
SWIG and Fortran

Seth R Johnson

Contents
Overview 2

Fundamental concepts 3
Nomenclature . 3
Identifiers . 4
Running SWIG . 4
Compiling a simple Fortran program 6
Compiling more complex Fortran/C/C++ programs 7

Basic Fortran/C data type interoperability 7
Fundamental types . 8

Other integer types . 8
Boolean/logical values . 8
Characters . 9

Pointers and references . 9
Strings . 10
Arrays . 12
Byte strings . 12
Classes and structs . 13
Ignored or unimplemented forward-declared classes 13
Enumerations . 13
Function pointers . 14
Handles and other oddities . 15

Basic C/C++ features 15
Functions . 15
Function overloading . 16
Global variables . 17

Global constants . 17
Classes . 18
Exceptions . 18

Provided typemaps 20
Std::string . 20

1

Std::vector . 20
Other C++ standard library containers 21
Smart pointers . 21
Fortran-to-C array translation . 23
Returning array pointers . 23
MPI compatibility . 24
Integer types . 25

Proxy classes 25
Constructors and Destructors . 26
Member functions . 27
Member data . 27
Inheritance . 28
Memory management . 28
Opaque class types . 31
Proxy class wrapper code . 31

Advanced details and usage 31
Typemaps . 31

ISO C Wrapper interface . 32
Fortran proxy datatype translation 32
Allocating local Fortran variables in wrapper codes 33
Special class typemaps . 34

Fragments . 34
Direct C binding . 35

Generating C-bound Fortran types from C structs 35
Interfaces with Fortran C-bound types 36
Generating direct Fortran interfaces to C functions 37

Known Issues . 37

Overview

This chapter describes how to create interfaces to C and C++ data and functions
in the target language of Fortran, a long-lived scientific programming language.
The original motivation for adding the Fortran language to SWIG was to provide
an automated means of adapting massively parallel scientific codes to modern
solvers and GPU-accelerated kernels in the Trilinos numerical library package
(ForTrilinos). But adding Fortran as a SWIG target language has the potential
to simplify and accelerate numerous existing Fortran codes that do not require
advanced numerical solvers: it is now tremendously simple to generate Fortran
library modules from existing C and C++ libraries.

SWIG differs from other attempts to couple C/C++ and Fortran in that it is
designed to provide C and C++ functionality to Fortran, and not to generically
make these two languages (or others like Python) interoperable. SWIG only

2

https://fortrilinos.readthedocs.io/en/latest/

parses C and C++ code; it does not parse Fortran code or generate C/C++
interfaces to Fortran libraries. SWIG assumes that you, the library developer,
have an existing, working C/C++ interface that you wish to adapt to the Fortran
target language. This adaptation may include tweaks for ease of use or familiarity
for Fortran users, but it does not require that your library be developed around
a central interface language. This is in contrast to other existing cross-language
interoperability tools such as Babel.

Fundamental concepts

The purpose of running SWIG with the -fortran language option is to generate
a Fortran module that can be used by other Fortran code. This module contains
automatically generated code that provides a Fortran interface to existing C or
C++ interfaces. SWIG generates a .f90 Fortran module file, and a separate
_wrap.c or _wrap.cxx file of implementation code that the module must link
against.

The C/C++ _wrap file contains simple, flat, C-linkage interface functions that
provide access to arbitrarily complicated C/C++ data and functions. The
conversion may be as simple as casting one integer type to another, or as
complicated as allocating a piece of memory and calling a function to encode a
complex object. These interface functions, which are namespaced with a swigc_
prefix, translate the C/C++ data (classes, enumerations) into simple ANSI C
types (integers, structs).

The C function signature of those interfaces is translated to private interface
declarations in the Fortran module to bind(C) functions. These interfaces use
only data types compatible with Fortran 2003’s ISO_C_BINDING features. Those
bound interface functions are called by SWIG-generated Fortran wrapper code
that converts C-compatible data types to native Fortran data types.

These two layers of translation allow complex C++ datatypes to be translated to
complex Fortran data. For example, std::string objects can be automatically
converted to Fortran character(len=:), allocatable variables; and const
std::vector<double>& references can be accepted from real(c_double),
dimension(:), target Fortran data.

Besides translating simple data types, SWIG can generate “proxy classes” in
Fortran from C++ classes. These thin Fortran 2003 “derived type” definitions
bind a C++ class instance to a Fortran-friendly object equivalent.

