Skip to content
Integrate Kubernetes and pfSense
PHP Other
  1. PHP 98.8%
  2. Other 1.2%
Branch: master
Clone or download
Latest commit 9e033b1 Nov 30, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.travis allow building ci images for 'next' branch Oct 21, 2019
deploy
examples kubernetes version awareness Oct 22, 2019
src/KubernetesPfSenseController fix reload logic Nov 30, 2019
.env.example enable debugging logging of pfsense traffic Oct 21, 2019
.gitignore initial commit Sep 16, 2018
.travis.yml event more stringent on type checking and existence of haproxy config… Oct 21, 2019
CHANGELOG.md saner logic for DNS updates/reloads Nov 30, 2019
Dockerfile update php and dependency versions Oct 21, 2019
LICENSE initial commit Sep 16, 2018
README.md saner logic for DNS updates/reloads Nov 30, 2019
composer.json update php and dependency versions Oct 21, 2019
composer.lock update php and dependency versions Oct 21, 2019
controller.php kubernetes version awareness Oct 22, 2019

README.md

Intro

kubernetes-pfsense-controller (kpc) works hard to keep pfSense and Kubernetes in sync and harmony. The primary focus is to facilitate a first-class Kubernetes cluster by integrating and/or implementing features that generally do not come with bare-metal installation(s).

This is generally achieved using the standard Kubernetes API along with the xmlrpc API for pfSense. Speaking broadly the Kubernetes API is watched and appropriate updates are sent to pfSense (config.xml) via xmlrpc calls along with appropriate reload/restart/update/sync actions to apply changes.

Please note, this controller is not designed to run multiple instances simultaneously (ie: do NOT crank up the replicas).

Disclaimer: this is new software bound to have bugs. Please make a backup before using it as it may eat your configuration. Having said that, all known code paths appear to be solid and working without issue. If you find a bug, please report it!

Plugins

The controller is comprised of several plugins that are enabled/disabled/configured via a Kubernetes ConfigMap. Details about each plugin follows below.

metallb

MetalLB implements LoadBalancer type Services in Kubernetes. This is done via any combination of Layer2 or BGP type configurations. Layer2 requires no integration with pfSense, however, if you want to leverage the BGP implementation you need a BGP server along with neighbor configuration. kpc dynamically updates bgp neighbors for you in pfSense by continually monitoring cluster Nodes.

The plugin assumes you've already installed openbgp and configured it as well as created a group to use with MetalLB.

      metallb:
        enabled: true
        nodeLabelSelector:
        nodeFieldSelector:
        bgp-implementation: openbgp
        options:
          openbgp:
            template:
              md5sigkey:
              md5sigpass:
              groupname: metallb
              row:
                - parameters: announce all
                  parmvalue:

haproxy-declarative

haproxy-declarative plugin allows you to declaratively create HAProxy frontend/backend definitions as ConfigMap resources in the cluster. When declaring backends however, the pool of servers can/will be dynamically created/updated based on cluster nodes. See declarative-example.yaml for an example.

      haproxy-declarative:
        enabled: true

haproxy-ingress-proxy

haproxy-ingress-proxy plugin allows you to mirror cluster ingress rules handled by an ingress controller to HAProxy running on pfSense. If you run pfSense on the network edge with non-cluster services already running, you now can dynamically inject new rules to route traffic into your cluster while simultaneously running non-cluster services.

To achieve this goal, new 'shared' HAProxy frontends are created and attached to an existing HAProxy frontend. Each created frontend should also set an existing backend. Note that existing frontend(s)/backend(s) can be created manually or using the haproxy-declarative plugin.

Combined with haproxy-declarative you can create a dynamic backend service (ie: your ingress controller) and subsequently dynamic frontend services based off of cluster ingresses. This is generally helpful when you cannot or do not for whatever reason create wildcard frontend(s) to handle incoming traffic in HAProxy on pfSense.

Optionally, on the ingress resources you can set the following annotations: haproxy-ingress-proxy.pfsense.org/frontend and haproxy-ingress-proxy.pfsense.org/backend to respectively set the frontend and backend to override the defaults.

      haproxy-ingress-proxy:
        enabled: true
        ingressLabelSelector:
        ingressFieldSelector:
        defaultFrontend: http-80
        defaultBackend: traefik
        #allowedHostRegex: "/.*/"

DNS Helpers

kpc provides various options to manage DNS entries in pfSense based on cluster state. Note that these options can be used in place of or in conjunction with external-dns to support powerful setups/combinations.

pfsense-dns-services

pfsense-dns-services watches for services of type LoadBalancer that have the annotation dns.pfsense.org/hostname with the value of the desired hostname. kpc will create the DNS entry in unbound/dnsmasq. Note that to actually get an IP on these services you'll likely need MetalLB deployed in the cluster (regardless of the metallb plugin running or not).

      pfsense-dns-services:
        enabled: true
        serviceLabelSelector:
        serviceFieldSelector:
        #allowedHostRegex: "/.*/"
        dnsBackends:
          dnsmasq:
            enabled: true
          unbound:
            enabled: true

pfsense-dns-ingresses

pfsense-dns-ingresses watches ingresses and automatically creates DNS entries in unbound/dnsmasq. This requires proper support from the ingress controller to set IPs on the ingress resources.

      pfsense-dns-ingresses:
        enabled: true
        ingressLabelSelector:
        ingressFieldSelector:
        #allowedHostRegex: "/.*/"
        dnsBackends:
          dnsmasq:
            enabled: true
          unbound:
            enabled: true

pfsense-dns-haproxy-ingress-proxy

pfsense-dns-haproxy-ingress-proxy monitors the HAProxy rules created by the haproxy-ingress-proxy plugin and creates host aliases for each entry. To do so you create an arbitrary host in unbound/dnsmasq (something like <frontend name>.k8s) and bind that host to the frontend through the config option frontends.<frontend name>. Any proxy rules created for that frontend will now automatically get added as aliases to the configured hostname. Make sure the static hostname created in your DNS service of choice points to the/an IP bound to the corresponding frontend.

      pfsense-dns-haproxy-ingress-proxy:
        enabled: true
        #allowedHostRegex: "/.*/"
        dnsBackends:
          dnsmasq:
            enabled: true
          unbound:
            enabled: true
        frontends:
          http-80:
            hostname: http-80.k8s
          primary_frontend_name2:
            hostname: primary_frontend_name2.k8s

Notes

regex parameters are passed through php's preg_match() method, you can test your syntax using that. Also note that if you want to specify a regex ending ($), you must escape it in yaml as 2 $ (ie: #allowedHostRegex: "/.example.com$$/").

kpc stores it's stateful data in the cluster as a ConfigMap (kube-system.kubernetes-pfsense-controller-store by default). You can review the data there to gain understanding into what the controller is managing.

You may need/want to bump up the webConfigurator setting for Max Processes to ensure enough simultaneous connections can be established. Each kpc instance will only require 1 process (ie: access to the API is serialized by kpc).

Links

TODO

  1. base64 advanced fields (haproxy)
  2. taint haproxy config so it shows 'apply' button in interface?
  3. _index and id management
  4. ssl certs name/serial
  5. build docker images
  6. create manifests
  7. ensure pfsync items are pushed as appropriate
  8. perform config rollbacks when appropriate?
  9. validate configuration(s) to ensure proper schema

Development

HAProxy

XML config structure (note that ha_backends is actually frontends...it's badly named):

haproxy
   ha_backends
     item
     item
     ...
   ha_pools
     item
       ha_servers
         item
         item
         ...
     item
     ...

Links

Links

You can’t perform that action at this time.