Sliceable Network Management API
Version 1.01

September 2012

© 2012 NEC Corporation. All rights reserved.

Table of Contents

-

o o1

INEFOTUCTION ..ttt et b e bt e e st et e b et benbesbenbenne s 4
Lo] 1T TSP PR PR PPTURPPRPPPPRTIN 4
OVEIVIBW ..ttt bk bbbt h e s et e e b et e bt e bt e bt e R e st e b e b et e st e benbenbeane e 4
=] a0 1SS ORR R 5
4.1 SHCEADIE AP ... bbbttt bbb 5
A 1= - | PRSP PTOPPURPOPRTOP 5
A 3 INBIWOTK ...ttt bbbt b s et e bbbt bt bt bt n e e b bbb b e 5
o] T TP UP PP RPPRTRPPRN)
4.5 ATEACHIMENT ...ttt b e bbbt st b et bbb b e 5
4.6 ENTIY/EIBIMENT. ...ttt b bbbt b bbb b 5
OO0 1 -1 [T SO 5
Types of resources in the SHCEADIE AP ..o 6
TEINANT ...ttt bt e Rt R e e R et R e e R et et e R et R e e nRe e e r e e Re e e r e e nnr e 7
6.1 Create a teNaANt ODJECTooiiiiiii bbb 7
6.1.1 RESPONSE SLALUS.....eeiuvrieirtieeiiieesitieesteeesiteessiteeate e e st a e s be e e s be e e st e e snb e e ssbe e e snbe e e nnbeeensaeeennnes 7
6.2 List multiple tenant ODJECTSooiiiiieiee s 8
6.2.1 RESPONSE NEAUEIS.......c.eiiiieciieie et e et e e reesreeaeannesreete s 8
6.2.2 RESPONSE SEALUS ...ttt b et b e e b e e e e neene s 8
6.3 LISt @ TENANT ODJECTvieeieceicciece ettt e e e sre e sreere e e e sraeee s 9
6.3.1 RESPONSE NBAUETS......c.eetiiiitiiiiei ettt bbbttt bbb 9
6.3.2 ReSPONSE MESSAPE DOUYveeuveiiieieeie ettt sre e sre e re e 9
6.3.3 RESPONSE SEALUSc.veeueieieiieete ettt b et b e nb e e 10
6.4 Delete atenant ODJECEoviiie e s 11
6.4.1 RESPONSE SEALUSc.eeeueieieesieeie ettt ettt b et b e b e nbe e s 11
6.5 Modify @ tenant ODJECE.........ccuiiiiiice s 12
6.5.1 RESPONSE SEALUS ..ottt b e bbb e s 12
INEEWOTK ...ttt s e s et e b e st e be e bt e bt e st en e et et e nbenbenbennenreas 13
7.1 Create a NEtWOIK ODJECT ..o 13
A N A 2 (] 0] TN - LU PRSPPI 14
7.2 List multiple NEtWOrK ODJECTSc.viiiiieieee e 15
7.2.1 RESPONSE NEAUEIS......c.viieieiieeie ettt ettt e re et et e et e e saeesreenne e 15
7.2.2 RESPONSE SEALUSc.eeeueieieisieete ettt ettt b etk b et nb et nbe e s 15
7.3 LISt @ NEIWOTK ODJECT ... 16
7.3.1 RESPONSE NEAUEIS......cviieieiieeie ettt ettt te et et e s be et e e saeesreenne e 16
7.3.2 ReSPONSE MESSAGE DOTYeiviiiiiiiiieiiesie ittt 16
7.3.3 RESPONSE SLALUSeeeuvieeiriieeiiiiee sttt e stiee e see e e ttae s ste e e et e e st e e st e e snbe e e snbe e e snbeeesnbeeesnseeenneeeennes 17
7.4 Delete a NEtWOIK ODJECT.........ooiiiiiieee e 18
B A (TS 00 T - LU RSP RPR 18
7.5 MOdify @ NEIWOIK ODJECT ..ot bbb 19
7.5.1 RESPONSE SLALUSeeiureeeiitieeiitieesttieesiteeessteeestteessteeeaba e e sntaaeasbeeeanbeeesnbeeessbeeesnbeeessreeenneeeannes 19
0] o PSPPSR UP PP 20
8.1 Create @ POIt ODJECTvieiee ittt e et e e a e be e s e re e 20
8.1.1 RESPONSE SEALUSc.eeeueieeeisieeteeit et ettt ettt b et b ettt sb e nbe et 21
8.2 LiSt MUILIPIE POt ODJECES.vi et e aeere e 22
8.2.1 RESPONSE NBAUETS......c.eitiiiitieieee ettt bbbt bbb 22
8.2.2 ReSpONSe MESSAQE DOAYccveiiiieiiii ittt ae e ne e 22
8.2.3 RESPONSE SLALUS.....eeiuveeeiitieesitieesitee ettt ettt e ettt ettt et e e st e e st e e ssb e e ssbe e e nnb e e e nnb e e e nnneennees 23
8.3 LIS @ POIT ODJECT ...ttt sttt ns 24

