
307

ISSN 0361-7688, Programming and Computer Software, 2016, Vol. 42, No. 5, pp. 307–315. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © Nguyen Tran Quoc Vinh, 2016, published in Programmirovanie, 2016, Vol. 42, No. 5.

Synchronous Incremental Update
of Materialized Views for PostgreSQL1

Nguyen Tran Quoc Vinh
University of Education —The University of Da Nang (Vietnam), Ton Duc Thang, Da Nang, Vietnam

e-mail: ntquocvinh@ued.udn.vn
Received August 12, 2015

Abstract—Materialized views are logically excess stored query results in SQL-oriented databases. This tech-
nology can significantly improve the performance of database systems. Although the idea of materialized
views came up in the 1980s, only three database management systems, i.e. DB2, Oracle, SQL Server, have
been successfully developed completely enough with materialized views so far. The barrier lies in building a
module that can incrementally update the materialized views automatically, which corresponds to data
changes in the base tables. This paper presents the algorithm to incrementally update the materialized views
with inner join, focusing on one with aggregate functions, and building of a program that automatically gen-
erates codes inPL/pgSQL for triggers, which can undertake synchronous incremental updates of the materi-
alized views in PostgreSQL.

Keywords: materialized views, synchronous incremental updates, triggers, automatic synthesis of source
code, PostgreSQL
DOI: 10.1134/S0361768816050066

1. INTRODUCTION
Materialized view (MV) is created based on a query

whose result is saved in a table of database (MV table).
When we access MV, database management systems
(DBMS) will not execute the query but will gain the
result from MV table if possible [1–12]. Similar to
cache, MV allows quick query result access. This is
especially beneficial in cases where query frequency is
high and the query is sufficiently complicated with a
big enough amount of data so that the query “cannot”
be executed again whenever DBMS receives a request.
It may help to achieve 10–100× or better performance
gains from the bottleneck queries. MV has been widely
applied in creating quick access with low CPU, mem-
ory and disk loading, in building data warehouse, in
chronicle systems such as banks, retail sales and
accounting, in data visualization applications, in
mobile systems, in controlling integrity constrains and
in query optimization, also when realtime access to the
query execution result is critical.

One of the characteristics of chronicle systems is
the huge amount of data, which usually exceeds
DBMS capability to execute queries with the whole
database. In those systems, MV may be used to
response to queries without accessing the whole
chronicle system. For instance, it may be defined to
calculate and store necessary summary values such as

balance of single bank accounts, or the total profit of a
retail store.

With every manipulation (insert, update, delete) of
base tables (BT, underlying tables), the MV using
those BT may fail to remain actual. To keep MV table
in actual state, it needs updating whenever data in BT
change. The process of keeping data in MV corre-
sponding to data in the BT is called update (actualiza-
tion). Incremental update changes the records of MV
table that related to changed records in BT. Full
refresh truncates MV tables and then populates data by
re-executing the query. Synchronous update is per-
formed as part of the transaction that carries out the
data changes in the BT. Asynchronous update is done
at another time, with the explicit request of the user or
the demand for data.

MV technology has been implemented completely
enough in several commercial DBMS such as Oracle,
IBM DB2 and MS SQL Server, i.e. with incremental
update and number of restrictions, but not in open
source DBMS. One of the main barriers lies in build-
ing a module that can implement incremental updates.
The work [10] shows how to implement incremental
update of materialized views in PostgreSQL using trig-
gers, but the programmers have to build the triggers
from the scratch. It suggests to generate trigger func-
tions source code automatically, but does not describe
which incremental update algorithm is underlying,
and especially, how to implement that algorithm pro-1 The article is published in the original.

308

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

VINH

grammatically for any MV queries. This research built
an incremental update algorithm that combined and
improved from the previous one that had been pub-
lished before, and proposing an algorithm, which
automatically generates trigger source codes in
PL/pgSQL language for synchronous incremental
updates of MV in PostgreSQL DBMS. Hence, a pro-
gram that automatically generates trigger source codes
executing the incremental update algorithm men-
tioned above has been built. Even though it is not
completed and not integrated with PostgreSQL, the
program automatically generates trigger source code
can support programmers. They, instead of repro-
gramming from the scratch, only need to adjust the
generated triggers as they wish.

It is known that the PostgreSQL is a freely available
DBMS that is used worldwide as a competitor to com-
mercial databases to build enterprise information sys-
tems of all sizes. If MV technology is implemented
successfully in PostgreSQL, it will bring many eco-
nomic and social benefits. However, MV is just partly
implemented into PostgreSQL since version 9.3.4.
Even version 9.5 Alpha2 announced in Oct. 2015, the
MV is updated asynchronously by a full refresh way.
Somewhat experiment demonstrates this claim.