Nomenclature

The terminology in C/C++ and Fortran is different enough to be potentially
confusing to a user not intimately familiar with both languages. The author is

3

https://computation.llnl.gov/projects/babel-high-performance-language-interoperability/#page=home

more familiar with C++ than Fortran but has endeavored to use the correct
Fortran terms when describing the Fortran implementation. The following table
presents some equivalent concepts and names in the two languages:

C/C++ Fortran
struct/class derived type
function procedure
member function type-bound procedure
function that returns void subroutine
function that returns non-void function
overloaded function generic interface
floating point number real
fundamental type intrinsic type
derived type extended type
function parameters dummy arguments

Identifiers

C and C++ have different rules for identifiers (i.e. variable names, function
names, class names) than Fortran. The following restrictions apply to Fortran
that do not apply to C and C++:

• Names are case insensitive
• Names may not begin with an underscore
• Names may be no longer than 63 characters

SWIG automatically renames identifiers that start with a leading underscore. It
keeps a symbol table of publicly accessible Fortran identifiers (as their lower-cased,
renamed versions) and warns about and ignores duplicate names.

There is also no “namespace” concept in Fortran 2003 aside from defining
procedures and types in separate modules. (Fortran 2008 supports submodules,
but these are more akin to private namespaces inside a translation unit in C++.)
Keep in mind that the flexible %rename directive can be used to adjust the
symbolic names created in SWIG.

Running SWIG

Suppose that we have a SWIG interface file example.i with the following
contents:

/* File: example.i */
%module forexample

%{

4

/* include header */
#include "cexample.h"
%}

%include "cexample.h"

where cexample.h contains the simple function declaration:

int fact(int n);

To generate SWIG Fortran wrappers for this file, run

$ swig -fortran example.i

and SWIG will create two files: a C interface file containing something like

/* SNIP */
/* include header */
#include "cexample.h"
/* SNIP */
SWIGEXPORT int swigc_fact(int const *farg1) {

int fresult;
int arg1;
int result;

arg1 = *farg1;
result = (int)fact(arg1);
fresult = result;
return fresult;

}
/* SNIP */

and a Fortran interface file with something like:

module forexample
use, intrinsic :: ISO_C_BINDING
implicit none
public :: fact

private
interface
function swigc_fact(farg1) &

bind(C, name="swigc_fact") &
result(fresult)

use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: fresult
integer(C_INT), intent(in) :: farg1

end function
end interface
contains
function fact(n) &

5

result(swig_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swig_result
integer(C_INT), intent(in) :: n
integer(C_INT) :: fresult
integer(C_INT) :: farg1
farg1 = n
fresult = swigc_fact(farg1)
swig_result = fresult

end function
end module forexample

The above contrived example uses different names for the %module declaration,
the interface .i file, and the wrapped C header .h file to illustrate how these
inputs affect the output file names and properties:

• The %module forexample declaration in the SWIG interface file resulted
in the file names forexample.f90 and the name in module forexample.

• The file name example.i resulted in the C wrapper file by default being
named example_wrap.c.

• The #include command was explicitly inserted into the C wrapper file
example_wrap.c.

• The %include command in the .i file directed SWIG to parse the header
file cexample.h and generate an interface for the function declaration that
it discovered. The typical convention is to keep these names consistent:
almost without exception, the module name %module forexample should
be reflected in the file name as forexample.i.

In the generated C wrapper code above, int swigc_fact(int const *farg1)
is the wrapper code generated by SWIG to provide a Fortran-compatible inter-
face with the C function fact; the function swigc_fact(farg1) interface in
Fortran is the exact equivalent of that C function; and the “public” function fact
in the contains section of the Fortran module is the Fortran proxy function
generated by SWIG.

Note that since this function takes and returns simple data types, the C and
Fortran wrapper functions have some code that could be easily simplified by
hand. (A compiler with optimization enabled automatically does this, in fact.)
However, for more complex data types, SWIG shows its power by generating
complex expressions that seamlessly translate between C and Fortran data types
without requiring user intervention.

Compiling a simple Fortran program

Several examples are provided in the SWIG source code under Examples/fortran/.
In the barefunctions example, the Fortran main program can be compiled
using the following sequence of commands:

6

swig -fortran -c++ bare.i
$CXX -c bare_wrap.cxx
$CXX -c bare.cxx -o barecxx.o
$FC -c bare.f90
$FC runme.f90 bare.o bare_wrap.o barecxx.o -lstdc++ -o run.exe

Note that since this was a C++ program, the -c++ option must be passed to
SWIG and -lstdc++ must be passed to the final link command. Also note
that the three middle commands, which create object files, can be executed
in any order. Because the swig command generates both bare_wrap.cxx and
bare.f90, it must be first. The final executable command, which links against
all three generated object files, must be last.

Compiling more complex Fortran/C/C++ programs

The figure below shows how C++, SWIG, and Fortran code can be integrated
into libraries and linked to form executables. The file icons are user-written files;
circles are executables; flat cylinders are generated on-disk files; and the final
box is the executable. The arrow signifies “generates” or “is used by.”

We provide CMake modules and commands to simplify this process; again, see
the example directories for usage instructions.

