = { | |
| .open = sched_feat_open, | |
| .write = sched_feat_write, | |
| .read = seq_read, | |
| .llseek = seq_lseek, | |
| .release = single_release, | |
| }; | |
| static __init int sched_init_debug(void) | |
| { | |
| debugfs_create_file("sched_features", 0644, NULL, NULL, | |
| &sched_feat_fops); | |
| return 0; | |
| } | |
| late_initcall(sched_init_debug); | |
| #endif | |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | |
| /* | |
| * Number of tasks to iterate in a single balance run. | |
| * Limited because this is done with IRQs disabled. | |
| */ | |
| const_debug unsigned int sysctl_sched_nr_migrate = 32; | |
| /* | |
| * ratelimit for updating the group shares. | |
| * default: 0.25ms | |
| */ | |
| unsigned int sysctl_sched_shares_ratelimit = 250000; | |
| unsigned int normalized_sysctl_sched_shares_ratelimit = 250000; | |
| /* | |
| * Inject some fuzzyness into changing the per-cpu group shares | |
| * this avoids remote rq-locks at the expense of fairness. | |
| * default: 4 | |
| */ | |
| unsigned int sysctl_sched_shares_thresh = 4; | |
| /* | |
| * period over which we average the RT time consumption, measured | |
| * in ms. | |
| * | |
| * default: 1s | |
| */ | |
| const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; | |
| /* | |
| * period over which we measure -rt task cpu usage in us. | |
| * default: 1s | |
| */ | |
| unsigned int sysctl_sched_rt_period = 1000000; | |
| static __read_mostly int scheduler_running; | |
| /* | |
| * part of the period that we allow rt tasks to run in us. | |
| * default: 0.95s | |
| */ | |
| int sysctl_sched_rt_runtime = 950000; | |
| static inline u64 global_rt_period(void) | |
| { | |
| return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | |
| } | |
| static inline u64 global_rt_runtime(void) | |
| { | |
| if (sysctl_sched_rt_runtime < 0) | |
| return RUNTIME_INF; | |
| return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | |
| } | |
| #ifndef prepare_arch_switch | |
| # define prepare_arch_switch(next) do { } while (0) | |
| #endif | |
| #ifndef finish_arch_switch | |
| # define finish_arch_switch(prev) do { } while (0) | |
| #endif | |
| static inline int task_current(struct rq *rq, struct task_struct *p) | |
| { | |
| return rq->curr == p; | |
| } | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
| static inline int task_running(struct rq *rq, struct task_struct *p) | |
| { | |
| return task_current(rq, p); | |
| } | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |
| { | |
| } | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |
| { | |
| #ifdef CONFIG_DEBUG_SPINLOCK | |
| /* this is a valid case when another task releases the spinlock */ | |
| rq->lock.owner = current; | |
| #endif | |
| /* | |
| * If we are tracking spinlock dependencies then we have to | |
| * fix up the runqueue lock - which gets 'carried over' from | |
| * prev into current: | |
| */ | |
| spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
| raw_spin_unlock_irq(&rq->lock); | |
| } | |
| #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
| static inline int task_running(struct rq *rq, struct task_struct *p) | |
| { | |
| #ifdef CONFIG_SMP | |
| return p->oncpu; | |
| #else | |
| return task_current(rq, p); | |
| #endif | |
| } | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | |
| { | |
| #ifdef CONFIG_SMP | |
| /* | |
| * We can optimise this out completely for !SMP, because the | |
| * SMP rebalancing from interrupt is the only thing that cares | |
| * here. | |
| */ | |
| next->oncpu = 1; | |
| #endif | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
| raw_spin_unlock_irq(&rq->lock); | |
| #else | |
| raw_spin_unlock(&rq->lock); | |
| #endif | |
| } | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |
| { | |
| #ifdef CONFIG_SMP | |
| /* | |
| * After ->oncpu is cleared, the task can be moved to a different CPU. | |
| * We must ensure this doesn't happen until the switch is completely | |
| * finished. | |
| */ | |
| smp_wmb(); | |
| prev->oncpu = 0; | |
| #endif | |
| #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
| local_irq_enable(); | |
| #endif | |
| } | |
| #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
| /* | |
| * Check whether the task is waking, we use this to synchronize against | |
| * ttwu() so that task_cpu() reports a stable number. | |
| * | |
| * We need to make an exception for PF_STARTING tasks because the fork | |
| * path might require task_rq_lock() to work, eg. it can call | |
| * set_cpus_allowed_ptr() from the cpuset clone_ns code. | |
| */ | |
| static inline int task_is_waking(struct task_struct *p) | |
| { | |
| return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | |
| } | |
| /* | |
| * __task_rq_lock - lock the runqueue a given task resides on. | |
| * Must be called interrupts disabled. | |
| */ | |
| static inline struct rq *__task_rq_lock(struct task_struct *p) | |
| __acquires(rq->lock) | |
| { | |
| struct rq *rq; | |
| for (;;) { | |
| while (task_is_waking(p)) | |
| cpu_relax(); | |
| rq = task_rq(p); | |
| raw_spin_lock(&rq->lock); | |
| if (likely(rq == task_rq(p) && !task_is_waking(p))) | |
| return rq; | |
| raw_spin_unlock(&rq->lock); | |
| } | |
| } | |
| /* | |
| * task_rq_lock - lock the runqueue a given task resides on and disable | |
| * interrupts. Note the ordering: we can safely lookup the task_rq without | |
| * explicitly disabling preemption. | |
| */ | |
| static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |
| __acquires(rq->lock) | |
| { | |
| struct rq *rq; | |
| for (;;) { | |
| while (task_is_waking(p)) | |
| cpu_relax(); | |
| local_irq_save(*flags); | |
| rq = task_rq(p); | |
| raw_spin_lock(&rq->lock); | |
| if (likely(rq == task_rq(p) && !task_is_waking(p))) | |
| return rq; | |
| raw_spin_unlock_irqrestore(&rq->lock, *flags); | |
| } | |
| } | |
| void task_rq_unlock_wait(struct task_struct *p) | |
| { | |
| struct rq *rq = task_rq(p); | |
| smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | |
| raw_spin_unlock_wait(&rq->lock); | |
| } | |
| static void __task_rq_unlock(struct rq *rq) | |
| __releases(rq->lock) | |
| { | |
| raw_spin_unlock(&rq->lock); | |
| } | |
| static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | |
| __releases(rq->lock) | |
| { | |
| raw_spin_unlock_irqrestore(&rq->lock, *flags); | |
| } | |
| /* | |
| * this_rq_lock - lock this runqueue and disable interrupts. | |
| */ | |
| static struct rq *this_rq_lock(void) | |
| __acquires(rq->lock) | |
| { | |
| struct rq *rq; | |
| local_irq_disable(); | |
| rq = this_rq(); | |
| raw_spin_lock(&rq->lock); | |
| return rq; | |
| } | |
| #ifdef CONFIG_SCHED_HRTICK | |
| /* | |
| * Use HR-timers to deliver accurate preemption points. | |
| * | |
| * Its all a bit involved since we cannot program an hrt while holding the | |
| * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | |
| * reschedule event. | |
| * | |
| * When we get rescheduled we reprogram the hrtick_timer outside of the | |
| * rq->lock. | |
| */ | |
| /* | |
| * Use hrtick when: | |
| * - enabled by features | |
| * - hrtimer is actually high res | |
| */ | |
| static inline int hrtick_enabled(struct rq *rq) | |
| { | |
| if (!sched_feat(HRTICK)) | |
| return 0; | |
| if (!cpu_active(cpu_of(rq))) | |
| return 0; | |
| return hrtimer_is_hres_active(&rq->hrtick_timer); | |
| } | |
| static void hrtick_clear(struct rq *rq) | |
| { | |
| if (hrtimer_active(&rq->hrtick_timer)) | |
| hrtimer_cancel(&rq->hrtick_timer); | |
| } | |
| /* | |
| * High-resolution timer tick. | |
| * Runs from hardirq context with interrupts disabled. | |
| */ | |
| static enum hrtimer_restart hrtick(struct hrtimer *timer) | |
| { | |
| struct rq *rq = container_of(timer, struct rq, hrtick_timer); | |
| WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | |
| raw_spin_lock(&rq->lock); | |
| update_rq_clock(rq); | |
| rq->curr->sched_class->task_tick(rq, rq->curr, 1); | |
| raw_spin_unlock(&rq->lock); | |
| return HRTIMER_NORESTART; | |
| } | |
| #ifdef CONFIG_SMP | |
| /* | |
| * called from hardirq (IPI) context | |
| */ | |
| static void __hrtick_start(void *arg) | |
| { | |
| struct rq *rq = arg; | |
| raw_spin_lock(&rq->lock); | |
| hrtimer_restart(&rq->hrtick_timer); | |
| rq->hrtick_csd_pending = 0; | |
| raw_spin_unlock(&rq->lock); | |
| } | |
| /* | |
| * Called to set the hrtick timer state. | |
| * | |
| * called with rq->lock held and irqs disabled | |
| */ | |
| static void hrtick_start(struct rq *rq, u64 delay) | |
| { | |
| struct hrtimer *timer = &rq->hrtick_timer; | |
| ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | |
| hrtimer_set_expires(timer, time); | |
| if (rq == this_rq()) { | |
| hrtimer_restart(timer); | |
| } else if (!rq->hrtick_csd_pending) { | |
| __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); | |
| rq->hrtick_csd_pending = 1; | |
| } | |
| } | |
| static int | |
| hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
| { | |
| int cpu = (int)(long)hcpu; | |
| switch (action) { | |
| case CPU_UP_CANCELED: | |
| case CPU_UP_CANCELED_FROZEN: | |
| case CPU_DOWN_PREPARE: | |
| case CPU_DOWN_PREPARE_FROZEN: | |
| case CPU_DEAD: | |
| case CPU_DEAD_FROZEN: | |
| hrtick_clear(cpu_rq(cpu)); | |
| return NOTIFY_OK; | |
| } | |
| return NOTIFY_DONE; | |
| } | |
| static __init void init_hrtick(void) | |
| { | |
| hotcpu_notifier(hotplug_hrtick, 0); | |
| } | |
| #else | |
| /* | |
| * Called to set the hrtick timer state. | |
| * | |
| * called with rq->lock held and irqs disabled | |
| */ | |
| static void hrtick_start(struct rq *rq, u64 delay) | |
| { | |
| __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, | |
| HRTIMER_MODE_REL_PINNED, 0); | |
| } | |
| static inline void init_hrtick(void) | |
| { | |
| } | |
| #endif /* CONFIG_SMP */ | |
| static void init_rq_hrtick(struct rq *rq) | |
| { | |
| #ifdef CONFIG_SMP | |
| rq->hrtick_csd_pending = 0; | |
| rq->hrtick_csd.flags = 0; | |
| rq->hrtick_csd.func = __hrtick_start; | |
| rq->hrtick_csd.info = rq; | |
| #endif | |
| hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | |
| rq->hrtick_timer.function = hrtick; | |
| } | |
| #else /* CONFIG_SCHED_HRTICK */ | |
| static inline void hrtick_clear(struct rq *rq) | |
| { | |
| } | |
| static inline void init_rq_hrtick(struct rq *rq) | |
| { | |
| } | |
| static inline void init_hrtick(void) | |
| { | |
| } | |
| #endif /* CONFIG_SCHED_HRTICK */ | |
| /* | |
| * resched_task - mark a task 'to be rescheduled now'. | |
| * | |
| * On UP this means the setting of the need_resched flag, on SMP it | |
| * might also involve a cross-CPU call to trigger the scheduler on | |
| * the target CPU. | |
| */ | |
| #ifdef CONFIG_SMP | |
| #ifndef tsk_is_polling | |
| #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
| #endif | |
| static void resched_task(struct task_struct *p) | |
| { | |
| int cpu; | |
| assert_raw_spin_locked(&task_rq(p)->lock); | |
| if (test_tsk_need_resched(p)) | |
| return; | |
| set_tsk_need_resched(p); | |
| cpu = task_cpu(p); | |
| if (cpu == smp_processor_id()) | |
| return; | |
| /* NEED_RESCHED must be visible before we test polling */ | |
| smp_mb(); | |
| if (!tsk_is_polling(p)) | |
| smp_send_reschedule(cpu); | |
| } | |
| static void resched_cpu(int cpu) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long flags; | |
| if (!raw_spin_trylock_irqsave(&rq->lock, flags)) | |
| return; | |
| resched_task(cpu_curr(cpu)); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| } | |
| #ifdef CONFIG_NO_HZ | |
| /* | |
| * When add_timer_on() enqueues a timer into the timer wheel of an | |
| * idle CPU then this timer might expire before the next timer event | |
| * which is scheduled to wake up that CPU. In case of a completely | |
| * idle system the next event might even be infinite time into the | |
| * future. wake_up_idle_cpu() ensures that the CPU is woken up and | |
| * leaves the inner idle loop so the newly added timer is taken into | |
| * account when the CPU goes back to idle and evaluates the timer | |
| * wheel for the next timer event. | |
| */ | |
| void wake_up_idle_cpu(int cpu) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| if (cpu == smp_processor_id()) | |
| return; | |
| /* | |
| * This is safe, as this function is called with the timer | |
| * wheel base lock of (cpu) held. When the CPU is on the way | |
| * to idle and has not yet set rq->curr to idle then it will | |
| * be serialized on the timer wheel base lock and take the new | |
| * timer into account automatically. | |
| */ | |
| if (rq->curr != rq->idle) | |
| return; | |
| /* | |
| * We can set TIF_RESCHED on the idle task of the other CPU | |
| * lockless. The worst case is that the other CPU runs the | |
| * idle task through an additional NOOP schedule() | |
| */ | |
| set_tsk_need_resched(rq->idle); | |
| /* NEED_RESCHED must be visible before we test polling */ | |
| smp_mb(); | |
| if (!tsk_is_polling(rq->idle)) | |
| smp_send_reschedule(cpu); | |
| } | |
| #endif /* CONFIG_NO_HZ */ | |
| static u64 sched_avg_period(void) | |
| { | |
| return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | |
| } | |
| static void sched_avg_update(struct rq *rq) | |
| { | |
| s64 period = sched_avg_period(); | |
| while ((s64)(rq->clock - rq->age_stamp) > period) { | |
| rq->age_stamp += period; | |
| rq->rt_avg /= 2; | |
| } | |
| } | |
| static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
| { | |
| rq->rt_avg += rt_delta; | |
| sched_avg_update(rq); | |
| } | |
| #else /* !CONFIG_SMP */ | |
| static void resched_task(struct task_struct *p) | |
| { | |
| assert_raw_spin_locked(&task_rq(p)->lock); | |
| set_tsk_need_resched(p); | |
| } | |
| static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | |
| { | |
| } | |
| #endif /* CONFIG_SMP */ | |
| #if BITS_PER_LONG == 32 | |
| # define WMULT_CONST (~0UL) | |
| #else | |
| # define WMULT_CONST (1UL << 32) | |
| #endif | |
| #define WMULT_SHIFT 32 | |
| /* | |
| * Shift right and round: | |
| */ | |
| #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | |
| /* | |
| * delta *= weight / lw | |
| */ | |
| static unsigned long | |
| calc_delta_mine(unsigned long delta_exec, unsigned long weight, | |
| struct load_weight *lw) | |
| { | |
| u64 tmp; | |
| if (!lw->inv_weight) { | |
| if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | |
| lw->inv_weight = 1; | |
| else | |
| lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | |
| / (lw->weight+1); | |
| } | |
| tmp = (u64)delta_exec * weight; | |
| /* | |
| * Check whether we'd overflow the 64-bit multiplication: | |
| */ | |
| if (unlikely(tmp > WMULT_CONST)) | |
| tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | |
| WMULT_SHIFT/2); | |
| else | |
| tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | |
| return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | |
| } | |
| static inline void update_load_add(struct load_weight *lw, unsigned long inc) | |
| { | |
| lw->weight += inc; | |
| lw->inv_weight = 0; | |
| } | |
| static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
| { | |
| lw->weight -= dec; | |
| lw->inv_weight = 0; | |
| } | |
| /* | |
| * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
| * of tasks with abnormal "nice" values across CPUs the contribution that | |
| * each task makes to its run queue's load is weighted according to its | |
| * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | |
| * scaled version of the new time slice allocation that they receive on time | |
| * slice expiry etc. | |
| */ | |
| #define WEIGHT_IDLEPRIO 3 | |
| #define WMULT_IDLEPRIO 1431655765 | |
| /* | |
| * Nice levels are multiplicative, with a gentle 10% change for every | |
| * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | |
| * nice 1, it will get ~10% less CPU time than another CPU-bound task | |
| * that remained on nice 0. | |
| * | |
| * The "10% effect" is relative and cumulative: from _any_ nice level, | |
| * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | |
| * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | |
| * If a task goes up by ~10% and another task goes down by ~10% then | |
| * the relative distance between them is ~25%.) | |
| */ | |
| static const int prio_to_weight[40] = { | |
| /* -20 */ 88761, 71755, 56483, 46273, 36291, | |
| /* -15 */ 29154, 23254, 18705, 14949, 11916, | |
| /* -10 */ 9548, 7620, 6100, 4904, 3906, | |
| /* -5 */ 3121, 2501, 1991, 1586, 1277, | |
| /* 0 */ 1024, 820, 655, 526, 423, | |
| /* 5 */ 335, 272, 215, 172, 137, | |
| /* 10 */ 110, 87, 70, 56, 45, | |
| /* 15 */ 36, 29, 23, 18, 15, | |
| }; | |
| /* | |
| * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | |
| * | |
| * In cases where the weight does not change often, we can use the | |
| * precalculated inverse to speed up arithmetics by turning divisions | |
| * into multiplications: | |
| */ | |
| static const u32 prio_to_wmult[40] = { | |
| /* -20 */ 48388, 59856, 76040, 92818, 118348, | |
| /* -15 */ 147320, 184698, 229616, 287308, 360437, | |
| /* -10 */ 449829, 563644, 704093, 875809, 1099582, | |
| /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | |
| /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | |
| /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | |
| /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | |
| /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | |
| }; | |
| /* Time spent by the tasks of the cpu accounting group executing in ... */ | |
| enum cpuacct_stat_index { | |
| CPUACCT_STAT_USER, /* ... user mode */ | |
| CPUACCT_STAT_SYSTEM, /* ... kernel mode */ | |
| CPUACCT_STAT_NSTATS, | |
| }; | |
| #ifdef CONFIG_CGROUP_CPUACCT | |
| static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | |
| static void cpuacct_update_stats(struct task_struct *tsk, | |
| enum cpuacct_stat_index idx, cputime_t val); | |
| #else | |
| static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | |
| static inline void cpuacct_update_stats(struct task_struct *tsk, | |
| enum cpuacct_stat_index idx, cputime_t val) {} | |
| #endif | |
| static inline void inc_cpu_load(struct rq *rq, unsigned long load) | |
| { | |
| update_load_add(&rq->load, load); | |
| } | |
| static inline void dec_cpu_load(struct rq *rq, unsigned long load) | |
| { | |
| update_load_sub(&rq->load, load); | |
| } | |
| #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) | |
| typedef int (*tg_visitor)(struct task_group *, void *); | |
| /* | |
| * Iterate the full tree, calling @down when first entering a node and @up when | |
| * leaving it for the final time. | |
| */ | |
| static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | |
| { | |
| struct task_group *parent, *child; | |
| int ret; | |
| rcu_read_lock(); | |
| parent = &root_task_group; | |
| down: | |
| ret = (*down)(parent, data); | |
| if (ret) | |
| goto out_unlock; | |
| list_for_each_entry_rcu(child, &parent->children, siblings) { | |
| parent = child; | |
| goto down; | |
| up: | |
| continue; | |
| } | |
| ret = (*up)(parent, data); | |
| if (ret) | |
| goto out_unlock; | |
| child = parent; | |
| parent = parent->parent; | |
| if (parent) | |
| goto up; | |
| out_unlock: | |
| rcu_read_unlock(); | |
| return ret; | |
| } | |
| static int tg_nop(struct task_group *tg, void *data) | |
| { | |
| return 0; | |
| } | |
| #endif | |
| #ifdef CONFIG_SMP | |
| /* Used instead of source_load when we know the type == 0 */ | |
| static unsigned long weighted_cpuload(const int cpu) | |
| { | |
| return cpu_rq(cpu)->load.weight; | |
| } | |
| /* | |
| * Return a low guess at the load of a migration-source cpu weighted | |
| * according to the scheduling class and "nice" value. | |
| * | |
| * We want to under-estimate the load of migration sources, to | |
| * balance conservatively. | |
| */ | |
| static unsigned long source_load(int cpu, int type) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long total = weighted_cpuload(cpu); | |
| if (type == 0 || !sched_feat(LB_BIAS)) | |
| return total; | |
| return min(rq->cpu_load[type-1], total); | |
| } | |
| /* | |
| * Return a high guess at the load of a migration-target cpu weighted | |
| * according to the scheduling class and "nice" value. | |
| */ | |
| static unsigned long target_load(int cpu, int type) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long total = weighted_cpuload(cpu); | |
| if (type == 0 || !sched_feat(LB_BIAS)) | |
| return total; | |
| return max(rq->cpu_load[type-1], total); | |
| } | |
| static struct sched_group *group_of(int cpu) | |
| { | |
| struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd); | |
| if (!sd) | |
| return NULL; | |
| return sd->groups; | |
| } | |
| static unsigned long power_of(int cpu) | |
| { | |
| struct sched_group *group = group_of(cpu); | |
| if (!group) | |
| return SCHED_LOAD_SCALE; | |
| return group->cpu_power; | |
| } | |
| static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | |
| static unsigned long cpu_avg_load_per_task(int cpu) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | |
| if (nr_running) | |
| rq->avg_load_per_task = rq->load.weight / nr_running; | |
| else | |
| rq->avg_load_per_task = 0; | |
| return rq->avg_load_per_task; | |
| } | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static __read_mostly unsigned long __percpu *update_shares_data; | |
| static void __set_se_shares(struct sched_entity *se, unsigned long shares); | |
| /* | |
| * Calculate and set the cpu's group shares. | |
| */ | |
| static void update_group_shares_cpu(struct task_group *tg, int cpu, | |
| unsigned long sd_shares, | |
| unsigned long sd_rq_weight, | |
| unsigned long *usd_rq_weight) | |
| { | |
| unsigned long shares, rq_weight; | |
| int boost = 0; | |
| rq_weight = usd_rq_weight[cpu]; | |
| if (!rq_weight) { | |
| boost = 1; | |
| rq_weight = NICE_0_LOAD; | |
| } | |
| /* | |
| * \Sum_j shares_j * rq_weight_i | |
| * shares_i = ----------------------------- | |
| * \Sum_j rq_weight_j | |
| */ | |
| shares = (sd_shares * rq_weight) / sd_rq_weight; | |
| shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | |
| if (abs(shares - tg->se[cpu]->load.weight) > | |
| sysctl_sched_shares_thresh) { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long flags; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; | |
| tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | |
| __set_se_shares(tg->se[cpu], shares); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| } | |
| } | |
| /* | |
| * Re-compute the task group their per cpu shares over the given domain. | |
| * This needs to be done in a bottom-up fashion because the rq weight of a | |
| * parent group depends on the shares of its child groups. | |
| */ | |
| static int tg_shares_up(struct task_group *tg, void *data) | |
| { | |
| unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0; | |
| unsigned long *usd_rq_weight; | |
| struct sched_domain *sd = data; | |
| unsigned long flags; | |
| int i; | |
| if (!tg->se[0]) | |
| return 0; | |
| local_irq_save(flags); | |
| usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); | |
| for_each_cpu(i, sched_domain_span(sd)) { | |
| weight = tg->cfs_rq[i]->load.weight; | |
| usd_rq_weight[i] = weight; | |
| rq_weight += weight; | |
| /* | |
| * If there are currently no tasks on the cpu pretend there | |
| * is one of average load so that when a new task gets to | |
| * run here it will not get delayed by group starvation. | |
| */ | |
| if (!weight) | |
| weight = NICE_0_LOAD; | |
| sum_weight += weight; | |
| shares += tg->cfs_rq[i]->shares; | |
| } | |
| if (!rq_weight) | |
| rq_weight = sum_weight; | |
| if ((!shares && rq_weight) || shares > tg->shares) | |
| shares = tg->shares; | |
| if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | |
| shares = tg->shares; | |
| for_each_cpu(i, sched_domain_span(sd)) | |
| update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); | |
| local_irq_restore(flags); | |
| return 0; | |
| } | |
| /* | |
| * Compute the cpu's hierarchical load factor for each task group. | |
| * This needs to be done in a top-down fashion because the load of a child | |
| * group is a fraction of its parents load. | |
| */ | |
| static int tg_load_down(struct task_group *tg, void *data) | |
| { | |
| unsigned long load; | |
| long cpu = (long)data; | |
| if (!tg->parent) { | |
| load = cpu_rq(cpu)->load.weight; | |
| } else { | |
| load = tg->parent->cfs_rq[cpu]->h_load; | |
| load *= tg->cfs_rq[cpu]->shares; | |
| load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | |
| } | |
| tg->cfs_rq[cpu]->h_load = load; | |
| return 0; | |
| } | |
| static void update_shares(struct sched_domain *sd) | |
| { | |
| s64 elapsed; | |
| u64 now; | |
| if (root_task_group_empty()) | |
| return; | |
| now = cpu_clock(raw_smp_processor_id()); | |
| elapsed = now - sd->last_update; | |
| if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | |
| sd->last_update = now; | |
| walk_tg_tree(tg_nop, tg_shares_up, sd); | |
| } | |
| } | |
| static void update_h_load(long cpu) | |
| { | |
| if (root_task_group_empty()) | |
| return; | |
| walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | |
| } | |
| #else | |
| static inline void update_shares(struct sched_domain *sd) | |
| { | |
| } | |
| #endif | |
| #ifdef CONFIG_PREEMPT | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2); | |
| /* | |
| * fair double_lock_balance: Safely acquires both rq->locks in a fair | |
| * way at the expense of forcing extra atomic operations in all | |
| * invocations. This assures that the double_lock is acquired using the | |
| * same underlying policy as the spinlock_t on this architecture, which | |
| * reduces latency compared to the unfair variant below. However, it | |
| * also adds more overhead and therefore may reduce throughput. | |
| */ | |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
| __releases(this_rq->lock) | |
| __acquires(busiest->lock) | |
| __acquires(this_rq->lock) | |
| { | |
| raw_spin_unlock(&this_rq->lock); | |
| double_rq_lock(this_rq, busiest); | |
| return 1; | |
| } | |
| #else | |
| /* | |
| * Unfair double_lock_balance: Optimizes throughput at the expense of | |
| * latency by eliminating extra atomic operations when the locks are | |
| * already in proper order on entry. This favors lower cpu-ids and will | |
| * grant the double lock to lower cpus over higher ids under contention, | |
| * regardless of entry order into the function. | |
| */ | |
| static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
| __releases(this_rq->lock) | |
| __acquires(busiest->lock) | |
| __acquires(this_rq->lock) | |
| { | |
| int ret = 0; | |
| if (unlikely(!raw_spin_trylock(&busiest->lock))) { | |
| if (busiest < this_rq) { | |
| raw_spin_unlock(&this_rq->lock); | |
| raw_spin_lock(&busiest->lock); | |
| raw_spin_lock_nested(&this_rq->lock, | |
| SINGLE_DEPTH_NESTING); | |
| ret = 1; | |
| } else | |
| raw_spin_lock_nested(&busiest->lock, | |
| SINGLE_DEPTH_NESTING); | |
| } | |
| return ret; | |
| } | |
| #endif /* CONFIG_PREEMPT */ | |
| /* | |
| * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
| */ | |
| static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | |
| { | |
| if (unlikely(!irqs_disabled())) { | |
| /* printk() doesn't work good under rq->lock */ | |
| raw_spin_unlock(&this_rq->lock); | |
| BUG_ON(1); | |
| } | |
| return _double_lock_balance(this_rq, busiest); | |
| } | |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | |
| __releases(busiest->lock) | |
| { | |
| raw_spin_unlock(&busiest->lock); | |
| lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | |
| } | |
| /* | |
| * double_rq_lock - safely lock two runqueues | |
| * | |
| * Note this does not disable interrupts like task_rq_lock, | |
| * you need to do so manually before calling. | |
| */ | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |
| __acquires(rq1->lock) | |
| __acquires(rq2->lock) | |
| { | |
| BUG_ON(!irqs_disabled()); | |
| if (rq1 == rq2) { | |
| raw_spin_lock(&rq1->lock); | |
| __acquire(rq2->lock); /* Fake it out ;) */ | |
| } else { | |
| if (rq1 < rq2) { | |
| raw_spin_lock(&rq1->lock); | |
| raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | |
| } else { | |
| raw_spin_lock(&rq2->lock); | |
| raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | |
| } | |
| } | |
| update_rq_clock(rq1); | |
| update_rq_clock(rq2); | |
| } | |
| /* | |
| * double_rq_unlock - safely unlock two runqueues | |
| * | |
| * Note this does not restore interrupts like task_rq_unlock, | |
| * you need to do so manually after calling. | |
| */ | |
| static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | |
| __releases(rq1->lock) | |
| __releases(rq2->lock) | |
| { | |
| raw_spin_unlock(&rq1->lock); | |
| if (rq1 != rq2) | |
| raw_spin_unlock(&rq2->lock); | |
| else | |
| __release(rq2->lock); | |
| } | |
| #endif | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |
| { | |
| #ifdef CONFIG_SMP | |
| cfs_rq->shares = shares; | |
| #endif | |
| } | |
| #endif | |
| static void calc_load_account_active(struct rq *this_rq); | |
| static void update_sysctl(void); | |
| static int get_update_sysctl_factor(void); | |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | |
| { | |
| set_task_rq(p, cpu); | |
| #ifdef CONFIG_SMP | |
| /* | |
| * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | |
| * successfuly executed on another CPU. We must ensure that updates of | |
