Skip to content
A lightweight and efficient Python Morton encoder with support for geo-hashing
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Type Name Latest commit message Commit time
Failed to load latest commit information.
pymorton Moves code out of Feb 15, 2018
.gitignore Initial commit Dec 17, 2015
.travis.yml Remove Python:3.*-dev from CI build versions Feb 15, 2018 Update Feb 15, 2018
dev-requirements.txt Enables TravisCI Feb 15, 2018


Ordinal hashing of multidimensonal data and geographic coordinates via Morton coding / Z-ordering.

Codecov Travis Status GitHub tag License

In mathematical analysis and computer science, Z-order, Morton-order, or a Morton-code is a function which maps multidimensional data to one dimension while preserving locality of the data points. It was introduced in 1966 by IBM researcher, G. M. Morton. The z-value of a point in multidimensions is calculated by interleaving the binary representations of its coordinate values. Once the data are sorted into this ordering, any one-dimensional data structure can be used, such as binary search trees, B-trees, skip lists, or hash tables. The resulting ordering can equivalently be described as the order one would achieve from a depth-first traversal of a quadtree, where {x, y, ..., K} are combined into a single ordinal value that is easily compared, searched, and indexed against other Morton numbers.

At the highest level, pymorton is split into two logical functions:

  • (de)interleave: encodes/decodes hashes representing two or three dimensionsal integer sets. {x, y, z ∈ Z} or {x, y ∈ Z}, where Z represents all integer values.

  • (de)interleave_latlng: encodes and decodes hashes representing latitude and longitude.

Example usage scenario:

  • Given a directory of images, sort the images by color (average RGB):

    from statistics import mean
    from glob import glob
    from PIL import Image
    import pymorton
    imgs = [(fname, for fname in glob('imgpath/*.jpg')[:100]]
    # for each image, generate a tuple of len==3, representing the image's average RGB value
    avg_rgb_values = [
        [int(mean(img.getdata(band))) for band in range(3)] for _, img in imgs]
    # using the average RGB values, compute the Z-order of each image
    hashed_imgs = list(zip([fname for fname, _ in imgs],
                       [pymorton.interleave(*avg_rgb) for avg_rgb in avg_rgb_values]))
    # returns a sorted-by-color list of photos found within the directory
    return sorted(hashed_imgs, key=lambda img_tuple: img_tuple[1])

While the above use-case is fairly uncommon in the context of Morton-coding, I believe it illustrates the utility of the algorithm quite well. Morton-coding is most commonly used within the realm of geospatial indexing, but its potential applications are infinite!


via pip:

pip install pymorton

via source:

git clone
cd pymorton
python install


  • 3D-hashing
import pymorton as pm

mortoncode = pm.interleave(100, 200, 50)  # 5162080
mortoncode = pm.interleave3(100, 200, 50) # 5162080

pm.deinterleave3(mortoncode)              # (100, 200, 50)
  • 2D-hashing
import pymorton as pm

mortoncode = pm.interleave(100, 200)     # 46224
mortoncode = pm.interleave2(100, 200)    # 46224

pm.deinterleave2(mortoncode)             # (100, 200)
  • geo-hashing
import pymorton as pm

geohash = pm.interleave_latlng(40.723471, -73.985361)     # '03023211233202130332202203002303'

pm.deinterleave_latlng(geohash)                           # (40.723470943048596, -73.98536103777587)


  • pymorton.interleave(*args)

    • Hashes x, y or x, y, z into a single value. This function wraps interleave2() and interleave3() by supporting variable-length args.
  • pymorton.interleave2(x, y)

    • Returns a hash (int) representing x, y.
  • pymorton.interleave3(x, y, z)

    • Returns a hash (int) representing x, y, z.
  • pymorton.interleave_latlng(lat, lng)

    • Returns a hash (string base-4) representing lat, lng.
  • pymorton.deinterleave2(hash)

    • Returns a tuple representing the arguments to the corresponding interleave2() call.
  • pymorton.deinterleave3(hash)

    • Returns a tuple representing the arguments to the corresponding interleave3() call.
  • pymorton.deinterleave_latlng(hash)

    • Returns a tuple representing the arguments to the corresponding interleave_latlng() call.


From the project's root directory, execute nosetests.

Please feel free to contact regarding any questions/comments/issues.




You can’t perform that action at this time.