8.3.1 RESPONSE NEATEIS......c.vieiieiieeie ettt et te e e nre et e eneenreenreenee e 24

8.3.2 RESPONSE MESSAGE DOTY ..ottt 24
8.3.3 RESPONSE SLALUS.....eeiuveeeiitiie ittt ettt ettt et e sttt et e et e et e e srb e e snb e e e nsb e e e nnb e e e nnbee e e 25
8.4 Delete @ POt ODJECTc.eeeiiiiiiiee bbb 26
8.4. 1 RESPONSE SLALUS.....eeiuveieiutieesiiieesiteeesiteeestteeasbbeesbee e st e e e st e e ssbe e e ssbe e e ssbe e e ssbe e e nnb e e e nsbeeennbeeenees 26
8.5 Create an attachment object t0 @ POrt ODJECTcoiiiiiieiiee e 27
8.5.1 RESPONSE SLALUS.....eeiuveieirtieesitieesitieesitee sttt easte e e bt e s be e e st e e st e e ssb e e srb e e e ssbe e e nnbe e e nnbeeennbeennees 27
8.6 Read multiple port attachment ODJECEScoi i 29
8.6.1 RESPONSE NEAUEIS......cvieeiiiieeie ettt re et et e e e be s s e snaenreenee e 29
8.6.2 RESPONSE SEALUSc.eeeueiiiiiieeieit ettt bbbt b e 29
8.7 List a port attaChment ODJECTcovi i 31
8.7.1 RESPONSE NEAUETS........etiiiiiciieiee ekttt b bbb 31
8.7.2 RESPONSE SLALUS.....eeiuveeeiutiieiitieesitee et e ettt e e te e bt e s bt e st e e st e e st e e sab e e e snb e e e nnbe e e nnbeeennbeennees 31
8.8 Delete a port attaChment ODJECT.........c.ooiii e 33
8.8.1 RESPONSE SLALUS ... eeeiuveeeirtieesitieesiteeesiteessiteesstbe s s e e e s be e e st e e st e e ssb e e ssb e e e ssbe e e ssbeeennbeeenneeennees 33
NEtWOIrK ATACHMENT.......eeiiiee ettt esreenteaneesreenne s 34
9.1 Create an attachment object to a Nnetwork ObJecCt...........cccvvviiiieiiicce e 34
0.1.1 RESPONSE SEALUSc.veeuvieieeieeieeie ettt ettt b e e b e e bbb e e 35
9.2 List multiple network attachment ODJECESccvevviiiiiiecce e 36
9.2.1 RESPONSE NBAUETS......c.eititiitieiiee ettt bbbttt 36
A A B (Es] 010] T - LU PRSP 36
9.3 List a network attaChment ODJECT.coveiiiiiiiiiieee e 38
0.3.1 RESPONSE SLALUSveeiuvreeiitieesiteeesiieeesiteesssteeasteeesbaeessbeeessbeeessbeeessbeeesnbeeesnbeesssbeeennbeeenseeeennns 38
9.4 Delete a network attaChment ODJECTc.ooiiiiii s 39
0.4.1 RESPONSE SLALUSveeiuvreeirtieesiteeesiteeesitessssteeasseeesteeeasbeeessbeeessbeeessbeeessbeeessbeesasbeesnsbeesnneeennnns 39

Tables

Table 1 Request message body — Create a tenant ODJecCt...........cccvvveiieiiiic i 7
Table 2 HTTP status codes — Create a tenant ODJECE.cooveiiiiiii s 7
Table 3 Response headers — List multiple tenant ObJeCtS..........ccovvveiieviiie i 8
Table 4 HTTP status codes — List multiple tenant 0bJeCtS.coooiiiiiiiiiiiis 8
Table 5 Response headers — List a tenant 0DJECt.ccccovviiieiieii i 9
Table 6 Response message body — List a tenant ODJECt.ccceevviiiieiiiin e 9
Table 7 HTTP status codes — List a tenant ODJeCt.ccovvriiiieii i 10
Table 8 HTTP status codes — Delete a tenant OBJECE. ..o 11
Table 9 Request message body — Modify a tenant ObJect.cccecveveiieie i 12
Table 10 HTTP status codes — Modifying a tenant ODJect.ccoccvveiieiinienee e 12
Table 11 Request message body — Create a network ObjJect.ccccoevveveiiiiicci e, 13
Table 12 HTTP status codes — Create a Network ODJECE.ccvieiiiiniiiieeee e 14
Table 13 Response headers — List multiple network objects.ccccocevvveviiiiiicce e, 15
Table 14 HTTP status codes — List multiple network 0BJects............ccocvviriiiiiiii e 15
Table 15 Response headers — List a Network ODJect.cccocviiieiiiic i 16
Table 16 Response message body — List @ Network ObJecCt. ... 17
Table 17 HTTP status codes — List a NEtWOrk ODJECE.cccocvveiieie i 17
Table 18 HTTP status codes — Delete a Network ODJECL.cocoieiiiiiiiiiiee e 18
Table 19 Request message body — Modify a network object...........ccccceovveveiveiieci e, 19
Table 20 HTTP status codes — Modify a Network ODJecCt.ccceiiiiiiiininicee e 19
Table 21 Request message body — Create a port ObJect.ccevvveviiieiieie e 20
Table 22 HTPP status codes— Create a port ODJECL...........cccveieieieriiesee e 21
Table 23 Response headers — List multiple port 0bjJects.cccovvevviveiieeiicecc e, 22
Table 24 Response message body — List multiple port 0bJectS. ... 23
Table 25 HTTP status codes — List multiple port 0bJectS.cccevviiiieiiic e 23
Table 26 Response headers — LiSt & POrt ODJECT.coviiiiiiiieiee e 24
Table 27 Response message body — List @ port ODJeCt.cccveiveiiiic i 24
Table 28 HTTP status codes— List @ POrt ODJECT..........cccvriiiriiieiee e 25
Table 29 Response status codes — Delete a port 0bJeCt.ccevveviiiiiiciecc e 26
Table 30 Request message body — Create an attachment object to a port object...................... 27
Table 31 HTTP status — Create an attachment object to a port object.ccccoeeveieiieieenee, 28
Table 32 Response headers — List multiple port attachment objects.ccccceoeiiiiiiiiiinnnen 29
Table 33 HTTP status codes — List multiple port attachment objects.ccccccoeiiniiiiiinnne 30
Table 34 Response headers — List a port attachment object.............ccoocoovveiiiiiiicccce e, 31
Table 35 HTTP status codes — List a port attachment object. ... 32
Table 36 Response status codes — Delete a port attachment object.c.cccoevveiiicie e, 33
Table 37 Request message body — Create an attachment object to a network object. 34
Table 38 HTTP status codes — Create an attachment object to a network object. 35
Table 39 Response headers — List multiple network attachment objects...........ccccceveviverieennene. 36
Table 40 HTTP status codes — List multiple network attachment objects.c.cccccvvveienen. 37
Table 41 HTTP status codes — List a network attachment object.ccoooveiiiiiniiinen 38
Table 42 HTTP status codes— Delete a network attachment object.c.ccooeiviiiiiiiien. 39