Basic Fortran/C data type interoperability

The Fortran SWIG module relies on Fortran 2003’s C interoperability features,
both the ISO_C_BINDING intrinsic module and the specifications of the standard.
Every effort has been made to conform to the standard in the translation layer
between C++ and Fortran and to eliminate potential pitfalls of interoperability.

We anticipate that future extensions of Fortran/C interoperability will increase
the capability of the SWIG wrapper interface. (For example, the Fortran ISO
technical specification TS29113 will greatly extend the types of arrays and
pointers that can be passed between C and Fortran.)

However, many features of C and C++ are outside the scope of Fortran’s
interoperability features. Even some features that are interoperable,such as
enumerations and structs, have capabilities that do not map between the two
languages. With this SWIG module we attempt to extend the Fortran/C++
mapping as much as possible, keeping in mind that Fortran and C are inherently
different languages.

7

https://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.doc/language_ref/ts29113.html
https://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.3/com.ibm.xlf1513.lelinux.doc/language_ref/ts29113.html

Fundamental types

SWIG maps ISO C types to Fortran types using the ISO_C_BINDING intrinsic
module. The fundamental types fully supported by C, Fortran, and SWIG are:

C type Fortran type
signed char integer(C_SIGNED_CHAR)
short integer(C_SHORT)
int integer(C_INT)
long integer(C_LONG)
long long integer(C_LONG_LONG)
size_t integer(C_SIZE_T)
float real(C_FLOAT)
double real(C_DOUBLE)
char character(C_CHAR)

Pointers and references to the fundamental types are returned as scalar Fortran
pointers.

Note that because the C return value does not contain any information about
the shape of the data being pointed to, it is not possible to directly construct an
array from a pointed-to value. However, advanced typemaps can be constructed
(and indeed are provided with the SWIG Fortran standard library) that can
return that information or extend the Fortran interface to obtain the additional
information needed to return an array pointer.

Other integer types

Fortran has no intrinsic unsigned datatypes, so the specification says to treat
unsigned datatypes as their signed counterparts. Note that this means
unsigned char will be wrapped as a Fortran integer by default.

No checking for negativity or boundedness is done when converting the
datatypes. In part this is because intentionally out-of-range values (e.g.,
static_cast<size_t>(-1)) are often used as sentinels.

A more complete set of typemaps for the full set of integer types available in
<stdint.h> can be used by %include <cstdint>.

Boolean/logical values

The astute reader may notice the omission of C_BOOL from the above table.
Because of the different treatment of booleans in C and Fortran, guaranteeing
the sizes of the bool are equivalent in the two languages does not guarantee the

8

equivalence of their values. See this discussion topic for details of the subtle
compatibility, but in brief, Fortran’s .true. is defined by having the least
significant bit set to 1, whereas C defines it as any nonzero value. So the value
2 would be true in C but false in Fortran. A special typemap inserts wrapper
code to explicitly convert booleans between the two languages.

Characters

Since char*, const char[], etc. typically signify character strings in C and
C++, the default behavior of these is to convert to native Fortran strings (see
the Strings section). To restore the “fundamental” behavior of a character type
– i.e., you want to make a char * return result map to character(C_CHAR),
pointer – you can call an internal macro and apply it to the particular function
or argument you need:

typedef char NativeChar;
FORT_FUND_TYPEMAP(NativeChar, "character(C_CHAR)")
%apply NativeChar* { char * get_my_char_ptr };

char* get_my_char_ptr();

Pointers and references

C pointers and mutable references are treated as Fortran pointers. Suppose a C
function that returns a pointer to an array element at a given index:

double* get_array_element(int x);

This generates the following Fortran interface:

function get_array_element(x) &
result(swig_result)

use, intrinsic :: ISO_C_BINDING
real(C_DOUBLE), pointer :: swig_result
integer(C_INT), intent(in) :: x
type(C_PTR) :: fresult
integer(C_INT) :: farg1

farg1 = x
fresult = swigc_get_array_element(farg1)
call c_f_pointer(fresult, swig_result)

end function

To set the element at array index 2 to the value 512,

9

https://software.intel.com/en-us/forums/intel-fortran-compiler-for-linux-and-mac-os-x/topic/594856

real(C_DOUBLE), pointer :: rptr
rptr => get_array_element(2)
rptr = 512.0d0

Note, and this is very important, that a function returning a pointer must not
be assigned; the pointer assignment operator => must be used.

Mutable references are treated identically. However, const references to funda-
mental types are treated as values:

const double& get_const_array_element(int x);

will generate

function get_const_array_element(x) &
result(swig_result)

use, intrinsic :: ISO_C_BINDING
real(C_DOUBLE) :: swig_result
integer(C_INT), intent(in) :: x
real(C_DOUBLE) :: fresult
integer(C_INT) :: farg1

farg1 = x
fresult = swigc_get_const_array_element(farg1)
swig_result = fresult

end function

which must be called like

real(C_DOUBLE) :: rval
rval = get_const_array_element(2)

Combining the two examples, you could copy the value of element 3 to element
2 with the following code block:

real(C_DOUBLE), pointer :: rptr
rptr => get_array_element(2)
rptr = get_const_array_element(3)

First the pointer is assigned, then the pointed-to data is assigned.