| * per-task data have been completed by this moment. | |
| */ | |
| smp_wmb(); | |
| task_thread_info(p)->cpu = cpu; | |
| #endif | |
| } | |
| static const struct sched_class rt_sched_class; | |
| #define sched_class_highest (&rt_sched_class) | |
| #define for_each_class(class) \ | |
| for (class = sched_class_highest; class; class = class->next) | |
| #include "sched_stats.h" | |
| static void inc_nr_running(struct rq *rq) | |
| { | |
| rq->nr_running++; | |
| } | |
| static void dec_nr_running(struct rq *rq) | |
| { | |
| rq->nr_running--; | |
| } | |
| static void set_load_weight(struct task_struct *p) | |
| { | |
| if (task_has_rt_policy(p)) { | |
| p->se.load.weight = prio_to_weight[0] * 2; | |
| p->se.load.inv_weight = prio_to_wmult[0] >> 1; | |
| return; | |
| } | |
| /* | |
| * SCHED_IDLE tasks get minimal weight: | |
| */ | |
| if (p->policy == SCHED_IDLE) { | |
| p->se.load.weight = WEIGHT_IDLEPRIO; | |
| p->se.load.inv_weight = WMULT_IDLEPRIO; | |
| return; | |
| } | |
| p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; | |
| p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | |
| } | |
| static void update_avg(u64 *avg, u64 sample) | |
| { | |
| s64 diff = sample - *avg; | |
| *avg += diff >> 3; | |
| } | |
| static void | |
| enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | |
| { | |
| if (wakeup) | |
| p->se.start_runtime = p->se.sum_exec_runtime; | |
| sched_info_queued(p); | |
| p->sched_class->enqueue_task(rq, p, wakeup, head); | |
| p->se.on_rq = 1; | |
| } | |
| static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | |
| { | |
| if (sleep) { | |
| if (p->se.last_wakeup) { | |
| update_avg(&p->se.avg_overlap, | |
| p->se.sum_exec_runtime - p->se.last_wakeup); | |
| p->se.last_wakeup = 0; | |
| } else { | |
| update_avg(&p->se.avg_wakeup, | |
| sysctl_sched_wakeup_granularity); | |
| } | |
| } | |
| sched_info_dequeued(p); | |
| p->sched_class->dequeue_task(rq, p, sleep); | |
| p->se.on_rq = 0; | |
| } | |
| /* | |
| * activate_task - move a task to the runqueue. | |
| */ | |
| static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | |
| { | |
| if (task_contributes_to_load(p)) | |
| rq->nr_uninterruptible--; | |
| enqueue_task(rq, p, wakeup, false); | |
| inc_nr_running(rq); | |
| } | |
| /* | |
| * deactivate_task - remove a task from the runqueue. | |
| */ | |
| static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | |
| { | |
| if (task_contributes_to_load(p)) | |
| rq->nr_uninterruptible++; | |
| dequeue_task(rq, p, sleep); | |
| dec_nr_running(rq); | |
| } | |
| #include "sched_idletask.c" | |
| #include "sched_fair.c" | |
| #include "sched_rt.c" | |
| #ifdef CONFIG_SCHED_DEBUG | |
| # include "sched_debug.c" | |
| #endif | |
| /* | |
| * __normal_prio - return the priority that is based on the static prio | |
| */ | |
| static inline int __normal_prio(struct task_struct *p) | |
| { | |
| return p->static_prio; | |
| } | |
| /* | |
| * Calculate the expected normal priority: i.e. priority | |
| * without taking RT-inheritance into account. Might be | |
| * boosted by interactivity modifiers. Changes upon fork, | |
| * setprio syscalls, and whenever the interactivity | |
| * estimator recalculates. | |
| */ | |
| static inline int normal_prio(struct task_struct *p) | |
| { | |
| int prio; | |
| if (task_has_rt_policy(p)) | |
| prio = MAX_RT_PRIO-1 - p->rt_priority; | |
| else | |
| prio = __normal_prio(p); | |
| return prio; | |
| } | |
| /* | |
| * Calculate the current priority, i.e. the priority | |
| * taken into account by the scheduler. This value might | |
| * be boosted by RT tasks, or might be boosted by | |
| * interactivity modifiers. Will be RT if the task got | |
| * RT-boosted. If not then it returns p->normal_prio. | |
| */ | |
| static int effective_prio(struct task_struct *p) | |
| { | |
| p->normal_prio = normal_prio(p); | |
| /* | |
| * If we are RT tasks or we were boosted to RT priority, | |
| * keep the priority unchanged. Otherwise, update priority | |
| * to the normal priority: | |
| */ | |
| if (!rt_prio(p->prio)) | |
| return p->normal_prio; | |
| return p->prio; | |
| } | |
| /** | |
| * task_curr - is this task currently executing on a CPU? | |
| * @p: the task in question. | |
| */ | |
| inline int task_curr(const struct task_struct *p) | |
| { | |
| return cpu_curr(task_cpu(p)) == p; | |
| } | |
| static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |
| const struct sched_class *prev_class, | |
| int oldprio, int running) | |
| { | |
| if (prev_class != p->sched_class) { | |
| if (prev_class->switched_from) | |
| prev_class->switched_from(rq, p, running); | |
| p->sched_class->switched_to(rq, p, running); | |
| } else | |
| p->sched_class->prio_changed(rq, p, oldprio, running); | |
| } | |
| #ifdef CONFIG_SMP | |
| /* | |
| * Is this task likely cache-hot: | |
| */ | |
| static int | |
| task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | |
| { | |
| s64 delta; | |
| if (p->sched_class != &fair_sched_class) | |
| return 0; | |
| /* | |
| * Buddy candidates are cache hot: | |
| */ | |
| if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && | |
| (&p->se == cfs_rq_of(&p->se)->next || | |
| &p->se == cfs_rq_of(&p->se)->last)) | |
| return 1; | |
| if (sysctl_sched_migration_cost == -1) | |
| return 1; | |
| if (sysctl_sched_migration_cost == 0) | |
| return 0; | |
| delta = now - p->se.exec_start; | |
| return delta < (s64)sysctl_sched_migration_cost; | |
| } | |
| void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |
| { | |
| #ifdef CONFIG_SCHED_DEBUG | |
| /* | |
| * We should never call set_task_cpu() on a blocked task, | |
| * ttwu() will sort out the placement. | |
| */ | |
| WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && | |
| !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); | |
| #endif | |
| trace_sched_migrate_task(p, new_cpu); | |
| if (task_cpu(p) != new_cpu) { | |
| p->se.nr_migrations++; | |
| perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); | |
| } | |
| __set_task_cpu(p, new_cpu); | |
| } | |
| struct migration_req { | |
| struct list_head list; | |
| struct task_struct *task; | |
| int dest_cpu; | |
| struct completion done; | |
| }; | |
| /* | |
| * The task's runqueue lock must be held. | |
| * Returns true if you have to wait for migration thread. | |
| */ | |
| static int | |
| migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |
| { | |
| struct rq *rq = task_rq(p); | |
| /* | |
| * If the task is not on a runqueue (and not running), then | |
| * the next wake-up will properly place the task. | |
| */ | |
| if (!p->se.on_rq && !task_running(rq, p)) | |
| return 0; | |
| init_completion(&req->done); | |
| req->task = p; | |
| req->dest_cpu = dest_cpu; | |
| list_add(&req->list, &rq->migration_queue); | |
| return 1; | |
| } | |
| /* | |
| * wait_task_context_switch - wait for a thread to complete at least one | |
| * context switch. | |
| * | |
| * @p must not be current. | |
| */ | |
| void wait_task_context_switch(struct task_struct *p) | |
| { | |
| unsigned long nvcsw, nivcsw, flags; | |
| int running; | |
| struct rq *rq; | |
| nvcsw = p->nvcsw; | |
| nivcsw = p->nivcsw; | |
| for (;;) { | |
| /* | |
| * The runqueue is assigned before the actual context | |
| * switch. We need to take the runqueue lock. | |
| * | |
| * We could check initially without the lock but it is | |
| * very likely that we need to take the lock in every | |
| * iteration. | |
| */ | |
| rq = task_rq_lock(p, &flags); | |
| running = task_running(rq, p); | |
| task_rq_unlock(rq, &flags); | |
| if (likely(!running)) | |
| break; | |
| /* | |
| * The switch count is incremented before the actual | |
| * context switch. We thus wait for two switches to be | |
| * sure at least one completed. | |
| */ | |
| if ((p->nvcsw - nvcsw) > 1) | |
| break; | |
| if ((p->nivcsw - nivcsw) > 1) | |
| break; | |
| cpu_relax(); | |
| } | |
| } | |
| /* | |
| * wait_task_inactive - wait for a thread to unschedule. | |
| * | |
| * If @match_state is nonzero, it's the @p->state value just checked and | |
| * not expected to change. If it changes, i.e. @p might have woken up, | |
| * then return zero. When we succeed in waiting for @p to be off its CPU, | |
| * we return a positive number (its total switch count). If a second call | |
| * a short while later returns the same number, the caller can be sure that | |
| * @p has remained unscheduled the whole time. | |
| * | |
| * The caller must ensure that the task *will* unschedule sometime soon, | |
| * else this function might spin for a *long* time. This function can't | |
| * be called with interrupts off, or it may introduce deadlock with | |
| * smp_call_function() if an IPI is sent by the same process we are | |
| * waiting to become inactive. | |
| */ | |
| unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |
| { | |
| unsigned long flags; | |
| int running, on_rq; | |
| unsigned long ncsw; | |
| struct rq *rq; | |
| for (;;) { | |
| /* | |
| * We do the initial early heuristics without holding | |
| * any task-queue locks at all. We'll only try to get | |
| * the runqueue lock when things look like they will | |
| * work out! | |
| */ | |
| rq = task_rq(p); | |
| /* | |
| * If the task is actively running on another CPU | |
| * still, just relax and busy-wait without holding | |
| * any locks. | |
| * | |
| * NOTE! Since we don't hold any locks, it's not | |
| * even sure that "rq" stays as the right runqueue! | |
| * But we don't care, since "task_running()" will | |
| * return false if the runqueue has changed and p | |
| * is actually now running somewhere else! | |
| */ | |
| while (task_running(rq, p)) { | |
| if (match_state && unlikely(p->state != match_state)) | |
| return 0; | |
| cpu_relax(); | |
| } | |
| /* | |
| * Ok, time to look more closely! We need the rq | |
| * lock now, to be *sure*. If we're wrong, we'll | |
| * just go back and repeat. | |
| */ | |
| rq = task_rq_lock(p, &flags); | |
| trace_sched_wait_task(rq, p); | |
| running = task_running(rq, p); | |
| on_rq = p->se.on_rq; | |
| ncsw = 0; | |
| if (!match_state || p->state == match_state) | |
| ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | |
| task_rq_unlock(rq, &flags); | |
| /* | |
| * If it changed from the expected state, bail out now. | |
| */ | |
| if (unlikely(!ncsw)) | |
| break; | |
| /* | |
| * Was it really running after all now that we | |
| * checked with the proper locks actually held? | |
| * | |
| * Oops. Go back and try again.. | |
| */ | |
| if (unlikely(running)) { | |
| cpu_relax(); | |
| continue; | |
| } | |
| /* | |
| * It's not enough that it's not actively running, | |
| * it must be off the runqueue _entirely_, and not | |
| * preempted! | |
| * | |
| * So if it was still runnable (but just not actively | |
| * running right now), it's preempted, and we should | |
| * yield - it could be a while. | |
| */ | |
| if (unlikely(on_rq)) { | |
| schedule_timeout_uninterruptible(1); | |
| continue; | |
| } | |
| /* | |
| * Ahh, all good. It wasn't running, and it wasn't | |
| * runnable, which means that it will never become | |
| * running in the future either. We're all done! | |
| */ | |
| break; | |
| } | |
| return ncsw; | |
| } | |
| /*** | |
| * kick_process - kick a running thread to enter/exit the kernel | |
| * @p: the to-be-kicked thread | |
| * | |
| * Cause a process which is running on another CPU to enter | |
| * kernel-mode, without any delay. (to get signals handled.) | |
| * | |
| * NOTE: this function doesnt have to take the runqueue lock, | |
| * because all it wants to ensure is that the remote task enters | |
| * the kernel. If the IPI races and the task has been migrated | |
| * to another CPU then no harm is done and the purpose has been | |
| * achieved as well. | |
| */ | |
| void kick_process(struct task_struct *p) | |
| { | |
| int cpu; | |
| preempt_disable(); | |
| cpu = task_cpu(p); | |
| if ((cpu != smp_processor_id()) && task_curr(p)) | |
| smp_send_reschedule(cpu); | |
| preempt_enable(); | |
| } | |
| EXPORT_SYMBOL_GPL(kick_process); | |
| #endif /* CONFIG_SMP */ | |
| /** | |
| * task_oncpu_function_call - call a function on the cpu on which a task runs | |
| * @p: the task to evaluate | |
| * @func: the function to be called | |
| * @info: the function call argument | |
| * | |
| * Calls the function @func when the task is currently running. This might | |
| * be on the current CPU, which just calls the function directly | |
| */ | |
| void task_oncpu_function_call(struct task_struct *p, | |
| void (*func) (void *info), void *info) | |
| { | |
| int cpu; | |
| preempt_disable(); | |
| cpu = task_cpu(p); | |
| if (task_curr(p)) | |
| smp_call_function_single(cpu, func, info, 1); | |
| preempt_enable(); | |
| } | |
| #ifdef CONFIG_SMP | |
| static int select_fallback_rq(int cpu, struct task_struct *p) | |
| { | |
| int dest_cpu; | |
| const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); | |
| /* Look for allowed, online CPU in same node. */ | |
| for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) | |
| if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
| return dest_cpu; | |
| /* Any allowed, online CPU? */ | |
| dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); | |
| if (dest_cpu < nr_cpu_ids) | |
| return dest_cpu; | |
| /* No more Mr. Nice Guy. */ | |
| if (dest_cpu >= nr_cpu_ids) { | |
| rcu_read_lock(); | |
| cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | |
| rcu_read_unlock(); | |
| dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | |
| /* | |
| * Don't tell them about moving exiting tasks or | |
| * kernel threads (both mm NULL), since they never | |
| * leave kernel. | |
| */ | |
| if (p->mm && printk_ratelimit()) { | |
| printk(KERN_INFO "process %d (%s) no " | |
| "longer affine to cpu%d\n", | |
| task_pid_nr(p), p->comm, cpu); | |
| } | |
| } | |
| return dest_cpu; | |
| } | |
| /* | |
| * Gets called from 3 sites (exec, fork, wakeup), since it is called without | |
| * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | |
| * by: | |
| * | |
| * exec: is unstable, retry loop | |
| * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | |
| */ | |
| static inline | |
| int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | |
| { | |
| int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | |
| /* | |
| * In order not to call set_task_cpu() on a blocking task we need | |
| * to rely on ttwu() to place the task on a valid ->cpus_allowed | |
| * cpu. | |
| * | |
| * Since this is common to all placement strategies, this lives here. | |
| * | |
| * [ this allows ->select_task() to simply return task_cpu(p) and | |
| * not worry about this generic constraint ] | |
| */ | |
| if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || | |
| !cpu_online(cpu))) | |
| cpu = select_fallback_rq(task_cpu(p), p); | |
| return cpu; | |
| } | |
| #endif | |
| /*** | |
| * try_to_wake_up - wake up a thread | |
| * @p: the to-be-woken-up thread | |
| * @state: the mask of task states that can be woken | |
| * @sync: do a synchronous wakeup? | |
| * | |
| * Put it on the run-queue if it's not already there. The "current" | |
| * thread is always on the run-queue (except when the actual | |
| * re-schedule is in progress), and as such you're allowed to do | |
| * the simpler "current->state = TASK_RUNNING" to mark yourself | |
| * runnable without the overhead of this. | |
| * | |
| * returns failure only if the task is already active. | |
| */ | |
| static int try_to_wake_up(struct task_struct *p, unsigned int state, | |
| int wake_flags) | |
| { | |
| int cpu, orig_cpu, this_cpu, success = 0; | |
| unsigned long flags; | |
| struct rq *rq; | |
| if (!sched_feat(SYNC_WAKEUPS)) | |
| wake_flags &= ~WF_SYNC; | |
| this_cpu = get_cpu(); | |
| smp_wmb(); | |
| rq = task_rq_lock(p, &flags); | |
| update_rq_clock(rq); | |
| if (!(p->state & state)) | |
| goto out; | |
| if (p->se.on_rq) | |
| goto out_running; | |
| cpu = task_cpu(p); | |
| orig_cpu = cpu; | |
| #ifdef CONFIG_SMP | |
| if (unlikely(task_running(rq, p))) | |
| goto out_activate; | |
| /* | |
| * In order to handle concurrent wakeups and release the rq->lock | |
| * we put the task in TASK_WAKING state. | |
| * | |
| * First fix up the nr_uninterruptible count: | |
| */ | |
| if (task_contributes_to_load(p)) | |
| rq->nr_uninterruptible--; | |
| p->state = TASK_WAKING; | |
| if (p->sched_class->task_waking) | |
| p->sched_class->task_waking(rq, p); | |
| __task_rq_unlock(rq); | |
| cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | |
| if (cpu != orig_cpu) { | |
| /* | |
| * Since we migrate the task without holding any rq->lock, | |
| * we need to be careful with task_rq_lock(), since that | |
| * might end up locking an invalid rq. | |
| */ | |
| set_task_cpu(p, cpu); | |
| } | |
| rq = cpu_rq(cpu); | |
| raw_spin_lock(&rq->lock); | |
| update_rq_clock(rq); | |
| /* | |
| * We migrated the task without holding either rq->lock, however | |
| * since the task is not on the task list itself, nobody else | |
| * will try and migrate the task, hence the rq should match the | |
| * cpu we just moved it to. | |
| */ | |
| WARN_ON(task_cpu(p) != cpu); | |
| WARN_ON(p->state != TASK_WAKING); | |
| #ifdef CONFIG_SCHEDSTATS | |
| schedstat_inc(rq, ttwu_count); | |
| if (cpu == this_cpu) | |
| schedstat_inc(rq, ttwu_local); | |
| else { | |
| struct sched_domain *sd; | |
| for_each_domain(this_cpu, sd) { | |
| if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | |
| schedstat_inc(sd, ttwu_wake_remote); | |
| break; | |
| } | |
| } | |
| } | |
| #endif /* CONFIG_SCHEDSTATS */ | |
| out_activate: | |
| #endif /* CONFIG_SMP */ | |
| schedstat_inc(p, se.nr_wakeups); | |
| if (wake_flags & WF_SYNC) | |
| schedstat_inc(p, se.nr_wakeups_sync); | |
| if (orig_cpu != cpu) | |
| schedstat_inc(p, se.nr_wakeups_migrate); | |
| if (cpu == this_cpu) | |
| schedstat_inc(p, se.nr_wakeups_local); | |
| else | |
| schedstat_inc(p, se.nr_wakeups_remote); | |
| activate_task(rq, p, 1); | |
| success = 1; | |
| /* | |
| * Only attribute actual wakeups done by this task. | |
| */ | |
| if (!in_interrupt()) { | |
| struct sched_entity *se = ¤t->se; | |
| u64 sample = se->sum_exec_runtime; | |
| if (se->last_wakeup) | |
| sample -= se->last_wakeup; | |
| else | |
| sample -= se->start_runtime; | |
| update_avg(&se->avg_wakeup, sample); | |
| se->last_wakeup = se->sum_exec_runtime; | |
| } | |
| out_running: | |
| trace_sched_wakeup(rq, p, success); | |
| check_preempt_curr(rq, p, wake_flags); | |
| p->state = TASK_RUNNING; | |
| #ifdef CONFIG_SMP | |
| if (p->sched_class->task_woken) | |
| p->sched_class->task_woken(rq, p); | |
| if (unlikely(rq->idle_stamp)) { | |
| u64 delta = rq->clock - rq->idle_stamp; | |
| u64 max = 2*sysctl_sched_migration_cost; | |
| if (delta > max) | |
| rq->avg_idle = max; | |
| else | |
| update_avg(&rq->avg_idle, delta); | |
| rq->idle_stamp = 0; | |
| } | |
| #endif | |
| out: | |
| task_rq_unlock(rq, &flags); | |
| put_cpu(); | |
| return success; | |
| } | |
| /** | |
| * wake_up_process - Wake up a specific process | |
| * @p: The process to be woken up. | |
| * | |
| * Attempt to wake up the nominated process and move it to the set of runnable | |
| * processes. Returns 1 if the process was woken up, 0 if it was already | |
| * running. | |
| * | |
| * It may be assumed that this function implies a write memory barrier before | |
| * changing the task state if and only if any tasks are woken up. | |
| */ | |
| int wake_up_process(struct task_struct *p) | |
| { | |
| return try_to_wake_up(p, TASK_ALL, 0); | |
| } | |
| EXPORT_SYMBOL(wake_up_process); | |
| int wake_up_state(struct task_struct *p, unsigned int state) | |
| { | |
| return try_to_wake_up(p, state, 0); | |
| } | |
| /* | |
| * Perform scheduler related setup for a newly forked process p. | |
| * p is forked by current. | |
| * | |
| * __sched_fork() is basic setup used by init_idle() too: | |
| */ | |
| static void __sched_fork(struct task_struct *p) | |
| { | |
| p->se.exec_start = 0; | |
| p->se.sum_exec_runtime = 0; | |
| p->se.prev_sum_exec_runtime = 0; | |
| p->se.nr_migrations = 0; | |
| p->se.last_wakeup = 0; | |
| p->se.avg_overlap = 0; | |
| p->se.start_runtime = 0; | |
| p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | |
| #ifdef CONFIG_SCHEDSTATS | |
| p->se.wait_start = 0; | |
| p->se.wait_max = 0; | |
| p->se.wait_count = 0; | |
| p->se.wait_sum = 0; | |
| p->se.sleep_start = 0; | |
| p->se.sleep_max = 0; | |
| p->se.sum_sleep_runtime = 0; | |
| p->se.block_start = 0; | |
| p->se.block_max = 0; | |
| p->se.exec_max = 0; | |
| p->se.slice_max = 0; | |
| p->se.nr_migrations_cold = 0; | |
| p->se.nr_failed_migrations_affine = 0; | |
| p->se.nr_failed_migrations_running = 0; | |
| p->se.nr_failed_migrations_hot = 0; | |
| p->se.nr_forced_migrations = 0; | |
| p->se.nr_wakeups = 0; | |
| p->se.nr_wakeups_sync = 0; | |
| p->se.nr_wakeups_migrate = 0; | |
| p->se.nr_wakeups_local = 0; | |
| p->se.nr_wakeups_remote = 0; | |
| p->se.nr_wakeups_affine = 0; | |
| p->se.nr_wakeups_affine_attempts = 0; | |
| p->se.nr_wakeups_passive = 0; | |
| p->se.nr_wakeups_idle = 0; | |
| #endif | |
| INIT_LIST_HEAD(&p->rt.run_list); | |
| p->se.on_rq = 0; | |
| INIT_LIST_HEAD(&p->se.group_node); | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS | |
| INIT_HLIST_HEAD(&p->preempt_notifiers); | |
| #endif | |
| } | |
| /* | |
| * fork()/clone()-time setup: | |
| */ | |
| void sched_fork(struct task_struct *p, int clone_flags) | |
| { | |
| int cpu = get_cpu(); | |
| __sched_fork(p); | |
| /* | |
| * We mark the process as waking here. This guarantees that | |
| * nobody will actually run it, and a signal or other external | |
| * event cannot wake it up and insert it on the runqueue either. | |
| */ | |
| p->state = TASK_WAKING; | |
| /* | |
| * Revert to default priority/policy on fork if requested. | |
| */ | |
| if (unlikely(p->sched_reset_on_fork)) { | |
| if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { | |
| p->policy = SCHED_NORMAL; | |
| p->normal_prio = p->static_prio; | |
| } | |
| if (PRIO_TO_NICE(p->static_prio) < 0) { | |
| p->static_prio = NICE_TO_PRIO(0); | |
| p->normal_prio = p->static_prio; | |
| set_load_weight(p); | |
| } | |
| /* | |
| * We don't need the reset flag anymore after the fork. It has | |
| * fulfilled its duty: | |
| */ | |
| p->sched_reset_on_fork = 0; | |
| } | |
| /* | |
| * Make sure we do not leak PI boosting priority to the child. | |
| */ | |
| p->prio = current->normal_prio; | |
| if (!rt_prio(p->prio)) | |
| p->sched_class = &fair_sched_class; | |
| if (p->sched_class->task_fork) | |
| p->sched_class->task_fork(p); | |
| set_task_cpu(p, cpu); | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | |
| if (likely(sched_info_on())) | |
| memset(&p->sched_info, 0, sizeof(p->sched_info)); | |
| #endif | |
| #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | |
| p->oncpu = 0; | |
| #endif | |
| #ifdef CONFIG_PREEMPT | |
| /* Want to start with kernel preemption disabled. */ | |
| task_thread_info(p)->preempt_count = 1; | |
| #endif | |
| plist_node_init(&p->pushable_tasks, MAX_PRIO); | |
| put_cpu(); | |
| } | |
| /* | |
| * wake_up_new_task - wake up a newly created task for the first time. | |
| * | |
| * This function will do some initial scheduler statistics housekeeping | |
| * that must be done for every newly created context, then puts the task | |
| * on the runqueue and wakes it. | |
| */ | |
| void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |
| { | |
| unsigned long flags; | |
| struct rq *rq; | |
| int cpu __maybe_unused = get_cpu(); | |
| #ifdef CONFIG_SMP | |
| /* | |
| * Fork balancing, do it here and not earlier because: | |
| * - cpus_allowed can change in the fork path | |
| * - any previously selected cpu might disappear through hotplug | |
| * | |
| * We still have TASK_WAKING but PF_STARTING is gone now, meaning | |
| * ->cpus_allowed is stable, we have preemption disabled, meaning | |
| * cpu_online_mask is stable. | |
| */ | |
| cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | |
| set_task_cpu(p, cpu); | |
| #endif | |
| /* | |
| * Since the task is not on the rq and we still have TASK_WAKING set | |
| * nobody else will migrate this task. | |
| */ | |
| rq = cpu_rq(cpu); | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| BUG_ON(p->state != TASK_WAKING); | |
| p->state = TASK_RUNNING; | |
| update_rq_clock(rq); | |
| activate_task(rq, p, 0); | |
| trace_sched_wakeup_new(rq, p, 1); | |
| check_preempt_curr(rq, p, WF_FORK); | |
| #ifdef CONFIG_SMP | |
| if (p->sched_class->task_woken) | |
| p->sched_class->task_woken(rq, p); | |
| #endif | |
| task_rq_unlock(rq, &flags); | |
| put_cpu(); | |
| } | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS | |
| /** | |
| * preempt_notifier_register - tell me when current is being preempted & rescheduled | |
| * @notifier: notifier struct to register | |
| */ | |
| void preempt_notifier_register(struct preempt_notifier *notifier) | |
| { | |
| hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | |
| } | |
| EXPORT_SYMBOL_GPL(preempt_notifier_register); | |
| /** | |
| * preempt_notifier_unregister - no longer interested in preemption notifications | |
| * @notifier: notifier struct to unregister | |
| * | |
| * This is safe to call from within a preemption notifier. | |
| */ | |
| void preempt_notifier_unregister(struct preempt_notifier *notifier) | |
| { | |
| hlist_del(¬ifier->link); | |
| } | |
| EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
| { | |
| struct preempt_notifier *notifier; | |
| struct hlist_node *node; | |
| hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
| notifier->ops->sched_in(notifier, raw_smp_processor_id()); | |
| } | |
| static void | |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
| struct task_struct *next) | |
| { | |
| struct preempt_notifier *notifier; | |
| struct hlist_node *node; | |
| hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | |
| notifier->ops->sched_out(notifier, next); | |
| } | |
| #else /* !CONFIG_PREEMPT_NOTIFIERS */ | |
| static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | |
| { | |
| } | |
| static void | |
| fire_sched_out_preempt_notifiers(struct task_struct *curr, | |
| struct task_struct *next) | |
| { | |
| } | |
| #endif /* CONFIG_PREEMPT_NOTIFIERS */ | |
| /** | |
| * prepare_task_switch - prepare to switch tasks | |
| * @rq: the runqueue preparing to switch | |
| * @prev: the current task that is being switched out | |
| * @next: the task we are going to switch to. | |
| * | |
| * This is called with the rq lock held and interrupts off. It must | |
| * be paired with a subsequent finish_task_switch after the context | |
| * switch. | |
| * | |
| * prepare_task_switch sets up locking and calls architecture specific | |
| * hooks. | |
| */ | |
| static inline void | |
| prepare_task_switch(struct rq *rq, struct task_struct *prev, | |
| struct task_struct *next) | |
| { | |
| fire_sched_out_preempt_notifiers(prev, next); | |
| prepare_lock_switch(rq, next); | |
| prepare_arch_switch(next); | |
| } | |
| /** | |
| * finish_task_switch - clean up after a task-switch | |
| * @rq: runqueue associated with task-switch | |
| * @prev: the thread we just switched away from. | |
| * | |
| * finish_task_switch must be called after the context switch, paired | |
| * with a prepare_task_switch call before the context switch. | |
| * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
| * and do any other architecture-specific cleanup actions. | |
| * | |
| * Note that we may have delayed dropping an mm in context_switch(). If | |
| * so, we finish that here outside of the runqueue lock. (Doing it | |
| * with the lock held can cause deadlocks; see schedule() for | |
| * details.) | |
| */ | |
| static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |
| __releases(rq->lock) | |
| { | |
| struct mm_struct *mm = rq->prev_mm; | |
| long prev_state; | |
| rq->prev_mm = NULL; | |
| /* | |
| * A task struct has one reference for the use as "current". | |
| * If a task dies, then it sets TASK_DEAD in tsk->state and calls | |
| * schedule one last time. The schedule call will never return, and | |
| * the scheduled task must drop that reference. | |
| * The test for TASK_DEAD must occur while the runqueue locks are | |
| * still held, otherwise prev could be scheduled on another cpu, die | |
| * there before we look at prev->state, and then the reference would | |
| * be dropped twice. | |
| * Manfred Spraul <manfred@colorfullife.com> | |
| */ | |
| prev_state = prev->state; | |
| finish_arch_switch(prev); | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
| local_irq_disable(); | |
| #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
| perf_event_task_sched_in(current); | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
| local_irq_enable(); | |
| #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ | |
| finish_lock_switch(rq, prev); | |
| fire_sched_in_preempt_notifiers(current); | |
| if (mm) | |
| mmdrop(mm); | |
| if (unlikely(prev_state == TASK_DEAD)) { | |
| /* | |
| * Remove function-return probe instances associated with this | |
| * task and put them back on the free list. | |
| */ | |
| kprobe_flush_task(prev); | |
| put_task_struct(prev); | |