1 Introduction

This document intends to describe for application developers a virtual resource management service
as defined by this sliceable network management API. It documents in detail a RESTful API to
configure various functional components which constitute the operation of a sliceable virtual layer 2.
At a minimum, this virtual layer is able to learn MAC addresses and perform aging in the standard
manner to provide forwarding actions for message routing to a closed set of users.

2 Scope

This document specifies an interface to configure interconnections between virtual resources to give
users a granular control over routing decisions to either restrict or allow traffic. This APl as a
prerequisite it specifies that an emulated layer 2 is created. It does not specify a limit on the number
of emulated layers 2 that may be configured but scaling issues might arise from the number of ports
and end point attachments that can be supported on a particular emulated layer 2.

This API does not support state management of resources hence no mechanism exists to subscribe
to receive events from managed resources.

The API does not support any guards preventing access to objects created by other clients. It could
be that higher level APIs provide the necessary authentication but this is outside the scope of this
API.

3 Overview

The APl interrogates a stack of resources in a hierarchically way. Resources at a lower level can not
be accessed unless resources at the higher level are accessible. Such dependencies should be well
understood because side effects might occur. For example deletion of a network can result in all
other dependent instances disappearing as well.

Users interact with this API through its supported addressing model and are unaware of the
underlying network infrastructure that are using. This network infrastructure is a virtual layer 2
designed within the Trema framework supplying a distributed topology arrangement. The API does
a simple mapping between its emulated network and its attachment points based on information
received from incoming logical/physical ports. Routes are calculated based on configured logical
domains rather than the multiple VMs it represents, therefore extending network reachability. The
virtual layer 2 imposes no restriction on overlapping MAC addresses and VLAN ids. By
virtualizing all layer 2 functions the API distributes resource management such that you only need a
single configuration point.

4 Definitions

For the purpose of this document the following terms and definitions apply.

4.1 Sliceable API

It is a conceptual term used to describe the system that this API is targeted for. The services that this
API provides can be categorized as Infrastructure as a Service (laaS) in the cloud computing
delivery model.

4.2 Tenant

It represents a top level entity defining a large pool of network resources. A tenant may span to
cover one or more network entities. It isolates traffic from multiple tenants over a shared physical
infrastructure essential within a virtualized data center environment.

4.3 Network

Models the relationship of a virtual resource pool (ports/attachments) that this entity may have. It
represents a concept that groups resources together sharing certain characteristics defining their
unique behavior within the network.

4.4 Port
Mapping of port attributes to this logical entity to enable network connectivity.

4.5 Attachment
An entity that as its name suggests can either be attached to a network or port entity objects.

This entity represents a mapping to a value that exposes a control attribute to the entity being
attached (network/port).

4.6 Entity/Element
Terms used interchangeably referring to objects that this API manipulates.

4.7 Container
A simple grouping of objects of certain type with similar characteristics.

5

5 Types of resources in Sliceable API

Resource type Description

Tenant A container of one or more objects uniquely addressable by its
tenant identifier.

Network A container of one or more objects uniquely addressable by its
network identifier.

Port A container of one or more objects addressable by its logical port
identifier. A port container may also have attachment container
objects.

Attachment An entity that represents a binding of key/value pairs that can be
attached either to network or port. Attachment also can be viewed
as a container accessible through its attachment identifier.

Resource access applies to all synchronous operations regarding getting, setting and enumerating
values. Subclauses below define a mechanism for acquiring JSON based representations of entities
using this RESTful API. A URI syntax may indicate the type of entity being enumerated or a
particular selector object.

6 Tenant

A tenant entity refers to logical grouping of one or more network entities aggregated to represent the
tenant's features as a whole. An organization registered as a tenant should be able to manage all the
services that this API provides.

6.1 Create a tenant object

Create a tenant object with its contextual information id, description. Tenant is the top-most
managed object.

The following HTTP POST creates a tenant object at the specified URI.

Resource:
POST /tenants

The POST request includes two name/value pairs, id and description. The server would create a
tenant object even if both attributes id/description not supplied.