Strings

A long-standing difficulty with Fortran/C interaction has been the two languages’
representation of character strings. The size of a C string is determined by
counting the number of characters until a null terminator \0 is encountered.
Shortening a string requires simply placing the null terminator earlier in the
storage space. In contrast, the historical Fortran string is a character array sized
at compile time: representing a smaller string at run time is done by filling the
storage with trailing blanks. The Fortran intrinsic LEN_TRIM returns the length

10

of a string without trailing blanks, and the TRIM function is used if necessary to
return a string with those trailing blanks removed. Of course, this definition of
a string means 'foo' and 'foo ' are equivalent.

Starting with Fortran 90, strings with an unambiguous size can be dynamically
allocated:

character(kind=C_CHAR, len=:), allocatable :: mystring
allocate(character(kind=C_CHAR, len=123) :: mystring)

and the length is given by LEN(mystring).

SWIG injects small helper functions that convert between strings and arrays of
characters, which are then passed through the interface layer to C. Because the
actual Fortran string length is passed to C during this process, character arrays
with the null character can be converted to byte objects without unexpected
string truncation.

The default char* typemaps assume that both the input and output are standard
null-terminated C strings on the C++ side, and a variable-length string on the
Fortran side (i.e. any trailing blanks are intentional). Note that by using null-
terminated strings, if a Fortran string has null characters embedded in it, the
string will be truncated when read by C. Thus the function as written is not
suitable for passing binary data between C and Fortran. (See byte strings for
how to do this.)

If a function char* to_string(float f); emits a malloc’d string value, and
the output is to be wrapped by SWIG, use the %newobject feature to avoid
memory leaks:

%apply const char* NATIVE { char* to_string };
%newobject to_string;
char* to_string(float f);

The Fortran-to-C string translation performs the following steps:

1. Allocates a character array of len(string) + 1
2. Copies the string contents into that array and sets the final character to

C_NULL_CHAR
3. Saves the C pointer to the character array using C_LOC and the size to a

small SwigArrayWrapper struct
4. Passes this struct to the C wrapper code, which uses the data pointer.

The C-to-Fortran string translation is similar:

1. Use strlen to save the string length to SwigArrayWrapper.size, and
save the pointer to the data; return this struct to Fortran

2. Call C_F_POINTER to reinterpret the opaque C pointer as a character array
3. Allocate a new string with a length determined by the size member
4. Copy the character array to the new string
5. If the %newobject feature applies, call the C-bound free function.

11

The intermediate step of allocating and copying an array is required not only
to add a null terminator but also because the Fortran 2003’s interoperability
specifications prohibit using C_LOC on variables with length type parameters.
Thus the standard character(len=*) type cannot be natively passed to C.

Improved support for the various character typemaps and representations (as in
the standard SWIG <cstring.i> which provides %cstring_bounded_output)
could be implemented in a later version of SWIG.

Arrays

SWIG supports a subset of direct Fortran array translation. If a single-
dimensional array size is explicitly specified in a C function’s signature, the
corresponding argument will be an explicit-shape Fortran array.

One note of caution is that occasionally arrays will be defined using nontrivial C
expressions rather than explicit integers. Even though these can be evaluated by
C at compile time, the unevaluated expression cannot be propagated into the
Fortran wrapper code. SWIG checks whether the expression is a combination of
base-10 numbers and the simple arithmetic expressions +-*/; if so, it is allowable.
Otherwise, a warning is emitted and the array is ignored.

int global_data1[8]; /* OK */
int global_data2[]; /* OK */
int global_data3[sizeof(int)]; /* WARN AND IGNORE */

Byte strings

SWIG provides a two-argument typemap for converting fixed-length byte se-
quences, useful for passing buffers of binary data. This typemap searches for
two consecutive function arguments called (char *STRING, size_t LENGTH);
but like any other SWIG typemap it can be applied to other argument names as
well:

%apply (char *STRING, size_t LENGTH) { (const char *buf, size_t len) }
void send_bytes(int dst, const char *buf, size_t len);

can be used in Fortran as:

call send_bytes(123, "these are" // c_null_char // " some bytes")

The function will be passed the actual length of the byte string (9 + 1 + 10) in
addition to the raw data, including the embedded null character. Compare this
to

void send_bytes(int dst, const char *buf);

12

which would treat buf as a C string, use strlen to find its length, and truncate
it at the first null character (for a length of 9).