The experimental query uses BT countries, cus-
tomers, sales and costs with the record count of 23,
55.500, 918.881 and 82.112. The popular query is to
calculate totals from each customer: SELECT coun-
tries.country_id, country_name, country_region_id,
country_region, customers.cust_id, cust_first_name,
cust_last_name, SUM(quantity_sold*unit_price) as
total, COUNT(*) as cnt FROM countries, customers,
sales, costs WHERE countries.country_id = custom-
ers.country_id AND customers.cust_id =
sales.cust_id AND sales.time_id = costs.time_id
AND sales.promo_id = costs.promo_id AND
sales.channel_id = costs.channel_id AND
sales.prod_id = costs.prod_id GROUP BY coun-
tries.country_id, country_name, country_regionid,
country_region, customers.cust_id, cust_first_name,
cust_last_name. The MV is created with the data pop-
ulated by the command “create materialized view”,
and then it is updated via the command “refresh mate-

rialized view”. PostgreSQL provides both commands.
The MV creating and updating processes take the
same time (about 4 minutes on the system configured
in scope of this research).

Regarding the incremental update algorithm (Sec-
tion 2.2.3) for MV with aggregations, this research
inherits and develops ideas of some research published
previously [1–3, 6, 11, 12], e.g. the idea to separate
updating into inserting and deleting [2, 3]; or the idea
of relevant and irrelevant updates in BT for SPJ query
[1] is developed for query with aggregations. This
research improves the developed algorithm for some
cases of query (Sections 2.2.4–2.2.7). The implemen-
tation in PostgreSQL is another main contribution
(Section 3). The suggestions to transform query (Sec-
tion 2.2.1) also distinguishes this research compared
with prior researches in incremental updates for MV.

This research does not deal with MV created basing
on nested query, recursive query, and outer join query
[7, 8]. We are going to examine the MV types that
focus in inner joins.

2. INCREMENTAL UPDATE ALGORITHM
2.1. MV Based on SPJ Query

SPJ query is the one that includes only the
SELECT, FROM, WHERE clauses, but not the
grouping and aggregate functions. From clause may
contain inner joins. In this article, for SPJ MV case,
the author built a program that generates trigger codes
doing incremental updates based on an algorithm that
improved the ones previously published [1] and create
its software for the automatic synthesis of triggers
source code for incremental update of MV considering
that:

—query result does not contain duplicates;
—any one key of each BT is added automatically

into the SELECT clause;
—consider the modification operation in the form

of equivalent operations as delete and subsequent
insert;

—exclude the data manipulation in BT that does
not affect the MV;

Query execution and data manipulation in BT time (ms)

BT Configuration/SQL SELECT INSERT DELETE UPDATE

Sales No MV 223,853 13 82 110
MV 80 27 110 177

Customers No MV 223,853 11 13 34
MV 80 19 61 88
MV – improved triggers 16 21 55

Countries No MV 223,853 11 11 12
MV 80 25 715 1799
MV – improved triggers 15 17 29

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

SYNCHRONOUS INCREMENTAL UPDATE 309

—the improvement from Sections 2.2.5–2.2.7 is
applied.

This research focuses more on queries with aggre-
gate functions.

2.2. Queries Including Aggregate Functions

It is assumed that MV is created based on the query
with aggregate functions Q (S, F, J, W, G), in which:

S: a set of the selected columns in select clause. S
can include columns or aggregate functions with the
expressions (E) using columns from the BT such as
SUM(E), COUNT(E), AVG(E), MIN(E) and
MAX(E). E does not consist of aggregate functions.

F: a set of BT T1, T2 … Tn used in the query.
J: a set of criteria of joins.
W: criteria for records chosen to process in

WHERE clause.
G: a set of grouping columns in GROUP BY clause.
Besides, the following symbols are also used:
P = S\G—a set of aggregate functions in select

clause;

 ()—a bag of records (from now on, bag of
records means a “set” that may contain duplicate ele-
ments) is added to (deleted from) BT Ti.

To simplify, we use some symbols: C = W AND J.
2.2.1. MV creation. The information about a query

transformation to create MV, or specifically, the infor-
mation about the columns in MV table, helps clarify
the update algorithms. The purpose of the transforma-
tion is to improve the optimization of MV usage and
the execution of incremental update algorithm for
MV. S consists of columns saved in MV table. Regard-
ing to aggregate functions, only cases of SUM(E),
COUNT(E), AVG(E), MIN(E) and MAX(E) are
considered. Based on the select query syntax regula-
tions in SQL language as well as the inferences from
relational algebra, it is possible to state that, “column”
in S can be considered as (i) a column from BT, as (ii)
an algebraic expression of aggregation functions, or
(iii) an algebraic expression of the BT columns and
aggregation functions. Expression (E) does not
include aggregate functions, which means that aggre-
gate functions cannot be a parameter of aggregate
function. For the case (iii), in which the columns get
involved in expressions in a similar order to aggregate
functions (such as the column a1 in the query: select
…, (a1 + SUM(a2)) AS some sum … group by …, a1)
they can be considered as other normal columns
involved in G. Therefore, instead of saving the result of
algebraic expressions between aggregate functions or
between aggregate functions and BT columns, we save
the result of each of the operands.