Table 1 Request message body — Create a tenant object.

Field name | Type Description Requirement
id JSON String | Aunique locally assigned textual name of the |Optional
tenant.
description JSON String | Atextual string containing information about | Optional
the tenant.

Example: POST /tenants

POST /tenants HTTP/1.1
Content-type: application/json
{
"id" : "tenant-id",
"description" : "our organization"

6.1.1 Response status
The HTTP status codes returned from creating a tenant object are shown in Table 2.

Table 2 HTTP status codes — Create a tenant object.

HTTP status code Description

202 Created Operation succeeded. A new tenant object is created.

422 Bad Request Invalid parameters or field names or attempt to create an existing
tenant object.

500 Internal Server Error Indicates an internal processing error. The server is unable to create
a tenant object.

6.2 List multiple tenant objects

The following HTTP GET lists one or more tenant representation objects at the specified request
URI. The message is targeted to return an array of tenant objects.

Resource:
GET /tenants

Example: Perform a GET to the tenant container URI.

|GET /tenants HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
[
{ "id"™ : "tenant-1", "description" : "abc organization-warehouse" 1},
{ "id"™ : "tenant-2", "description" : "abc organization-data-management" }

6.2.1 Response headers

The following response headers expected as shown in Table 3.

Table 3 Response headers — List multiple tenant objects.

Header Type Requirement

Content-Type application/json If present a JSON array of zero, one or more tenant
objects. An empty array indicates that there are no
tenant objects.

Content-Type text/plain If present an implementation specific error message.

6.2.2 Response status
The HTTP status codes returned from listing multiple tenant objects are shown in Table 4.

Table 4 HTTP status codes — List multiple tenant objects.

HTTP status code Description
200 OK/Success One or more tenant object found and returned.
500 Internal Server Error Failed to locate and return details of any tenant.

6.3 List a tenant object
The following HTTP GET lists an existing tenant object at the specified URI.

Resource:
GET /tenants/<tenant-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

Example: Perform a GET to the tenant object URI.

| GET /tenants/tenant-1 HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
[

"description" : "abc organization-warehouse"

]

6.3.1 Response headers
The following response headers expected as shown in Table 5.

Table 5 Response headers — List a tenant object.

Header Type Requirement

Content-Type application/json | Optional. If present the referenced tenant object instance
if configured.

Content-Type text/plain Optional. If present the referenced tenant object instance
is not found.

6.3.2 Response message body
The response message body for listing a specific tenant object is shown in Table 6.

Table 6 Response message body — List a tenant object.

Field name | Type Description

description JSON String | A readable description of this tenant object instance.

6.3.3 Response status
The HTTP status codes returned from listing a tenant object are shown in Table 7.

Table 7 HTTP status codes — List a tenant object.

HTTP status code

Description

200 OK/Success

A tenant object found and returned.

404 Not Found

Unable to locate the specified tenant.

500 Internal Server Error

An internal processing error. The server is unable to locate the
tenant object.

10

6.4 Delete a tenant object
It is an operation to delete a tenant resource in its entirety.

The following HTTP DELETE deletes a tenant object at the specified URI. Any dependent entities
visible to this tenant object (networks, ports, attachments) would also be deleted.

Resource:
DELETE /tenants/<tenant-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

6.4.1 Response status
The HTTP status codes returned from deleting a tenant object are shown in Table 8.

Table 8 HTTP status codes — Delete a tenant object.

HTTP status code Description

202 Accepted A tenant object successfully deleted.

404 Not Found A tenant object already deleted or is not found.

500 Internal Server Error An internal processing error. The server is unable to delete the
tenant object.

11

6.5 Modify a tenant object

Request that the tenant identified by the request URI be updated with the enclosed representation. If
a tenant exists at the request URI the description should be modified.

Resource:
PUT /tenants/<tenant-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

The PUT request includes a name/value pair of description.

Table 9 Request message body — Modify a tenant object.

Field name | Type Description

description JSON String | Atextual string containing information about the tenant.

Example: PUT to the tenant object URI to alter its description.

PUT /tenants/tenant-1 HTTP/1.1
Content-type: application/json
{

"description" : "another organization"

}

The following shows the server's response.

[HTTP/1.1 202 Accepted

6.5.1 Response status
The HTTP status codes returned from modifying a tenant object are shown in Table 10.
Table 10 HTTP status codes — Modifying a tenant object.

HTTP status code Description
202 Accepted A tenant object is modified.
404 Not Found An attempt is made to modify a non-existing tenant object.

422 Unprocessable Entity Failed to parse the modification parameters.

500 Internal Server Error An internal processing error. The server is unable to modify the
tenant object.

12

7 Network

Within a tenant a network represents a sliceable virtual layer 2. It defines the semantics of a logical
boundary that allows ports and other attachment objects bound to it implement a particular function.
A network is identified by a unique id, auto-generated if not given that remains constant within the
life of the entity.

7.1 Create a network object

A create operation creates a network object with its initial representation. If the target network
object already exists the create operation would fail returning an error.

This creates and initializes a sliceable virtual layer 2 without any functionality for connectivity yet.

The following HTTP POST creates a network object at the specified URI.

Resource:
POST /tenants/<tenant-id>/networks

Where:
<tenant-id> : the identifier of a tenant object instance.

The POST request message body includes two name/value pairs, id and description.

Table 11 Request message body — Create a network object.