Classes and structs

Each wrapped C++ class or struct produces a corresponding derived type in the
wrapper code that holds a type(C_PTR) that points to an existing C++ class
instance. SWIG seamlessly translates these derived type instances to and from
their C++ equivalent.

SWIG wraps classes and structs identically. After all, in C++, the only difference
between a struct and a class is the default access specifier : public for struct
and private for class. As with the rest of SWIG, only public methods and
data are wrapped.

Unlike many other SWIG target languages, the Fortran-wrapped classes are
strongly typed: the compiler enforces type checking between data types and
function arguments.

Ignored or unimplemented forward-declared classes

Some functions may include references or pointers to classes that are not wrapped
by Fortran proxy functions. In these cases, an opaque derived type called
SwigUnknownClass will be generated and used as a placeholder for the argument
or return value. These could theoretically be passed between wrapped SWIG
functions, although no type checking will be performed to ensure that the
unknown classes are the correct types.

Enumerations

Fortran 2003 implements C enumerations using the ENUM, BIND(C) statement.
These enumerators are simply a set of loosely grouped compile-time integer
constants that are guaranteed to be compatible with C enumerators. Unlike
C++, all enumerators in Fortran are anonymous.

To associate a C enumeration name with the Fortran generated wrappers, SWIG
generates an additional enumeration with the C class name and a dummy value
of -1. The enumeration generated from the C code

enum MyEnum {
RED = 0,
GREEN,
BLUE,
BLACK = -1

};

13

looks like:

enum, bind(c)
enumerator :: MyEnum = -1
enumerator :: RED = 0
enumerator :: GREEN = RED + 1
enumerator :: BLUE = GREEN + 1
enumerator :: BLACK = -1

end enum

These enumerators are treated as standard C integers in the C wrapper code
code. In the Fortran wrapper code, procedures that use the enumeration use the
type integer(kind(MyEnum)) to clearly indicate what enum type is required.

Some C++ enumeration definitions cannot be natively interpreted by a Fortran
compiler (e.g. FOO = 0x12, or BAR = sizeof(int),), so these are defined in
the C++ wrapper code and bound in the Fortran wrapper code:

integer(C_INT), protected, public, &
bind(C, name="swigc_FOO") :: FOO

The %enumerator and %noenumerator directives can be used to explicitly enable
and disable treatment of a C++ enum as a Fortran enumerator. Disabling the
enumerator feature causes the value to be wrapped as externally-bound C
integers.

Function pointers

It is possible to pass function pointers both from C to Fortran and from Fortran
to C using SWIG. Currently, function pointer variables simply generate opaque
type(C_FUNPTR) objects, and it is up to the user to convert to a Fortran
procedure pointer using c_f_procpointer:

subroutine CallIt(cp) bind(c)
use, intrinsic :: iso_c_binding
type(c_funptr), intent(in) :: cp
abstract interface

subroutine Add_Int(i) bind(c)
import
integer(c_int), intent(inout) :: i

end subroutine Add_Int
end interface
procedure(Add_Int), pointer :: fp
integer(c_int) :: j

call c_f_procpointer(cp, fp)
j = 1

14

call fp(j)
end subroutine CallIt

See the funcptr example in SWIG for an example of the callback functionality
in practice.

Currently function pointers only work with user-created C-linkage functions as
described below, but we plan to extend function callbacks so that data can be
translated through wrapper functions.

Another planned extension for function pointers is to automatically generate the
necessary abstract interface code required by Fortran to interpret the function
pointer.

Handles and other oddities

Most combinations of pointers and references (such as int**, int* const*,
int*[3], int*&) are treated as opaque C pointers. They can be passed through
the Fortran/C interface but currently have no special meaning or operations in
generated Fortran code.

double** get_handle();

becomes

function get_handle() &
result(swig_result)

use, intrinsic :: ISO_C_BINDING
type(C_PTR) :: swig_result

end function

Similarly, member function pointers (bound to a member function of a particular
class instance) are supported as opaque Fortran objects.

Basic C/C++ features

This section describes the wrapper and proxy code generated by C and C++
language features.

Functions

Functions in C/C++ are procedures in Fortran. Their arguments correspond
directly between the two languages: one argument in the C code requires one
argument in the Fortran proxy. (Two exceptions are that C arguments can be
ignored by swig using the %typemap(in, numinputs=0) directive in SWIG, and
that SWIG supports multiple-argument typemaps.) A function in C/C++ with

15

a void return value will translate to a subroutine in Fortran, and a function
returning anything else will yield a Fortran function.

Each function in SWIG has a unique “symbolic name” or symname bound to
it. The symname must be compatible with C linkage, and thus namespaces,
templates, and overloads are incorporated into the symname, but a symname is
often just the same as the bare function name.