| } | |
| } | |
| #ifdef CONFIG_SMP | |
| /* assumes rq->lock is held */ | |
| static inline void pre_schedule(struct rq *rq, struct task_struct *prev) | |
| { | |
| if (prev->sched_class->pre_schedule) | |
| prev->sched_class->pre_schedule(rq, prev); | |
| } | |
| /* rq->lock is NOT held, but preemption is disabled */ | |
| static inline void post_schedule(struct rq *rq) | |
| { | |
| if (rq->post_schedule) { | |
| unsigned long flags; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| if (rq->curr->sched_class->post_schedule) | |
| rq->curr->sched_class->post_schedule(rq); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| rq->post_schedule = 0; | |
| } | |
| } | |
| #else | |
| static inline void pre_schedule(struct rq *rq, struct task_struct *p) | |
| { | |
| } | |
| static inline void post_schedule(struct rq *rq) | |
| { | |
| } | |
| #endif | |
| /** | |
| * schedule_tail - first thing a freshly forked thread must call. | |
| * @prev: the thread we just switched away from. | |
| */ | |
| asmlinkage void schedule_tail(struct task_struct *prev) | |
| __releases(rq->lock) | |
| { | |
| struct rq *rq = this_rq(); | |
| finish_task_switch(rq, prev); | |
| /* | |
| * FIXME: do we need to worry about rq being invalidated by the | |
| * task_switch? | |
| */ | |
| post_schedule(rq); | |
| #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
| /* In this case, finish_task_switch does not reenable preemption */ | |
| preempt_enable(); | |
| #endif | |
| if (current->set_child_tid) | |
| put_user(task_pid_vnr(current), current->set_child_tid); | |
| } | |
| /* | |
| * context_switch - switch to the new MM and the new | |
| * thread's register state. | |
| */ | |
| static inline void | |
| context_switch(struct rq *rq, struct task_struct *prev, | |
| struct task_struct *next) | |
| { | |
| struct mm_struct *mm, *oldmm; | |
| prepare_task_switch(rq, prev, next); | |
| trace_sched_switch(rq, prev, next); | |
| mm = next->mm; | |
| oldmm = prev->active_mm; | |
| /* | |
| * For paravirt, this is coupled with an exit in switch_to to | |
| * combine the page table reload and the switch backend into | |
| * one hypercall. | |
| */ | |
| arch_start_context_switch(prev); | |
| if (likely(!mm)) { | |
| next->active_mm = oldmm; | |
| atomic_inc(&oldmm->mm_count); | |
| enter_lazy_tlb(oldmm, next); | |
| } else | |
| switch_mm(oldmm, mm, next); | |
| if (likely(!prev->mm)) { | |
| prev->active_mm = NULL; | |
| rq->prev_mm = oldmm; | |
| } | |
| /* | |
| * Since the runqueue lock will be released by the next | |
| * task (which is an invalid locking op but in the case | |
| * of the scheduler it's an obvious special-case), so we | |
| * do an early lockdep release here: | |
| */ | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
| spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | |
| #endif | |
| /* Here we just switch the register state and the stack. */ | |
| switch_to(prev, next, prev); | |
| barrier(); | |
| /* | |
| * this_rq must be evaluated again because prev may have moved | |
| * CPUs since it called schedule(), thus the 'rq' on its stack | |
| * frame will be invalid. | |
| */ | |
| finish_task_switch(this_rq(), prev); | |
| } | |
| /* | |
| * nr_running, nr_uninterruptible and nr_context_switches: | |
| * | |
| * externally visible scheduler statistics: current number of runnable | |
| * threads, current number of uninterruptible-sleeping threads, total | |
| * number of context switches performed since bootup. | |
| */ | |
| unsigned long nr_running(void) | |
| { | |
| unsigned long i, sum = 0; | |
| for_each_online_cpu(i) | |
| sum += cpu_rq(i)->nr_running; | |
| return sum; | |
| } | |
| unsigned long nr_uninterruptible(void) | |
| { | |
| unsigned long i, sum = 0; | |
| for_each_possible_cpu(i) | |
| sum += cpu_rq(i)->nr_uninterruptible; | |
| /* | |
| * Since we read the counters lockless, it might be slightly | |
| * inaccurate. Do not allow it to go below zero though: | |
| */ | |
| if (unlikely((long)sum < 0)) | |
| sum = 0; | |
| return sum; | |
| } | |
| unsigned long long nr_context_switches(void) | |
| { | |
| int i; | |
| unsigned long long sum = 0; | |
| for_each_possible_cpu(i) | |
| sum += cpu_rq(i)->nr_switches; | |
| return sum; | |
| } | |
| unsigned long nr_iowait(void) | |
| { | |
| unsigned long i, sum = 0; | |
| for_each_possible_cpu(i) | |
| sum += atomic_read(&cpu_rq(i)->nr_iowait); | |
| return sum; | |
| } | |
| unsigned long nr_iowait_cpu(void) | |
| { | |
| struct rq *this = this_rq(); | |
| return atomic_read(&this->nr_iowait); | |
| } | |
| unsigned long this_cpu_load(void) | |
| { | |
| struct rq *this = this_rq(); | |
| return this->cpu_load[0]; | |
| } | |
| /* Variables and functions for calc_load */ | |
| static atomic_long_t calc_load_tasks; | |
| static unsigned long calc_load_update; | |
| unsigned long avenrun[3]; | |
| EXPORT_SYMBOL(avenrun); | |
| /** | |
| * get_avenrun - get the load average array | |
| * @loads: pointer to dest load array | |
| * @offset: offset to add | |
| * @shift: shift count to shift the result left | |
| * | |
| * These values are estimates at best, so no need for locking. | |
| */ | |
| void get_avenrun(unsigned long *loads, unsigned long offset, int shift) | |
| { | |
| loads[0] = (avenrun[0] + offset) << shift; | |
| loads[1] = (avenrun[1] + offset) << shift; | |
| loads[2] = (avenrun[2] + offset) << shift; | |
| } | |
| static unsigned long | |
| calc_load(unsigned long load, unsigned long exp, unsigned long active) | |
| { | |
| load *= exp; | |
| load += active * (FIXED_1 - exp); | |
| return load >> FSHIFT; | |
| } | |
| /* | |
| * calc_load - update the avenrun load estimates 10 ticks after the | |
| * CPUs have updated calc_load_tasks. | |
| */ | |
| void calc_global_load(void) | |
| { | |
| unsigned long upd = calc_load_update + 10; | |
| long active; | |
| if (time_before(jiffies, upd)) | |
| return; | |
| active = atomic_long_read(&calc_load_tasks); | |
| active = active > 0 ? active * FIXED_1 : 0; | |
| avenrun[0] = calc_load(avenrun[0], EXP_1, active); | |
| avenrun[1] = calc_load(avenrun[1], EXP_5, active); | |
| avenrun[2] = calc_load(avenrun[2], EXP_15, active); | |
| calc_load_update += LOAD_FREQ; | |
| } | |
| /* | |
| * Either called from update_cpu_load() or from a cpu going idle | |
| */ | |
| static void calc_load_account_active(struct rq *this_rq) | |
| { | |
| long nr_active, delta; | |
| nr_active = this_rq->nr_running; | |
| nr_active += (long) this_rq->nr_uninterruptible; | |
| if (nr_active != this_rq->calc_load_active) { | |
| delta = nr_active - this_rq->calc_load_active; | |
| this_rq->calc_load_active = nr_active; | |
| atomic_long_add(delta, &calc_load_tasks); | |
| } | |
| } | |
| /* | |
| * Update rq->cpu_load[] statistics. This function is usually called every | |
| * scheduler tick (TICK_NSEC). | |
| */ | |
| static void update_cpu_load(struct rq *this_rq) | |
| { | |
| unsigned long this_load = this_rq->load.weight; | |
| int i, scale; | |
| this_rq->nr_load_updates++; | |
| /* Update our load: */ | |
| for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | |
| unsigned long old_load, new_load; | |
| /* scale is effectively 1 << i now, and >> i divides by scale */ | |
| old_load = this_rq->cpu_load[i]; | |
| new_load = this_load; | |
| /* | |
| * Round up the averaging division if load is increasing. This | |
| * prevents us from getting stuck on 9 if the load is 10, for | |
| * example. | |
| */ | |
| if (new_load > old_load) | |
| new_load += scale-1; | |
| this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | |
| } | |
| if (time_after_eq(jiffies, this_rq->calc_load_update)) { | |
| this_rq->calc_load_update += LOAD_FREQ; | |
| calc_load_account_active(this_rq); | |
| } | |
| } | |
| #ifdef CONFIG_SMP | |
| /* | |
| * sched_exec - execve() is a valuable balancing opportunity, because at | |
| * this point the task has the smallest effective memory and cache footprint. | |
| */ | |
| void sched_exec(void) | |
| { | |
| struct task_struct *p = current; | |
| struct migration_req req; | |
| int dest_cpu, this_cpu; | |
| unsigned long flags; | |
| struct rq *rq; | |
| again: | |
| this_cpu = get_cpu(); | |
| dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | |
| if (dest_cpu == this_cpu) { | |
| put_cpu(); | |
| return; | |
| } | |
| rq = task_rq_lock(p, &flags); | |
| put_cpu(); | |
| /* | |
| * select_task_rq() can race against ->cpus_allowed | |
| */ | |
| if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | |
| || unlikely(!cpu_active(dest_cpu))) { | |
| task_rq_unlock(rq, &flags); | |
| goto again; | |
| } | |
| /* force the process onto the specified CPU */ | |
| if (migrate_task(p, dest_cpu, &req)) { | |
| /* Need to wait for migration thread (might exit: take ref). */ | |
| struct task_struct *mt = rq->migration_thread; | |
| get_task_struct(mt); | |
| task_rq_unlock(rq, &flags); | |
| wake_up_process(mt); | |
| put_task_struct(mt); | |
| wait_for_completion(&req.done); | |
| return; | |
| } | |
| task_rq_unlock(rq, &flags); | |
| } | |
| #endif | |
| DEFINE_PER_CPU(struct kernel_stat, kstat); | |
| EXPORT_PER_CPU_SYMBOL(kstat); | |
| /* | |
| * Return any ns on the sched_clock that have not yet been accounted in | |
| * @p in case that task is currently running. | |
| * | |
| * Called with task_rq_lock() held on @rq. | |
| */ | |
| static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) | |
| { | |
| u64 ns = 0; | |
| if (task_current(rq, p)) { | |
| update_rq_clock(rq); | |
| ns = rq->clock - p->se.exec_start; | |
| if ((s64)ns < 0) | |
| ns = 0; | |
| } | |
| return ns; | |
| } | |
| unsigned long long task_delta_exec(struct task_struct *p) | |
| { | |
| unsigned long flags; | |
| struct rq *rq; | |
| u64 ns = 0; | |
| rq = task_rq_lock(p, &flags); | |
| ns = do_task_delta_exec(p, rq); | |
| task_rq_unlock(rq, &flags); | |
| return ns; | |
| } | |
| /* | |
| * Return accounted runtime for the task. | |
| * In case the task is currently running, return the runtime plus current's | |
| * pending runtime that have not been accounted yet. | |
| */ | |
| unsigned long long task_sched_runtime(struct task_struct *p) | |
| { | |
| unsigned long flags; | |
| struct rq *rq; | |
| u64 ns = 0; | |
| rq = task_rq_lock(p, &flags); | |
| ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); | |
| task_rq_unlock(rq, &flags); | |
| return ns; | |
| } | |
| /* | |
| * Return sum_exec_runtime for the thread group. | |
| * In case the task is currently running, return the sum plus current's | |
| * pending runtime that have not been accounted yet. | |
| * | |
| * Note that the thread group might have other running tasks as well, | |
| * so the return value not includes other pending runtime that other | |
| * running tasks might have. | |
| */ | |
| unsigned long long thread_group_sched_runtime(struct task_struct *p) | |
| { | |
| struct task_cputime totals; | |
| unsigned long flags; | |
| struct rq *rq; | |
| u64 ns; | |
| rq = task_rq_lock(p, &flags); | |
| thread_group_cputime(p, &totals); | |
| ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); | |
| task_rq_unlock(rq, &flags); | |
| return ns; | |
| } | |
| /* | |
| * Account user cpu time to a process. | |
| * @p: the process that the cpu time gets accounted to | |
| * @cputime: the cpu time spent in user space since the last update | |
| * @cputime_scaled: cputime scaled by cpu frequency | |
| */ | |
| void account_user_time(struct task_struct *p, cputime_t cputime, | |
| cputime_t cputime_scaled) | |
| { | |
| struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
| cputime64_t tmp; | |
| /* Add user time to process. */ | |
| p->utime = cputime_add(p->utime, cputime); | |
| p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | |
| account_group_user_time(p, cputime); | |
| /* Add user time to cpustat. */ | |
| tmp = cputime_to_cputime64(cputime); | |
| if (TASK_NICE(p) > 0) | |
| cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
| else | |
| cpustat->user = cputime64_add(cpustat->user, tmp); | |
| cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); | |
| /* Account for user time used */ | |
| acct_update_integrals(p); | |
| } | |
| /* | |
| * Account guest cpu time to a process. | |
| * @p: the process that the cpu time gets accounted to | |
| * @cputime: the cpu time spent in virtual machine since the last update | |
| * @cputime_scaled: cputime scaled by cpu frequency | |
| */ | |
| static void account_guest_time(struct task_struct *p, cputime_t cputime, | |
| cputime_t cputime_scaled) | |
| { | |
| cputime64_t tmp; | |
| struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
| tmp = cputime_to_cputime64(cputime); | |
| /* Add guest time to process. */ | |
| p->utime = cputime_add(p->utime, cputime); | |
| p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); | |
| account_group_user_time(p, cputime); | |
| p->gtime = cputime_add(p->gtime, cputime); | |
| /* Add guest time to cpustat. */ | |
| if (TASK_NICE(p) > 0) { | |
| cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
| cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); | |
| } else { | |
| cpustat->user = cputime64_add(cpustat->user, tmp); | |
| cpustat->guest = cputime64_add(cpustat->guest, tmp); | |
| } | |
| } | |
| /* | |
| * Account system cpu time to a process. | |
| * @p: the process that the cpu time gets accounted to | |
| * @hardirq_offset: the offset to subtract from hardirq_count() | |
| * @cputime: the cpu time spent in kernel space since the last update | |
| * @cputime_scaled: cputime scaled by cpu frequency | |
| */ | |
| void account_system_time(struct task_struct *p, int hardirq_offset, | |
| cputime_t cputime, cputime_t cputime_scaled) | |
| { | |
| struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
| cputime64_t tmp; | |
| if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | |
| account_guest_time(p, cputime, cputime_scaled); | |
| return; | |
| } | |
| /* Add system time to process. */ | |
| p->stime = cputime_add(p->stime, cputime); | |
| p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); | |
| account_group_system_time(p, cputime); | |
| /* Add system time to cpustat. */ | |
| tmp = cputime_to_cputime64(cputime); | |
| if (hardirq_count() - hardirq_offset) | |
| cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
| else if (softirq_count()) | |
| cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
| else | |
| cpustat->system = cputime64_add(cpustat->system, tmp); | |
| cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); | |
| /* Account for system time used */ | |
| acct_update_integrals(p); | |
| } | |
| /* | |
| * Account for involuntary wait time. | |
| * @steal: the cpu time spent in involuntary wait | |
| */ | |
| void account_steal_time(cputime_t cputime) | |
| { | |
| struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
| cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
| cpustat->steal = cputime64_add(cpustat->steal, cputime64); | |
| } | |
| /* | |
| * Account for idle time. | |
| * @cputime: the cpu time spent in idle wait | |
| */ | |
| void account_idle_time(cputime_t cputime) | |
| { | |
| struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
| cputime64_t cputime64 = cputime_to_cputime64(cputime); | |
| struct rq *rq = this_rq(); | |
| if (atomic_read(&rq->nr_iowait) > 0) | |
| cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); | |
| else | |
| cpustat->idle = cputime64_add(cpustat->idle, cputime64); | |
| } | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING | |
| /* | |
| * Account a single tick of cpu time. | |
| * @p: the process that the cpu time gets accounted to | |
| * @user_tick: indicates if the tick is a user or a system tick | |
| */ | |
| void account_process_tick(struct task_struct *p, int user_tick) | |
| { | |
| cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); | |
| struct rq *rq = this_rq(); | |
| if (user_tick) | |
| account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); | |
| else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | |
| account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, | |
| one_jiffy_scaled); | |
| else | |
| account_idle_time(cputime_one_jiffy); | |
| } | |
| /* | |
| * Account multiple ticks of steal time. | |
| * @p: the process from which the cpu time has been stolen | |
| * @ticks: number of stolen ticks | |
| */ | |
| void account_steal_ticks(unsigned long ticks) | |
| { | |
| account_steal_time(jiffies_to_cputime(ticks)); | |
| } | |
| /* | |
| * Account multiple ticks of idle time. | |
| * @ticks: number of stolen ticks | |
| */ | |
| void account_idle_ticks(unsigned long ticks) | |
| { | |
| account_idle_time(jiffies_to_cputime(ticks)); | |
| } | |
| #endif | |
| /* | |
| * Use precise platform statistics if available: | |
| */ | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING | |
| void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
| { | |
| *ut = p->utime; | |
| *st = p->stime; | |
| } | |
| void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
| { | |
| struct task_cputime cputime; | |
| thread_group_cputime(p, &cputime); | |
| *ut = cputime.utime; | |
| *st = cputime.stime; | |
| } | |
| #else | |
| #ifndef nsecs_to_cputime | |
| # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) | |
| #endif | |
| void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
| { | |
| cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); | |
| /* | |
| * Use CFS's precise accounting: | |
| */ | |
| rtime = nsecs_to_cputime(p->se.sum_exec_runtime); | |
| if (total) { | |
| u64 temp; | |
| temp = (u64)(rtime * utime); | |
| do_div(temp, total); | |
| utime = (cputime_t)temp; | |
| } else | |
| utime = rtime; | |
| /* | |
| * Compare with previous values, to keep monotonicity: | |
| */ | |
| p->prev_utime = max(p->prev_utime, utime); | |
| p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); | |
| *ut = p->prev_utime; | |
| *st = p->prev_stime; | |
| } | |
| /* | |
| * Must be called with siglock held. | |
| */ | |
| void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) | |
| { | |
| struct signal_struct *sig = p->signal; | |
| struct task_cputime cputime; | |
| cputime_t rtime, utime, total; | |
| thread_group_cputime(p, &cputime); | |
| total = cputime_add(cputime.utime, cputime.stime); | |
| rtime = nsecs_to_cputime(cputime.sum_exec_runtime); | |
| if (total) { | |
| u64 temp; | |
| temp = (u64)(rtime * cputime.utime); | |
| do_div(temp, total); | |
| utime = (cputime_t)temp; | |
| } else | |
| utime = rtime; | |
| sig->prev_utime = max(sig->prev_utime, utime); | |
| sig->prev_stime = max(sig->prev_stime, | |
| cputime_sub(rtime, sig->prev_utime)); | |
| *ut = sig->prev_utime; | |
| *st = sig->prev_stime; | |
| } | |
| #endif | |
| /* | |
| * This function gets called by the timer code, with HZ frequency. | |
| * We call it with interrupts disabled. | |
| * | |
| * It also gets called by the fork code, when changing the parent's | |
| * timeslices. | |
| */ | |
| void scheduler_tick(void) | |
| { | |
| int cpu = smp_processor_id(); | |
| struct rq *rq = cpu_rq(cpu); | |
| struct task_struct *curr = rq->curr; | |
| sched_clock_tick(); | |
| raw_spin_lock(&rq->lock); | |
| update_rq_clock(rq); | |
| update_cpu_load(rq); | |
| curr->sched_class->task_tick(rq, curr, 0); | |
| raw_spin_unlock(&rq->lock); | |
| perf_event_task_tick(curr); | |
| #ifdef CONFIG_SMP | |
| rq->idle_at_tick = idle_cpu(cpu); | |
| trigger_load_balance(rq, cpu); | |
| #endif | |
| } | |
| notrace unsigned long get_parent_ip(unsigned long addr) | |
| { | |
| if (in_lock_functions(addr)) { | |
| addr = CALLER_ADDR2; | |
| if (in_lock_functions(addr)) | |
| addr = CALLER_ADDR3; | |
| } | |
| return addr; | |
| } | |
| #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | |
| defined(CONFIG_PREEMPT_TRACER)) | |
| void __kprobes add_preempt_count(int val) | |
| { | |
| #ifdef CONFIG_DEBUG_PREEMPT | |
| /* | |
| * Underflow? | |
| */ | |
| if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | |
| return; | |
| #endif | |
| preempt_count() += val; | |
| #ifdef CONFIG_DEBUG_PREEMPT | |
| /* | |
| * Spinlock count overflowing soon? | |
| */ | |
| DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | |
| PREEMPT_MASK - 10); | |
| #endif | |
| if (preempt_count() == val) | |
| trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
| } | |
| EXPORT_SYMBOL(add_preempt_count); | |
| void __kprobes sub_preempt_count(int val) | |
| { | |
| #ifdef CONFIG_DEBUG_PREEMPT | |
| /* | |
| * Underflow? | |
| */ | |
| if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | |
| return; | |
| /* | |
| * Is the spinlock portion underflowing? | |
| */ | |
| if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | |
| !(preempt_count() & PREEMPT_MASK))) | |
| return; | |
| #endif | |
| if (preempt_count() == val) | |
| trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | |
| preempt_count() -= val; | |
| } | |
| EXPORT_SYMBOL(sub_preempt_count); | |
| #endif | |
| /* | |
| * Print scheduling while atomic bug: | |
| */ | |
| static noinline void __schedule_bug(struct task_struct *prev) | |
| { | |
| struct pt_regs *regs = get_irq_regs(); | |
| printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | |
| prev->comm, prev->pid, preempt_count()); | |
| debug_show_held_locks(prev); | |
| print_modules(); | |
| if (irqs_disabled()) | |
| print_irqtrace_events(prev); | |
| if (regs) | |
| show_regs(regs); | |
| else | |
| dump_stack(); | |
| } | |
| /* | |
| * Various schedule()-time debugging checks and statistics: | |
| */ | |
| static inline void schedule_debug(struct task_struct *prev) | |
| { | |
| /* | |
| * Test if we are atomic. Since do_exit() needs to call into | |
| * schedule() atomically, we ignore that path for now. | |
| * Otherwise, whine if we are scheduling when we should not be. | |
| */ | |
| if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | |
| __schedule_bug(prev); | |
| profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | |
| schedstat_inc(this_rq(), sched_count); | |
| #ifdef CONFIG_SCHEDSTATS | |
| if (unlikely(prev->lock_depth >= 0)) { | |
| schedstat_inc(this_rq(), bkl_count); | |
| schedstat_inc(prev, sched_info.bkl_count); | |
| } | |
| #endif | |
| } | |
| static void put_prev_task(struct rq *rq, struct task_struct *prev) | |
| { | |
| if (prev->state == TASK_RUNNING) { | |
| u64 runtime = prev->se.sum_exec_runtime; | |
| runtime -= prev->se.prev_sum_exec_runtime; | |
| runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | |
| /* | |
| * In order to avoid avg_overlap growing stale when we are | |
| * indeed overlapping and hence not getting put to sleep, grow | |
| * the avg_overlap on preemption. | |
| * | |
| * We use the average preemption runtime because that | |
| * correlates to the amount of cache footprint a task can | |
| * build up. | |
| */ | |
| update_avg(&prev->se.avg_overlap, runtime); | |
| } | |
| prev->sched_class->put_prev_task(rq, prev); | |
| } | |
| /* | |
| * Pick up the highest-prio task: | |
| */ | |
| static inline struct task_struct * | |
| pick_next_task(struct rq *rq) | |
| { | |
| const struct sched_class *class; | |
| struct task_struct *p; | |
| /* | |
| * Optimization: we know that if all tasks are in | |
| * the fair class we can call that function directly: | |
| */ | |
| if (likely(rq->nr_running == rq->cfs.nr_running)) { | |
| p = fair_sched_class.pick_next_task(rq); | |
| if (likely(p)) | |
| return p; | |
| } | |
| class = sched_class_highest; | |
| for ( ; ; ) { | |
| p = class->pick_next_task(rq); | |
| if (p) | |
| return p; | |
| /* | |
| * Will never be NULL as the idle class always | |
| * returns a non-NULL p: | |
| */ | |
| class = class->next; | |
| } | |
| } | |
| /* | |
| * schedule() is the main scheduler function. | |
| */ | |
| asmlinkage void __sched schedule(void) | |
| { | |
| struct task_struct *prev, *next; | |
| unsigned long *switch_count; | |
| struct rq *rq; | |
| int cpu; | |
| need_resched: | |
| preempt_disable(); | |
| cpu = smp_processor_id(); | |
| rq = cpu_rq(cpu); | |
| rcu_sched_qs(cpu); | |
| prev = rq->curr; | |
| switch_count = &prev->nivcsw; | |
| release_kernel_lock(prev); | |
| need_resched_nonpreemptible: | |
| schedule_debug(prev); | |
| if (sched_feat(HRTICK)) | |
| hrtick_clear(rq); | |
| raw_spin_lock_irq(&rq->lock); | |
| update_rq_clock(rq); | |
| clear_tsk_need_resched(prev); | |
| if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | |
| if (unlikely(signal_pending_state(prev->state, prev))) | |
| prev->state = TASK_RUNNING; | |
| else | |
| deactivate_task(rq, prev, 1); | |
| switch_count = &prev->nvcsw; | |
| } | |
| pre_schedule(rq, prev); | |
| if (unlikely(!rq->nr_running)) | |
| idle_balance(cpu, rq); | |
| put_prev_task(rq, prev); | |
| next = pick_next_task(rq); | |
| if (likely(prev != next)) { | |
| sched_info_switch(prev, next); | |
| perf_event_task_sched_out(prev, next); | |
| rq->nr_switches++; | |
| rq->curr = next; | |
| ++*switch_count; | |
| context_switch(rq, prev, next); /* unlocks the rq */ | |
| /* | |
| * the context switch might have flipped the stack from under | |
| * us, hence refresh the local variables. | |
| */ | |
| cpu = smp_processor_id(); | |
| rq = cpu_rq(cpu); | |
| } else | |
| raw_spin_unlock_irq(&rq->lock); | |
| post_schedule(rq); | |
| if (unlikely(reacquire_kernel_lock(current) < 0)) { | |
| prev = rq->curr; | |
| switch_count = &prev->nivcsw; | |
| goto need_resched_nonpreemptible; | |
| } | |
| preempt_enable_no_resched(); | |
| if (need_resched()) | |
| goto need_resched; | |
| } | |
| EXPORT_SYMBOL(schedule); | |
| #ifdef CONFIG_MUTEX_SPIN_ON_OWNER | |
| /* | |
| * Look out! "owner" is an entirely speculative pointer | |
| * access and not reliable. | |
| */ | |
| int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) | |
| { | |
| unsigned int cpu; | |
| struct rq *rq; | |
| if (!sched_feat(OWNER_SPIN)) | |
| return 0; | |
| #ifdef CONFIG_DEBUG_PAGEALLOC | |
| /* | |
| * Need to access the cpu field knowing that | |
| * DEBUG_PAGEALLOC could have unmapped it if | |
| * the mutex owner just released it and exited. | |
| */ | |
| if (probe_kernel_address(&owner->cpu, cpu)) | |
| return 0; | |
| #else | |
| cpu = owner->cpu; | |
| #endif | |
| /* | |
| * Even if the access succeeded (likely case), | |
| * the cpu field may no longer be valid. | |
| */ | |
| if (cpu >= nr_cpumask_bits) | |
| return 0; | |
| /* | |
| * We need to validate that we can do a | |
| * get_cpu() and that we have the percpu area. | |
| */ | |
| if (!cpu_online(cpu)) | |
| return 0; | |
| rq = cpu_rq(cpu); | |
| for (;;) { | |
| /* | |
| * Owner changed, break to re-assess state. | |
| */ | |
| if (lock->owner != owner) | |
| break; | |
| /* | |
| * Is that owner really running on that cpu? | |
| */ | |
| if (task_thread_info(rq->curr) != owner || need_resched()) | |
| return 0; | |
| cpu_relax(); | |
| } | |
| return 1; | |
| } | |
| #endif | |
| #ifdef CONFIG_PREEMPT | |
| /* | |
| * this is the entry point to schedule() from in-kernel preemption | |
| * off of preempt_enable. Kernel preemptions off return from interrupt | |
| * occur there and call schedule directly. | |
| */ | |
| asmlinkage void __sched preempt_schedule(void) | |
| { | |
| struct thread_info *ti = current_thread_info(); | |
| /* | |
| * If there is a non-zero preempt_count or interrupts are disabled, | |
| * we do not want to preempt the current task. Just return.. | |
| */ | |
| if (likely(ti->preempt_count || irqs_disabled())) | |
| return; | |
| do { | |
| add_preempt_count(PREEMPT_ACTIVE); | |
| schedule(); | |
| sub_preempt_count(PREEMPT_ACTIVE); | |
| /* | |
| * Check again in case we missed a preemption opportunity | |
| * between schedule and now. | |
| */ | |
| barrier(); | |
| } while (need_resched()); | |
| } | |
| EXPORT_SYMBOL(preempt_schedule); | |
| /* | |
| * this is the entry point to schedule() from kernel preemption | |
| * off of irq context. | |
| * Note, that this is called and return with irqs disabled. This will | |
| * protect us against recursive calling from irq. | |
| */ | |
| asmlinkage void __sched preempt_schedule_irq(void) | |
| { | |
| struct thread_info *ti = current_thread_info(); | |
| /* Catch callers which need to be fixed */ | |
| BUG_ON(ti->preempt_count || !irqs_disabled()); | |
| do { | |
| add_preempt_count(PREEMPT_ACTIVE); | |
| local_irq_enable(); | |
| schedule(); | |
| local_irq_disable(); | |
| sub_preempt_count(PREEMPT_ACTIVE); | |
| /* | |
| * Check again in case we missed a preemption opportunity | |
| * between schedule and now. | |
| */ | |
| barrier(); | |
| } while (need_resched()); | |
| } | |
| #endif /* CONFIG_PREEMPT */ | |
| int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, | |
| void *key) | |
| { | |
| return try_to_wake_up(curr->private, mode, wake_flags); | |
| } | |
| EXPORT_SYMBOL(default_wake_function); | |
| /* | |
| * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | |
| * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
| * number) then we wake all the non-exclusive tasks and one exclusive task. | |
| * | |
| * There are circumstances in which we can try to wake a task which has already | |
| * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | |
| * zero in this (rare) case, and we handle it by continuing to scan the queue. | |
| */ | |