Field name Type Description Requirement

id JSON String | Any textual description as long as it is unique |Optional
which is used to identify the object. If the
request doesn't include the id the server creates
and returns one in response.

description JSON String | A name that this network is known as. Optional

If a user attempts to create a network with unknown tenant-id, a tenant with the tenant-id would be
created. This function may be supported in this version of the Sliceable API.

Example: Create a network object which name is "net-1" in "tenant-1".

POST /tenants/tenant-1/networks HTTP/1.1
Content-type: application/json
{

"id" . "net_lll,

"description”" : "marketing department"

13

7.1.1 Response status
The HTTP status codes returned from creating a network object are shown in Table 12.

Table 12 HTTP status codes — Create a network object.

HTTP status code

Description

202 Created

Operation succeeded. A new network object is created.

422 Bad Request

Invalid parameters or field names or attempt to create an existing
network object.

500 Internal Server Error

An internal processing error. The server is unable to create a
network object.

14

7.2 List multiple network objects

The following HTTP GET lists one or more network objects at the specified URI. The message is
targeted to return an array of network objects. If an object can not be retrieved due to conflicting
locking or simultaneous access or any other conflict an error response is returned. If the request
results in no data being found an empty response is returned (an empty array with no values).

Resource:
GET /tenants/<tenant-id>/networks

Where:
<tenant-id> : the identifier of a tenant object instance.

Example: Perform a GET to the network container URI.

|GET /tenants/tenant-1/networks HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK

Content-Type: application/json

[
{ "id"™ : "net-1", "description" : "marketing department" },
{ "id"™ : "net-2", "description" : "development department" }

7.2.1 Response headers
The following response headers expected as shown in Table 13.
Table 13 Response headers — List multiple network objects.

Header Type Requirement

Content-Type application/json | If present a JSON array of zero, one or more network
objects.

Content-Type text/plain If present an implementation specific error message.

7.2.2 Response status
The HTTP status codes returned from listing multiple network objects are shown in Table 14.
Table 14 HTTP status codes — List multiple network objects.

HTTP status code Description
200 OK/Success One or more network object is found.
404 Not Found Unable to retrieve one or more network object because specified

tenant-id is not found.

500 Internal Server Error An internal processing error. The server is unable to locate one or
more network object.

15

7.3 List a network object
The following HTTP GET lists an existing network object at the specified URI.

Resource:

GET /tenants/<tenant-id>/networks/<net-id>

Where:
<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.

Example: Perform a GET to the network object URI.

|GET /tenants/tenant-1/networks/net-2 HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
{
"bindings" : [],
"description" : "development department"

7.3.1 Response headers
The following response headers expected as shown in Table 15.

Table 15 Response headers — List a network object.

Header Type Requirement

Content-Type application/json Optional. If present the referenced network object
instance.

Content-Type text/plain Optional. If present the referenced network object
instance is not found.

7.3.2 Response message body

The response message body for listing a specific network object is shown in Table 16.

16

Table 16 Response message body — List a network object.

Field name | Type

Description

bindings JSON Array

Any port or attachment object associated with this network
instance. If there are no bindings an empty array is returned.

description JSON String

A readable description of this network object instance.

7.3.3 Response status
The HTTP status codes returned from listing a network object are shown in Table 17.

Table 17 HTTP status codes — List a network object.

HTTP status code

Description

200 OK/Success

A network object found and returned.

404 Not Found

Unable to locate a network object because of incorrect tenant-id or
network-id.

500 Internal Server Error

An internal processing error. A server is unable to locate the
network object.

17

7.4 Delete a network object

It is an operation to delete a network resource in its entirety. The delete operation specifies a
precondition to match in order for the operation to be carried out. This does not mean that the
operation would succeed other errors may prevent and cause the delete operation to fail.

The following HTTP DELETE deletes a network object at the specified URI. Any dependent
entities visible to this network object (ports, attachments) would also be deleted.

Resource:
DELETE /tenants/<tenant-id>/networks/<net-id>

Where:

<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.

7.4.1 Response status
The HTTP status codes returned from deleting a network object are shown in Table 18.

Table 18 HTTP status codes — Delete a network object.

HTTP status code Description

202 Accepted A network object successfully deleted.

404 Not Found A network object already deleted or is not found.

500 Internal Server Error An internal processing error. The server is unable to delete the
network object.

18

7.5 Modify a network object
Ability to modify an existing network object. A successful PUT operation would modify the

network object modifiable properties and leave the other properties unchanged. If the targeting PUT

network representation and the actual saved representation do not differ the object is left intact. A

modification to a network object should not disturb the preservation order of other objects. A client

user must query again to display the updated results.

Resource:

PUT /tenants/<tenant-id>/networks/<net-id>

Where:

<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.

The PUT request includes a name/value pair of description.

Table 19 Request message body — Modify a network object.

Field name | Type

Description

description JSON String

A name that this network is known as.

Example: PUT to the network object URI to alter its description.

{

}

PUT /tenants/tenant-1/networks/net-1 HTTP/1.1
Content-type: application/json

"description" : "another department"

The following shows the server's response.

[HTTP/1.1 202 Accepted

7.5.1 Response status
The HTTP status codes returned from modifying a network object are shown in Table 20.
Table 20 HTTP status codes — Modify a network object.

HTTP status code

Description

202 Accepted

A network object is modified.

404 Not Found

An attempt is made to modify a non-existing network object.

422 Unprocessable Entity

Failed to parse the modification parameters.

500 Internal Server Error

An internal processing error. The server is unable to modify the
network object.