SWIG will generate a wrapper function in the C++ file named swigc_$symname,
where $symname is replaced with the symname. A corresponding private BIND(C)
interface statement will be generated in the Fortran interface module. This
wrapper function is responsible for converting the function’s arguments and
return value to and from Fortran-compatible datatypes and calling the C++
function. It also implements other optional features such as exception handling.

In the Fortran module, SWIG generates a public procedure $symname that
translates native Fortran data types to and from the C interface datatypes.
This interface, and not the swigc_$symname bound function, is the one used by
Fortran application codes.

Function overloading

There is an important exception to the naming scheme described above: function
overloading, when two or more free functions share a name but have different
arguments. For each overloaded function signature, SWIG generates a private
procedure with a unique symname. These procedures are then combined under
a separate module procedure that is given a public interface with the original
symbolic name. For example, an overloaded free function myfunc in C++ will
generate two private procedures and add an interface to the module specification:

public :: myfunc
interface myfunc
module procedure myfunc__SWIG_0, myfunc__SWIG_1

end interface

It should be noted that a function that returns void cannot be overloaded
with a function that returns anything else: generic interfaces must be either all
subroutines or all functions. Use SWIG’s %ignore statement to hide one or the
other:

void cannot_overload(int x);
int cannot_overload(int x, int y);
%ignore cannot_overload(int x);

16

Global variables

Global variables in SWIG are wrapped with “getter” and “setter” functions. In
the case of a global C++ variable

namespace foo {
extern int global_counter;
}

SWIG will generate functions with interfaces

subroutine set_global_counter(value0)
use, intrinsic :: ISO_C_BINDING
integer(C_INT), intent(in) :: value0

end subroutine

and

function get_global_counter() &
result(swigf_result)
use, intrinsic :: ISO_C_BINDING
integer(C_INT) :: swigf_result

end function

Although no type conversion is needed for simple integers, other global data
types would require special wrapper code in these functions.

Currently, global C/Fortran-compatible variables are treated the same as C++
data, but in the future we plan to expand the %bindc feature to directly wrap

extern "C" {
extern int global_counter_c;
}

as a C-bound common block variable bound

integer(C_INT), bind(C, name="global_counter_c") :: global_counter_c

Global constants

Global constant variables (whether declared in C++ headers with const or in
a SWIG wrapper with %constant) of native types can be wrapped as Fortran
parameters:

%parameter approx_pi;
const double approx_pi = 3.1416;

will be translated to

real(C_DOUBLE), parameter, public :: approx_pi = 3.1416_C_DOUBLE

17

If the variable is defined in the header file and is a simple integer, this feature
will be enabled by default. It can be explicitly enabled or disabled using the
%parameter and %noparameter directives.

Global constants that have the feature disabled will be wrapped as a protected,
public, bind(C) value with the value defined in the C wrapper code.

Classes

C++ classes are transformed to Fortran derived types. These types have type-
bound procedures that mirror the C++ member functions. Other SWIG target
languages refer to the transformed wrapper classes as “proxy classes” because
they act as a proxy to the underlying C++ class.

The Fortran “proxy class” is effectively a C pointer with memory management
metadata and type-bound accessors. The C pointer is initialized to C_NULL_PTR,
and when assigned it can represent a class as a value (i.e. the local Fortran
code has ownership) or by reference. The classes and their implementation are
described in detail in the proxy classes section.

Exceptions

By default, a C++ exception will call std::terminate, abruptly aborting the
Fortran program execution. With the %exception feature, C++ exceptions can
be caught and handled by the Fortran code by setting and clearing an integer
flag. The following snippet from the Examples directory illustrates its use in
printing and ignoring an error:

use except, only : do_it, ierr, get_serr
call do_it(-3)
if (ierr /= 0) then

write(0,*) "Got error ", ierr, ": ", get_serr()
ierr = 0

endif

Enabling this exception handling requires %includeing a special file and writing
a small exception handler.

%include <std_except.i>

%exception {
// Make sure no unhandled exceptions exist before performing a new action
SWIG_check_unhandled_exception();
try {

// Attempt the wrapped function call
$action

18

} catch (std::exception& e) {
SWIG_exception(SWIG_RuntimeError, e.what());

} catch (...) {
SWIG_exception(SWIG_UnknownError, "An unknown exception occurred");

}
}

%inline %{
#include <stdexcept>
void do_it(int i)
{

if (i < 0) throw std::runtime_error("Bad value");
}
%}

The above code will wrap (by default) every function call. (The standard SWIG
%allowexception and %noallowexception directives can be used to selectively
enable or disable exception handling.) Before calling the wrapped function, the
call to SWIG_check_unhandled_exception ensures that no previous unhandled
error exists. If you wish to wrap only a few functions with only specific exceptions,
use the “throws” typemap.

When exception handling code is used, SWIG generates a few internal data
structures as well as two externally accessible symbols with external C linkage
(ierr and get_serr). Fortran bindings are generated to make the integer and
function accessible from the Fortran module.