| static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | |
| int nr_exclusive, int wake_flags, void *key) | |
| { | |
| wait_queue_t *curr, *next; | |
| list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | |
| unsigned flags = curr->flags; | |
| if (curr->func(curr, mode, wake_flags, key) && | |
| (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | |
| break; | |
| } | |
| } | |
| /** | |
| * __wake_up - wake up threads blocked on a waitqueue. | |
| * @q: the waitqueue | |
| * @mode: which threads | |
| * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
| * @key: is directly passed to the wakeup function | |
| * | |
| * It may be assumed that this function implies a write memory barrier before | |
| * changing the task state if and only if any tasks are woken up. | |
| */ | |
| void __wake_up(wait_queue_head_t *q, unsigned int mode, | |
| int nr_exclusive, void *key) | |
| { | |
| unsigned long flags; | |
| spin_lock_irqsave(&q->lock, flags); | |
| __wake_up_common(q, mode, nr_exclusive, 0, key); | |
| spin_unlock_irqrestore(&q->lock, flags); | |
| } | |
| EXPORT_SYMBOL(__wake_up); | |
| /* | |
| * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
| */ | |
| void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |
| { | |
| __wake_up_common(q, mode, 1, 0, NULL); | |
| } | |
| void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | |
| { | |
| __wake_up_common(q, mode, 1, 0, key); | |
| } | |
| /** | |
| * __wake_up_sync_key - wake up threads blocked on a waitqueue. | |
| * @q: the waitqueue | |
| * @mode: which threads | |
| * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
| * @key: opaque value to be passed to wakeup targets | |
| * | |
| * The sync wakeup differs that the waker knows that it will schedule | |
| * away soon, so while the target thread will be woken up, it will not | |
| * be migrated to another CPU - ie. the two threads are 'synchronized' | |
| * with each other. This can prevent needless bouncing between CPUs. | |
| * | |
| * On UP it can prevent extra preemption. | |
| * | |
| * It may be assumed that this function implies a write memory barrier before | |
| * changing the task state if and only if any tasks are woken up. | |
| */ | |
| void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |
| int nr_exclusive, void *key) | |
| { | |
| unsigned long flags; | |
| int wake_flags = WF_SYNC; | |
| if (unlikely(!q)) | |
| return; | |
| if (unlikely(!nr_exclusive)) | |
| wake_flags = 0; | |
| spin_lock_irqsave(&q->lock, flags); | |
| __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | |
| spin_unlock_irqrestore(&q->lock, flags); | |
| } | |
| EXPORT_SYMBOL_GPL(__wake_up_sync_key); | |
| /* | |
| * __wake_up_sync - see __wake_up_sync_key() | |
| */ | |
| void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
| { | |
| __wake_up_sync_key(q, mode, nr_exclusive, NULL); | |
| } | |
| EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
| /** | |
| * complete: - signals a single thread waiting on this completion | |
| * @x: holds the state of this particular completion | |
| * | |
| * This will wake up a single thread waiting on this completion. Threads will be | |
| * awakened in the same order in which they were queued. | |
| * | |
| * See also complete_all(), wait_for_completion() and related routines. | |
| * | |
| * It may be assumed that this function implies a write memory barrier before | |
| * changing the task state if and only if any tasks are woken up. | |
| */ | |
| void complete(struct completion *x) | |
| { | |
| unsigned long flags; | |
| spin_lock_irqsave(&x->wait.lock, flags); | |
| x->done++; | |
| __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | |
| spin_unlock_irqrestore(&x->wait.lock, flags); | |
| } | |
| EXPORT_SYMBOL(complete); | |
| /** | |
| * complete_all: - signals all threads waiting on this completion | |
| * @x: holds the state of this particular completion | |
| * | |
| * This will wake up all threads waiting on this particular completion event. | |
| * | |
| * It may be assumed that this function implies a write memory barrier before | |
| * changing the task state if and only if any tasks are woken up. | |
| */ | |
| void complete_all(struct completion *x) | |
| { | |
| unsigned long flags; | |
| spin_lock_irqsave(&x->wait.lock, flags); | |
| x->done += UINT_MAX/2; | |
| __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | |
| spin_unlock_irqrestore(&x->wait.lock, flags); | |
| } | |
| EXPORT_SYMBOL(complete_all); | |
| static inline long __sched | |
| do_wait_for_common(struct completion *x, long timeout, int state) | |
| { | |
| if (!x->done) { | |
| DECLARE_WAITQUEUE(wait, current); | |
| wait.flags |= WQ_FLAG_EXCLUSIVE; | |
| __add_wait_queue_tail(&x->wait, &wait); | |
| do { | |
| if (signal_pending_state(state, current)) { | |
| timeout = -ERESTARTSYS; | |
| break; | |
| } | |
| __set_current_state(state); | |
| spin_unlock_irq(&x->wait.lock); | |
| timeout = schedule_timeout(timeout); | |
| spin_lock_irq(&x->wait.lock); | |
| } while (!x->done && timeout); | |
| __remove_wait_queue(&x->wait, &wait); | |
| if (!x->done) | |
| return timeout; | |
| } | |
| x->done--; | |
| return timeout ?: 1; | |
| } | |
| static long __sched | |
| wait_for_common(struct completion *x, long timeout, int state) | |
| { | |
| might_sleep(); | |
| spin_lock_irq(&x->wait.lock); | |
| timeout = do_wait_for_common(x, timeout, state); | |
| spin_unlock_irq(&x->wait.lock); | |
| return timeout; | |
| } | |
| /** | |
| * wait_for_completion: - waits for completion of a task | |
| * @x: holds the state of this particular completion | |
| * | |
| * This waits to be signaled for completion of a specific task. It is NOT | |
| * interruptible and there is no timeout. | |
| * | |
| * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | |
| * and interrupt capability. Also see complete(). | |
| */ | |
| void __sched wait_for_completion(struct completion *x) | |
| { | |
| wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | |
| } | |
| EXPORT_SYMBOL(wait_for_completion); | |
| /** | |
| * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | |
| * @x: holds the state of this particular completion | |
| * @timeout: timeout value in jiffies | |
| * | |
| * This waits for either a completion of a specific task to be signaled or for a | |
| * specified timeout to expire. The timeout is in jiffies. It is not | |
| * interruptible. | |
| */ | |
| unsigned long __sched | |
| wait_for_completion_timeout(struct completion *x, unsigned long timeout) | |
| { | |
| return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | |
| } | |
| EXPORT_SYMBOL(wait_for_completion_timeout); | |
| /** | |
| * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | |
| * @x: holds the state of this particular completion | |
| * | |
| * This waits for completion of a specific task to be signaled. It is | |
| * interruptible. | |
| */ | |
| int __sched wait_for_completion_interruptible(struct completion *x) | |
| { | |
| long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | |
| if (t == -ERESTARTSYS) | |
| return t; | |
| return 0; | |
| } | |
| EXPORT_SYMBOL(wait_for_completion_interruptible); | |
| /** | |
| * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | |
| * @x: holds the state of this particular completion | |
| * @timeout: timeout value in jiffies | |
| * | |
| * This waits for either a completion of a specific task to be signaled or for a | |
| * specified timeout to expire. It is interruptible. The timeout is in jiffies. | |
| */ | |
| unsigned long __sched | |
| wait_for_completion_interruptible_timeout(struct completion *x, | |
| unsigned long timeout) | |
| { | |
| return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | |
| } | |
| EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | |
| /** | |
| * wait_for_completion_killable: - waits for completion of a task (killable) | |
| * @x: holds the state of this particular completion | |
| * | |
| * This waits to be signaled for completion of a specific task. It can be | |
| * interrupted by a kill signal. | |
| */ | |
| int __sched wait_for_completion_killable(struct completion *x) | |
| { | |
| long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | |
| if (t == -ERESTARTSYS) | |
| return t; | |
| return 0; | |
| } | |
| EXPORT_SYMBOL(wait_for_completion_killable); | |
| /** | |
| * try_wait_for_completion - try to decrement a completion without blocking | |
| * @x: completion structure | |
| * | |
| * Returns: 0 if a decrement cannot be done without blocking | |
| * 1 if a decrement succeeded. | |
| * | |
| * If a completion is being used as a counting completion, | |
| * attempt to decrement the counter without blocking. This | |
| * enables us to avoid waiting if the resource the completion | |
| * is protecting is not available. | |
| */ | |
| bool try_wait_for_completion(struct completion *x) | |
| { | |
| unsigned long flags; | |
| int ret = 1; | |
| spin_lock_irqsave(&x->wait.lock, flags); | |
| if (!x->done) | |
| ret = 0; | |
| else | |
| x->done--; | |
| spin_unlock_irqrestore(&x->wait.lock, flags); | |
| return ret; | |
| } | |
| EXPORT_SYMBOL(try_wait_for_completion); | |
| /** | |
| * completion_done - Test to see if a completion has any waiters | |
| * @x: completion structure | |
| * | |
| * Returns: 0 if there are waiters (wait_for_completion() in progress) | |
| * 1 if there are no waiters. | |
| * | |
| */ | |
| bool completion_done(struct completion *x) | |
| { | |
| unsigned long flags; | |
| int ret = 1; | |
| spin_lock_irqsave(&x->wait.lock, flags); | |
| if (!x->done) | |
| ret = 0; | |
| spin_unlock_irqrestore(&x->wait.lock, flags); | |
| return ret; | |
| } | |
| EXPORT_SYMBOL(completion_done); | |
| static long __sched | |
| sleep_on_common(wait_queue_head_t *q, int state, long timeout) | |
| { | |
| unsigned long flags; | |
| wait_queue_t wait; | |
| init_waitqueue_entry(&wait, current); | |
| __set_current_state(state); | |
| spin_lock_irqsave(&q->lock, flags); | |
| __add_wait_queue(q, &wait); | |
| spin_unlock(&q->lock); | |
| timeout = schedule_timeout(timeout); | |
| spin_lock_irq(&q->lock); | |
| __remove_wait_queue(q, &wait); | |
| spin_unlock_irqrestore(&q->lock, flags); | |
| return timeout; | |
| } | |
| void __sched interruptible_sleep_on(wait_queue_head_t *q) | |
| { | |
| sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
| } | |
| EXPORT_SYMBOL(interruptible_sleep_on); | |
| long __sched | |
| interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | |
| { | |
| return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | |
| } | |
| EXPORT_SYMBOL(interruptible_sleep_on_timeout); | |
| void __sched sleep_on(wait_queue_head_t *q) | |
| { | |
| sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | |
| } | |
| EXPORT_SYMBOL(sleep_on); | |
| long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | |
| { | |
| return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | |
| } | |
| EXPORT_SYMBOL(sleep_on_timeout); | |
| #ifdef CONFIG_RT_MUTEXES | |
| /* | |
| * rt_mutex_setprio - set the current priority of a task | |
| * @p: task | |
| * @prio: prio value (kernel-internal form) | |
| * | |
| * This function changes the 'effective' priority of a task. It does | |
| * not touch ->normal_prio like __setscheduler(). | |
| * | |
| * Used by the rt_mutex code to implement priority inheritance logic. | |
| */ | |
| void rt_mutex_setprio(struct task_struct *p, int prio) | |
| { | |
| unsigned long flags; | |
| int oldprio, on_rq, running; | |
| struct rq *rq; | |
| const struct sched_class *prev_class; | |
| BUG_ON(prio < 0 || prio > MAX_PRIO); | |
| rq = task_rq_lock(p, &flags); | |
| update_rq_clock(rq); | |
| oldprio = p->prio; | |
| prev_class = p->sched_class; | |
| on_rq = p->se.on_rq; | |
| running = task_current(rq, p); | |
| if (on_rq) | |
| dequeue_task(rq, p, 0); | |
| if (running) | |
| p->sched_class->put_prev_task(rq, p); | |
| if (rt_prio(prio)) | |
| p->sched_class = &rt_sched_class; | |
| else | |
| p->sched_class = &fair_sched_class; | |
| p->prio = prio; | |
| if (running) | |
| p->sched_class->set_curr_task(rq); | |
| if (on_rq) { | |
| enqueue_task(rq, p, 0, oldprio < prio); | |
| check_class_changed(rq, p, prev_class, oldprio, running); | |
| } | |
| task_rq_unlock(rq, &flags); | |
| } | |
| #endif | |
| void set_user_nice(struct task_struct *p, long nice) | |
| { | |
| int old_prio, delta, on_rq; | |
| unsigned long flags; | |
| struct rq *rq; | |
| if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
| return; | |
| /* | |
| * We have to be careful, if called from sys_setpriority(), | |
| * the task might be in the middle of scheduling on another CPU. | |
| */ | |
| rq = task_rq_lock(p, &flags); | |
| update_rq_clock(rq); | |
| /* | |
| * The RT priorities are set via sched_setscheduler(), but we still | |
| * allow the 'normal' nice value to be set - but as expected | |
| * it wont have any effect on scheduling until the task is | |
| * SCHED_FIFO/SCHED_RR: | |
| */ | |
| if (task_has_rt_policy(p)) { | |
| p->static_prio = NICE_TO_PRIO(nice); | |
| goto out_unlock; | |
| } | |
| on_rq = p->se.on_rq; | |
| if (on_rq) | |
| dequeue_task(rq, p, 0); | |
| p->static_prio = NICE_TO_PRIO(nice); | |
| set_load_weight(p); | |
| old_prio = p->prio; | |
| p->prio = effective_prio(p); | |
| delta = p->prio - old_prio; | |
| if (on_rq) { | |
| enqueue_task(rq, p, 0, false); | |
| /* | |
| * If the task increased its priority or is running and | |
| * lowered its priority, then reschedule its CPU: | |
| */ | |
| if (delta < 0 || (delta > 0 && task_running(rq, p))) | |
| resched_task(rq->curr); | |
| } | |
| out_unlock: | |
| task_rq_unlock(rq, &flags); | |
| } | |
| EXPORT_SYMBOL(set_user_nice); | |
| /* | |
| * can_nice - check if a task can reduce its nice value | |
| * @p: task | |
| * @nice: nice value | |
| */ | |
| int can_nice(const struct task_struct *p, const int nice) | |
| { | |
| /* convert nice value [19,-20] to rlimit style value [1,40] */ | |
| int nice_rlim = 20 - nice; | |
| return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || | |
| capable(CAP_SYS_NICE)); | |
| } | |
| #ifdef __ARCH_WANT_SYS_NICE | |
| /* | |
| * sys_nice - change the priority of the current process. | |
| * @increment: priority increment | |
| * | |
| * sys_setpriority is a more generic, but much slower function that | |
| * does similar things. | |
| */ | |
| SYSCALL_DEFINE1(nice, int, increment) | |
| { | |
| long nice, retval; | |
| /* | |
| * Setpriority might change our priority at the same moment. | |
| * We don't have to worry. Conceptually one call occurs first | |
| * and we have a single winner. | |
| */ | |
| if (increment < -40) | |
| increment = -40; | |
| if (increment > 40) | |
| increment = 40; | |
| nice = TASK_NICE(current) + increment; | |
| if (nice < -20) | |
| nice = -20; | |
| if (nice > 19) | |
| nice = 19; | |
| if (increment < 0 && !can_nice(current, nice)) | |
| return -EPERM; | |
| retval = security_task_setnice(current, nice); | |
| if (retval) | |
| return retval; | |
| set_user_nice(current, nice); | |
| return 0; | |
| } | |
| #endif | |
| /** | |
| * task_prio - return the priority value of a given task. | |
| * @p: the task in question. | |
| * | |
| * This is the priority value as seen by users in /proc. | |
| * RT tasks are offset by -200. Normal tasks are centered | |
| * around 0, value goes from -16 to +15. | |
| */ | |
| int task_prio(const struct task_struct *p) | |
| { | |
| return p->prio - MAX_RT_PRIO; | |
| } | |
| /** | |
| * task_nice - return the nice value of a given task. | |
| * @p: the task in question. | |
| */ | |
| int task_nice(const struct task_struct *p) | |
| { | |
| return TASK_NICE(p); | |
| } | |
| EXPORT_SYMBOL(task_nice); | |
| /** | |
| * idle_cpu - is a given cpu idle currently? | |
| * @cpu: the processor in question. | |
| */ | |
| int idle_cpu(int cpu) | |
| { | |
| return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
| } | |
| /** | |
| * idle_task - return the idle task for a given cpu. | |
| * @cpu: the processor in question. | |
| */ | |
| struct task_struct *idle_task(int cpu) | |
| { | |
| return cpu_rq(cpu)->idle; | |
| } | |
| /** | |
| * find_process_by_pid - find a process with a matching PID value. | |
| * @pid: the pid in question. | |
| */ | |
| static struct task_struct *find_process_by_pid(pid_t pid) | |
| { | |
| return pid ? find_task_by_vpid(pid) : current; | |
| } | |
| /* Actually do priority change: must hold rq lock. */ | |
| static void | |
| __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | |
| { | |
| BUG_ON(p->se.on_rq); | |
| p->policy = policy; | |
| p->rt_priority = prio; | |
| p->normal_prio = normal_prio(p); | |
| /* we are holding p->pi_lock already */ | |
| p->prio = rt_mutex_getprio(p); | |
| if (rt_prio(p->prio)) | |
| p->sched_class = &rt_sched_class; | |
| else | |
| p->sched_class = &fair_sched_class; | |
| set_load_weight(p); | |
| } | |
| /* | |
| * check the target process has a UID that matches the current process's | |
| */ | |
| static bool check_same_owner(struct task_struct *p) | |
| { | |
| const struct cred *cred = current_cred(), *pcred; | |
| bool match; | |
| rcu_read_lock(); | |
| pcred = __task_cred(p); | |
| match = (cred->euid == pcred->euid || | |
| cred->euid == pcred->uid); | |
| rcu_read_unlock(); | |
| return match; | |
| } | |
| static int __sched_setscheduler(struct task_struct *p, int policy, | |
| struct sched_param *param, bool user) | |
| { | |
| int retval, oldprio, oldpolicy = -1, on_rq, running; | |
| unsigned long flags; | |
| const struct sched_class *prev_class; | |
| struct rq *rq; | |
| int reset_on_fork; | |
| /* may grab non-irq protected spin_locks */ | |
| BUG_ON(in_interrupt()); | |
| recheck: | |
| /* double check policy once rq lock held */ | |
| if (policy < 0) { | |
| reset_on_fork = p->sched_reset_on_fork; | |
| policy = oldpolicy = p->policy; | |
| } else { | |
| reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); | |
| policy &= ~SCHED_RESET_ON_FORK; | |
| if (policy != SCHED_FIFO && policy != SCHED_RR && | |
| policy != SCHED_NORMAL && policy != SCHED_BATCH && | |
| policy != SCHED_IDLE) | |
| return -EINVAL; | |
| } | |
| /* | |
| * Valid priorities for SCHED_FIFO and SCHED_RR are | |
| * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | |
| * SCHED_BATCH and SCHED_IDLE is 0. | |
| */ | |
| if (param->sched_priority < 0 || | |
| (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | |
| (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | |
| return -EINVAL; | |
| if (rt_policy(policy) != (param->sched_priority != 0)) | |
| return -EINVAL; | |
| /* | |
| * Allow unprivileged RT tasks to decrease priority: | |
| */ | |
| if (user && !capable(CAP_SYS_NICE)) { | |
| if (rt_policy(policy)) { | |
| unsigned long rlim_rtprio; | |
| if (!lock_task_sighand(p, &flags)) | |
| return -ESRCH; | |
| rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); | |
| unlock_task_sighand(p, &flags); | |
| /* can't set/change the rt policy */ | |
| if (policy != p->policy && !rlim_rtprio) | |
| return -EPERM; | |
| /* can't increase priority */ | |
| if (param->sched_priority > p->rt_priority && | |
| param->sched_priority > rlim_rtprio) | |
| return -EPERM; | |
| } | |
| /* | |
| * Like positive nice levels, dont allow tasks to | |
| * move out of SCHED_IDLE either: | |
| */ | |
| if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | |
| return -EPERM; | |
| /* can't change other user's priorities */ | |
| if (!check_same_owner(p)) | |
| return -EPERM; | |
| /* Normal users shall not reset the sched_reset_on_fork flag */ | |
| if (p->sched_reset_on_fork && !reset_on_fork) | |
| return -EPERM; | |
| } | |
| if (user) { | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| /* | |
| * Do not allow realtime tasks into groups that have no runtime | |
| * assigned. | |
| */ | |
| if (rt_bandwidth_enabled() && rt_policy(policy) && | |
| task_group(p)->rt_bandwidth.rt_runtime == 0) | |
| return -EPERM; | |
| #endif | |
| retval = security_task_setscheduler(p, policy, param); | |
| if (retval) | |
| return retval; | |
| } | |
| /* | |
| * make sure no PI-waiters arrive (or leave) while we are | |
| * changing the priority of the task: | |
| */ | |
| raw_spin_lock_irqsave(&p->pi_lock, flags); | |
| /* | |
| * To be able to change p->policy safely, the apropriate | |
| * runqueue lock must be held. | |
| */ | |
| rq = __task_rq_lock(p); | |
| /* recheck policy now with rq lock held */ | |
| if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
| policy = oldpolicy = -1; | |
| __task_rq_unlock(rq); | |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); | |
| goto recheck; | |
| } | |
| update_rq_clock(rq); | |
| on_rq = p->se.on_rq; | |
| running = task_current(rq, p); | |
| if (on_rq) | |
| deactivate_task(rq, p, 0); | |
| if (running) | |
| p->sched_class->put_prev_task(rq, p); | |
| p->sched_reset_on_fork = reset_on_fork; | |
| oldprio = p->prio; | |
| prev_class = p->sched_class; | |
| __setscheduler(rq, p, policy, param->sched_priority); | |
| if (running) | |
| p->sched_class->set_curr_task(rq); | |
| if (on_rq) { | |
| activate_task(rq, p, 0); | |
| check_class_changed(rq, p, prev_class, oldprio, running); | |
| } | |
| __task_rq_unlock(rq); | |
| raw_spin_unlock_irqrestore(&p->pi_lock, flags); | |
| rt_mutex_adjust_pi(p); | |
| return 0; | |
| } | |
| /** | |
| * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | |
| * @p: the task in question. | |
| * @policy: new policy. | |
| * @param: structure containing the new RT priority. | |
| * | |
| * NOTE that the task may be already dead. | |
| */ | |
| int sched_setscheduler(struct task_struct *p, int policy, | |
| struct sched_param *param) | |
| { | |
| return __sched_setscheduler(p, policy, param, true); | |
| } | |
| EXPORT_SYMBOL_GPL(sched_setscheduler); | |
| /** | |
| * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | |
| * @p: the task in question. | |
| * @policy: new policy. | |
| * @param: structure containing the new RT priority. | |
| * | |
| * Just like sched_setscheduler, only don't bother checking if the | |
| * current context has permission. For example, this is needed in | |
| * stop_machine(): we create temporary high priority worker threads, | |
| * but our caller might not have that capability. | |
| */ | |
| int sched_setscheduler_nocheck(struct task_struct *p, int policy, | |
| struct sched_param *param) | |
| { | |
| return __sched_setscheduler(p, policy, param, false); | |
| } | |
| static int | |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
| { | |
| struct sched_param lparam; | |
| struct task_struct *p; | |
| int retval; | |
| if (!param || pid < 0) | |
| return -EINVAL; | |
| if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
| return -EFAULT; | |
| rcu_read_lock(); | |
| retval = -ESRCH; | |
| p = find_process_by_pid(pid); | |
| if (p != NULL) | |
| retval = sched_setscheduler(p, policy, &lparam); | |
| rcu_read_unlock(); | |
| return retval; | |
| } | |
| /** | |
| * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
| * @pid: the pid in question. | |
| * @policy: new policy. | |
| * @param: structure containing the new RT priority. | |
| */ | |
| SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, | |
| struct sched_param __user *, param) | |
| { | |
| /* negative values for policy are not valid */ | |
| if (policy < 0) | |
| return -EINVAL; | |
| return do_sched_setscheduler(pid, policy, param); | |
| } | |
| /** | |
| * sys_sched_setparam - set/change the RT priority of a thread | |
| * @pid: the pid in question. | |
| * @param: structure containing the new RT priority. | |
| */ | |
| SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) | |
| { | |
| return do_sched_setscheduler(pid, -1, param); | |
| } | |
| /** | |
| * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
| * @pid: the pid in question. | |
| */ | |
| SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) | |
| { | |
| struct task_struct *p; | |
| int retval; | |
| if (pid < 0) | |
| return -EINVAL; | |
| retval = -ESRCH; | |
| rcu_read_lock(); | |
| p = find_process_by_pid(pid); | |
| if (p) { | |
| retval = security_task_getscheduler(p); | |
| if (!retval) | |
| retval = p->policy | |
| | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); | |
| } | |
| rcu_read_unlock(); | |
| return retval; | |
| } | |
| /** | |
| * sys_sched_getparam - get the RT priority of a thread | |
| * @pid: the pid in question. | |
| * @param: structure containing the RT priority. | |
| */ | |
| SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) | |
| { | |
| struct sched_param lp; | |
| struct task_struct *p; | |
| int retval; | |
| if (!param || pid < 0) | |
| return -EINVAL; | |
| rcu_read_lock(); | |
| p = find_process_by_pid(pid); | |
| retval = -ESRCH; | |
| if (!p) | |
| goto out_unlock; | |
| retval = security_task_getscheduler(p); | |
| if (retval) | |
| goto out_unlock; | |
| lp.sched_priority = p->rt_priority; | |
| rcu_read_unlock(); | |
| /* | |
| * This one might sleep, we cannot do it with a spinlock held ... | |
| */ | |
| retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
| return retval; | |
| out_unlock: | |
| rcu_read_unlock(); | |
| return retval; | |
| } | |
| long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) | |
| { | |
| cpumask_var_t cpus_allowed, new_mask; | |
| struct task_struct *p; | |
| int retval; | |
| get_online_cpus(); | |
| rcu_read_lock(); | |
| p = find_process_by_pid(pid); | |
| if (!p) { | |
| rcu_read_unlock(); | |
| put_online_cpus(); | |
| return -ESRCH; | |
| } | |
| /* Prevent p going away */ | |
| get_task_struct(p); | |
| rcu_read_unlock(); | |
| if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { | |
| retval = -ENOMEM; | |
| goto out_put_task; | |
| } | |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { | |
| retval = -ENOMEM; | |
| goto out_free_cpus_allowed; | |
| } | |
| retval = -EPERM; | |
| if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) | |
| goto out_unlock; | |
| retval = security_task_setscheduler(p, 0, NULL); | |
| if (retval) | |
| goto out_unlock; | |
| cpuset_cpus_allowed(p, cpus_allowed); | |
| cpumask_and(new_mask, in_mask, cpus_allowed); | |
| again: | |
| retval = set_cpus_allowed_ptr(p, new_mask); | |
| if (!retval) { | |
| cpuset_cpus_allowed(p, cpus_allowed); | |
| if (!cpumask_subset(new_mask, cpus_allowed)) { | |
| /* | |
| * We must have raced with a concurrent cpuset | |
| * update. Just reset the cpus_allowed to the | |
| * cpuset's cpus_allowed | |
| */ | |
| cpumask_copy(new_mask, cpus_allowed); | |
| goto again; | |
| } | |
| } | |
| out_unlock: | |
| free_cpumask_var(new_mask); | |
| out_free_cpus_allowed: | |
| free_cpumask_var(cpus_allowed); | |
| out_put_task: | |
| put_task_struct(p); | |
| put_online_cpus(); | |
| return retval; | |
| } | |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
| struct cpumask *new_mask) | |
| { | |
| if (len < cpumask_size()) | |
| cpumask_clear(new_mask); | |
| else if (len > cpumask_size()) | |
| len = cpumask_size(); | |
| return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | |
| } | |
| /** | |
| * sys_sched_setaffinity - set the cpu affinity of a process | |
| * @pid: pid of the process | |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
| * @user_mask_ptr: user-space pointer to the new cpu mask | |
| */ | |
| SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, | |
| unsigned long __user *, user_mask_ptr) | |
| { | |
| cpumask_var_t new_mask; | |
| int retval; | |
| if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) | |
| return -ENOMEM; | |
| retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); | |
| if (retval == 0) | |
| retval = sched_setaffinity(pid, new_mask); | |
| free_cpumask_var(new_mask); | |
| return retval; | |
| } | |
| long sched_getaffinity(pid_t pid, struct cpumask *mask) | |
| { | |
| struct task_struct *p; | |
| unsigned long flags; | |
| struct rq *rq; | |
| int retval; | |
| get_online_cpus(); | |
| rcu_read_lock(); | |
| retval = -ESRCH; | |
| p = find_process_by_pid(pid); | |
| if (!p) | |
| goto out_unlock; | |
| retval = security_task_getscheduler(p); | |
| if (retval) | |
| goto out_unlock; | |
| rq = task_rq_lock(p, &flags); | |
| cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); | |
| task_rq_unlock(rq, &flags); | |
| out_unlock: | |
| rcu_read_unlock(); | |
| put_online_cpus(); | |
| return retval; | |
| } | |
| /** | |
| * sys_sched_getaffinity - get the cpu affinity of a process | |
| * @pid: pid of the process | |
| * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
| * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
| */ | |
| SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, | |
| unsigned long __user *, user_mask_ptr) | |
| { | |
| int ret; | |
| cpumask_var_t mask; | |
| if ((len * BITS_PER_BYTE) < nr_cpu_ids) | |
| return -EINVAL; | |
| if (len & (sizeof(unsigned long)-1)) | |
| return -EINVAL; | |
| if (!alloc_cpumask_var(&mask, GFP_KERNEL)) | |
| return -ENOMEM; | |
| ret = sched_getaffinity(pid, mask); | |
| if (ret == 0) { | |
| size_t retlen = min_t(size_t, len, cpumask_size()); | |
| if (copy_to_user(user_mask_ptr, mask, retlen)) | |
| ret = -EFAULT; | |
| else | |
| ret = retlen; | |
| } | |
| free_cpumask_var(mask); | |
| return ret; | |
| } | |