This research consequently suggests several query
transformations during the process of creating MV:

i
iT d

iT

COUNT(*) is added automatically because it helps
us determine when to delete a record from MV table.
If no record further joins the group, the record associ-
ated to that group will be removed from MV table.
Indeed, MAX(E), MIN(E), SUM(E) cannot deter-
mine this, except COUNT(*).

In terms of algebraic expression among aggregate
functions or grouping columns (ii) and (iii), we sepa-
rate and save them as individual columns. The original
expression can be calculated from columns stored in
MV table if necessary.

In terms of AVG(E) function, we propose to save
SUM(E) and COUNT(E) individually, and compute
AVG(E) = SUM(E)/COUNT(E) when needed.
Thus, we recommend to split AVG(E) into SUM(E)
and COUNT(E) in MV query. Instead of saving
AVG(E), we store SUM(E) and COUNT(E). If E,
determined from metadata, is not NULL,
COUNT(E) and COUNT(*) are equivalent; there-
fore, it is unnecessary to save COUNT(E) but just
COUNT(*).

Convert W and J into conjunctive canonical forms:
(… OR …) AND … AND (… OR …). The changes are
to: (i) compare clauses W and J among queries to
determine the ability to use MV; and (ii) identify
whether updates in BT are related to MV or not. (i)
The comparison of two logical expressions is compli-
cated. In this research, the author proposes the com-
parison of two Boolean expressions using the follow-
ing rule: converting them into conjunctive canonical
forms, then sorting by dictionary order and comparing
them. (ii) In this canonical form, both W and J only
have true value if all constituted clauses are true. If a
record does not satisfy any component clauses, it will
not have any impacts on Q query execution results.

2.2.2. Incremental update algorithm. Events to alter
data in BT are divided into three types of operations:
insert, update and delete a set of records. Records in
tables cannot be duplicated. However, the tuples of
values corresponding to a set of columns may be dupli-
cated. These sets are considered bags. Most published
researches related to incremental update for the MV
considered updating equivalent to deleting a bag of
records and then adding a new one [1, 2]. However,
this separation is not always a better way. If the query
does not include MIN(E), MAX(E) aggregate func-
tions, it is unnecessary to divide update into insert and
delete. Otherwise, the division is obvious. Especially,
when the updated columns are not included in G.

For insert, data in the BT is not related because the
inserted value can replace the current MIN(E),
MAX(E) values by comparing it to the value in MV
table (Tmv). As for delete, we have to look for new
MIN(E), MAX(E) values from BT if we delete records
having fields with current MIN(E) or MAX(E) values.

Regarding how BT participate in query, we may
consider the two following cases, (i) some keys of Ti
BT get involved in queries in G; (ii) several columns of

310

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

VINH

Ti only participate in G and several columns create the
key of Tl and participate in G; (iii) Ti has a special role
in from clause; and (iv) all the remaining cases.

2.2.3. Considering update equivalent to delete with
subsequent insert. The incremental update algorithm
described here is synthesized from some algorithms
found in published researches. It focuses on consider-
ing update the to equivalent to delete from
BT and then insert .

(a) The first operation case—add a new set of
records into BT Ti.

(S1) Remove from the records that do not satisfy
C. Obviously, the records wrong in C cannot affect the
executing results, so it is unnecessary to review them
and they can be removed from the beginning. J usually
contains conditions like Ti.A1 = Tj.A2. However, in
some cases, J may include ordinary filter conditions.
So that, condition in C may be a comparing expression
combined from only columns of current BT Ti and
constants. C is in conjunctive canonical form, if a
record does not satisfy any condition, it does not sat-
isfy C too. The records that are wrong in these condi-
tions have no impact on the query executing result,
they can be eliminated right from the start. At this
stage, we can only filter records following the condi-
tions in C, which relate to only Ti. The removal of
records at this stage helps reduce the number of
records involved in the joins in S2.

(S2) Joining achieved with the rest tables in F,
we obtain results.

(S3) Removing from records that do not satisfy W.

(S4) Doing group-by operation for by G, cor-
responding columns are selected to participate in S,
implementing expressions, we obtain new .

(S5) With each record in and updating Tmv
according to this principle:

—If there are no records with (G, P) forms in Tmv,
add a new record with COUNT(*) taking value 1.

—SUM(E) = SUM(E) + dSUMi(E). In which, E
is expression. dSUMi(E) is SUM(E) on .

–COUNT(E) = COUNT(E) + dCOUNTi(E).
dCOUNTi(E) is COUNT(E) on . Correspond-
ingly, COUNT(*) = COUNT(*) + dCOUNT(*).

—If MIN(E) > dMINi(E), it means that the added
record will create MIN(E) value for the group, then
MIN(E) = dMINi(E). Conversely, MIN(E) stays
unchanged. dMINi(E) is MIN(E) on .

—If MAX(E) < dMAXi(E), it means that the added
records will create new MAX(E) value for the group,

d
iT i

iT d
iT

i
iT

i
iT

i
iT

i
iT

i
idQ

i
idQ

i
idQ

i
idQ

i
idQ

i
idQ

i
idQ

i
idQ

MAX(E) = dMAXi(E). Conversely, MAX(E) stays
unchanged. dMAXi(E) is MAX(E) on .