19

8 Port

A port describes a set of properties a virtual resource must have in order to connect to the network.
This membership declaration allows user traffic from a virtual resource to be propagated among
other registered resources within the same network even if physically separated. Physically a port
object could be any OpenFlow aware switch hooked up to this network. There is no restriction on
the number of ports to be added to a network. A port attachment further limits the extent of the
network by establishing boundaries dictating which specific MAC addresses are forwarded.

A ports URI allows access to specific port objects by referencing their ids. A client user can create
inquire about the configuration or delete port object instances.

8.1 Create a port object

Create a port by defining a number of key/values attributes. The created port should be accessible
either by the ports container or by its unique id.

Resource:
POST /tenants/<tenant-id>/networks/<net-id>/ports

Where:
<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.

The POST request contains the following name/value pairs.
Table 21 Request message body — Create a port object.

Field name Type Description Requirement

id JSON String | Any textual description as long as it is unique |Optional
within the scope of this network object
instance. If the request doesn't include the id
the server creates and returns one in response.
Although optional client users may prefer to
set this to create a more human-readable
identifier.

datapath_id JSON String | Identifies a unique instance of any OpenFlow | Mandatory
aware switch. It should be specified in
hexadecimal format prefixed with “0x”.

port JSON Number | Specifies the physical port number that any Mandatory
OpenFlow aware switch attached and frames
are received.

vid JSON Number | Assign a VLAN identifier to a port. Set this Mandatory
value to 65535 to skip VLAN setting. The
VLAN tags let you logically separate traffic on
a port into multiple channels.

20

Example:The following HTTP POST creates a port object at the specified URI.

{

"id" : "port-1",
"datapath id" :
"port" : 1,
"vid" : 1024

POST /tenants/tenant-1/networks/net-1/ports HTTP/1.1
Content-type: application/json

"0x0000000000001234",

On successful creation the following HTTP response is returned.

|HTTP/1.1 202 Accepted

8.1.1 Response status
The HTTP status codes returned from creating a port object are shown in Table 22.

Table 22 HTPP status codes— Create a port object.

HTTP status code

Description

202 Accepted

The referenced port object successfully added.

422 Unprocessable Entity

Attempt to create an existing port object.

404 Not Found

Reference to non-existing network object is found.

500 Internal Server Error

An internal processing error. The server is unable to create a port
object.

21

8.2 List multiple port objects

It is a query to return all port objects belonging to a specific network. The following HTTP GET
lists one or more port objects at the specified URI. If the request results in no data being found an
empty response is returned (an empty array with no values).

To find out what ports are available for a network.

Resource:
GET /tenants/<tenant-id>/networks/<net-id>/ports

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.

Example: Perform a GET to the port container at the network's URI.

| GET /tenants/tenant-1/networks/net-1/ports HTTP/1.1

The following shows the server's response.
HTTP/1.1 200 OK

Content-Type: application/json

[

{

"vid" : 1024,

"datapath id" : "0x0000000000001234",
"id" : "port_l",

"port" : 1

8.2.1 Response headers
The following response headers expected as shown in Table 23.

Table 23 Response headers — List multiple port objects.

Header Type Requirement

Content-Type application/json | If present a JSON array of zero one or more JSON port
objects.

Content-Type text/plain If present an implementation specific error message.

8.2.2 Response message body

The response message body for enumerating multiple port objects of a JSON port object is shown
in Table 24.
22

Table 24 Response message body — List multiple port objects.

Field name | Type Description

vid JSON Number | The VLAN id attached to a port.
datapath_id JSON String | A unique identifier of an OpenFlow switch.
id JSON String | A name this port is known as.

port JSON Number | An index into a list of physical ports.

8.2.3 Response status
The HTTP status codes returned from listing port objects shown in Table 25.

Table 25 HTTP status codes — List multiple port objects.

HTTP status code Description

200 OK/Success One or more port object returned.

404 Not Found

Unable to locate one or more port object using the specified tenant-
id or network-id.

500 Internal Server Error An internal processing error. The server is unable to locate one or

more port objects.

23

8.3 List a port object
The following HTTP GET reads the attributes of an existing port object at the specified URL.

Resource:

GET /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>

Where:

<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.

<port-id> : the identifier of a port object instance.

Example: Perform a GET to the port object URI.

|GET /tenants/tenant-1/networks/net-1/ports/port-1 HTTP/1.1

The following shows the server's response.

{
"config" :

}

{ "vid" :

HTTP/1.1 200 OK
Content-Type:

application/Jjson

1024, "datapath id" : "0x0000000000001234", "port" :

1

}

8.3.1 Response headers

The following response headers expected as shown in Table 26.

Table 26 Response headers — List a port object.

Header

Type

Requirement

Content-Type

application/json If present a JSON port object.

Content-Type

text/plain

If present an implementation specific error message.

8.3.2 Response message body
The response message body for listing a particular port object is shown in Table 27.

Table 27 Response message body — List a port object.

Field name

Type

Description

config

JSON object

An object encapsulating the port instance with the following
attributes:

. vid
. datapath_id
. port

24

8.3.3 Response status
The HTTP status codes returned from listing a port object are shown in Table 28.

Table 28 HTTP status codes— List a port object.

HTTP status code

Description

200 OK/Success

A port object successfully located.

404 Not Found

A port object was not found at the specified URI.

500 Internal Server Error

An internal processing error. The server is unable to locate a port
object.