| /** | |
| * sys_sched_yield - yield the current processor to other threads. | |
| * | |
| * This function yields the current CPU to other tasks. If there are no | |
| * other threads running on this CPU then this function will return. | |
| */ | |
| SYSCALL_DEFINE0(sched_yield) | |
| { | |
| struct rq *rq = this_rq_lock(); | |
| schedstat_inc(rq, yld_count); | |
| current->sched_class->yield_task(rq); | |
| /* | |
| * Since we are going to call schedule() anyway, there's | |
| * no need to preempt or enable interrupts: | |
| */ | |
| __release(rq->lock); | |
| spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | |
| do_raw_spin_unlock(&rq->lock); | |
| preempt_enable_no_resched(); | |
| schedule(); | |
| return 0; | |
| } | |
| static inline int should_resched(void) | |
| { | |
| return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); | |
| } | |
| static void __cond_resched(void) | |
| { | |
| add_preempt_count(PREEMPT_ACTIVE); | |
| schedule(); | |
| sub_preempt_count(PREEMPT_ACTIVE); | |
| } | |
| int __sched _cond_resched(void) | |
| { | |
| if (should_resched()) { | |
| __cond_resched(); | |
| return 1; | |
| } | |
| return 0; | |
| } | |
| EXPORT_SYMBOL(_cond_resched); | |
| /* | |
| * __cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
| * call schedule, and on return reacquire the lock. | |
| * | |
| * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | |
| * operations here to prevent schedule() from being called twice (once via | |
| * spin_unlock(), once by hand). | |
| */ | |
| int __cond_resched_lock(spinlock_t *lock) | |
| { | |
| int resched = should_resched(); | |
| int ret = 0; | |
| lockdep_assert_held(lock); | |
| if (spin_needbreak(lock) || resched) { | |
| spin_unlock(lock); | |
| if (resched) | |
| __cond_resched(); | |
| else | |
| cpu_relax(); | |
| ret = 1; | |
| spin_lock(lock); | |
| } | |
| return ret; | |
| } | |
| EXPORT_SYMBOL(__cond_resched_lock); | |
| int __sched __cond_resched_softirq(void) | |
| { | |
| BUG_ON(!in_softirq()); | |
| if (should_resched()) { | |
| local_bh_enable(); | |
| __cond_resched(); | |
| local_bh_disable(); | |
| return 1; | |
| } | |
| return 0; | |
| } | |
| EXPORT_SYMBOL(__cond_resched_softirq); | |
| /** | |
| * yield - yield the current processor to other threads. | |
| * | |
| * This is a shortcut for kernel-space yielding - it marks the | |
| * thread runnable and calls sys_sched_yield(). | |
| */ | |
| void __sched yield(void) | |
| { | |
| set_current_state(TASK_RUNNING); | |
| sys_sched_yield(); | |
| } | |
| EXPORT_SYMBOL(yield); | |
| /* | |
| * This task is about to go to sleep on IO. Increment rq->nr_iowait so | |
| * that process accounting knows that this is a task in IO wait state. | |
| */ | |
| void __sched io_schedule(void) | |
| { | |
| struct rq *rq = raw_rq(); | |
| delayacct_blkio_start(); | |
| atomic_inc(&rq->nr_iowait); | |
| current->in_iowait = 1; | |
| schedule(); | |
| current->in_iowait = 0; | |
| atomic_dec(&rq->nr_iowait); | |
| delayacct_blkio_end(); | |
| } | |
| EXPORT_SYMBOL(io_schedule); | |
| long __sched io_schedule_timeout(long timeout) | |
| { | |
| struct rq *rq = raw_rq(); | |
| long ret; | |
| delayacct_blkio_start(); | |
| atomic_inc(&rq->nr_iowait); | |
| current->in_iowait = 1; | |
| ret = schedule_timeout(timeout); | |
| current->in_iowait = 0; | |
| atomic_dec(&rq->nr_iowait); | |
| delayacct_blkio_end(); | |
| return ret; | |
| } | |
| /** | |
| * sys_sched_get_priority_max - return maximum RT priority. | |
| * @policy: scheduling class. | |
| * | |
| * this syscall returns the maximum rt_priority that can be used | |
| * by a given scheduling class. | |
| */ | |
| SYSCALL_DEFINE1(sched_get_priority_max, int, policy) | |
| { | |
| int ret = -EINVAL; | |
| switch (policy) { | |
| case SCHED_FIFO: | |
| case SCHED_RR: | |
| ret = MAX_USER_RT_PRIO-1; | |
| break; | |
| case SCHED_NORMAL: | |
| case SCHED_BATCH: | |
| case SCHED_IDLE: | |
| ret = 0; | |
| break; | |
| } | |
| return ret; | |
| } | |
| /** | |
| * sys_sched_get_priority_min - return minimum RT priority. | |
| * @policy: scheduling class. | |
| * | |
| * this syscall returns the minimum rt_priority that can be used | |
| * by a given scheduling class. | |
| */ | |
| SYSCALL_DEFINE1(sched_get_priority_min, int, policy) | |
| { | |
| int ret = -EINVAL; | |
| switch (policy) { | |
| case SCHED_FIFO: | |
| case SCHED_RR: | |
| ret = 1; | |
| break; | |
| case SCHED_NORMAL: | |
| case SCHED_BATCH: | |
| case SCHED_IDLE: | |
| ret = 0; | |
| } | |
| return ret; | |
| } | |
| /** | |
| * sys_sched_rr_get_interval - return the default timeslice of a process. | |
| * @pid: pid of the process. | |
| * @interval: userspace pointer to the timeslice value. | |
| * | |
| * this syscall writes the default timeslice value of a given process | |
| * into the user-space timespec buffer. A value of '0' means infinity. | |
| */ | |
| SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |
| struct timespec __user *, interval) | |
| { | |
| struct task_struct *p; | |
| unsigned int time_slice; | |
| unsigned long flags; | |
| struct rq *rq; | |
| int retval; | |
| struct timespec t; | |
| if (pid < 0) | |
| return -EINVAL; | |
| retval = -ESRCH; | |
| rcu_read_lock(); | |
| p = find_process_by_pid(pid); | |
| if (!p) | |
| goto out_unlock; | |
| retval = security_task_getscheduler(p); | |
| if (retval) | |
| goto out_unlock; | |
| rq = task_rq_lock(p, &flags); | |
| time_slice = p->sched_class->get_rr_interval(rq, p); | |
| task_rq_unlock(rq, &flags); | |
| rcu_read_unlock(); | |
| jiffies_to_timespec(time_slice, &t); | |
| retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | |
| return retval; | |
| out_unlock: | |
| rcu_read_unlock(); | |
| return retval; | |
| } | |
| static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | |
| void sched_show_task(struct task_struct *p) | |
| { | |
| unsigned long free = 0; | |
| unsigned state; | |
| state = p->state ? __ffs(p->state) + 1 : 0; | |
| printk(KERN_INFO "%-13.13s %c", p->comm, | |
| state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | |
| #if BITS_PER_LONG == 32 | |
| if (state == TASK_RUNNING) | |
| printk(KERN_CONT " running "); | |
| else | |
| printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | |
| #else | |
| if (state == TASK_RUNNING) | |
| printk(KERN_CONT " running task "); | |
| else | |
| printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | |
| #endif | |
| #ifdef CONFIG_DEBUG_STACK_USAGE | |
| free = stack_not_used(p); | |
| #endif | |
| printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, | |
| task_pid_nr(p), task_pid_nr(p->real_parent), | |
| (unsigned long)task_thread_info(p)->flags); | |
| show_stack(p, NULL); | |
| } | |
| void show_state_filter(unsigned long state_filter) | |
| { | |
| struct task_struct *g, *p; | |
| #if BITS_PER_LONG == 32 | |
| printk(KERN_INFO | |
| " task PC stack pid father\n"); | |
| #else | |
| printk(KERN_INFO | |
| " task PC stack pid father\n"); | |
| #endif | |
| read_lock(&tasklist_lock); | |
| do_each_thread(g, p) { | |
| /* | |
| * reset the NMI-timeout, listing all files on a slow | |
| * console might take alot of time: | |
| */ | |
| touch_nmi_watchdog(); | |
| if (!state_filter || (p->state & state_filter)) | |
| sched_show_task(p); | |
| } while_each_thread(g, p); | |
| touch_all_softlockup_watchdogs(); | |
| #ifdef CONFIG_SCHED_DEBUG | |
| sysrq_sched_debug_show(); | |
| #endif | |
| read_unlock(&tasklist_lock); | |
| /* | |
| * Only show locks if all tasks are dumped: | |
| */ | |
| if (!state_filter) | |
| debug_show_all_locks(); | |
| } | |
| void __cpuinit init_idle_bootup_task(struct task_struct *idle) | |
| { | |
| idle->sched_class = &idle_sched_class; | |
| } | |
| /** | |
| * init_idle - set up an idle thread for a given CPU | |
| * @idle: task in question | |
| * @cpu: cpu the idle task belongs to | |
| * | |
| * NOTE: this function does not set the idle thread's NEED_RESCHED | |
| * flag, to make booting more robust. | |
| */ | |
| void __cpuinit init_idle(struct task_struct *idle, int cpu) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| unsigned long flags; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| __sched_fork(idle); | |
| idle->state = TASK_RUNNING; | |
| idle->se.exec_start = sched_clock(); | |
| cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); | |
| __set_task_cpu(idle, cpu); | |
| rq->curr = rq->idle = idle; | |
| #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | |
| idle->oncpu = 1; | |
| #endif | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| /* Set the preempt count _outside_ the spinlocks! */ | |
| #if defined(CONFIG_PREEMPT) | |
| task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | |
| #else | |
| task_thread_info(idle)->preempt_count = 0; | |
| #endif | |
| /* | |
| * The idle tasks have their own, simple scheduling class: | |
| */ | |
| idle->sched_class = &idle_sched_class; | |
| ftrace_graph_init_task(idle); | |
| } | |
| /* | |
| * In a system that switches off the HZ timer nohz_cpu_mask | |
| * indicates which cpus entered this state. This is used | |
| * in the rcu update to wait only for active cpus. For system | |
| * which do not switch off the HZ timer nohz_cpu_mask should | |
| * always be CPU_BITS_NONE. | |
| */ | |
| cpumask_var_t nohz_cpu_mask; | |
| /* | |
| * Increase the granularity value when there are more CPUs, | |
| * because with more CPUs the 'effective latency' as visible | |
| * to users decreases. But the relationship is not linear, | |
| * so pick a second-best guess by going with the log2 of the | |
| * number of CPUs. | |
| * | |
| * This idea comes from the SD scheduler of Con Kolivas: | |
| */ | |
| static int get_update_sysctl_factor(void) | |
| { | |
| unsigned int cpus = min_t(int, num_online_cpus(), 8); | |
| unsigned int factor; | |
| switch (sysctl_sched_tunable_scaling) { | |
| case SCHED_TUNABLESCALING_NONE: | |
| factor = 1; | |
| break; | |
| case SCHED_TUNABLESCALING_LINEAR: | |
| factor = cpus; | |
| break; | |
| case SCHED_TUNABLESCALING_LOG: | |
| default: | |
| factor = 1 + ilog2(cpus); | |
| break; | |
| } | |
| return factor; | |
| } | |
| static void update_sysctl(void) | |
| { | |
| unsigned int factor = get_update_sysctl_factor(); | |
| #define SET_SYSCTL(name) \ | |
| (sysctl_##name = (factor) * normalized_sysctl_##name) | |
| SET_SYSCTL(sched_min_granularity); | |
| SET_SYSCTL(sched_latency); | |
| SET_SYSCTL(sched_wakeup_granularity); | |
| SET_SYSCTL(sched_shares_ratelimit); | |
| #undef SET_SYSCTL | |
| } | |
| static inline void sched_init_granularity(void) | |
| { | |
| update_sysctl(); | |
| } | |
| #ifdef CONFIG_SMP | |
| /* | |
| * This is how migration works: | |
| * | |
| * 1) we queue a struct migration_req structure in the source CPU's | |
| * runqueue and wake up that CPU's migration thread. | |
| * 2) we down() the locked semaphore => thread blocks. | |
| * 3) migration thread wakes up (implicitly it forces the migrated | |
| * thread off the CPU) | |
| * 4) it gets the migration request and checks whether the migrated | |
| * task is still in the wrong runqueue. | |
| * 5) if it's in the wrong runqueue then the migration thread removes | |
| * it and puts it into the right queue. | |
| * 6) migration thread up()s the semaphore. | |
| * 7) we wake up and the migration is done. | |
| */ | |
| /* | |
| * Change a given task's CPU affinity. Migrate the thread to a | |
| * proper CPU and schedule it away if the CPU it's executing on | |
| * is removed from the allowed bitmask. | |
| * | |
| * NOTE: the caller must have a valid reference to the task, the | |
| * task must not exit() & deallocate itself prematurely. The | |
| * call is not atomic; no spinlocks may be held. | |
| */ | |
| int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |
| { | |
| struct migration_req req; | |
| unsigned long flags; | |
| struct rq *rq; | |
| int ret = 0; | |
| rq = task_rq_lock(p, &flags); | |
| if (!cpumask_intersects(new_mask, cpu_active_mask)) { | |
| ret = -EINVAL; | |
| goto out; | |
| } | |
| if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && | |
| !cpumask_equal(&p->cpus_allowed, new_mask))) { | |
| ret = -EINVAL; | |
| goto out; | |
| } | |
| if (p->sched_class->set_cpus_allowed) | |
| p->sched_class->set_cpus_allowed(p, new_mask); | |
| else { | |
| cpumask_copy(&p->cpus_allowed, new_mask); | |
| p->rt.nr_cpus_allowed = cpumask_weight(new_mask); | |
| } | |
| /* Can the task run on the task's current CPU? If so, we're done */ | |
| if (cpumask_test_cpu(task_cpu(p), new_mask)) | |
| goto out; | |
| if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { | |
| /* Need help from migration thread: drop lock and wait. */ | |
| struct task_struct *mt = rq->migration_thread; | |
| get_task_struct(mt); | |
| task_rq_unlock(rq, &flags); | |
| wake_up_process(mt); | |
| put_task_struct(mt); | |
| wait_for_completion(&req.done); | |
| tlb_migrate_finish(p->mm); | |
| return 0; | |
| } | |
| out: | |
| task_rq_unlock(rq, &flags); | |
| return ret; | |
| } | |
| EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | |
| /* | |
| * Move (not current) task off this cpu, onto dest cpu. We're doing | |
| * this because either it can't run here any more (set_cpus_allowed() | |
| * away from this CPU, or CPU going down), or because we're | |
| * attempting to rebalance this task on exec (sched_exec). | |
| * | |
| * So we race with normal scheduler movements, but that's OK, as long | |
| * as the task is no longer on this CPU. | |
| * | |
| * Returns non-zero if task was successfully migrated. | |
| */ | |
| static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | |
| { | |
| struct rq *rq_dest, *rq_src; | |
| int ret = 0; | |
| if (unlikely(!cpu_active(dest_cpu))) | |
| return ret; | |
| rq_src = cpu_rq(src_cpu); | |
| rq_dest = cpu_rq(dest_cpu); | |
| double_rq_lock(rq_src, rq_dest); | |
| /* Already moved. */ | |
| if (task_cpu(p) != src_cpu) | |
| goto done; | |
| /* Affinity changed (again). */ | |
| if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) | |
| goto fail; | |
| /* | |
| * If we're not on a rq, the next wake-up will ensure we're | |
| * placed properly. | |
| */ | |
| if (p->se.on_rq) { | |
| deactivate_task(rq_src, p, 0); | |
| set_task_cpu(p, dest_cpu); | |
| activate_task(rq_dest, p, 0); | |
| check_preempt_curr(rq_dest, p, 0); | |
| } | |
| done: | |
| ret = 1; | |
| fail: | |
| double_rq_unlock(rq_src, rq_dest); | |
| return ret; | |
| } | |
| #define RCU_MIGRATION_IDLE 0 | |
| #define RCU_MIGRATION_NEED_QS 1 | |
| #define RCU_MIGRATION_GOT_QS 2 | |
| #define RCU_MIGRATION_MUST_SYNC 3 | |
| /* | |
| * migration_thread - this is a highprio system thread that performs | |
| * thread migration by bumping thread off CPU then 'pushing' onto | |
| * another runqueue. | |
| */ | |
| static int migration_thread(void *data) | |
| { | |
| int badcpu; | |
| int cpu = (long)data; | |
| struct rq *rq; | |
| rq = cpu_rq(cpu); | |
| BUG_ON(rq->migration_thread != current); | |
| set_current_state(TASK_INTERRUPTIBLE); | |
| while (!kthread_should_stop()) { | |
| struct migration_req *req; | |
| struct list_head *head; | |
| raw_spin_lock_irq(&rq->lock); | |
| if (cpu_is_offline(cpu)) { | |
| raw_spin_unlock_irq(&rq->lock); | |
| break; | |
| } | |
| if (rq->active_balance) { | |
| active_load_balance(rq, cpu); | |
| rq->active_balance = 0; | |
| } | |
| head = &rq->migration_queue; | |
| if (list_empty(head)) { | |
| raw_spin_unlock_irq(&rq->lock); | |
| schedule(); | |
| set_current_state(TASK_INTERRUPTIBLE); | |
| continue; | |
| } | |
| req = list_entry(head->next, struct migration_req, list); | |
| list_del_init(head->next); | |
| if (req->task != NULL) { | |
| raw_spin_unlock(&rq->lock); | |
| __migrate_task(req->task, cpu, req->dest_cpu); | |
| } else if (likely(cpu == (badcpu = smp_processor_id()))) { | |
| req->dest_cpu = RCU_MIGRATION_GOT_QS; | |
| raw_spin_unlock(&rq->lock); | |
| } else { | |
| req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | |
| raw_spin_unlock(&rq->lock); | |
| WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | |
| } | |
| local_irq_enable(); | |
| complete(&req->done); | |
| } | |
| __set_current_state(TASK_RUNNING); | |
| return 0; | |
| } | |
| #ifdef CONFIG_HOTPLUG_CPU | |
| static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | |
| { | |
| int ret; | |
| local_irq_disable(); | |
| ret = __migrate_task(p, src_cpu, dest_cpu); | |
| local_irq_enable(); | |
| return ret; | |
| } | |
| /* | |
| * Figure out where task on dead CPU should go, use force if necessary. | |
| */ | |
| static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | |
| { | |
| int dest_cpu; | |
| again: | |
| dest_cpu = select_fallback_rq(dead_cpu, p); | |
| /* It can have affinity changed while we were choosing. */ | |
| if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | |
| goto again; | |
| } | |
| /* | |
| * While a dead CPU has no uninterruptible tasks queued at this point, | |
| * it might still have a nonzero ->nr_uninterruptible counter, because | |
| * for performance reasons the counter is not stricly tracking tasks to | |
| * their home CPUs. So we just add the counter to another CPU's counter, | |
| * to keep the global sum constant after CPU-down: | |
| */ | |
| static void migrate_nr_uninterruptible(struct rq *rq_src) | |
| { | |
| struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); | |
| unsigned long flags; | |
| local_irq_save(flags); | |
| double_rq_lock(rq_src, rq_dest); | |
| rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
| rq_src->nr_uninterruptible = 0; | |
| double_rq_unlock(rq_src, rq_dest); | |
| local_irq_restore(flags); | |
| } | |
| /* Run through task list and migrate tasks from the dead cpu. */ | |
| static void migrate_live_tasks(int src_cpu) | |
| { | |
| struct task_struct *p, *t; | |
| read_lock(&tasklist_lock); | |
| do_each_thread(t, p) { | |
| if (p == current) | |
| continue; | |
| if (task_cpu(p) == src_cpu) | |
| move_task_off_dead_cpu(src_cpu, p); | |
| } while_each_thread(t, p); | |
| read_unlock(&tasklist_lock); | |
| } | |
| /* | |
| * Schedules idle task to be the next runnable task on current CPU. | |
| * It does so by boosting its priority to highest possible. | |
| * Used by CPU offline code. | |
| */ | |
| void sched_idle_next(void) | |
| { | |
| int this_cpu = smp_processor_id(); | |
| struct rq *rq = cpu_rq(this_cpu); | |
| struct task_struct *p = rq->idle; | |
| unsigned long flags; | |
| /* cpu has to be offline */ | |
| BUG_ON(cpu_online(this_cpu)); | |
| /* | |
| * Strictly not necessary since rest of the CPUs are stopped by now | |
| * and interrupts disabled on the current cpu. | |
| */ | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | |
| update_rq_clock(rq); | |
| activate_task(rq, p, 0); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| } | |
| /* | |
| * Ensures that the idle task is using init_mm right before its cpu goes | |
| * offline. | |
| */ | |
| void idle_task_exit(void) | |
| { | |
| struct mm_struct *mm = current->active_mm; | |
| BUG_ON(cpu_online(smp_processor_id())); | |
| if (mm != &init_mm) | |
| switch_mm(mm, &init_mm, current); | |
| mmdrop(mm); | |
| } | |
| /* called under rq->lock with disabled interrupts */ | |
| static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | |
| { | |
| struct rq *rq = cpu_rq(dead_cpu); | |
| /* Must be exiting, otherwise would be on tasklist. */ | |
| BUG_ON(!p->exit_state); | |
| /* Cannot have done final schedule yet: would have vanished. */ | |
| BUG_ON(p->state == TASK_DEAD); | |
| get_task_struct(p); | |
| /* | |
| * Drop lock around migration; if someone else moves it, | |
| * that's OK. No task can be added to this CPU, so iteration is | |
| * fine. | |
| */ | |
| raw_spin_unlock_irq(&rq->lock); | |
| move_task_off_dead_cpu(dead_cpu, p); | |
| raw_spin_lock_irq(&rq->lock); | |
| put_task_struct(p); | |
| } | |
| /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
| static void migrate_dead_tasks(unsigned int dead_cpu) | |
| { | |
| struct rq *rq = cpu_rq(dead_cpu); | |
| struct task_struct *next; | |
| for ( ; ; ) { | |
| if (!rq->nr_running) | |
| break; | |
| update_rq_clock(rq); | |
| next = pick_next_task(rq); | |
| if (!next) | |
| break; | |
| next->sched_class->put_prev_task(rq, next); | |
| migrate_dead(dead_cpu, next); | |
| } | |
| } | |
| /* | |
| * remove the tasks which were accounted by rq from calc_load_tasks. | |
| */ | |
| static void calc_global_load_remove(struct rq *rq) | |
| { | |
| atomic_long_sub(rq->calc_load_active, &calc_load_tasks); | |
| rq->calc_load_active = 0; | |
| } | |
| #endif /* CONFIG_HOTPLUG_CPU */ | |
| #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | |
| static struct ctl_table sd_ctl_dir[] = { | |
| { | |
| .procname = "sched_domain", | |
| .mode = 0555, | |
| }, | |
| {} | |
| }; | |
| static struct ctl_table sd_ctl_root[] = { | |
| { | |
| .procname = "kernel", | |
| .mode = 0555, | |
| .child = sd_ctl_dir, | |
| }, | |
| {} | |
| }; | |
| static struct ctl_table *sd_alloc_ctl_entry(int n) | |
| { | |
| struct ctl_table *entry = | |
| kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | |
| return entry; | |
| } | |
| static void sd_free_ctl_entry(struct ctl_table **tablep) | |
| { | |
| struct ctl_table *entry; | |
| /* | |
| * In the intermediate directories, both the child directory and | |
| * procname are dynamically allocated and could fail but the mode | |
| * will always be set. In the lowest directory the names are | |
| * static strings and all have proc handlers. | |
| */ | |
| for (entry = *tablep; entry->mode; entry++) { | |
| if (entry->child) | |
| sd_free_ctl_entry(&entry->child); | |
| if (entry->proc_handler == NULL) | |
| kfree(entry->procname); | |
| } | |
| kfree(*tablep); | |
| *tablep = NULL; | |
| } | |
| static void | |
| set_table_entry(struct ctl_table *entry, | |
| const char *procname, void *data, int maxlen, | |
| mode_t mode, proc_handler *proc_handler) | |
| { | |
| entry->procname = procname; | |
| entry->data = data; | |
| entry->maxlen = maxlen; | |
| entry->mode = mode; | |
| entry->proc_handler = proc_handler; | |
| } | |
| static struct ctl_table * | |
| sd_alloc_ctl_domain_table(struct sched_domain *sd) | |
| { | |
| struct ctl_table *table = sd_alloc_ctl_entry(13); | |
| if (table == NULL) | |
| return NULL; | |
| set_table_entry(&table[0], "min_interval", &sd->min_interval, | |
| sizeof(long), 0644, proc_doulongvec_minmax); | |
| set_table_entry(&table[1], "max_interval", &sd->max_interval, | |
| sizeof(long), 0644, proc_doulongvec_minmax); | |
| set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[9], "cache_nice_tries", | |
| &sd->cache_nice_tries, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[10], "flags", &sd->flags, | |
| sizeof(int), 0644, proc_dointvec_minmax); | |
| set_table_entry(&table[11], "name", sd->name, | |
| CORENAME_MAX_SIZE, 0444, proc_dostring); | |
| /* &table[12] is terminator */ | |
| return table; | |
| } | |
| static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | |
| { | |
| struct ctl_table *entry, *table; | |
| struct sched_domain *sd; | |
| int domain_num = 0, i; | |
| char buf[32]; | |
| for_each_domain(cpu, sd) | |
| domain_num++; | |
| entry = table = sd_alloc_ctl_entry(domain_num + 1); | |
| if (table == NULL) | |
| return NULL; | |
| i = 0; | |
| for_each_domain(cpu, sd) { | |
| snprintf(buf, 32, "domain%d", i); | |
| entry->procname = kstrdup(buf, GFP_KERNEL); | |
| entry->mode = 0555; | |
| entry->child = sd_alloc_ctl_domain_table(sd); | |
| entry++; | |
| i++; | |
| } | |
| return table; | |
| } | |
| static struct ctl_table_header *sd_sysctl_header; | |
| static void register_sched_domain_sysctl(void) | |
| { | |
| int i, cpu_num = num_possible_cpus(); | |
| struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | |
| char buf[32]; | |
| WARN_ON(sd_ctl_dir[0].child); | |
| sd_ctl_dir[0].child = entry; | |
| if (entry == NULL) | |
| return; | |
| for_each_possible_cpu(i) { | |
| snprintf(buf, 32, "cpu%d", i); | |
| entry->procname = kstrdup(buf, GFP_KERNEL); | |
| entry->mode = 0555; | |
| entry->child = sd_alloc_ctl_cpu_table(i); | |
| entry++; | |
| } | |
| WARN_ON(sd_sysctl_header); | |
| sd_sysctl_header = register_sysctl_table(sd_ctl_root); | |
| } | |
| /* may be called multiple times per register */ | |
| static void unregister_sched_domain_sysctl(void) | |
| { | |
| if (sd_sysctl_header) | |
| unregister_sysctl_table(sd_sysctl_header); | |
| sd_sysctl_header = NULL; | |
| if (sd_ctl_dir[0].child) | |
| sd_free_ctl_entry(&sd_ctl_dir[0].child); | |
| } | |
| #else | |
| static void register_sched_domain_sysctl(void) | |
| { | |
| } | |
| static void unregister_sched_domain_sysctl(void) | |
| { | |
| } | |
| #endif | |
| static void set_rq_online(struct rq *rq) | |
| { | |
| if (!rq->online) { | |
| const struct sched_class *class; | |
| cpumask_set_cpu(rq->cpu, rq->rd->online); | |
| rq->online = 1; | |
| for_each_class(class) { | |
| if (class->rq_online) | |
| class->rq_online(rq); | |
| } | |
| } | |
| } | |
| static void set_rq_offline(struct rq *rq) | |
| { | |
| if (rq->online) { | |
| const struct sched_class *class; | |
| for_each_class(class) { | |
| if (class->rq_offline) | |
| class->rq_offline(rq); | |
| } | |
| cpumask_clear_cpu(rq->cpu, rq->rd->online); | |
| rq->online = 0; | |
| } | |
| } | |
| /* | |
| * migration_call - callback that gets triggered when a CPU is added. | |
| * Here we can start up the necessary migration thread for the new CPU. | |
| */ | |
| static int __cpuinit | |
| migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
| { | |
| struct task_struct *p; | |
| int cpu = (long)hcpu; | |
| unsigned long flags; | |
| struct rq *rq; | |
| switch (action) { | |
| case CPU_UP_PREPARE: | |
| case CPU_UP_PREPARE_FROZEN: | |
| p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | |
| if (IS_ERR(p)) | |
| return NOTIFY_BAD; | |
| kthread_bind(p, cpu); | |
| /* Must be high prio: stop_machine expects to yield to it. */ | |
| rq = task_rq_lock(p, &flags); | |
| __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | |
| task_rq_unlock(rq, &flags); | |
| get_task_struct(p); | |
| cpu_rq(cpu)->migration_thread = p; | |
| rq->calc_load_update = calc_load_update; | |
| break; | |
| case CPU_ONLINE: | |
| case CPU_ONLINE_FROZEN: | |
| /* Strictly unnecessary, as first user will wake it. */ | |
| wake_up_process(cpu_rq(cpu)->migration_thread); | |
| /* Update our root-domain */ | |
| rq = cpu_rq(cpu); | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| if (rq->rd) { | |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | |
| set_rq_online(rq); | |
| } | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| break; | |
| #ifdef CONFIG_HOTPLUG_CPU | |
| case CPU_UP_CANCELED: | |
| case CPU_UP_CANCELED_FROZEN: | |
| if (!cpu_rq(cpu)->migration_thread) | |
| break; | |
| /* Unbind it from offline cpu so it can run. Fall thru. */ | |
| kthread_bind(cpu_rq(cpu)->migration_thread, | |
| cpumask_any(cpu_online_mask)); | |
| kthread_stop(cpu_rq(cpu)->migration_thread); | |
| put_task_struct(cpu_rq(cpu)->migration_thread); | |
| cpu_rq(cpu)->migration_thread = NULL; | |
| break; | |
| case CPU_DEAD: | |
| case CPU_DEAD_FROZEN: | |
| cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ | |
| migrate_live_tasks(cpu); | |
| rq = cpu_rq(cpu); | |
| kthread_stop(rq->migration_thread); | |
| put_task_struct(rq->migration_thread); | |
| rq->migration_thread = NULL; | |
| /* Idle task back to normal (off runqueue, low prio) */ | |
| raw_spin_lock_irq(&rq->lock); | |
| update_rq_clock(rq); | |
| deactivate_task(rq, rq->idle, 0); | |
| __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | |
| rq->idle->sched_class = &idle_sched_class; | |
| migrate_dead_tasks(cpu); | |
| raw_spin_unlock_irq(&rq->lock); | |
| cpuset_unlock(); | |
| migrate_nr_uninterruptible(rq); | |
| BUG_ON(rq->nr_running != 0); | |
| calc_global_load_remove(rq); | |
| /* | |
| * No need to migrate the tasks: it was best-effort if | |
| * they didn't take sched_hotcpu_mutex. Just wake up | |
| * the requestors. | |
| */ | |
| raw_spin_lock_irq(&rq->lock); | |
| while (!list_empty(&rq->migration_queue)) { | |
| struct migration_req *req; | |
| req = list_entry(rq->migration_queue.next, | |
| struct migration_req, list); | |
| list_del_init(&req->list); | |
| raw_spin_unlock_irq(&rq->lock); | |
| complete(&req->done); | |
| raw_spin_lock_irq(&rq->lock); | |
| } | |
| raw_spin_unlock_irq(&rq->lock); | |
| break; | |
| case CPU_DYING: | |
| case CPU_DYING_FROZEN: | |
| /* Update our root-domain */ | |
| rq = cpu_rq(cpu); | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| if (rq->rd) { | |
| BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | |
| set_rq_offline(rq); | |
| } | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| break; | |
| #endif | |
| } | |
| return NOTIFY_OK; | |
| } | |
| /* | |
| * Register at high priority so that task migration (migrate_all_tasks) | |
| * happens before everything else. This has to be lower priority than | |
| * the notifier in the perf_event subsystem, though. | |
| */ | |
| static struct notifier_block __cpuinitdata migration_notifier = { | |
| .notifier_call = migration_call, | |
| .priority = 10 | |
| }; | |
| static int __init migration_init(void) | |
| { | |