(b) Deleting the set of records from BT Ti:

(S1) Removing from records that do not satisfy C.

(S2) Joining with the remaining tables in F, we
obtain results.

(S3) Removing from records that do not sat-
isfy W.

(S4) Doing group-by operation for by G, cor-
responding columns are selected to participate in S,
implementing expressions, we obtain new .

(S5) For each record in , updating Tmv
according to this principle:

—SUM(E) = SUM(E) – dSUMd(E). dSUMd(E)
is SUM(E) on .

—If COUNT(*) = dCOUNTd(*), there are no
records of the group participating in the query results,
delete the records with (G, P) form from Tmv. Other-
wise, COUNT(*) = COUNT(*) — dCOUNTd(*).
dCOUNTd(*) is COUNT(*) on . COUNT(E) =
COUNT(E) – dCOUNTd(E).

—If MIN(E) = dMINd(E), the deleted records
create MIN(E) value of the group, we recompute
MIN(E) based on the BT. Conversely, the MIN(E)
stays unchanged. dMINd(E) is MIN(E) on .

—If MAX(E) = dMAXd(E), the deleted records
create MAX(E) value, we recompute MAX(E) based
on the BT. Conversely, MAX(E) stays unchanged.
dMAXd(E) is MAX(E) on .

(c) Updating the set of records from BT Ti to :

Considering update dTi from to equivalent to

delete and then insert .

(S1) Comparing and , remove from and
the adjusted records which are not relevant to Q, are not
changed in relevant to Q columns and do not satisfy C.

(S2) Doing the same as the case of deleting with .

(S3) Doing the same as the case of inserting with .
2.2.4. Not considering update as being separated

into delete and insert. As reasoned above, now we only
look at the SUM(E) and COUNT(E) functions
because we will not apply them for queries involving
MIN(E) and MAX(E) cases, and AVG(E) is handled
the same as above, i.e. is calculated from SUM(E) and
COUNT(E). For update, despite not considering to
divide it into two new events—delete and insert sepa-
rately, we still consider two sets: a set of records with

i
idQ

d
iT

d
iT

d
iT

d
idQ

d
idQ

d
idQ

d
idQ

d
idQ

d
idQ

d
idQ

d
idQ

d
idQ

d
iT i

iT
d

iT i
iT

d
iT i

iT
d

iT i
iT d

iT i
iT

d
iT

i
iT

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

SYNCHRONOUS INCREMENTAL UPDATE 311

old values () and a set of records with new values
(). The steps for incremental update are as follows:

(S1). Eliminating the records from and that
do not satisfy C or all involved columns equal between
new and old values.

(S2) Calculating full outer join between and
with joining conditions on one key of Ti and all columns
of Ti that participate in G, then doing inner join the
result with rest tables in F, we obtain the dQi. It ensures

that each record of and is joined once and the
case of value changes on columns in G is covered.

(S3) Doing group-by for the set of records in join
result dQi by G and receiving new dQi.

(S4) Calculating SUM(E) and COUNT(E) for
each group on dQi: dSUMi(E), dSUMd(E),
dCOUNTi(E), dCOUNTd(E).

(S5) Implementing update according to the follow-
ing principles:

(i) SUM(E) = SUM(E) + dSUMi(E) –
dSUMd(E).

(ii) COUNT(E) = COUNT(E) + dCOUNTi(E) –
dCOUNTd(E).

In this way, we can only execute trigger one time for
update instead of two times for delete and insert as two
separate events of update. The Tmv update operation
is done once for almost cases. The join operation is
archived once too, instead of twice.

2.2.5. A key of the BT Ti is in G. Whether columns
can create the primary key or any key at all can be
identified through meta-data of the database. If all
columns that create a key get involved in the query—
(Ai1, Ai2… Aij…Aik), particularly in G—when joining BT
Ti with other tables and then execute group-by, the
value set (Ai1, Ai2…Aij…Aik) in Tmv still represents for
one record from BT Ti. Therefore, when updating or
deleting a record from Ti, we can do as follows.

(a) Deleting the record set from BT Ti:

(S1) Removing from all records which do not
satisfy C.

(S2) Deleting from Tmv the records that reach the
condition: .Aij = Tmv.Aij, with all (Ai1, Ai2…Aij…, Aik).

(b) Updating the record set from BT Ti to :
Obviously, once Ai1, Ai2, …, Aij, …, Aik—the col-

umns creating keys in BT Ti participate in G, two cases
may occur:

—None of the columns in Ti participate in E from
COUNT(E), SUM(E), MIN(E) and MAX(E).

(S1) Comparing and , remove from and
 the adjusted records which are not relevant to Q.

d
iT

i
iT

d
iT i

iT

i
iT d

iT

i
iT d

iT

d
iT

d
iT

d
iT

d
iT i

iT

d
iT i

iT d
iT

i
iT

(S2) Updating Tmv, update records that reach the
condition .Aij = Tmv.Aij with all (Ai1, Ai2…Aij…Aik) to

the new values: Tmv.Aij = .Aij.
—If columns of Ti participate in E from

COUNT(E), SUM(E), MIN(E) or MAX(E), we per-
form updating as in the general case.