25

8.4 Delete a port object
The following HTTP DELETE deletes an existing port object at the specified URI.

Resource:
DELETE /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.
<port-id> : the identifier of a port object instance.

Example: Perform a DELETE to the port object URI.

|DELETE /tenants/tenant-1/networks/net-1/ports/port-1 HTTP/1.1

The following shows the server's response.

|HTTP/1.1 202 Accepted

This API does not define any addressing schemes or techniques for batched port delete operations.
An attempt to delete all ports should fail with a 405 (Method not Allowed) error.

8.4.1 Response status
The HTTP status codes returned from deleting a port object are shown in Table 29.

Table 29 Response status codes — Delete a port object.

HTTP status code Description

202 Accepted A port object successfully deleted.

404 Not Found A port object is already deleted or not found.

500 Internal Server Error An internal processing error. The server is unable to delete the port
object.

26

8.5 Create an attachment object to a port object
To create a new attachment you use a HTTP POST operation.

Resource:
POST /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>/attachments

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.
<port-id> : the identifier of a port object instance.

The POST request contains the following name/value pairs.

Table 30 Request message body — Create an attachment object to a port object.

Field name Type Description Requirement

id JSON string | Specifies an identifier which is a user defined | Mandatory
string that uniquely addresses this attachment.

mac JSON string | A 6-octet MAC address value used as a unique | Mandatory

identifier for the network/port that contains this
attachment. Determines frame forwarding
behavior on MAC addresses.

Example: The following HTTP POST creates an attachment object at the specified URI.

POST /tenants/tenant-1/networks/net-1/ports/port-1/attachments HTTP/1.1
Content-type: application/json
{

"id" : "attachment-1",
"mac" : "11:22:33:44:55:60"

}

This request attaches a particular object (attachment-1) with MAC address (11:22:33:44:55:66) to a
specify port (port-1).

On successful creation the following HTTP response is returned.

|HTTP/1.1 202 Accepted

8.5.1 Response status
The HTTP status codes returned from creating an attachment object are shown in Table 31.

27

Table 31 HTTP status — Create an attachment object to a port object.

HTTP status Description

202 Accepted An attachment object successfully created.

422 Unprocessable Entity Attempt to create an existing attachment object or invalid
parameters specified or reference to non-existing port object.

404 Not Found Reference to non-existing network object is found.

500 Internal Server Error An internal processing error. The server is unable to add an
attachment object.

28

8.6 Read multiple port attachment objects
To return a list of all port attachment objects perform a HTTP GET on the specified URI.

Resource:
GET /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>/attachments

Where:
<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.
<port-id> : the identifier of a port object instance.

Example: Perform a GET to the attachments container URI.

|GET /tenants/tenant-1/networks/net-1/ports/port-3/attachments HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
[

{

"id" : "attachment-1",
"mac" : "11:22:33:44:55:60"

8.6.1 Response headers
The following response headers expected as shown in Table 32.

Table 32 Response headers — List multiple port attachment objects.

Header Type Requirement

attachment objects.

Content-Type application/json | If present a JSON array of zero one, or more JSON

Content-Type text/plain If present an implementation specific error message.

8.6.2 Response status

The HTTP status codes returned from listing multiple port attachment objects are shown in Table 33.

29

Table 33 HTTP status codes — List multiple port attachment objects.

HTTP status code Description
200 OK/Success Returns one or more port attachment objects.
404 Not Found Failed to return one or more port attachment object either because

an invalid tenant-id or network-id specified.

500 Internal Server Error An internal processing error. The server is unable to locate one or
more port attachment objects.

30

8.7 List a port attachment object
To return a specific port attachment object perform a HTTP GET on the specified URI.

Resource:
GET /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>/attachments/<attachment-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.
<port-id> : the identifier of a port object instance.
<attachment-id> : the identifier of the port attachment object instance.

Example: Perform a GET to the attachments container URI using a specific attachment-id.

|GET /tenants/tenant-1/networks/net-1/ports/port-3/attachments/host3-mac HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
[

{
"id" : "host3-mac",
"mac" : "00:00:00:00:00:03"

8.7.1 Response headers
The following response headers expected as shown in Table 34.

Table 34 Response headers — List a port attachment object.

Header Type Requirement

Content-Type application/json If present a JSON object instance of a port attachment
object.

Content-Type text/plain If present an implementation specific error message.

8.7.2 Response status
The HTTP status codes returned when querying a port attachment object shown in Table 35.

31

Table 35 HTTP status codes — List a port attachment object.

HTTP Status Description

200 OK/Success A port attachment object found and returned.

404 Not Found Unable to locate a port attachment object using either the tenant-id,
network-id, port-id, attachment-id.

500 Internal Server Error An internal processing error. The server is unable to list a port
attachment object.

32

8.8 Delete a port attachment object

The following HTTP DELETE deletes an existing attachment object at the specified network and
port URI.

Resource:
DELETE /tenants/<tenant-id>/networks/<net-id>/ports/<port-id>/attachments/<attachment-id>

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.
<port-id> : the identifier of a port object instance.
<attachment-id> : the identifier of the port attachment object instance.

Example: Perform a DELETE to the port attachment object URI.

|DELETE /tenants/tenant-1/networks/net-1/ports/port-3/attachments/123 HTTP/1.1

The following shows the server's response:

|HTTP/1.1 202 Accepted

8.8.1 Response status
The HTTP status codes returned from deleting a port attachment object shown in Table 36.

Table 36 Response status codes — Delete a port attachment object.