The names of the integer and string accessor have C linkage and thus must be
unique in a compiled program. Since other translation units might have symbols
that share the default exception handling names, the user can provide custom
names before including the exception handling file:

#define SWIG_FORTRAN_ERROR_INT my_ierr
#define SWIG_FORTRAN_ERROR_STR get_my_serr
%include <std_except.i>

If you’re linking multiple modules together (using %import or otherwise), only
one of those modules should define the error integer and accessor by including
<std_except.i> or <exception.i>. Every other module needs to add

%include <extern_exception.i>

before any other module is %imported (or any other exception-related source
files are %included). This inserts the correct exception macros in the wrapper
code and declares (but does not define) the external-linkage error function and
variable. You must also ensure the SWIG_FORTRAN_ERROR_INT macro is correctly
defined before this include if it’s being used upstream.

If you forget to make the above inclusion and an %imported module loads
exception.i, a SWIG error will be displayed with a reminder of what to do. If

19

SWIG.html#throws_typemap

all of your modules declare extern_exception.i, the program will fail to link
due to the undefined symbols.

Provided typemaps

There are many ways to make C++ data types interact more cleanly with Fortran
types. For example, it’s common for C++ interfaces take a std::string when
they’re typically called with string literals: the class can be implicitly constructed
from a const char* but can also accept a std::string if needed. Since Fortran
has no implicit constructors, passing a string argument would typically require
declaring and instantiating a class for that variable. To mitigate this annoyance,
special typemaps are provided that transparently convert between Fortran types
and C++ types.

Generally, these typemaps are defined as applying to arguments called NATIVE;
they can be applied to all arguments regardless of name with the %apply
directive:

%apply const char* NATIVE { const char* };

or to the output of a specific function such as const char* get_foo_string(int
i); with

%apply const char* NATIVE { get_foo_string };

Std::string

A special set of typemaps is provided that transparently converts native Fortran
character strings to and from std::string classes. It operates essentially like
the byte strings described above: it can transparently convert strings of data,
even those with embedded null characters, to and from Fortran. This typemap
is provided in <std_string.i>.

Std::vector

The C std::vector class is included with its basic methods. Several typemaps
are included alongside it that allow for seamless interoperability with Fortran
arrays (with some performance penalty from extra memory allocations and
copies). To instantiate wrappers for std::vector<double> as a class named
VecDbl, write

%include <std_vector.i>
%template(VecDbl) std::vector<double>;

20

If your code does not use std::vector to do any heavy lifting (i.e. your
vectors are small and not shared), you can choose to transparently convert those
arguments to and from Fortran arrays. This can be done with:

%include <std_vector.i>
%template() std::vector<double>;
%apply const std::vector<double> NATIVE& { const std::vector<double>& }
%apply std::vector<double> NATIVE { std::vector<double> }

to allow

std::vector<double> get_values();

to return a Fortran real(C_DOUBLE), dimension(:), allocatable array.

Other C++ standard library containers

Other useful types such as std::map, std::set, have no or min-
imal implementation. Contributions to these classes (by changes to
swig/Library/fortran/std_{cls}.i) will be warmly welcomed.

Smart pointers

Like other target languages, SWIG can generate Fortran wrappers to smart point-
ers to C++ objects by modifying the typemaps to that object. A smart pointer
is an object whose interface mimics a raw C pointer but encapsulates a more
advanced implementation that manages the memory associated with that pointer.
Different libraries provide different names and interfaces to smart pointers, but
the common std::shared_ptr class (and the less common boost::shared_ptr)
interfaces are provided and can be easily adapted to other similar “smart pointer”
types.

When a shared pointer is copied, the pointed-to object is “shared” by the two
shared pointer instances, and a reference counter (which keeps track of the
number of existing shared pointer instances) is incremented. A shared pointer’s
reference count is decremented when its destructor is invoked, or if reset() is
called on the pointer. When the reference count reaches zero, the pointed-to
object is deleted.

Wrapping shared pointers with SWIG is as simple as adding the line
%shared_ptr(Foo) to the source file before the definition of class Foo or the
wrapping of any function that uses an instance of Foo. That macro defines
all the necessary typemaps to convert a shared pointer to and from a value,
raw pointer, or reference. SWIG does not require that all uses of Foo be as
shared_ptr<Foo>: for example, it will correctly dereference the shared pointer
when passing it into a function that takes a const reference. Additionally,
because shared pointer class supports “null deleters” (i.e. when the reference

21

count reaches zero, the pointed-to data will not be deleted), the code can embed
a non-owning reference to the data in a shared pointer. In other words, it is OK
to return const Foo& even when Foo is wrapped as a shared pointer.