2.2.6. A key of another BT Tl is in G. Several col-
umns of Ti which only participate in G and several col-
umns which create the key of Tl and participate in G.
If from clause only allows the existence of the direct
inner join between two tables following Ti.Aij = Tl.Alj
conditions, not that of any joins such as (Ti JOIN Tl
ON Ti.Aij = Tl.Alk) JOIN Tx ON Ti.Aif = Tx.Axh AND
Tl.Alg = Tx.Axy, and if we consider joining two tables are
edges of the graph that link two vertices, i.e. two tables
involved in the joins, then there may be multiple
paths—the ways to execute joins to create links
between two vertices—BT Ti and Tl in query, particu-
larly in from clause. In this case, we apply the algo-
rithm of finding the shortest path between two vertices
to define joins of tables to create links between Ti and
Tl. The distance of two vertices—tables on one edge is
defined as 1 unit. Practical methods to measure the
distance based on the total cost of implementing joins
are the subject of further research.

After identifying the joins—the shortest path
between Ti and Tl, we perform the incremental update
Tmv as following.

(a) Deleting the record set from BT Ti:

(S1) Remove from all records that do not satisfy
C.

(S2) Delete from Tmv all records reaching the con-
dition: .Aij = Tmv.Aij AND .Alk = Tmv.Alk, with
all (Ai1, Ai2…Aij…Aik).

(b) Updating the record set from BT Ti to :
There are two cases. The first one, none of the col-

umns in Ti participate in E from COUNT(E),
SUM(E), MIN(E) and MAX(E):

(S1) Comparing and , remove from and
 the adjusted records which are not relevant to Q.
(S2) Update Tmv, update records reaching the condi-

tion .Aij = Tmv.Aij AND .Alk = Tmv.Alk with all (Al1,

Al2…Alj…Alk) to the new values: Tmv.Aij = .Aij.
If columns of Ti participate in E from COUNT(E),

SUM(E), MIN(E) or MAX(E), we perform updating
as in the general case.

2.2.7. Another case of insert is irrelevant to MV.
If Ti participates in queries involving the from clause
as T1 JOIN T2 ON…JOIN Ti ON…JOIN Ti + 1 ON
Ti.key_i = Ti + 1.foreign_key_i… JOIN Tn…, the new

d
iT

i
iT

d
iT

d
iT

d
iT d

iT

d
iT i

iT

d
iT i

iT d
iT

i
iT

d
iT d

iT
i

iT

312

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

VINH

record inserted into Ti will not get involved in the final
join result. This means the record will not engage in
execution results of the query, which creates MV. In
other words, we can ignore this insert event.

3. PROGRAM BUILDING
3.1. Some Trigger Features in PostgreSQL

Trigger is created based on the trigger function.
Many triggers can share one trigger function. Trigger
functions can be written in PL/pgSQL language (a
language of PostgreSQL that is similar to SQL) or
another language, for example, C.

In PostgreSQL, trigger for statement do not see
changed records. Only trigger for each row can see the
changed one and processes only one record. If n
records of a table are inserted, updated or deleted by
one command, triggers for each row will be fired n
times.

Many triggers can be defined for one event on a
table. At that time, they will be executed in alphabeti-
cal order according to the names of triggers.

Events of insert, update or delete as well as the time
when trigger is fired before or after can be determined
from inside the trigger functions, so we can generate
one trigger function code for all events on each table.

3.2. Implementing Incremental Update Algorithm
with Triggers

3.2.1. Some general techniques.
(a) Variables
The record type variables are used to access trig-

gered records. The table rowtype variables are used to
access records of Tmv table and records returned by
queries that have Tmv table structure.

(b) Checking of irrelevant changes
It concerns the code checking if the data change in

BT is relevant. Condition in C may be a comparing
expression combined from only columns of current
BT and constants. Because C now consists of condi-
tions in the conjunctive canonical form, the changed
record does not affect the query result if it does not
satisfy any condition in C. To generate this block of
code, get all conditions combined from only columns
of current BT and constants, put them to the conjunc-
tive form and check if it yields true. If it is false, exit of
the trigger function.

(c) Operations on sets of records
Inside trigger functions, no explicit operation on

sets of records is implemented. It can be done impli-
citly by building the internal select queries and sending
them to the PostgreSQL.

Getting the result of steps (S2)–(S4) in algorithm
for update event that does not consider update as being
separated into delete and insert (Section 2.2.4) is spe-

cial. Regularly, the full outer join between and
(with the same key values) produces the result in form
as { .Ai1, .Ai2, … .Ag, .Ai1, .Ai2, … .Aig,

.Aig + 1…)} in which, .Ai1, .Ai2, …, .Aig are in G.
For all of their operations, the instruction “case” pro-
vided by PL/pgSQL is used to produce the result in form
as {{(.Ai1, .Ai2, …, .Aig, .Aig + 1, NULL…)},

{(.Ai1, .Ai2, …, .Aig, .Aig + 1, .Aig + 1…)},

{(.Ai1, .Ai2, …, .Aig, NULL, .Aig + 1…)}}. The
result after (S4) will be in form as {(G, dSUMi(E),
dSUMd(E), dCOUNTi(E), dCOUNTd(E))}. The
Tmv update (S5) can be done with it.