HTTP status code Description

202 Accepted A port attachment object successfully deleted.

404 Not Found A port attachment object is not found.

500 Internal Server Error An internal processing error. The server is unable to delete a port
attachment object.

33

9 Network Attachment

A network attachment object represents a passive uniquely identifiable resource that remains
unreachable until such time that joins the network by initiating its own transmission. All operations
and data semantics on the network attachment object are the same as the port attachment object.
Different level of indirection achieves information independence between the two entities. All
network attachment devices must be OpenFlow aware devices.

9.1 Create an attachment object to a network object

To create as new attachment object to a network object you use the HTTP POST operation. An
attachment to a network can restrict or permit access across multiple networks.

Resource:
POST /tenants/<tenant-id>/networks/<net-id>/attachments

Where:
<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.

The POST request contains the following name/values pairs.

Table 37 Request message body — Create an attachment object to a network object.

Field Type Description Requirement

id JSON String | Any textual description as long as it remains | Mandatory
unique within the network instance.

mac JSON String | A 6-octet Ethernet MAC address of the Mandatory
attachment.

Example: The following HTTP POST creates an attachment object at the specified URI.

POST /tenants/tenant-1/networks/net-1/attachments HTTP/1.1
Content-type: application/json
{

"id" : "test-attachment",

"mac" : "00:00:00:00:00:03"

On successful creation the following HTTP response is returned.

|HTTP/1.1 202 Accepted

34

9.1.1 Response status
The HTTP status codes returned from creating an attachment object to a network object are shown

in Table 38.

Table 38 HT TP status codes — Create an attachment object to a network object.

HTTP status code

Description

202 Created

Indicates that no error occurred and the server was able to create an
attachment object to a network object in the attachments container.

404 Not Found

Unable to locate specified parameters tenant-id or network-id.

422 Unprocessable Entity

An attempt to create an existing attachment object to a network
object.

500 Internal Server Error

An internal processing error. The server is unable to create an
attachment object to a network object.

35

9.2 List multiple network attachment objects
To read a group of network attachment objects perform a HTTP GET on the specified URI.

Resource:
GET /tenants/<tenant-id>/networks/<net-id>/attachments

Where:
<tenant-id> : the identifier of a tenant object instance.

<net-id> : the identifier of a network object instance.

Example: Perform a GET to the network attachments container URI.

|GET /tenants/tenant-1/networks/net-1/attachments HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK
Content-Type: application/json
[

{

"id" : "test-attachment",
"mac" : "00:00:00:00:00:01"
b
{
"id" : "another-test-attachment",
"mac" : "00:00:00:00:00:02"

9.2.1 Response headers

The following response headers expected as shown in Table 39.

Table 39 Response headers — List multiple network attachment objects.

Header Type Requirement

Content-Type application/json If present a JSON array of zero one, or more JSON
attachment objects.

Content-Type text/plain If present an implementation specific error message.

9.2.2 Response status

The HTTP status codes returned from listing multiple network attachment objects are shown in
Table 40.

36

Table 40 HTTP status codes — List multiple network attachment objects.

HTTP status code Description

200 OK/Success No error occurred. One or more network attachment objects found
and returned.

404 Not Found Indicates that one of the specified parameters not found.

500 Internal Server Error An internal processing error. The server is unable to list one or
more network attachment objects.

37

9.3 List a network attachment object
Allows a user client to select and retrieve a network attachment instance by its identifier.

Resource:
GET /tenants/<tenant-id>/networks/<net-id>/attachments/<attachment-id>

Where:
<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.
<attachment-id> : the identifier of the network attachment object instance.

Example: Perform a GET to the specified URI.

| GET /tenants/tenant-1/networks/net-1/attachments/test-attachment HTTP/1.1

The following shows the server's response.

HTTP/1.1 200 OK

Content-Type: application/json

{
"id" : " test-attachment",
"mac" : "00:00:00:00:00:01"

9.3.1 Response status
The HTTP status codes returned from listing a network attachment object shown in Table 41.

Table 41 HTTP status codes — List a network attachment object.

HTTP status code Description

200 OK/Success A network attachment object is found.

404 Not Found A network attachment object is not found.

500 Interval Server Error An internal processing error. The server is unable to list a network
attachment object.

38

9.4 Delete a network attachment object
The following HTTP DELETE deletes an existing network attachment object at the specified URI.

Resource:

DELETE /tenants/<tenant-id>/networks/<net-id>/attachments/<attachment-id>

Where:

<tenant-id> : the identifier of a tenant object instance.
<net-id> : the identifier of a network object instance.
<attachment-id> : the identifier of the network attachment object instance.

Example: Perform a DELETE to the network attachment object URI.

|DELETE /tenants/tenant-1/networks/net-1/attachments/test-attachment HTTP/1.1

The following shows the server's response:

|HTTP/1.1 202 Accepted

9.4.1 Response status
The HTTP status codes returned from deleting a network attachment object are shown in Table 42.

Table 42 HTTP status codes— Delete a network attachment object.

HTTP status code

Description

202 Accepted

A network attachment object successfully deleted.

404 Not Found

A network attachment object is not found.

500 Internal Server Error

An internal processing error. The server is unable to delete the
network attachment object.

39

\ersion Description Date
1.0 Initial version April/27/2012
1.01 Specified in hexadecimal format prefixed with "0x". September/28/2012

40