| void *cpu = (void *)(long)smp_processor_id(); | |
| int err; | |
| /* Start one for the boot CPU: */ | |
| err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | |
| BUG_ON(err == NOTIFY_BAD); | |
| migration_call(&migration_notifier, CPU_ONLINE, cpu); | |
| register_cpu_notifier(&migration_notifier); | |
| return 0; | |
| } | |
| early_initcall(migration_init); | |
| #endif | |
| #ifdef CONFIG_SMP | |
| #ifdef CONFIG_SCHED_DEBUG | |
| static __read_mostly int sched_domain_debug_enabled; | |
| static int __init sched_domain_debug_setup(char *str) | |
| { | |
| sched_domain_debug_enabled = 1; | |
| return 0; | |
| } | |
| early_param("sched_debug", sched_domain_debug_setup); | |
| static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | |
| struct cpumask *groupmask) | |
| { | |
| struct sched_group *group = sd->groups; | |
| char str[256]; | |
| cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); | |
| cpumask_clear(groupmask); | |
| printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | |
| if (!(sd->flags & SD_LOAD_BALANCE)) { | |
| printk("does not load-balance\n"); | |
| if (sd->parent) | |
| printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | |
| " has parent"); | |
| return -1; | |
| } | |
| printk(KERN_CONT "span %s level %s\n", str, sd->name); | |
| if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { | |
| printk(KERN_ERR "ERROR: domain->span does not contain " | |
| "CPU%d\n", cpu); | |
| } | |
| if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { | |
| printk(KERN_ERR "ERROR: domain->groups does not contain" | |
| " CPU%d\n", cpu); | |
| } | |
| printk(KERN_DEBUG "%*s groups:", level + 1, ""); | |
| do { | |
| if (!group) { | |
| printk("\n"); | |
| printk(KERN_ERR "ERROR: group is NULL\n"); | |
| break; | |
| } | |
| if (!group->cpu_power) { | |
| printk(KERN_CONT "\n"); | |
| printk(KERN_ERR "ERROR: domain->cpu_power not " | |
| "set\n"); | |
| break; | |
| } | |
| if (!cpumask_weight(sched_group_cpus(group))) { | |
| printk(KERN_CONT "\n"); | |
| printk(KERN_ERR "ERROR: empty group\n"); | |
| break; | |
| } | |
| if (cpumask_intersects(groupmask, sched_group_cpus(group))) { | |
| printk(KERN_CONT "\n"); | |
| printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
| break; | |
| } | |
| cpumask_or(groupmask, groupmask, sched_group_cpus(group)); | |
| cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); | |
| printk(KERN_CONT " %s", str); | |
| if (group->cpu_power != SCHED_LOAD_SCALE) { | |
| printk(KERN_CONT " (cpu_power = %d)", | |
| group->cpu_power); | |
| } | |
| group = group->next; | |
| } while (group != sd->groups); | |
| printk(KERN_CONT "\n"); | |
| if (!cpumask_equal(sched_domain_span(sd), groupmask)) | |
| printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | |
| if (sd->parent && | |
| !cpumask_subset(groupmask, sched_domain_span(sd->parent))) | |
| printk(KERN_ERR "ERROR: parent span is not a superset " | |
| "of domain->span\n"); | |
| return 0; | |
| } | |
| static void sched_domain_debug(struct sched_domain *sd, int cpu) | |
| { | |
| cpumask_var_t groupmask; | |
| int level = 0; | |
| if (!sched_domain_debug_enabled) | |
| return; | |
| if (!sd) { | |
| printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
| return; | |
| } | |
| printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | |
| if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { | |
| printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | |
| return; | |
| } | |
| for (;;) { | |
| if (sched_domain_debug_one(sd, cpu, level, groupmask)) | |
| break; | |
| level++; | |
| sd = sd->parent; | |
| if (!sd) | |
| break; | |
| } | |
| free_cpumask_var(groupmask); | |
| } | |
| #else /* !CONFIG_SCHED_DEBUG */ | |
| # define sched_domain_debug(sd, cpu) do { } while (0) | |
| #endif /* CONFIG_SCHED_DEBUG */ | |
| static int sd_degenerate(struct sched_domain *sd) | |
| { | |
| if (cpumask_weight(sched_domain_span(sd)) == 1) | |
| return 1; | |
| /* Following flags need at least 2 groups */ | |
| if (sd->flags & (SD_LOAD_BALANCE | | |
| SD_BALANCE_NEWIDLE | | |
| SD_BALANCE_FORK | | |
| SD_BALANCE_EXEC | | |
| SD_SHARE_CPUPOWER | | |
| SD_SHARE_PKG_RESOURCES)) { | |
| if (sd->groups != sd->groups->next) | |
| return 0; | |
| } | |
| /* Following flags don't use groups */ | |
| if (sd->flags & (SD_WAKE_AFFINE)) | |
| return 0; | |
| return 1; | |
| } | |
| static int | |
| sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
| { | |
| unsigned long cflags = sd->flags, pflags = parent->flags; | |
| if (sd_degenerate(parent)) | |
| return 1; | |
| if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | |
| return 0; | |
| /* Flags needing groups don't count if only 1 group in parent */ | |
| if (parent->groups == parent->groups->next) { | |
| pflags &= ~(SD_LOAD_BALANCE | | |
| SD_BALANCE_NEWIDLE | | |
| SD_BALANCE_FORK | | |
| SD_BALANCE_EXEC | | |
| SD_SHARE_CPUPOWER | | |
| SD_SHARE_PKG_RESOURCES); | |
| if (nr_node_ids == 1) | |
| pflags &= ~SD_SERIALIZE; | |
| } | |
| if (~cflags & pflags) | |
| return 0; | |
| return 1; | |
| } | |
| static void free_rootdomain(struct root_domain *rd) | |
| { | |
| synchronize_sched(); | |
| cpupri_cleanup(&rd->cpupri); | |
| free_cpumask_var(rd->rto_mask); | |
| free_cpumask_var(rd->online); | |
| free_cpumask_var(rd->span); | |
| kfree(rd); | |
| } | |
| static void rq_attach_root(struct rq *rq, struct root_domain *rd) | |
| { | |
| struct root_domain *old_rd = NULL; | |
| unsigned long flags; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| if (rq->rd) { | |
| old_rd = rq->rd; | |
| if (cpumask_test_cpu(rq->cpu, old_rd->online)) | |
| set_rq_offline(rq); | |
| cpumask_clear_cpu(rq->cpu, old_rd->span); | |
| /* | |
| * If we dont want to free the old_rt yet then | |
| * set old_rd to NULL to skip the freeing later | |
| * in this function: | |
| */ | |
| if (!atomic_dec_and_test(&old_rd->refcount)) | |
| old_rd = NULL; | |
| } | |
| atomic_inc(&rd->refcount); | |
| rq->rd = rd; | |
| cpumask_set_cpu(rq->cpu, rd->span); | |
| if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) | |
| set_rq_online(rq); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| if (old_rd) | |
| free_rootdomain(old_rd); | |
| } | |
| static int init_rootdomain(struct root_domain *rd, bool bootmem) | |
| { | |
| gfp_t gfp = GFP_KERNEL; | |
| memset(rd, 0, sizeof(*rd)); | |
| if (bootmem) | |
| gfp = GFP_NOWAIT; | |
| if (!alloc_cpumask_var(&rd->span, gfp)) | |
| goto out; | |
| if (!alloc_cpumask_var(&rd->online, gfp)) | |
| goto free_span; | |
| if (!alloc_cpumask_var(&rd->rto_mask, gfp)) | |
| goto free_online; | |
| if (cpupri_init(&rd->cpupri, bootmem) != 0) | |
| goto free_rto_mask; | |
| return 0; | |
| free_rto_mask: | |
| free_cpumask_var(rd->rto_mask); | |
| free_online: | |
| free_cpumask_var(rd->online); | |
| free_span: | |
| free_cpumask_var(rd->span); | |
| out: | |
| return -ENOMEM; | |
| } | |
| static void init_defrootdomain(void) | |
| { | |
| init_rootdomain(&def_root_domain, true); | |
| atomic_set(&def_root_domain.refcount, 1); | |
| } | |
| static struct root_domain *alloc_rootdomain(void) | |
| { | |
| struct root_domain *rd; | |
| rd = kmalloc(sizeof(*rd), GFP_KERNEL); | |
| if (!rd) | |
| return NULL; | |
| if (init_rootdomain(rd, false) != 0) { | |
| kfree(rd); | |
| return NULL; | |
| } | |
| return rd; | |
| } | |
| /* | |
| * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | |
| * hold the hotplug lock. | |
| */ | |
| static void | |
| cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| struct sched_domain *tmp; | |
| /* Remove the sched domains which do not contribute to scheduling. */ | |
| for (tmp = sd; tmp; ) { | |
| struct sched_domain *parent = tmp->parent; | |
| if (!parent) | |
| break; | |
| if (sd_parent_degenerate(tmp, parent)) { | |
| tmp->parent = parent->parent; | |
| if (parent->parent) | |
| parent->parent->child = tmp; | |
| } else | |
| tmp = tmp->parent; | |
| } | |
| if (sd && sd_degenerate(sd)) { | |
| sd = sd->parent; | |
| if (sd) | |
| sd->child = NULL; | |
| } | |
| sched_domain_debug(sd, cpu); | |
| rq_attach_root(rq, rd); | |
| rcu_assign_pointer(rq->sd, sd); | |
| } | |
| /* cpus with isolated domains */ | |
| static cpumask_var_t cpu_isolated_map; | |
| /* Setup the mask of cpus configured for isolated domains */ | |
| static int __init isolated_cpu_setup(char *str) | |
| { | |
| alloc_bootmem_cpumask_var(&cpu_isolated_map); | |
| cpulist_parse(str, cpu_isolated_map); | |
| return 1; | |
| } | |
| __setup("isolcpus=", isolated_cpu_setup); | |
| /* | |
| * init_sched_build_groups takes the cpumask we wish to span, and a pointer | |
| * to a function which identifies what group(along with sched group) a CPU | |
| * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids | |
| * (due to the fact that we keep track of groups covered with a struct cpumask). | |
| * | |
| * init_sched_build_groups will build a circular linked list of the groups | |
| * covered by the given span, and will set each group's ->cpumask correctly, | |
| * and ->cpu_power to 0. | |
| */ | |
| static void | |
| init_sched_build_groups(const struct cpumask *span, | |
| const struct cpumask *cpu_map, | |
| int (*group_fn)(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, | |
| struct cpumask *tmpmask), | |
| struct cpumask *covered, struct cpumask *tmpmask) | |
| { | |
| struct sched_group *first = NULL, *last = NULL; | |
| int i; | |
| cpumask_clear(covered); | |
| for_each_cpu(i, span) { | |
| struct sched_group *sg; | |
| int group = group_fn(i, cpu_map, &sg, tmpmask); | |
| int j; | |
| if (cpumask_test_cpu(i, covered)) | |
| continue; | |
| cpumask_clear(sched_group_cpus(sg)); | |
| sg->cpu_power = 0; | |
| for_each_cpu(j, span) { | |
| if (group_fn(j, cpu_map, NULL, tmpmask) != group) | |
| continue; | |
| cpumask_set_cpu(j, covered); | |
| cpumask_set_cpu(j, sched_group_cpus(sg)); | |
| } | |
| if (!first) | |
| first = sg; | |
| if (last) | |
| last->next = sg; | |
| last = sg; | |
| } | |
| last->next = first; | |
| } | |
| #define SD_NODES_PER_DOMAIN 16 | |
| #ifdef CONFIG_NUMA | |
| /** | |
| * find_next_best_node - find the next node to include in a sched_domain | |
| * @node: node whose sched_domain we're building | |
| * @used_nodes: nodes already in the sched_domain | |
| * | |
| * Find the next node to include in a given scheduling domain. Simply | |
| * finds the closest node not already in the @used_nodes map. | |
| * | |
| * Should use nodemask_t. | |
| */ | |
| static int find_next_best_node(int node, nodemask_t *used_nodes) | |
| { | |
| int i, n, val, min_val, best_node = 0; | |
| min_val = INT_MAX; | |
| for (i = 0; i < nr_node_ids; i++) { | |
| /* Start at @node */ | |
| n = (node + i) % nr_node_ids; | |
| if (!nr_cpus_node(n)) | |
| continue; | |
| /* Skip already used nodes */ | |
| if (node_isset(n, *used_nodes)) | |
| continue; | |
| /* Simple min distance search */ | |
| val = node_distance(node, n); | |
| if (val < min_val) { | |
| min_val = val; | |
| best_node = n; | |
| } | |
| } | |
| node_set(best_node, *used_nodes); | |
| return best_node; | |
| } | |
| /** | |
| * sched_domain_node_span - get a cpumask for a node's sched_domain | |
| * @node: node whose cpumask we're constructing | |
| * @span: resulting cpumask | |
| * | |
| * Given a node, construct a good cpumask for its sched_domain to span. It | |
| * should be one that prevents unnecessary balancing, but also spreads tasks | |
| * out optimally. | |
| */ | |
| static void sched_domain_node_span(int node, struct cpumask *span) | |
| { | |
| nodemask_t used_nodes; | |
| int i; | |
| cpumask_clear(span); | |
| nodes_clear(used_nodes); | |
| cpumask_or(span, span, cpumask_of_node(node)); | |
| node_set(node, used_nodes); | |
| for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
| int next_node = find_next_best_node(node, &used_nodes); | |
| cpumask_or(span, span, cpumask_of_node(next_node)); | |
| } | |
| } | |
| #endif /* CONFIG_NUMA */ | |
| int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | |
| /* | |
| * The cpus mask in sched_group and sched_domain hangs off the end. | |
| * | |
| * ( See the the comments in include/linux/sched.h:struct sched_group | |
| * and struct sched_domain. ) | |
| */ | |
| struct static_sched_group { | |
| struct sched_group sg; | |
| DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); | |
| }; | |
| struct static_sched_domain { | |
| struct sched_domain sd; | |
| DECLARE_BITMAP(span, CONFIG_NR_CPUS); | |
| }; | |
| struct s_data { | |
| #ifdef CONFIG_NUMA | |
| int sd_allnodes; | |
| cpumask_var_t domainspan; | |
| cpumask_var_t covered; | |
| cpumask_var_t notcovered; | |
| #endif | |
| cpumask_var_t nodemask; | |
| cpumask_var_t this_sibling_map; | |
| cpumask_var_t this_core_map; | |
| cpumask_var_t send_covered; | |
| cpumask_var_t tmpmask; | |
| struct sched_group **sched_group_nodes; | |
| struct root_domain *rd; | |
| }; | |
| enum s_alloc { | |
| sa_sched_groups = 0, | |
| sa_rootdomain, | |
| sa_tmpmask, | |
| sa_send_covered, | |
| sa_this_core_map, | |
| sa_this_sibling_map, | |
| sa_nodemask, | |
| sa_sched_group_nodes, | |
| #ifdef CONFIG_NUMA | |
| sa_notcovered, | |
| sa_covered, | |
| sa_domainspan, | |
| #endif | |
| sa_none, | |
| }; | |
| /* | |
| * SMT sched-domains: | |
| */ | |
| #ifdef CONFIG_SCHED_SMT | |
| static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); | |
| static DEFINE_PER_CPU(struct static_sched_group, sched_groups); | |
| static int | |
| cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, struct cpumask *unused) | |
| { | |
| if (sg) | |
| *sg = &per_cpu(sched_groups, cpu).sg; | |
| return cpu; | |
| } | |
| #endif /* CONFIG_SCHED_SMT */ | |
| /* | |
| * multi-core sched-domains: | |
| */ | |
| #ifdef CONFIG_SCHED_MC | |
| static DEFINE_PER_CPU(struct static_sched_domain, core_domains); | |
| static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); | |
| #endif /* CONFIG_SCHED_MC */ | |
| #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
| static int | |
| cpu_to_core_group(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, struct cpumask *mask) | |
| { | |
| int group; | |
| cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); | |
| group = cpumask_first(mask); | |
| if (sg) | |
| *sg = &per_cpu(sched_group_core, group).sg; | |
| return group; | |
| } | |
| #elif defined(CONFIG_SCHED_MC) | |
| static int | |
| cpu_to_core_group(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, struct cpumask *unused) | |
| { | |
| if (sg) | |
| *sg = &per_cpu(sched_group_core, cpu).sg; | |
| return cpu; | |
| } | |
| #endif | |
| static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); | |
| static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); | |
| static int | |
| cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, struct cpumask *mask) | |
| { | |
| int group; | |
| #ifdef CONFIG_SCHED_MC | |
| cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); | |
| group = cpumask_first(mask); | |
| #elif defined(CONFIG_SCHED_SMT) | |
| cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); | |
| group = cpumask_first(mask); | |
| #else | |
| group = cpu; | |
| #endif | |
| if (sg) | |
| *sg = &per_cpu(sched_group_phys, group).sg; | |
| return group; | |
| } | |
| #ifdef CONFIG_NUMA | |
| /* | |
| * The init_sched_build_groups can't handle what we want to do with node | |
| * groups, so roll our own. Now each node has its own list of groups which | |
| * gets dynamically allocated. | |
| */ | |
| static DEFINE_PER_CPU(struct static_sched_domain, node_domains); | |
| static struct sched_group ***sched_group_nodes_bycpu; | |
| static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); | |
| static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); | |
| static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, | |
| struct sched_group **sg, | |
| struct cpumask *nodemask) | |
| { | |
| int group; | |
| cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); | |
| group = cpumask_first(nodemask); | |
| if (sg) | |
| *sg = &per_cpu(sched_group_allnodes, group).sg; | |
| return group; | |
| } | |
| static void init_numa_sched_groups_power(struct sched_group *group_head) | |
| { | |
| struct sched_group *sg = group_head; | |
| int j; | |
| if (!sg) | |
| return; | |
| do { | |
| for_each_cpu(j, sched_group_cpus(sg)) { | |
| struct sched_domain *sd; | |
| sd = &per_cpu(phys_domains, j).sd; | |
| if (j != group_first_cpu(sd->groups)) { | |
| /* | |
| * Only add "power" once for each | |
| * physical package. | |
| */ | |
| continue; | |
| } | |
| sg->cpu_power += sd->groups->cpu_power; | |
| } | |
| sg = sg->next; | |
| } while (sg != group_head); | |
| } | |
| static int build_numa_sched_groups(struct s_data *d, | |
| const struct cpumask *cpu_map, int num) | |
| { | |
| struct sched_domain *sd; | |
| struct sched_group *sg, *prev; | |
| int n, j; | |
| cpumask_clear(d->covered); | |
| cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); | |
| if (cpumask_empty(d->nodemask)) { | |
| d->sched_group_nodes[num] = NULL; | |
| goto out; | |
| } | |
| sched_domain_node_span(num, d->domainspan); | |
| cpumask_and(d->domainspan, d->domainspan, cpu_map); | |
| sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
| GFP_KERNEL, num); | |
| if (!sg) { | |
| printk(KERN_WARNING "Can not alloc domain group for node %d\n", | |
| num); | |
| return -ENOMEM; | |
| } | |
| d->sched_group_nodes[num] = sg; | |
| for_each_cpu(j, d->nodemask) { | |
| sd = &per_cpu(node_domains, j).sd; | |
| sd->groups = sg; | |
| } | |
| sg->cpu_power = 0; | |
| cpumask_copy(sched_group_cpus(sg), d->nodemask); | |
| sg->next = sg; | |
| cpumask_or(d->covered, d->covered, d->nodemask); | |
| prev = sg; | |
| for (j = 0; j < nr_node_ids; j++) { | |
| n = (num + j) % nr_node_ids; | |
| cpumask_complement(d->notcovered, d->covered); | |
| cpumask_and(d->tmpmask, d->notcovered, cpu_map); | |
| cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); | |
| if (cpumask_empty(d->tmpmask)) | |
| break; | |
| cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); | |
| if (cpumask_empty(d->tmpmask)) | |
| continue; | |
| sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), | |
| GFP_KERNEL, num); | |
| if (!sg) { | |
| printk(KERN_WARNING | |
| "Can not alloc domain group for node %d\n", j); | |
| return -ENOMEM; | |
| } | |
| sg->cpu_power = 0; | |
| cpumask_copy(sched_group_cpus(sg), d->tmpmask); | |
| sg->next = prev->next; | |
| cpumask_or(d->covered, d->covered, d->tmpmask); | |
| prev->next = sg; | |
| prev = sg; | |
| } | |
| out: | |
| return 0; | |
| } | |
| #endif /* CONFIG_NUMA */ | |
| #ifdef CONFIG_NUMA | |
| /* Free memory allocated for various sched_group structures */ | |
| static void free_sched_groups(const struct cpumask *cpu_map, | |
| struct cpumask *nodemask) | |
| { | |
| int cpu, i; | |
| for_each_cpu(cpu, cpu_map) { | |
| struct sched_group **sched_group_nodes | |
| = sched_group_nodes_bycpu[cpu]; | |
| if (!sched_group_nodes) | |
| continue; | |
| for (i = 0; i < nr_node_ids; i++) { | |
| struct sched_group *oldsg, *sg = sched_group_nodes[i]; | |
| cpumask_and(nodemask, cpumask_of_node(i), cpu_map); | |
| if (cpumask_empty(nodemask)) | |
| continue; | |
| if (sg == NULL) | |
| continue; | |
| sg = sg->next; | |
| next_sg: | |
| oldsg = sg; | |
| sg = sg->next; | |
| kfree(oldsg); | |
| if (oldsg != sched_group_nodes[i]) | |
| goto next_sg; | |
| } | |
| kfree(sched_group_nodes); | |
| sched_group_nodes_bycpu[cpu] = NULL; | |
| } | |
| } | |
| #else /* !CONFIG_NUMA */ | |
| static void free_sched_groups(const struct cpumask *cpu_map, | |
| struct cpumask *nodemask) | |
| { | |
| } | |
| #endif /* CONFIG_NUMA */ | |
| /* | |
| * Initialize sched groups cpu_power. | |
| * | |
| * cpu_power indicates the capacity of sched group, which is used while | |
| * distributing the load between different sched groups in a sched domain. | |
| * Typically cpu_power for all the groups in a sched domain will be same unless | |
| * there are asymmetries in the topology. If there are asymmetries, group | |
| * having more cpu_power will pickup more load compared to the group having | |
| * less cpu_power. | |
| */ | |
| static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
| { | |
| struct sched_domain *child; | |
| struct sched_group *group; | |
| long power; | |
| int weight; | |
| WARN_ON(!sd || !sd->groups); | |
| if (cpu != group_first_cpu(sd->groups)) | |
| return; | |
| child = sd->child; | |
| sd->groups->cpu_power = 0; | |
| if (!child) { | |
| power = SCHED_LOAD_SCALE; | |
| weight = cpumask_weight(sched_domain_span(sd)); | |
| /* | |
| * SMT siblings share the power of a single core. | |
| * Usually multiple threads get a better yield out of | |
| * that one core than a single thread would have, | |
| * reflect that in sd->smt_gain. | |
| */ | |
| if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | |
| power *= sd->smt_gain; | |
| power /= weight; | |
| power >>= SCHED_LOAD_SHIFT; | |
| } | |
| sd->groups->cpu_power += power; | |
| return; | |
| } | |
| /* | |
| * Add cpu_power of each child group to this groups cpu_power. | |
| */ | |
| group = child->groups; | |
| do { | |
| sd->groups->cpu_power += group->cpu_power; | |
| group = group->next; | |
| } while (group != child->groups); | |
| } | |
| /* | |
| * Initializers for schedule domains | |
| * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | |
| */ | |
| #ifdef CONFIG_SCHED_DEBUG | |
| # define SD_INIT_NAME(sd, type) sd->name = #type | |
| #else | |
| # define SD_INIT_NAME(sd, type) do { } while (0) | |
| #endif | |
| #define SD_INIT(sd, type) sd_init_##type(sd) | |
| #define SD_INIT_FUNC(type) \ | |
| static noinline void sd_init_##type(struct sched_domain *sd) \ | |
| { \ | |
| memset(sd, 0, sizeof(*sd)); \ | |
| *sd = SD_##type##_INIT; \ | |
| sd->level = SD_LV_##type; \ | |
| SD_INIT_NAME(sd, type); \ | |
| } | |
| SD_INIT_FUNC(CPU) | |
| #ifdef CONFIG_NUMA | |
| SD_INIT_FUNC(ALLNODES) | |
| SD_INIT_FUNC(NODE) | |
| #endif | |
| #ifdef CONFIG_SCHED_SMT | |
| SD_INIT_FUNC(SIBLING) | |
| #endif | |
| #ifdef CONFIG_SCHED_MC | |
| SD_INIT_FUNC(MC) | |
| #endif | |
| static int default_relax_domain_level = -1; | |
| static int __init setup_relax_domain_level(char *str) | |
| { | |
| unsigned long val; | |
| val = simple_strtoul(str, NULL, 0); | |
| if (val < SD_LV_MAX) | |
| default_relax_domain_level = val; | |
| return 1; | |
| } | |
| __setup("relax_domain_level=", setup_relax_domain_level); | |
| static void set_domain_attribute(struct sched_domain *sd, | |
| struct sched_domain_attr *attr) | |
| { | |
| int request; | |
| if (!attr || attr->relax_domain_level < 0) { | |
| if (default_relax_domain_level < 0) | |
| return; | |
| else | |
| request = default_relax_domain_level; | |
| } else | |
| request = attr->relax_domain_level; | |
| if (request < sd->level) { | |
| /* turn off idle balance on this domain */ | |
| sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | |
| } else { | |
| /* turn on idle balance on this domain */ | |
| sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); | |
| } | |
| } | |
| static void __free_domain_allocs(struct s_data *d, enum s_alloc what, | |
| const struct cpumask *cpu_map) | |
| { | |
| switch (what) { | |
| case sa_sched_groups: | |
| free_sched_groups(cpu_map, d->tmpmask); /* fall through */ | |
| d->sched_group_nodes = NULL; | |
| case sa_rootdomain: | |
| free_rootdomain(d->rd); /* fall through */ | |
| case sa_tmpmask: | |
| free_cpumask_var(d->tmpmask); /* fall through */ | |
| case sa_send_covered: | |
| free_cpumask_var(d->send_covered); /* fall through */ | |
| case sa_this_core_map: | |
| free_cpumask_var(d->this_core_map); /* fall through */ | |
| case sa_this_sibling_map: | |
| free_cpumask_var(d->this_sibling_map); /* fall through */ | |
| case sa_nodemask: | |
| free_cpumask_var(d->nodemask); /* fall through */ | |
| case sa_sched_group_nodes: | |
| #ifdef CONFIG_NUMA | |
| kfree(d->sched_group_nodes); /* fall through */ | |
| case sa_notcovered: | |
| free_cpumask_var(d->notcovered); /* fall through */ | |
| case sa_covered: | |
| free_cpumask_var(d->covered); /* fall through */ | |
| case sa_domainspan: | |
| free_cpumask_var(d->domainspan); /* fall through */ | |
| #endif | |
| case sa_none: | |
| break; | |
| } | |
| } | |
| static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, | |
| const struct cpumask *cpu_map) | |
| { | |
| #ifdef CONFIG_NUMA | |
| if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) | |
| return sa_none; | |
| if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) | |
| return sa_domainspan; | |
| if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) | |
| return sa_covered; | |
| /* Allocate the per-node list of sched groups */ | |
| d->sched_group_nodes = kcalloc(nr_node_ids, | |
| sizeof(struct sched_group *), GFP_KERNEL); | |
| if (!d->sched_group_nodes) { | |
| printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
| return sa_notcovered; | |
| } | |
| sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; | |
| #endif | |
| if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) | |
| return sa_sched_group_nodes; | |
| if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) | |
| return sa_nodemask; | |
| if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) | |
| return sa_this_sibling_map; | |
| if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) | |
| return sa_this_core_map; | |
| if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) | |
| return sa_send_covered; | |
| d->rd = alloc_rootdomain(); | |
| if (!d->rd) { | |
| printk(KERN_WARNING "Cannot alloc root domain\n"); | |
| return sa_tmpmask; | |
| } | |
| return sa_rootdomain; | |
| } | |
| static struct sched_domain *__build_numa_sched_domains(struct s_data *d, | |
| const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) | |
| { | |
| struct sched_domain *sd = NULL; | |
| #ifdef CONFIG_NUMA | |
| struct sched_domain *parent; | |
| d->sd_allnodes = 0; | |
| if (cpumask_weight(cpu_map) > | |
| SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { | |
| sd = &per_cpu(allnodes_domains, i).sd; | |
| SD_INIT(sd, ALLNODES); | |
| set_domain_attribute(sd, attr); | |
| cpumask_copy(sched_domain_span(sd), cpu_map); | |
| cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); | |
| d->sd_allnodes = 1; | |
| } | |
| parent = sd; | |
| sd = &per_cpu(node_domains, i).sd; | |
| SD_INIT(sd, NODE); | |
| set_domain_attribute(sd, attr); | |
| sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); | |
| sd->parent = parent; | |
| if (parent) | |
| parent->child = sd; | |
| cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); | |
| #endif | |
| return sd; | |
| } | |
| static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, | |
| const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
| struct sched_domain *parent, int i) | |
| { | |
| struct sched_domain *sd; | |
| sd = &per_cpu(phys_domains, i).sd; | |
| SD_INIT(sd, CPU); | |
| set_domain_attribute(sd, attr); | |
| cpumask_copy(sched_domain_span(sd), d->nodemask); | |
| sd->parent = parent; | |
| if (parent) | |
| parent->child = sd; | |
| cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); | |
| return sd; | |
| } | |
| static struct sched_domain *__build_mc_sched_domain(struct s_data *d, | |
| const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
| struct sched_domain *parent, int i) | |
| { | |
| struct sched_domain *sd = parent; | |
| #ifdef CONFIG_SCHED_MC | |
| sd = &per_cpu(core_domains, i).sd; | |
| SD_INIT(sd, MC); | |
| set_domain_attribute(sd, attr); | |
| cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); | |
| sd->parent = parent; | |
| parent->child = sd; | |
| cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); | |
| #endif | |
| return sd; | |
| } | |
| static struct sched_domain *__build_smt_sched_domain(struct s_data *d, | |
| const struct cpumask *cpu_map, struct sched_domain_attr *attr, | |
| struct sched_domain *parent, int i) | |
| { | |
| struct sched_domain *sd = parent; | |
| #ifdef CONFIG_SCHED_SMT | |
| sd = &per_cpu(cpu_domains, i).sd; | |
| SD_INIT(sd, SIBLING); | |
| set_domain_attribute(sd, attr); | |
| cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); | |
| sd->parent = parent; | |
| parent->child = sd; | |
| cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); | |
| #endif | |
| return sd; | |
| } | |
| static void build_sched_groups(struct s_data *d, enum sched_domain_level l, | |
| const struct cpumask *cpu_map, int cpu) | |
| { | |
| switch (l) { | |
| #ifdef CONFIG_SCHED_SMT | |
| case SD_LV_SIBLING: /* set up CPU (sibling) groups */ | |
| cpumask_and(d->this_sibling_map, cpu_map, | |
| topology_thread_cpumask(cpu)); | |
| if (cpu == cpumask_first(d->this_sibling_map)) | |
| init_sched_build_groups(d->this_sibling_map, cpu_map, | |
| &cpu_to_cpu_group, | |
| d->send_covered, d->tmpmask); | |
| break; | |
| #endif | |
| #ifdef CONFIG_SCHED_MC | |
| case SD_LV_MC: /* set up multi-core groups */ | |
| cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); | |
| if (cpu == cpumask_first(d->this_core_map)) | |
| init_sched_build_groups(d->this_core_map, cpu_map, | |
| &cpu_to_core_group, | |
| d->send_covered, d->tmpmask); | |
| break; | |
| #endif | |
| case SD_LV_CPU: /* set up physical groups */ | |
| cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); | |
| if (!cpumask_empty(d->nodemask)) | |
| init_sched_build_groups(d->nodemask, cpu_map, | |
| &cpu_to_phys_group, | |
| d->send_covered, d->tmpmask); | |
| break; | |
| #ifdef CONFIG_NUMA | |
| case SD_LV_ALLNODES: | |
| init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, | |
| d->send_covered, d->tmpmask); | |
| break; | |
| #endif | |
| default: | |
| break; | |
| } | |
| } | |
| /* | |
| * Build sched domains for a given set of cpus and attach the sched domains | |
| * to the individual cpus | |
| */ | |
| static int __build_sched_domains(const struct cpumask *cpu_map, | |
| struct sched_domain_attr *attr) | |
| { | |
| enum s_alloc alloc_state = sa_none; | |
| struct s_data d; | |
| struct sched_domain *sd; | |
| int i; | |
| #ifdef CONFIG_NUMA | |
| d.sd_allnodes = 0; | |
| #endif | |
| alloc_state = __visit_domain_allocation_hell(&d, cpu_map); | |
| if (alloc_state != sa_rootdomain) | |
| goto error; | |
| alloc_state = sa_sched_groups; | |
| /* | |
| * Set up domains for cpus specified by the cpu_map. | |
| */ | |
| for_each_cpu(i, cpu_map) { | |
| cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), | |
| cpu_map); | |
| sd = __build_numa_sched_domains(&d, cpu_map, attr, i); | |
| sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); | |
| sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); | |
| sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); | |
| } | |
| for_each_cpu(i, cpu_map) { | |
| build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); | |
| build_sched_groups(&d, SD_LV_MC, cpu_map, i); | |
| } | |
| /* Set up physical groups */ | |
| for (i = 0; i < nr_node_ids; i++) | |
| build_sched_groups(&d, SD_LV_CPU, cpu_map, i); | |
| #ifdef CONFIG_NUMA | |
| /* Set up node groups */ | |
| if (d.sd_allnodes) | |
| build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); | |
| for (i = 0; i < nr_node_ids; i++) | |
| if (build_numa_sched_groups(&d, cpu_map, i)) | |
| goto error; | |
| #endif | |
| /* Calculate CPU power for physical packages and nodes */ | |
| #ifdef CONFIG_SCHED_SMT | |
| for_each_cpu(i, cpu_map) { | |
| sd = &per_cpu(cpu_domains, i).sd; | |
| init_sched_groups_power(i, sd); | |
| } | |
| #endif | |
| #ifdef CONFIG_SCHED_MC | |
| for_each_cpu(i, cpu_map) { | |
| sd = &per_cpu(core_domains, i).sd; | |
| init_sched_groups_power(i, sd); | |
| } | |
| #endif | |
| for_each_cpu(i, cpu_map) { | |
| sd = &per_cpu(phys_domains, i).sd; | |
| init_sched_groups_power(i, sd); | |
| } | |
| #ifdef CONFIG_NUMA | |
| for (i = 0; i < nr_node_ids; i++) | |
| init_numa_sched_groups_power(d.sched_group_nodes[i]); | |
| if (d.sd_allnodes) { | |
| struct sched_group *sg; | |
| cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, | |
| d.tmpmask); | |
| init_numa_sched_groups_power(sg); | |
| } | |
| #endif | |
| /* Attach the domains */ | |
| for_each_cpu(i, cpu_map) { | |
| #ifdef CONFIG_SCHED_SMT | |
| sd = &per_cpu(cpu_domains, i).sd; | |
| #elif defined(CONFIG_SCHED_MC) | |
| sd = &per_cpu(core_domains, i).sd; | |
| #else | |
| sd = &per_cpu(phys_domains, i).sd; | |
| #endif | |
| cpu_attach_domain(sd, d.rd, i); | |
| } | |
| d.sched_group_nodes = NULL; /* don't free this we still need it */ | |
| __free_domain_allocs(&d, sa_tmpmask, cpu_map); | |
| return 0; | |
| error: | |
| __free_domain_allocs(&d, alloc_state, cpu_map); | |
| return -ENOMEM; | |
| } | |
| static int build_sched_domains(const struct cpumask *cpu_map) | |
| { | |
| return __build_sched_domains(cpu_map, NULL); | |
| } | |
| static cpumask_var_t *doms_cur; /* current sched domains */ | |
| static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | |
| static struct sched_domain_attr *dattr_cur; | |
| /* attribues of custom domains in 'doms_cur' */ | |
| /* | |
| * Special case: If a kmalloc of a doms_cur partition (array of | |
| * cpumask) fails, then fallback to a single sched domain, | |
| * as determined by the single cpumask fallback_doms. | |
| */ | |
| static cpumask_var_t fallback_doms; | |
| /* | |
| * arch_update_cpu_topology lets virtualized architectures update the | |
| * cpu core maps. It is supposed to return 1 if the topology changed | |
| * or 0 if it stayed the same. | |
| */ | |
| int __attribute__((weak)) arch_update_cpu_topology(void) | |
| { | |
| return 0; | |
| } | |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms) | |
| { | |
| int i; | |
| cpumask_var_t *doms; | |
| doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); | |
| if (!doms) | |
| return NULL; | |
| for (i = 0; i < ndoms; i++) { | |
| if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { | |
| free_sched_domains(doms, i); | |
| return NULL; | |
| } | |
| } | |
| return doms; | |
| } | |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) | |
| { | |
| unsigned int i; | |
| for (i = 0; i < ndoms; i++) | |
| free_cpumask_var(doms[i]); | |
| kfree(doms); | |
| } | |
| /* | |
| * Set up scheduler domains and groups. Callers must hold the hotplug lock. | |
| * For now this just excludes isolated cpus, but could be used to | |
| * exclude other special cases in the future. | |
| */ | |
| static int arch_init_sched_domains(const struct cpumask *cpu_map) | |
| { | |
| int err; | |
| arch_update_cpu_topology(); | |
| ndoms_cur = 1; | |
| doms_cur = alloc_sched_domains(ndoms_cur); | |
| if (!doms_cur) | |
| doms_cur = &fallback_doms; | |
| cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); | |
| dattr_cur = NULL; | |
| err = build_sched_domains(doms_cur[0]); | |
| register_sched_domain_sysctl(); | |
| return err; | |
| } | |
| static void arch_destroy_sched_domains(const struct cpumask *cpu_map, | |
| struct cpumask *tmpmask) | |
| { | |
| free_sched_groups(cpu_map, tmpmask); | |
| } | |
| /* | |
| * Detach sched domains from a group of cpus specified in cpu_map | |
| * These cpus will now be attached to the NULL domain | |
| */ | |
| static void detach_destroy_domains(const struct cpumask *cpu_map) | |
| { | |
| /* Save because hotplug lock held. */ | |
| static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); | |
| int i; | |
| for_each_cpu(i, cpu_map) | |
| cpu_attach_domain(NULL, &def_root_domain, i); | |
| synchronize_sched(); | |
| arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); | |
| } | |
| /* handle null as "default" */ | |
| static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | |
| struct sched_domain_attr *new, int idx_new) | |
| { | |
| struct sched_domain_attr tmp; | |
| /* fast path */ | |
| if (!new && !cur) | |
| return 1; | |
| tmp = SD_ATTR_INIT; | |
| return !memcmp(cur ? (cur + idx_cur) : &tmp, | |
| new ? (new + idx_new) : &tmp, | |
| sizeof(struct sched_domain_attr)); | |
| } | |
| /* | |
| * Partition sched domains as specified by the 'ndoms_new' | |
| * cpumasks in the array doms_new[] of cpumasks. This compares | |
| * doms_new[] to the current sched domain partitioning, doms_cur[]. | |
| * It destroys each deleted domain and builds each new domain. | |
| * | |
| * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. | |
| * The masks don't intersect (don't overlap.) We should setup one | |
| * sched domain for each mask. CPUs not in any of the cpumasks will | |
| * not be load balanced. If the same cpumask appears both in the | |
| * current 'doms_cur' domains and in the new 'doms_new', we can leave | |
| * it as it is. | |
| * | |
| * The passed in 'doms_new' should be allocated using | |
| * alloc_sched_domains. This routine takes ownership of it and will | |
| * free_sched_domains it when done with it. If the caller failed the | |
| * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, | |
| * and partition_sched_domains() will fallback to the single partition | |
| * 'fallback_doms', it also forces the domains to be rebuilt. | |
| * | |
| * If doms_new == NULL it will be replaced with cpu_online_mask. | |
| * ndoms_new == 0 is a special case for destroying existing domains, | |
| * and it will not create the default domain. | |
| * | |
| * Call with hotplug lock held | |
| */ | |
| void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], | |
| struct sched_domain_attr *dattr_new) | |
| { | |
| int i, j, n; | |
| int new_topology; | |
| mutex_lock(&sched_domains_mutex); | |
| /* always unregister in case we don't destroy any domains */ | |
| unregister_sched_domain_sysctl(); | |
| /* Let architecture update cpu core mappings. */ | |
| new_topology = arch_update_cpu_topology(); | |
| n = doms_new ? ndoms_new : 0; | |
| /* Destroy deleted domains */ | |
| for (i = 0; i < ndoms_cur; i++) { | |
| for (j = 0; j < n && !new_topology; j++) { | |
| if (cpumask_equal(doms_cur[i], doms_new[j]) | |
| && dattrs_equal(dattr_cur, i, dattr_new, j)) | |
| goto match1; | |
| } | |
| /* no match - a current sched domain not in new doms_new[] */ | |
| detach_destroy_domains(doms_cur[i]); | |
| match1: | |
| ; | |
| } | |
| if (doms_new == NULL) { | |
| ndoms_cur = 0; | |
| doms_new = &fallback_doms; | |
| cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); | |
| WARN_ON_ONCE(dattr_new); | |
| } | |
| /* Build new domains */ | |
| for (i = 0; i < ndoms_new; i++) { | |
| for (j = 0; j < ndoms_cur && !new_topology; j++) { | |
| if (cpumask_equal(doms_new[i], doms_cur[j]) | |
| && dattrs_equal(dattr_new, i, dattr_cur, j)) | |
| goto match2; | |
| } | |
| /* no match - add a new doms_new */ | |
| __build_sched_domains(doms_new[i], | |
| dattr_new ? dattr_new + i : NULL); | |
| match2: | |
| ; | |
| } | |
| /* Remember the new sched domains */ | |
| if (doms_cur != &fallback_doms) | |
| free_sched_domains(doms_cur, ndoms_cur); | |
| kfree(dattr_cur); /* kfree(NULL) is safe */ | |
| doms_cur = doms_new; | |
| dattr_cur = dattr_new; | |
| ndoms_cur = ndoms_new; | |
| register_sched_domain_sysctl(); | |
| mutex_unlock(&sched_domains_mutex); | |
| } | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
| static void arch_reinit_sched_domains(void) | |
| { | |
| get_online_cpus(); | |
| /* Destroy domains first to force the rebuild */ | |
| partition_sched_domains(0, NULL, NULL); | |
| rebuild_sched_domains(); | |
| put_online_cpus(); | |
| } | |
| static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
| { | |
| unsigned int level = 0; | |
| if (sscanf(buf, "%u", &level) != 1) | |
| return -EINVAL; | |
| /* | |
| * level is always be positive so don't check for | |
| * level < POWERSAVINGS_BALANCE_NONE which is 0 | |
| * What happens on 0 or 1 byte write, | |
| * need to check for count as well? | |
| */ | |
| if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) | |
| return -EINVAL; | |
| if (smt) | |
| sched_smt_power_savings = level; | |
| else | |
| sched_mc_power_savings = level; | |
| arch_reinit_sched_domains(); | |
| return count; | |
| } | |
| #ifdef CONFIG_SCHED_MC | |
| static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | |
| struct sysdev_class_attribute *attr, | |
| char *page) | |
| { | |
| return sprintf(page, "%u\n", sched_mc_power_savings); | |
| } | |
| static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | |
| struct sysdev_class_attribute *attr, | |
| const char *buf, size_t count) | |
| { | |
| return sched_power_savings_store(buf, count, 0); | |
| } | |
| static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | |
| sched_mc_power_savings_show, | |
| sched_mc_power_savings_store); | |
| #endif | |
| #ifdef CONFIG_SCHED_SMT | |
| static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | |
| struct sysdev_class_attribute *attr, | |
| char *page) | |
| { | |
| return sprintf(page, "%u\n", sched_smt_power_savings); | |
| } | |
| static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | |
| struct sysdev_class_attribute *attr, | |
| const char *buf, size_t count) | |
| { | |
| return sched_power_savings_store(buf, count, 1); | |
| } | |
| static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, | |
| sched_smt_power_savings_show, | |
| sched_smt_power_savings_store); | |
| #endif | |
| int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | |
| { | |
| int err = 0; | |
| #ifdef CONFIG_SCHED_SMT | |
| if (smt_capable()) | |
| err = sysfs_create_file(&cls->kset.kobj, | |
| &attr_sched_smt_power_savings.attr); | |
| #endif | |
| #ifdef CONFIG_SCHED_MC | |
| if (!err && mc_capable()) | |
| err = sysfs_create_file(&cls->kset.kobj, | |
| &attr_sched_mc_power_savings.attr); | |
| #endif | |
| return err; | |
| } | |
| #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | |
| #ifndef CONFIG_CPUSETS | |
| /* | |
| * Add online and remove offline CPUs from the scheduler domains. | |
| * When cpusets are enabled they take over this function. | |
| */ | |
| static int update_sched_domains(struct notifier_block *nfb, | |
| unsigned long action, void *hcpu) | |
| { | |
| switch (action) { | |
| case CPU_ONLINE: | |
| case CPU_ONLINE_FROZEN: | |
| case CPU_DOWN_PREPARE: | |
| case CPU_DOWN_PREPARE_FROZEN: | |
| case CPU_DOWN_FAILED: | |
| case CPU_DOWN_FAILED_FROZEN: | |
| partition_sched_domains(1, NULL, NULL); | |
| return NOTIFY_OK; | |
| default: | |
| return NOTIFY_DONE; | |
| } | |
| } | |
| #endif | |
| static int update_runtime(struct notifier_block *nfb, | |
| unsigned long action, void *hcpu) | |
| { | |
| int cpu = (int)(long)hcpu; | |
| switch (action) { | |
| case CPU_DOWN_PREPARE: | |
| case CPU_DOWN_PREPARE_FROZEN: | |
| disable_runtime(cpu_rq(cpu)); | |
| return NOTIFY_OK; | |
| case CPU_DOWN_FAILED: | |
| case CPU_DOWN_FAILED_FROZEN: | |
| case CPU_ONLINE: | |
| case CPU_ONLINE_FROZEN: | |
| enable_runtime(cpu_rq(cpu)); | |
| return NOTIFY_OK; | |
| default: | |
| return NOTIFY_DONE; | |
| } | |
| } | |
| void __init sched_init_smp(void) | |
| { | |
| cpumask_var_t non_isolated_cpus; | |
| alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | |
| alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | |
| #if defined(CONFIG_NUMA) | |
| sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | |
| GFP_KERNEL); | |
| BUG_ON(sched_group_nodes_bycpu == NULL); | |
| #endif | |
| get_online_cpus(); | |
| mutex_lock(&sched_domains_mutex); | |
| arch_init_sched_domains(cpu_active_mask); | |
| cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); | |
| if (cpumask_empty(non_isolated_cpus)) | |
| cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); | |
| mutex_unlock(&sched_domains_mutex); | |
| put_online_cpus(); | |
| #ifndef CONFIG_CPUSETS | |
| /* XXX: Theoretical race here - CPU may be hotplugged now */ | |
| hotcpu_notifier(update_sched_domains, 0); | |
| #endif | |
| /* RT runtime code needs to handle some hotplug events */ | |
| hotcpu_notifier(update_runtime, 0); | |
| init_hrtick(); | |
| /* Move init over to a non-isolated CPU */ | |
| if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) | |
| BUG(); | |
| sched_init_granularity(); | |
| free_cpumask_var(non_isolated_cpus); | |
| init_sched_rt_class(); | |
| } | |
| #else | |
| void __init sched_init_smp(void) | |
| { | |
| sched_init_granularity(); | |
| } | |
| #endif /* CONFIG_SMP */ | |
| const_debug unsigned int sysctl_timer_migration = 1; | |
| int in_sched_functions(unsigned long addr) | |
| { | |
| return in_lock_functions(addr) || | |
| (addr >= (unsigned long)__sched_text_start | |
| && addr < (unsigned long)__sched_text_end); | |
| } | |
| static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) | |
| { | |
| cfs_rq->tasks_timeline = RB_ROOT; | |
| INIT_LIST_HEAD(&cfs_rq->tasks); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| cfs_rq->rq = rq; | |
| #endif | |
| cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | |
| } | |
| static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | |
| { | |
| struct rt_prio_array *array; | |
| int i; | |
| array = &rt_rq->active; | |
| for (i = 0; i < MAX_RT_PRIO; i++) { | |
| INIT_LIST_HEAD(array->queue + i); | |
| __clear_bit(i, array->bitmap); | |
| } | |
| /* delimiter for bitsearch: */ | |
| __set_bit(MAX_RT_PRIO, array->bitmap); | |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | |
| rt_rq->highest_prio.curr = MAX_RT_PRIO; | |
| #ifdef CONFIG_SMP | |
| rt_rq->highest_prio.next = MAX_RT_PRIO; | |
| #endif | |
| #endif | |
| #ifdef CONFIG_SMP | |
| rt_rq->rt_nr_migratory = 0; | |
| rt_rq->overloaded = 0; | |
| plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock); | |
| #endif | |
| rt_rq->rt_time = 0; | |
| rt_rq->rt_throttled = 0; | |
| rt_rq->rt_runtime = 0; | |
| raw_spin_lock_init(&rt_rq->rt_runtime_lock); | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| rt_rq->rt_nr_boosted = 0; | |
| rt_rq->rq = rq; | |
| #endif | |
| } | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
| struct sched_entity *se, int cpu, int add, | |
| struct sched_entity *parent) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| tg->cfs_rq[cpu] = cfs_rq; | |
| init_cfs_rq(cfs_rq, rq); | |
| cfs_rq->tg = tg; | |
| if (add) | |
| list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | |
| tg->se[cpu] = se; | |
| /* se could be NULL for init_task_group */ | |
| if (!se) | |
| return; | |
| if (!parent) | |
| se->cfs_rq = &rq->cfs; | |
| else | |
| se->cfs_rq = parent->my_q; | |
| se->my_q = cfs_rq; | |
| se->load.weight = tg->shares; | |
| se->load.inv_weight = 0; | |
| se->parent = parent; | |
| } | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |
| struct sched_rt_entity *rt_se, int cpu, int add, | |
| struct sched_rt_entity *parent) | |
| { | |
| struct rq *rq = cpu_rq(cpu); | |
| tg->rt_rq[cpu] = rt_rq; | |
| init_rt_rq(rt_rq, rq); | |
| rt_rq->tg = tg; | |
| rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | |
| if (add) | |
| list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | |
| tg->rt_se[cpu] = rt_se; | |
| if (!rt_se) | |
| return; | |
| if (!parent) | |
| rt_se->rt_rq = &rq->rt; | |
| else | |
| rt_se->rt_rq = parent->my_q; | |
| rt_se->my_q = rt_rq; | |
| rt_se->parent = parent; | |
| INIT_LIST_HEAD(&rt_se->run_list); | |
| } | |
| #endif | |
| void __init sched_init(void) | |
| { | |
| int i, j; | |
| unsigned long alloc_size = 0, ptr; | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| alloc_size += 2 * nr_cpu_ids * sizeof(void **); | |
| #endif | |
| #ifdef CONFIG_CPUMASK_OFFSTACK | |
| alloc_size += num_possible_cpus() * cpumask_size(); | |
| #endif | |
| if (alloc_size) { | |
| ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| init_task_group.se = (struct sched_entity **)ptr; | |
| ptr += nr_cpu_ids * sizeof(void **); | |
| init_task_group.cfs_rq = (struct cfs_rq **)ptr; | |
| ptr += nr_cpu_ids * sizeof(void **); | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| init_task_group.rt_se = (struct sched_rt_entity **)ptr; | |
| ptr += nr_cpu_ids * sizeof(void **); | |
| init_task_group.rt_rq = (struct rt_rq **)ptr; | |
| ptr += nr_cpu_ids * sizeof(void **); | |
| #endif /* CONFIG_RT_GROUP_SCHED */ | |
| #ifdef CONFIG_CPUMASK_OFFSTACK | |
| for_each_possible_cpu(i) { | |
| per_cpu(load_balance_tmpmask, i) = (void *)ptr; | |
| ptr += cpumask_size(); | |
| } | |
| #endif /* CONFIG_CPUMASK_OFFSTACK */ | |
| } | |
| #ifdef CONFIG_SMP | |
| init_defrootdomain(); | |
| #endif | |
| init_rt_bandwidth(&def_rt_bandwidth, | |
| global_rt_period(), global_rt_runtime()); | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| init_rt_bandwidth(&init_task_group.rt_bandwidth, | |
| global_rt_period(), global_rt_runtime()); | |
| #endif /* CONFIG_RT_GROUP_SCHED */ | |
| #ifdef CONFIG_CGROUP_SCHED | |
| list_add(&init_task_group.list, &task_groups); | |
| INIT_LIST_HEAD(&init_task_group.children); | |
| #endif /* CONFIG_CGROUP_SCHED */ | |
| #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP | |
| update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), | |
| __alignof__(unsigned long)); | |
| #endif | |
| for_each_possible_cpu(i) { | |
| struct rq *rq; | |
| rq = cpu_rq(i); | |
| raw_spin_lock_init(&rq->lock); | |
| rq->nr_running = 0; | |
| rq->calc_load_active = 0; | |
| rq->calc_load_update = jiffies + LOAD_FREQ; | |
| init_cfs_rq(&rq->cfs, rq); | |
| init_rt_rq(&rq->rt, rq); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| init_task_group.shares = init_task_group_load; | |
| INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | |
| #ifdef CONFIG_CGROUP_SCHED | |
| /* | |
| * How much cpu bandwidth does init_task_group get? | |
| * | |
| * In case of task-groups formed thr' the cgroup filesystem, it | |
| * gets 100% of the cpu resources in the system. This overall | |
| * system cpu resource is divided among the tasks of | |
| * init_task_group and its child task-groups in a fair manner, | |
| * based on each entity's (task or task-group's) weight | |
| * (se->load.weight). | |
| * | |
| * In other words, if init_task_group has 10 tasks of weight | |
| * 1024) and two child groups A0 and A1 (of weight 1024 each), | |
| * then A0's share of the cpu resource is: | |
| * | |
| * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | |
| * | |
| * We achieve this by letting init_task_group's tasks sit | |
| * directly in rq->cfs (i.e init_task_group->se[] = NULL). | |
| */ | |
| init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | |
| #endif | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
| rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | |
| #ifdef CONFIG_CGROUP_SCHED | |
| init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | |
| #endif | |
| #endif | |
| for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | |
| rq->cpu_load[j] = 0; | |
| #ifdef CONFIG_SMP | |
| rq->sd = NULL; | |
| rq->rd = NULL; | |
| rq->post_schedule = 0; | |
| rq->active_balance = 0; | |
| rq->next_balance = jiffies; | |
| rq->push_cpu = 0; | |
| rq->cpu = i; | |
| rq->online = 0; | |
| rq->migration_thread = NULL; | |
| rq->idle_stamp = 0; | |
| rq->avg_idle = 2*sysctl_sched_migration_cost; | |
| INIT_LIST_HEAD(&rq->migration_queue); | |
| rq_attach_root(rq, &def_root_domain); | |
| #endif | |
| init_rq_hrtick(rq); | |
| atomic_set(&rq->nr_iowait, 0); | |
| } | |
| set_load_weight(&init_task); | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS | |
| INIT_HLIST_HEAD(&init_task.preempt_notifiers); | |
| #endif | |
| #ifdef CONFIG_SMP | |
| open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | |
| #endif | |
| #ifdef CONFIG_RT_MUTEXES | |
| plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock); | |
| #endif | |
| /* | |
| * The boot idle thread does lazy MMU switching as well: | |
| */ | |
| atomic_inc(&init_mm.mm_count); | |
| enter_lazy_tlb(&init_mm, current); | |
| /* | |
| * Make us the idle thread. Technically, schedule() should not be | |
| * called from this thread, however somewhere below it might be, | |
| * but because we are the idle thread, we just pick up running again | |
| * when this runqueue becomes "idle". | |
| */ | |
| init_idle(current, smp_processor_id()); | |
| calc_load_update = jiffies + LOAD_FREQ; | |
| /* | |
| * During early bootup we pretend to be a normal task: | |
| */ | |
| current->sched_class = &fair_sched_class; | |
| /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ | |
| zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); | |
| #ifdef CONFIG_SMP | |
| #ifdef CONFIG_NO_HZ | |
| zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); | |
| alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); | |
| #endif | |
| /* May be allocated at isolcpus cmdline parse time */ | |
| if (cpu_isolated_map == NULL) | |
| zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | |
| #endif /* SMP */ | |
| perf_event_init(); | |
| scheduler_running = 1; | |
| } | |
| #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
| static inline int preempt_count_equals(int preempt_offset) | |
| { | |
| int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); | |
| return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); | |
| } | |
| void __might_sleep(const char *file, int line, int preempt_offset) | |
| { | |
| #ifdef in_atomic | |
| static unsigned long prev_jiffy; /* ratelimiting */ | |
| if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || | |
| system_state != SYSTEM_RUNNING || oops_in_progress) | |
| return; | |
| if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
| return; | |
| prev_jiffy = jiffies; | |
| printk(KERN_ERR | |
| "BUG: sleeping function called from invalid context at %s:%d\n", | |
| file, line); | |
| printk(KERN_ERR | |
| "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | |
| in_atomic(), irqs_disabled(), | |
| current->pid, current->comm); | |
| debug_show_held_locks(current); | |
| if (irqs_disabled()) | |
| print_irqtrace_events(current); | |
| dump_stack(); | |
| #endif | |
| } | |
| EXPORT_SYMBOL(__might_sleep); | |
| #endif | |
| #ifdef CONFIG_MAGIC_SYSRQ | |
| static void normalize_task(struct rq *rq, struct task_struct *p) | |
| { | |
| int on_rq; | |
| update_rq_clock(rq); | |
| on_rq = p->se.on_rq; | |
| if (on_rq) | |
| deactivate_task(rq, p, 0); | |
| __setscheduler(rq, p, SCHED_NORMAL, 0); | |
| if (on_rq) { | |
| activate_task(rq, p, 0); | |
| resched_task(rq->curr); | |
| } | |
| } | |
| void normalize_rt_tasks(void) | |
| { | |
| struct task_struct *g, *p; | |
| unsigned long flags; | |
| struct rq *rq; | |
| read_lock_irqsave(&tasklist_lock, flags); | |
| do_each_thread(g, p) { | |
| /* | |
| * Only normalize user tasks: | |
| */ | |
| if (!p->mm) | |
| continue; | |
| p->se.exec_start = 0; | |
| #ifdef CONFIG_SCHEDSTATS | |
| p->se.wait_start = 0; | |
| p->se.sleep_start = 0; | |
| p->se.block_start = 0; | |
| #endif | |
| if (!rt_task(p)) { | |
| /* | |
| * Renice negative nice level userspace | |
| * tasks back to 0: | |
| */ | |
| if (TASK_NICE(p) < 0 && p->mm) | |
| set_user_nice(p, 0); | |
| continue; | |
| } | |
| raw_spin_lock(&p->pi_lock); | |
| rq = __task_rq_lock(p); | |
| normalize_task(rq, p); | |
| __task_rq_unlock(rq); | |
| raw_spin_unlock(&p->pi_lock); | |
| } while_each_thread(g, p); | |
| read_unlock_irqrestore(&tasklist_lock, flags); | |
| } | |
| #endif /* CONFIG_MAGIC_SYSRQ */ | |
| #ifdef CONFIG_IA64 | |
| /* | |
| * These functions are only useful for the IA64 MCA handling. | |
| * | |
| * They can only be called when the whole system has been | |
| * stopped - every CPU needs to be quiescent, and no scheduling | |
| * activity can take place. Using them for anything else would | |
| * be a serious bug, and as a result, they aren't even visible | |
| * under any other configuration. | |
| */ | |
| /** | |
| * curr_task - return the current task for a given cpu. | |
| * @cpu: the processor in question. | |
| * | |
| * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
| */ | |
| struct task_struct *curr_task(int cpu) | |
| { | |
| return cpu_curr(cpu); | |
| } | |
| /** | |
| * set_curr_task - set the current task for a given cpu. | |
| * @cpu: the processor in question. | |
| * @p: the task pointer to set. | |
| * | |
| * Description: This function must only be used when non-maskable interrupts | |
| * are serviced on a separate stack. It allows the architecture to switch the | |
| * notion of the current task on a cpu in a non-blocking manner. This function | |
| * must be called with all CPU's synchronized, and interrupts disabled, the | |
| * and caller must save the original value of the current task (see | |
| * curr_task() above) and restore that value before reenabling interrupts and | |
| * re-starting the system. | |
| * | |
| * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
| */ | |
| void set_curr_task(int cpu, struct task_struct *p) | |
| { | |
| cpu_curr(cpu) = p; | |
| } | |
| #endif | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static void free_fair_sched_group(struct task_group *tg) | |
| { | |
| int i; | |
| for_each_possible_cpu(i) { | |
| if (tg->cfs_rq) | |
| kfree(tg->cfs_rq[i]); | |
| if (tg->se) | |
| kfree(tg->se[i]); | |
| } | |
| kfree(tg->cfs_rq); | |
| kfree(tg->se); | |
| } | |
| static | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
| { | |
| struct cfs_rq *cfs_rq; | |
| struct sched_entity *se; | |
| struct rq *rq; | |
| int i; | |
| tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | |
| if (!tg->cfs_rq) | |
| goto err; | |
| tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | |
| if (!tg->se) | |
| goto err; | |
| tg->shares = NICE_0_LOAD; | |
| for_each_possible_cpu(i) { | |
| rq = cpu_rq(i); | |
| cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
| GFP_KERNEL, cpu_to_node(i)); | |
| if (!cfs_rq) | |
| goto err; | |
| se = kzalloc_node(sizeof(struct sched_entity), | |
| GFP_KERNEL, cpu_to_node(i)); | |
| if (!se) | |
| goto err_free_rq; | |
| init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | |
| } | |
| return 1; | |
| err_free_rq: | |
| kfree(cfs_rq); | |
| err: | |
| return 0; | |
| } | |
| static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
| { | |
| list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | |
| &cpu_rq(cpu)->leaf_cfs_rq_list); | |
| } | |
| static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
| { | |
| list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | |
| } | |
| #else /* !CONFG_FAIR_GROUP_SCHED */ | |
| static inline void free_fair_sched_group(struct task_group *tg) | |
| { | |
| } | |
| static inline | |
| int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
| { | |
| return 1; | |
| } | |
| static inline void register_fair_sched_group(struct task_group *tg, int cpu) | |
| { | |
| } | |