(d) Solution with internal query results
The step “for each record in set” presents in all

algorithms for all data change events. The instruction
“for…in select…” is used to walk through the indivi-
dual record of the set.

(e) Solution with inserted and deleted records
In PostgreSQL, trigger handling the changed records

can process only one record per firing. and always
contain one record. Thus, it is unnecessary to create tem-
porary tables and and then do join to get and

. Instead of doing so, follow the step:
—Append conditions on all corresponding co-

lumns with new/old values into the W clause. The
/ contains only records involving the current

inserted/deleted record of Ti.
—Or, replace the values corresponding to columns

of the current BT being inserted/deleted in queries to
calculate new values for Tmv.

The both methods give equal result. If the first
option is chosen, the trigger must be called prior to the
event for the delete operation. However, PostgreSQL
generates and always chooses a shorter execution plan
with lower cost for the second method than the first
one.

3.2.2. Inserting event. If adding a new record to the
BT does not affect the MV table as it has a special role
in from clause (Section 2.2.7), the insert event is
ignored and it is unnecessary to generate codes for it.

New values for all SUM(E), COUNT(E), MIN(E)
and MAX(E) functions in Tmv can be calculated
based on the remaining BT and inserted record sets,
which allows generating trigger codes to execute incre-
mental update Tmv for either cases—i.e. trigger is fired
before or after.

3.2.3. Deleting event. If there are only SUM(E) and
COUNT(E) functions, but MIN(E) and MAX(E), all
new values in Tmv can be calculated based on the
remaining tables and deleted record sets, which allows
generating trigger codes to execute incremental update
Tmv for either cases—i.e. trigger is fired before or after.

d
iT i

iT

d
iT d

iT d
iT i

iT i
iT i

iT
d

iT d
iT d

iT d
iT

d
iT d

iT d
iT d

iT
d

iT d
iT d

iT d
iT i

iT
i

iT i
iT i

iT i
iT

i
iT d

iT

i
iT d

iT i
idQ

d
idQ

i
idQ d

idQ

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

SYNCHRONOUS INCREMENTAL UPDATE 313

In contrast, if one of the aggregate functions
MIN(E) or MAX(E) exists, we need to make incre-
mental update Tmv after the event occurs. The reason
is if records which are being deleted gets involved in
creating MIN(E) or MAX(E) value, we need to re-cal-
culate these values based on the final data after the
event takes place.

3.2.4. Updating event. Without MIN(E) and
MAX(E), we can use the incremental update algo-
rithm mentioned in Section 2.2.4 and generate codes
for triggers fired before or after updating.

If there are MIN(E) or MAX(E), or both, we need
to generate codes according to the algorithm men-
tioned in Section 2.2.3—i.e. process update as delete
then insert. Clearly, we have to generate individual
codes for delete and then insert. Similarly, we generate
incremental update codes for Tmv like in the cases of
deleting events (Section 3.2.3) and inserting events
(Section 3.2.2).

3.3. Trigger Function Generating
3.3.1. Generating triggers for each BT. The input

includes query that creates MV and the MV name.
(S1) Converting implicit inner join in Q into

explicit inner join.
(S2) Replacing aliases with real table, column

names.
(S3) Converting AVG(E) in Q into SUM(E) and

COUNT(*) if E cannot be NULL, otherwise, into
SUM(E) and COUNT(E).

(S4) Determining S, F, W, J, G.
(S5) Getting information of tables, columns from

database.
(S6) Checking if Q is correct.
(S7) Generating block of PL/pgSQL script that

creates MV table and populates data by executing the
query Q. The most interest thing here is to determine
data type of columns in S. Firstly, getting the data type
of all BT columns involving in S. Secondly, setting the
data type of columns in S. The special case is when E is
an algebraic expression. If all involving BT columns in
E have type of integers, then SUM(E), COUNT(E),
MIN(E), MAX(E) have type of bigint. Otherwise, it
has type of numeric.

(S8) Is Q of SPJ type? For each BT in F, run proce-
dure to generate script in PL/pgSQL to create triggers
that implement incremental update for MV of SPJ
type. The incremental update algorithm is mentioned
in Section 2.1. Go to (S10).

(S9) Q is now including aggregate functions. For
each BT in F, run procedure to generate script in
PL/pgSQL to create trigger functions and then trig-
gers that implement synchronous incremental update
for MV, which is based on queries including aggregate
functions (Section 3.2.2). The incremental update
algorithm is mentioned in Section 2.2.

(S10) End of procedure.
3.3.2. Generate trigger functions for the case of MV

with aggregate functions. The triggers are generated to
cover all data changes events on all BT. The triggers on
different BT are independent. The process repeats the
following procedure for each BT.

(S1) Generate code to check if the data change (in
BT) is relevant.

(S2) If Ti has no special position (Section 2.2.7) in
from clause, generate PL/pgSQL code for insert event
that implements the algorithm mentioned in Section
2.2.3. Otherwise, ignore it.

(S3) If all columns of the primary key or any unique
key of Ti are in G (Section 2.2.5), generate code for
delete event that implement the algorithm mentioned
in Section 2.2.5. Otherwise, go to (S5).

(S4) If none of the columns in Ti participates in E,
generate code for update event that implement the
algorithm mentioned in Section 2.2.5, then go to
(S10). Otherwise, go to (S9).

(S5) If several columns of Ti which only participate
in G and several columns which create the one key of Tl
and participate in G (Section 2.2.6), go to (S6). Other-
wise, go to (S8).

(S6) Calculate the shortest join-path between Ti
and Tl, and then generate the code for delete event
(Section 2.2.6).

(S7) If none column of Ti participates in E, gene-
rate code for update event (Section 2.2.6) and go to
(S10).

(S8) Generate code for delete event for general case
(Section 2.2.3).

(S9) If there are not MIN(E), MAX(E) generate
code for update event that implements the algorithm
mentioned in Section 2.2.4. Otherwise, generate code
for delete event for general case—Section 2.2.3.

(S10) End of procedure.

4. TRIGGER SOURCE CODE GENERATOR
The built program satisfies all goals. It can generate

trigger and trigger function source code in PL/pgSQL,
implementing the mentioned (in Section 2) incremen-
tal update algorithm. It is written in C, so it can be
integrated into PostgreSQL as a module by modifying
the files matview.c and createas.c. Even though this is
not completed and integrated with PostgreSQL, the
program which automatically generates trigger source
code can support programmers. They, instead of
reprogramming from the start, only need to adjust
generated triggers as they wish. This also can be used
independently by integration with current MV feature
of PostgreSQL. Generated triggers execute synchro-
nously incremental update for the MV that created by
the built-in command “create materialized view”. The
users do not need to execute the built-in command

314

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

VINH

“refresh materialized view” to do asynchronous full
actualization.

The built program is tested with popular query to
calculate the total amount received from each cus-
tomer mentioned in Section 1. The generated triggers
satisfy all requirements, fully coincide with the triggers
written manually. They implement the mentioned
incremental update algorithm.

5. EVALUATING THE GENERATED
TRIGGERS AND DISCUSSION

MV can help query execution speed reaches maxi-
mum, because the original query is replaced by a sim-
pler query that directs to the MV table. It can be done
manually or automatically by rewriting module that
can be integrated into PostgreSQL. Triggers on BT
doing synchronous incremental updates for MV make
the MV update operation becomes a part of update
operation on BT. It may slow down the update on BT
proportionally to the amount of data in BT, query
complexity and quantity of related MV. The following
evaluation estimates that slowing down time.

The environment for testing is a system with the
configuration: CPU Intel Core i5 3317U, RAM
DDR3 4GB, HDD SATA3 500GB 5400rpm, the
operating system is Windows 8.1 64bit SP1, Post-
greSQL v.9.3.4 64bit is installed as a dedicated data-
base server. Through database administrative tool
pgAdminIII v.1.18.1, the executing time of insert,
update, delete record in BT for MV of three cases are
measured: (i) No MV; (ii) MV and triggers implement
update algorithm mentioned in Sections 2.2.3 and
2.2.4; and (iii) MV and triggers implement update
algorithm with improvement (Sections 2.2.5–2.2.7).
The experiment is made 30 times for each case and for
each data manipulation operation. With the assump-
tion that PostgreSQL reaches the stable state after
number of 10 experiments, only the last 20 are
involved in the average execution time (table). On BT
sales, the experiments are provided on random records
for (i) and (ii) cases of MV and triggers. On BT coun-
tries and customers, it is made on random records that
average the number of joined records in BT sales for all
(i), (ii) and (iii) cases. All update and delete com-
mands are given with the conditions on object id to
archive the objectivity, instead of other columns.

The table with the measured time shows the effec-
tiveness of MV when the query is complex enough on
the big amount of data (mentioned in Section 1).
Especially, it is magnified if the query appears with
high frequency, and the data manipulation commands
like insert, update, delete are executed with the low
one. The difference of execution time between com-
mands update and insert/delete is very high in Post-
greSQL. Comparing the two cases with and without
triggers for incremental update, it primarily depends
on processes of data manipulation commands as well

as the numbers of records in BT, not the incremental
update algorithm. The effectiveness of the implemen-
tation of the improvement to incremental update algo-
rithm (Sections 2.2.4–2.2.7) is higher when the num-
bers of records involved increase. For example, the
execution time with MV incremental update shortens
to about 60 times when updates one record of BT
countries with the number of involved records in BT
sales is about 70,000.