| static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | |
| { | |
| } | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| static void free_rt_sched_group(struct task_group *tg) | |
| { | |
| int i; | |
| destroy_rt_bandwidth(&tg->rt_bandwidth); | |
| for_each_possible_cpu(i) { | |
| if (tg->rt_rq) | |
| kfree(tg->rt_rq[i]); | |
| if (tg->rt_se) | |
| kfree(tg->rt_se[i]); | |
| } | |
| kfree(tg->rt_rq); | |
| kfree(tg->rt_se); | |
| } | |
| static | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
| { | |
| struct rt_rq *rt_rq; | |
| struct sched_rt_entity *rt_se; | |
| struct rq *rq; | |
| int i; | |
| tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | |
| if (!tg->rt_rq) | |
| goto err; | |
| tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | |
| if (!tg->rt_se) | |
| goto err; | |
| init_rt_bandwidth(&tg->rt_bandwidth, | |
| ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
| for_each_possible_cpu(i) { | |
| rq = cpu_rq(i); | |
| rt_rq = kzalloc_node(sizeof(struct rt_rq), | |
| GFP_KERNEL, cpu_to_node(i)); | |
| if (!rt_rq) | |
| goto err; | |
| rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | |
| GFP_KERNEL, cpu_to_node(i)); | |
| if (!rt_se) | |
| goto err_free_rq; | |
| init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | |
| } | |
| return 1; | |
| err_free_rq: | |
| kfree(rt_rq); | |
| err: | |
| return 0; | |
| } | |
| static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
| { | |
| list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | |
| &cpu_rq(cpu)->leaf_rt_rq_list); | |
| } | |
| static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
| { | |
| list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | |
| } | |
| #else /* !CONFIG_RT_GROUP_SCHED */ | |
| static inline void free_rt_sched_group(struct task_group *tg) | |
| { | |
| } | |
| static inline | |
| int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
| { | |
| return 1; | |
| } | |
| static inline void register_rt_sched_group(struct task_group *tg, int cpu) | |
| { | |
| } | |
| static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | |
| { | |
| } | |
| #endif /* CONFIG_RT_GROUP_SCHED */ | |
| #ifdef CONFIG_CGROUP_SCHED | |
| static void free_sched_group(struct task_group *tg) | |
| { | |
| free_fair_sched_group(tg); | |
| free_rt_sched_group(tg); | |
| kfree(tg); | |
| } | |
| /* allocate runqueue etc for a new task group */ | |
| struct task_group *sched_create_group(struct task_group *parent) | |
| { | |
| struct task_group *tg; | |
| unsigned long flags; | |
| int i; | |
| tg = kzalloc(sizeof(*tg), GFP_KERNEL); | |
| if (!tg) | |
| return ERR_PTR(-ENOMEM); | |
| if (!alloc_fair_sched_group(tg, parent)) | |
| goto err; | |
| if (!alloc_rt_sched_group(tg, parent)) | |
| goto err; | |
| spin_lock_irqsave(&task_group_lock, flags); | |
| for_each_possible_cpu(i) { | |
| register_fair_sched_group(tg, i); | |
| register_rt_sched_group(tg, i); | |
| } | |
| list_add_rcu(&tg->list, &task_groups); | |
| WARN_ON(!parent); /* root should already exist */ | |
| tg->parent = parent; | |
| INIT_LIST_HEAD(&tg->children); | |
| list_add_rcu(&tg->siblings, &parent->children); | |
| spin_unlock_irqrestore(&task_group_lock, flags); | |
| return tg; | |
| err: | |
| free_sched_group(tg); | |
| return ERR_PTR(-ENOMEM); | |
| } | |
| /* rcu callback to free various structures associated with a task group */ | |
| static void free_sched_group_rcu(struct rcu_head *rhp) | |
| { | |
| /* now it should be safe to free those cfs_rqs */ | |
| free_sched_group(container_of(rhp, struct task_group, rcu)); | |
| } | |
| /* Destroy runqueue etc associated with a task group */ | |
| void sched_destroy_group(struct task_group *tg) | |
| { | |
| unsigned long flags; | |
| int i; | |
| spin_lock_irqsave(&task_group_lock, flags); | |
| for_each_possible_cpu(i) { | |
| unregister_fair_sched_group(tg, i); | |
| unregister_rt_sched_group(tg, i); | |
| } | |
| list_del_rcu(&tg->list); | |
| list_del_rcu(&tg->siblings); | |
| spin_unlock_irqrestore(&task_group_lock, flags); | |
| /* wait for possible concurrent references to cfs_rqs complete */ | |
| call_rcu(&tg->rcu, free_sched_group_rcu); | |
| } | |
| /* change task's runqueue when it moves between groups. | |
| * The caller of this function should have put the task in its new group | |
| * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | |
| * reflect its new group. | |
| */ | |
| void sched_move_task(struct task_struct *tsk) | |
| { | |
| int on_rq, running; | |
| unsigned long flags; | |
| struct rq *rq; | |
| rq = task_rq_lock(tsk, &flags); | |
| update_rq_clock(rq); | |
| running = task_current(rq, tsk); | |
| on_rq = tsk->se.on_rq; | |
| if (on_rq) | |
| dequeue_task(rq, tsk, 0); | |
| if (unlikely(running)) | |
| tsk->sched_class->put_prev_task(rq, tsk); | |
| set_task_rq(tsk, task_cpu(tsk)); | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| if (tsk->sched_class->moved_group) | |
| tsk->sched_class->moved_group(tsk, on_rq); | |
| #endif | |
| if (unlikely(running)) | |
| tsk->sched_class->set_curr_task(rq); | |
| if (on_rq) | |
| enqueue_task(rq, tsk, 0, false); | |
| task_rq_unlock(rq, &flags); | |
| } | |
| #endif /* CONFIG_CGROUP_SCHED */ | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static void __set_se_shares(struct sched_entity *se, unsigned long shares) | |
| { | |
| struct cfs_rq *cfs_rq = se->cfs_rq; | |
| int on_rq; | |
| on_rq = se->on_rq; | |
| if (on_rq) | |
| dequeue_entity(cfs_rq, se, 0); | |
| se->load.weight = shares; | |
| se->load.inv_weight = 0; | |
| if (on_rq) | |
| enqueue_entity(cfs_rq, se, 0); | |
| } | |
| static void set_se_shares(struct sched_entity *se, unsigned long shares) | |
| { | |
| struct cfs_rq *cfs_rq = se->cfs_rq; | |
| struct rq *rq = cfs_rq->rq; | |
| unsigned long flags; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| __set_se_shares(se, shares); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| } | |
| static DEFINE_MUTEX(shares_mutex); | |
| int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
| { | |
| int i; | |
| unsigned long flags; | |
| /* | |
| * We can't change the weight of the root cgroup. | |
| */ | |
| if (!tg->se[0]) | |
| return -EINVAL; | |
| if (shares < MIN_SHARES) | |
| shares = MIN_SHARES; | |
| else if (shares > MAX_SHARES) | |
| shares = MAX_SHARES; | |
| mutex_lock(&shares_mutex); | |
| if (tg->shares == shares) | |
| goto done; | |
| spin_lock_irqsave(&task_group_lock, flags); | |
| for_each_possible_cpu(i) | |
| unregister_fair_sched_group(tg, i); | |
| list_del_rcu(&tg->siblings); | |
| spin_unlock_irqrestore(&task_group_lock, flags); | |
| /* wait for any ongoing reference to this group to finish */ | |
| synchronize_sched(); | |
| /* | |
| * Now we are free to modify the group's share on each cpu | |
| * w/o tripping rebalance_share or load_balance_fair. | |
| */ | |
| tg->shares = shares; | |
| for_each_possible_cpu(i) { | |
| /* | |
| * force a rebalance | |
| */ | |
| cfs_rq_set_shares(tg->cfs_rq[i], 0); | |
| set_se_shares(tg->se[i], shares); | |
| } | |
| /* | |
| * Enable load balance activity on this group, by inserting it back on | |
| * each cpu's rq->leaf_cfs_rq_list. | |
| */ | |
| spin_lock_irqsave(&task_group_lock, flags); | |
| for_each_possible_cpu(i) | |
| register_fair_sched_group(tg, i); | |
| list_add_rcu(&tg->siblings, &tg->parent->children); | |
| spin_unlock_irqrestore(&task_group_lock, flags); | |
| done: | |
| mutex_unlock(&shares_mutex); | |
| return 0; | |
| } | |
| unsigned long sched_group_shares(struct task_group *tg) | |
| { | |
| return tg->shares; | |
| } | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| /* | |
| * Ensure that the real time constraints are schedulable. | |
| */ | |
| static DEFINE_MUTEX(rt_constraints_mutex); | |
| static unsigned long to_ratio(u64 period, u64 runtime) | |
| { | |
| if (runtime == RUNTIME_INF) | |
| return 1ULL << 20; | |
| return div64_u64(runtime << 20, period); | |
| } | |
| /* Must be called with tasklist_lock held */ | |
| static inline int tg_has_rt_tasks(struct task_group *tg) | |
| { | |
| struct task_struct *g, *p; | |
| do_each_thread(g, p) { | |
| if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | |
| return 1; | |
| } while_each_thread(g, p); | |
| return 0; | |
| } | |
| struct rt_schedulable_data { | |
| struct task_group *tg; | |
| u64 rt_period; | |
| u64 rt_runtime; | |
| }; | |
| static int tg_schedulable(struct task_group *tg, void *data) | |
| { | |
| struct rt_schedulable_data *d = data; | |
| struct task_group *child; | |
| unsigned long total, sum = 0; | |
| u64 period, runtime; | |
| period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
| runtime = tg->rt_bandwidth.rt_runtime; | |
| if (tg == d->tg) { | |
| period = d->rt_period; | |
| runtime = d->rt_runtime; | |
| } | |
| /* | |
| * Cannot have more runtime than the period. | |
| */ | |
| if (runtime > period && runtime != RUNTIME_INF) | |
| return -EINVAL; | |
| /* | |
| * Ensure we don't starve existing RT tasks. | |
| */ | |
| if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | |
| return -EBUSY; | |
| total = to_ratio(period, runtime); | |
| /* | |
| * Nobody can have more than the global setting allows. | |
| */ | |
| if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
| return -EINVAL; | |
| /* | |
| * The sum of our children's runtime should not exceed our own. | |
| */ | |
| list_for_each_entry_rcu(child, &tg->children, siblings) { | |
| period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
| runtime = child->rt_bandwidth.rt_runtime; | |
| if (child == d->tg) { | |
| period = d->rt_period; | |
| runtime = d->rt_runtime; | |
| } | |
| sum += to_ratio(period, runtime); | |
| } | |
| if (sum > total) | |
| return -EINVAL; | |
| return 0; | |
| } | |
| static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | |
| { | |
| struct rt_schedulable_data data = { | |
| .tg = tg, | |
| .rt_period = period, | |
| .rt_runtime = runtime, | |
| }; | |
| return walk_tg_tree(tg_schedulable, tg_nop, &data); | |
| } | |
| static int tg_set_bandwidth(struct task_group *tg, | |
| u64 rt_period, u64 rt_runtime) | |
| { | |
| int i, err = 0; | |
| mutex_lock(&rt_constraints_mutex); | |
| read_lock(&tasklist_lock); | |
| err = __rt_schedulable(tg, rt_period, rt_runtime); | |
| if (err) | |
| goto unlock; | |
| raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
| tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | |
| tg->rt_bandwidth.rt_runtime = rt_runtime; | |
| for_each_possible_cpu(i) { | |
| struct rt_rq *rt_rq = tg->rt_rq[i]; | |
| raw_spin_lock(&rt_rq->rt_runtime_lock); | |
| rt_rq->rt_runtime = rt_runtime; | |
| raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
| } | |
| raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
| unlock: | |
| read_unlock(&tasklist_lock); | |
| mutex_unlock(&rt_constraints_mutex); | |
| return err; | |
| } | |
| int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | |
| { | |
| u64 rt_runtime, rt_period; | |
| rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
| rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
| if (rt_runtime_us < 0) | |
| rt_runtime = RUNTIME_INF; | |
| return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
| } | |
| long sched_group_rt_runtime(struct task_group *tg) | |
| { | |
| u64 rt_runtime_us; | |
| if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | |
| return -1; | |
| rt_runtime_us = tg->rt_bandwidth.rt_runtime; | |
| do_div(rt_runtime_us, NSEC_PER_USEC); | |
| return rt_runtime_us; | |
| } | |
| int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | |
| { | |
| u64 rt_runtime, rt_period; | |
| rt_period = (u64)rt_period_us * NSEC_PER_USEC; | |
| rt_runtime = tg->rt_bandwidth.rt_runtime; | |
| if (rt_period == 0) | |
| return -EINVAL; | |
| return tg_set_bandwidth(tg, rt_period, rt_runtime); | |
| } | |
| long sched_group_rt_period(struct task_group *tg) | |
| { | |
| u64 rt_period_us; | |
| rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
| do_div(rt_period_us, NSEC_PER_USEC); | |
| return rt_period_us; | |
| } | |
| static int sched_rt_global_constraints(void) | |
| { | |
| u64 runtime, period; | |
| int ret = 0; | |
| if (sysctl_sched_rt_period <= 0) | |
| return -EINVAL; | |
| runtime = global_rt_runtime(); | |
| period = global_rt_period(); | |
| /* | |
| * Sanity check on the sysctl variables. | |
| */ | |
| if (runtime > period && runtime != RUNTIME_INF) | |
| return -EINVAL; | |
| mutex_lock(&rt_constraints_mutex); | |
| read_lock(&tasklist_lock); | |
| ret = __rt_schedulable(NULL, 0, 0); | |
| read_unlock(&tasklist_lock); | |
| mutex_unlock(&rt_constraints_mutex); | |
| return ret; | |
| } | |
| int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
| { | |
| /* Don't accept realtime tasks when there is no way for them to run */ | |
| if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
| return 0; | |
| return 1; | |
| } | |
| #else /* !CONFIG_RT_GROUP_SCHED */ | |
| static int sched_rt_global_constraints(void) | |
| { | |
| unsigned long flags; | |
| int i; | |
| if (sysctl_sched_rt_period <= 0) | |
| return -EINVAL; | |
| /* | |
| * There's always some RT tasks in the root group | |
| * -- migration, kstopmachine etc.. | |
| */ | |
| if (sysctl_sched_rt_runtime == 0) | |
| return -EBUSY; | |
| raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | |
| for_each_possible_cpu(i) { | |
| struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
| raw_spin_lock(&rt_rq->rt_runtime_lock); | |
| rt_rq->rt_runtime = global_rt_runtime(); | |
| raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
| } | |
| raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
| return 0; | |
| } | |
| #endif /* CONFIG_RT_GROUP_SCHED */ | |
| int sched_rt_handler(struct ctl_table *table, int write, | |
| void __user *buffer, size_t *lenp, | |
| loff_t *ppos) | |
| { | |
| int ret; | |
| int old_period, old_runtime; | |
| static DEFINE_MUTEX(mutex); | |
| mutex_lock(&mutex); | |
| old_period = sysctl_sched_rt_period; | |
| old_runtime = sysctl_sched_rt_runtime; | |
| ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
| if (!ret && write) { | |
| ret = sched_rt_global_constraints(); | |
| if (ret) { | |
| sysctl_sched_rt_period = old_period; | |
| sysctl_sched_rt_runtime = old_runtime; | |
| } else { | |
| def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
| def_rt_bandwidth.rt_period = | |
| ns_to_ktime(global_rt_period()); | |
| } | |
| } | |
| mutex_unlock(&mutex); | |
| return ret; | |
| } | |
| #ifdef CONFIG_CGROUP_SCHED | |
| /* return corresponding task_group object of a cgroup */ | |
| static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | |
| { | |
| return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | |
| struct task_group, css); | |
| } | |
| static struct cgroup_subsys_state * | |
| cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
| { | |
| struct task_group *tg, *parent; | |
| if (!cgrp->parent) { | |
| /* This is early initialization for the top cgroup */ | |
| return &init_task_group.css; | |
| } | |
| parent = cgroup_tg(cgrp->parent); | |
| tg = sched_create_group(parent); | |
| if (IS_ERR(tg)) | |
| return ERR_PTR(-ENOMEM); | |
| return &tg->css; | |
| } | |
| static void | |
| cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
| { | |
| struct task_group *tg = cgroup_tg(cgrp); | |
| sched_destroy_group(tg); | |
| } | |
| static int | |
| cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |
| { | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | |
| return -EINVAL; | |
| #else | |
| /* We don't support RT-tasks being in separate groups */ | |
| if (tsk->sched_class != &fair_sched_class) | |
| return -EINVAL; | |
| #endif | |
| return 0; | |
| } | |
| static int | |
| cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
| struct task_struct *tsk, bool threadgroup) | |
| { | |
| int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | |
| if (retval) | |
| return retval; | |
| if (threadgroup) { | |
| struct task_struct *c; | |
| rcu_read_lock(); | |
| list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
| retval = cpu_cgroup_can_attach_task(cgrp, c); | |
| if (retval) { | |
| rcu_read_unlock(); | |
| return retval; | |
| } | |
| } | |
| rcu_read_unlock(); | |
| } | |
| return 0; | |
| } | |
| static void | |
| cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |
| struct cgroup *old_cont, struct task_struct *tsk, | |
| bool threadgroup) | |
| { | |
| sched_move_task(tsk); | |
| if (threadgroup) { | |
| struct task_struct *c; | |
| rcu_read_lock(); | |
| list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
| sched_move_task(c); | |
| } | |
| rcu_read_unlock(); | |
| } | |
| } | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | |
| u64 shareval) | |
| { | |
| return sched_group_set_shares(cgroup_tg(cgrp), shareval); | |
| } | |
| static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | |
| { | |
| struct task_group *tg = cgroup_tg(cgrp); | |
| return (u64) tg->shares; | |
| } | |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | |
| s64 val) | |
| { | |
| return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | |
| } | |
| static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | |
| { | |
| return sched_group_rt_runtime(cgroup_tg(cgrp)); | |
| } | |
| static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | |
| u64 rt_period_us) | |
| { | |
| return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | |
| } | |
| static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | |
| { | |
| return sched_group_rt_period(cgroup_tg(cgrp)); | |
| } | |
| #endif /* CONFIG_RT_GROUP_SCHED */ | |
| static struct cftype cpu_files[] = { | |
| #ifdef CONFIG_FAIR_GROUP_SCHED | |
| { | |
| .name = "shares", | |
| .read_u64 = cpu_shares_read_u64, | |
| .write_u64 = cpu_shares_write_u64, | |
| }, | |
| #endif | |
| #ifdef CONFIG_RT_GROUP_SCHED | |
| { | |
| .name = "rt_runtime_us", | |
| .read_s64 = cpu_rt_runtime_read, | |
| .write_s64 = cpu_rt_runtime_write, | |
| }, | |
| { | |
| .name = "rt_period_us", | |
| .read_u64 = cpu_rt_period_read_uint, | |
| .write_u64 = cpu_rt_period_write_uint, | |
| }, | |
| #endif | |
| }; | |
| static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | |
| { | |
| return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | |
| } | |
| struct cgroup_subsys cpu_cgroup_subsys = { | |
| .name = "cpu", | |
| .create = cpu_cgroup_create, | |
| .destroy = cpu_cgroup_destroy, | |
| .can_attach = cpu_cgroup_can_attach, | |
| .attach = cpu_cgroup_attach, | |
| .populate = cpu_cgroup_populate, | |
| .subsys_id = cpu_cgroup_subsys_id, | |
| .early_init = 1, | |
| }; | |
| #endif /* CONFIG_CGROUP_SCHED */ | |
| #ifdef CONFIG_CGROUP_CPUACCT | |
| /* | |
| * CPU accounting code for task groups. | |
| * | |
| * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | |
| * (balbir@in.ibm.com). | |
| */ | |
| /* track cpu usage of a group of tasks and its child groups */ | |
| struct cpuacct { | |
| struct cgroup_subsys_state css; | |
| /* cpuusage holds pointer to a u64-type object on every cpu */ | |
| u64 __percpu *cpuusage; | |
| struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; | |
| struct cpuacct *parent; | |
| }; | |
| struct cgroup_subsys cpuacct_subsys; | |
| /* return cpu accounting group corresponding to this container */ | |
| static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | |
| { | |
| return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | |
| struct cpuacct, css); | |
| } | |
| /* return cpu accounting group to which this task belongs */ | |
| static inline struct cpuacct *task_ca(struct task_struct *tsk) | |
| { | |
| return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | |
| struct cpuacct, css); | |
| } | |
| /* create a new cpu accounting group */ | |
| static struct cgroup_subsys_state *cpuacct_create( | |
| struct cgroup_subsys *ss, struct cgroup *cgrp) | |
| { | |
| struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | |
| int i; | |
| if (!ca) | |
| goto out; | |
| ca->cpuusage = alloc_percpu(u64); | |
| if (!ca->cpuusage) | |
| goto out_free_ca; | |
| for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | |
| if (percpu_counter_init(&ca->cpustat[i], 0)) | |
| goto out_free_counters; | |
| if (cgrp->parent) | |
| ca->parent = cgroup_ca(cgrp->parent); | |
| return &ca->css; | |
| out_free_counters: | |
| while (--i >= 0) | |
| percpu_counter_destroy(&ca->cpustat[i]); | |
| free_percpu(ca->cpuusage); | |
| out_free_ca: | |
| kfree(ca); | |
| out: | |
| return ERR_PTR(-ENOMEM); | |
| } | |
| /* destroy an existing cpu accounting group */ | |
| static void | |
| cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
| { | |
| struct cpuacct *ca = cgroup_ca(cgrp); | |
| int i; | |
| for (i = 0; i < CPUACCT_STAT_NSTATS; i++) | |
| percpu_counter_destroy(&ca->cpustat[i]); | |
| free_percpu(ca->cpuusage); | |
| kfree(ca); | |
| } | |
| static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) | |
| { | |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | |
| u64 data; | |
| #ifndef CONFIG_64BIT | |
| /* | |
| * Take rq->lock to make 64-bit read safe on 32-bit platforms. | |
| */ | |
| raw_spin_lock_irq(&cpu_rq(cpu)->lock); | |
| data = *cpuusage; | |
| raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | |
| #else | |
| data = *cpuusage; | |
| #endif | |
| return data; | |
| } | |
| static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) | |
| { | |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | |
| #ifndef CONFIG_64BIT | |
| /* | |
| * Take rq->lock to make 64-bit write safe on 32-bit platforms. | |
| */ | |
| raw_spin_lock_irq(&cpu_rq(cpu)->lock); | |
| *cpuusage = val; | |
| raw_spin_unlock_irq(&cpu_rq(cpu)->lock); | |
| #else | |
| *cpuusage = val; | |
| #endif | |
| } | |
| /* return total cpu usage (in nanoseconds) of a group */ | |
| static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | |
| { | |
| struct cpuacct *ca = cgroup_ca(cgrp); | |
| u64 totalcpuusage = 0; | |
| int i; | |
| for_each_present_cpu(i) | |
| totalcpuusage += cpuacct_cpuusage_read(ca, i); | |
| return totalcpuusage; | |
| } | |
| static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | |
| u64 reset) | |
| { | |
| struct cpuacct *ca = cgroup_ca(cgrp); | |
| int err = 0; | |
| int i; | |
| if (reset) { | |
| err = -EINVAL; | |
| goto out; | |
| } | |
| for_each_present_cpu(i) | |
| cpuacct_cpuusage_write(ca, i, 0); | |
| out: | |
| return err; | |
| } | |
| static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, | |
| struct seq_file *m) | |
| { | |
| struct cpuacct *ca = cgroup_ca(cgroup); | |
| u64 percpu; | |
| int i; | |
| for_each_present_cpu(i) { | |
| percpu = cpuacct_cpuusage_read(ca, i); | |
| seq_printf(m, "%llu ", (unsigned long long) percpu); | |
| } | |
| seq_printf(m, "\n"); | |
| return 0; | |
| } | |
| static const char *cpuacct_stat_desc[] = { | |
| [CPUACCT_STAT_USER] = "user", | |
| [CPUACCT_STAT_SYSTEM] = "system", | |
| }; | |
| static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, | |
| struct cgroup_map_cb *cb) | |
| { | |
| struct cpuacct *ca = cgroup_ca(cgrp); | |
| int i; | |
| for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { | |
| s64 val = percpu_counter_read(&ca->cpustat[i]); | |
| val = cputime64_to_clock_t(val); | |
| cb->fill(cb, cpuacct_stat_desc[i], val); | |
| } | |
| return 0; | |
| } | |
| static struct cftype files[] = { | |
| { | |
| .name = "usage", | |
| .read_u64 = cpuusage_read, | |
| .write_u64 = cpuusage_write, | |
| }, | |
| { | |
| .name = "usage_percpu", | |
| .read_seq_string = cpuacct_percpu_seq_read, | |
| }, | |
| { | |
| .name = "stat", | |
| .read_map = cpuacct_stats_show, | |
| }, | |
| }; | |
| static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | |
| { | |
| return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | |
| } | |
| /* | |
| * charge this task's execution time to its accounting group. | |
| * | |
| * called with rq->lock held. | |
| */ | |
| static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | |
| { | |
| struct cpuacct *ca; | |
| int cpu; | |
| if (unlikely(!cpuacct_subsys.active)) | |
| return; | |
| cpu = task_cpu(tsk); | |
| rcu_read_lock(); | |
| ca = task_ca(tsk); | |
| for (; ca; ca = ca->parent) { | |
| u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); | |
| *cpuusage += cputime; | |
| } | |
| rcu_read_unlock(); | |
| } | |
| /* | |
| * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large | |
| * in cputime_t units. As a result, cpuacct_update_stats calls | |
| * percpu_counter_add with values large enough to always overflow the | |
| * per cpu batch limit causing bad SMP scalability. | |
| * | |
| * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we | |
| * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled | |
| * and enabled. We cap it at INT_MAX which is the largest allowed batch value. | |
| */ | |
| #ifdef CONFIG_SMP | |
| #define CPUACCT_BATCH \ | |
| min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) | |
| #else | |
| #define CPUACCT_BATCH 0 | |
| #endif | |
| /* | |
| * Charge the system/user time to the task's accounting group. | |
| */ | |
| static void cpuacct_update_stats(struct task_struct *tsk, | |
| enum cpuacct_stat_index idx, cputime_t val) | |
| { | |
| struct cpuacct *ca; | |
| int batch = CPUACCT_BATCH; | |
| if (unlikely(!cpuacct_subsys.active)) | |
| return; | |
| rcu_read_lock(); | |
| ca = task_ca(tsk); | |
| do { | |
| __percpu_counter_add(&ca->cpustat[idx], val, batch); | |
| ca = ca->parent; | |
| } while (ca); | |
| rcu_read_unlock(); | |
| } | |
| struct cgroup_subsys cpuacct_subsys = { | |
| .name = "cpuacct", | |
| .create = cpuacct_create, | |
| .destroy = cpuacct_destroy, | |
| .populate = cpuacct_populate, | |
| .subsys_id = cpuacct_subsys_id, | |
| }; | |
| #endif /* CONFIG_CGROUP_CPUACCT */ | |
| #ifndef CONFIG_SMP | |
| int rcu_expedited_torture_stats(char *page) | |
| { | |
| return 0; | |
| } | |
| EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | |
| void synchronize_sched_expedited(void) | |
| { | |
| } | |
| EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
| #else /* #ifndef CONFIG_SMP */ | |
| static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | |
| static DEFINE_MUTEX(rcu_sched_expedited_mutex); | |
| #define RCU_EXPEDITED_STATE_POST -2 | |
| #define RCU_EXPEDITED_STATE_IDLE -1 | |
| static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | |
| int rcu_expedited_torture_stats(char *page) | |
| { | |
| int cnt = 0; | |
| int cpu; | |
| cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | |
| for_each_online_cpu(cpu) { | |
| cnt += sprintf(&page[cnt], " %d:%d", | |
| cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | |
| } | |
| cnt += sprintf(&page[cnt], "\n"); | |
| return cnt; | |
| } | |
| EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | |
| static long synchronize_sched_expedited_count; | |
| /* | |
| * Wait for an rcu-sched grace period to elapse, but use "big hammer" | |
| * approach to force grace period to end quickly. This consumes | |
| * significant time on all CPUs, and is thus not recommended for | |
| * any sort of common-case code. | |
| * | |
| * Note that it is illegal to call this function while holding any | |
| * lock that is acquired by a CPU-hotplug notifier. Failing to | |
| * observe this restriction will result in deadlock. | |
| */ | |
| void synchronize_sched_expedited(void) | |
| { | |
| int cpu; | |
| unsigned long flags; | |
| bool need_full_sync = 0; | |
| struct rq *rq; | |
| struct migration_req *req; | |
| long snap; | |
| int trycount = 0; | |
| smp_mb(); /* ensure prior mod happens before capturing snap. */ | |
| snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | |
| get_online_cpus(); | |
| while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | |
| put_online_cpus(); | |
| if (trycount++ < 10) | |
| udelay(trycount * num_online_cpus()); | |
| else { | |
| synchronize_sched(); | |
| return; | |
| } | |
| if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | |
| smp_mb(); /* ensure test happens before caller kfree */ | |
| return; | |
| } | |
| get_online_cpus(); | |
| } | |
| rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | |
| for_each_online_cpu(cpu) { | |
| rq = cpu_rq(cpu); | |
| req = &per_cpu(rcu_migration_req, cpu); | |
| init_completion(&req->done); | |
| req->task = NULL; | |
| req->dest_cpu = RCU_MIGRATION_NEED_QS; | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| list_add(&req->list, &rq->migration_queue); | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| wake_up_process(rq->migration_thread); | |
| } | |
| for_each_online_cpu(cpu) { | |
| rcu_expedited_state = cpu; | |
| req = &per_cpu(rcu_migration_req, cpu); | |
| rq = cpu_rq(cpu); | |
| wait_for_completion(&req->done); | |
| raw_spin_lock_irqsave(&rq->lock, flags); | |
| if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | |
| need_full_sync = 1; | |
| req->dest_cpu = RCU_MIGRATION_IDLE; | |
| raw_spin_unlock_irqrestore(&rq->lock, flags); | |
| } | |
| rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | |
| synchronize_sched_expedited_count++; | |
| mutex_unlock(&rcu_sched_expedited_mutex); | |
| put_online_cpus(); | |
| if (need_full_sync) | |
| synchronize_sched(); | |
| } | |
| EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | |
| #endif /* #else #ifndef CONFIG_SMP */ |