The experimental execution to manipulate many
records within one issued command delete and update
(10 records in this research) shows that the difference
of execution times is not much. In the future, if Post-
greSQL supports triggers that handle many records,
the performance of MV incremental update will be
much more. Clearly, the positive effectiveness of using
MV is not guaranteed for any information system
operating periods or any queries. The administrator
decides when and which query to use MV. It depends
on the rule of MV using and data changes in BT as well
as the demand to the instantaneity of the query execu-
ting result in the information system.

However, many restrictions on input query are
archived. It also does not include related issues in
incremental update made by triggers on the BT with
foreign key integrity constrains. For example, if the
foreign key integrity constrains are set between BT
countries, customers and sales, deleting a record from
countries may follow to delete cascade related records
from customers and then sales. This may force the
triggers on customers and then sales to be executed for
no benefit. This problem can be resolved by adding
some mechanism.

The research, however, has certain limitations and
they may be suggestion for further work:

—Many limitations on the queries creating MV are
archived.

—Triggers are generated in PL/pgSQL language.
Clearly, manipulating data with machine language or
relational algebra may be more effective.

—The impact of triggers used to update MV table
has yet been assessed for DBMS performance in gen-
eral. Furthermore, using standardized DBMS evalua-
tion has not been applied, e.g. TPC standards, to eval-
uate obtained results. In fact, the evaluation of a
DBMS by TPC standards is a separate process, requi-
ring considerable investment.

CONCLUSIONS
In summary, the main contributions of the

research to the field include two contents. With incre-
mental update algorithm, the research integrated
some advantages of previous algorithms, and carried
out four optimization cases when considering the case
in which (i) several columns create the key for BT Ti
participating in G; (ii) several columns of Ti only par-
ticipate in G and several columns create the key of Tl

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42 No. 5 2016

SYNCHRONOUS INCREMENTAL UPDATE 315

and participate in G; (iii) Ti has a special role in from
clause; as well as (iv) performed optimization by pro-
posing the methods including separating update into
delete and insert with queries including aggregate
functions MIN(E), MAX(E) and leaving it the same
for queries without ones. In addition, the research also
built a program that automatically generates codes for
triggers for all events to all tables involved in any MV
creating queries. The generated triggers implement the
built incremental update algorithm synchronously as
part of the transaction that does the data changes in
BT. This research also tested the generated triggers for
the correctness and comparison of time needed to
carry out the data update in BT.

Features of synchronous incremental update is
fully integrated into the source code of PostgreSQL
may be more optimal plan. However, the proposed
solution requires almost no code tuning for each ver-
sion of DBMS because it is relatively independent
with versions of the DBMS.

REFERENCES
1. J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Effi-

ciently updating materialized views,” SIGMOD Rec.
15 (2), 61–71 (1986).

2. A. Gupta, I. S. Mumich, and V. S. Subrahmanian,
“Maintaining views incrementally,” Materialized Views,
Ed. by A. Gupta and I. S. Mumick (MIT Press, 1999),
pp. 177–190.

3. A. Gupta and I. S. Mumick, “Maintenance of materi-
alized views: Problems, techniques, and applications,”
Materialized Views, Ed. by G. Ashish and M. Iderpal
Singh (MIT Press, 1999), pp. 145–157.

4. J. Zhou, P.-A. Larson, and H. G. Elmongui, “Lazy
maintenance of materialized views,” Proceedings of the
33rd International Conference on Very Large Data Bases
(VLDB Endowment, Vienna, Austria, 2007), pp. 231–
242.

5. D. K. Gupta and I. S. Mumick, Counting Solutions to
the View Maintenance Problem, Tech. Rep. AT&T Bell
Laboratories, 1992.

6. K. Y. Lee and M. H. Kim, “Optimizing the incremental
maintenance of multiple join views,” Proceedings of the
8th ACM International Workshop on Data Warehousing
and OLAP (ACM, Germany, Bremen, 2005), pp. 107–
113.

7. P.-A. Larson, “Maintenance of materialized views with
outer-joins,” Encyclopedia of Database Systems, Ed. by
L. Liu and M. T. ÖZsu (Springer US, 2009), pp. 1670–
1674.

8. A. Nica, “Incremental maintenance of materialized
views with outerjoins,” Inf. Syst. 37 (5), 430–442
(2012).

9. O. Shmueli and A. Itai, “Maintenance of views,” SIG-
MOD Rec. 14 (2), 240–255 (1984).

10. D. Chak, Materialized views that really work, 2008.
http://www.pgcon.org/2008/schedule/attachments/
64_BSDCan2008-MaterializedViews-paper.pdf. Cited
September 15, 2014.

11. H. Gupta and I. S. Mumick, “Incremental mainte-
nance of aggregate and outerjoin expressions,” Inf.
Syst. 31 (6), 435–464 (2006).

12. D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy,
“Answering Queries with aggregation using views,” Pro-
ceedings of the 22th International Conferences on Very
Large Data Bases (Morgan Kaufmann Publishers Inc.,
1996), pp. 318–329.

		2016-09-07T12:02:08+0300
	Preflight Ticket Signature