The following example illustrates the memory management properties of smart
pointers. The SWIG interface file is

%module spdemo;
%include <std_shared_ptr.i>
%shared_ptr(Foo);

%inline %{
#include <memory>
class Foo {
public:

explicit Foo(int val) {}
~Foo() {}
const Foo *my_raw_ptr() const { return this; }

};

int use_count(const std::shared_ptr<Foo> *f) {
if (!f) return 0;
return f->use_count();

}
%}

and the user code is:

#define ASSERT(COND) if (.not. (COND)) stop(1)
program main

implicit none
use spdemo, only : Foo, use_count
type(Foo) :: f1, f2

ASSERT(use_count(f1) == 0)
f1 = Foo(1) ! Construct
ASSERT(use_count(f1) == 1)
f2 = f1 ! Copy shared pointer, not underlying object
ASSERT(use_count(f1) == 2)
ASSERT(use_count(f2) == 2)

f2 = Foo(2) ! Create a new object, assigning the *shared pointer*
! but not replacing the underlying object.

ASSERT(use_count(f1) == 1)
ASSERT(use_count(f2) == 1)

f1 = f2%my_raw_ptr() ! Return a non-shared pointer
! and call the destructor of C++ object 1

22

ASSERT(use_count(f2) == 1)

call f1%release() ! Clear the raw pointer (does not deallocate)
ASSERT(use_count(f1) == 0)
call f2%release() ! Destroy the last existing shared pointer

! which then destroys the C++ object 2
ASSERT(use_count(f2) == 0)

call f2%release() ! Further calls to release() are allowable null-ops
end program

Fortran-to-C array translation

The <typemaps.i> library file provides a simple means of passing Fortran arrays
by reference. It defines a two-argument typemap (SWIGTYPE *DATA, size_t
SIZE) that is wrapped as a single Fortran argument, an array of SWIGTYPE
values. For functions that accept but do not modify an array of values, the
signature (const SWIGTYPE *DATA, size_t SIZE) is also available.

The following example shows how to apply the typemap to two different functions:

%include <typemaps.i>
%apply (SWIGTYPE *DATA, size_t SIZE) { (double *x, int x_length) };
%apply (const SWIGTYPE *DATA, size_t SIZE) { (const int *arr, size_t len) };

void fill_with_zeros(double* x, int x_length);
int accumulate(const int *arr, size_t len);

These functions can then be used in Fortran target code:

real(C_DOUBLE), dimension(10) :: dbl_values
integer(C_INT), allocatable, dimension(:) :: int_values
integer(C_INT) :: summed

call fill_with_zeros(dbl_values)
summed = accumulate(int_values)

Returning array pointers

The <view.i> library file provides an alternate means of converting to and from
Fortran array pointers. It translates std::pair<T*, size_t> input and output
values to and from Fortran array pointers. See the section on pointers and
references for cautions on functions returning pointers, but in short, the wrapper
code

#include <view.i>

23

ADD_VIEW(double)
std::pair<double*, size_t> get_array_ptr();

is usable in Fortran as

real(C_DOUBLE), pointer :: arrptr(:)
arrptr => get_array_ptr()

Since this library file is so simple, it can be used as a template for creating
transparent wrappers between Fortran arrays and other C++ data types. For
example, the following snippet based on <view.i> converts a return value of
std::vector<double>& NATIVE to a Fortran array pointer and applies it to a
function as_array_ptr.

%include <forarray.swg>

// Convert a reference-to-vector return value into a array view.
FORT_ARRAYPTR_TYPEMAP(double, std::vector<double>& NATIVE)
%typemap(out) std::vector<double>& NATIVE %{

$result.data = $1->empty() ? NULL : $1->data();
$result.size = $1->size();

%}

%apply std::vector<double>& NATIVE { std::vector<double>& as_array_ptr };

MPI compatibility

When wrapping a C++ library that includes MPI support, and the Fortran
application uses MPI through the mpi module (or mpif.h interface), it is often
necessary to pass MPI communicators between Fortran and C++. The <mpi.h>
library header provides bindings to convert between mpif.h-defined integer
communicator values and the standard C MPI_Comm datatype. It works by calling
the MPI standard functions MPI_Comm_f2c and MPI_Comm_c2f.

Note that this library inserts include guards into the wrapper code, for the case
when it’s distributed on a system that doesn’t support MPI. It is necessary to
inject a configuration file that defines #define HAVE_MPI when MPI is available.

This example sets a communicator in C++:

%insert("runtime") %{
#include "myconfig.h"
%}
%include <mpi.h>
void set_my_comm(MPI_Comm comm);

using the Fortran MPI-native communicator:

24

use mpi
call set_my_comm(MPI_COMM_WORLD)

Integer types

One other note to be made about Fortran interoperability concerns the mismatch
between default Fortran integers and C++’s size_type, which is often used
as a function argument. The differing KIND of the integers requires that users
awkwardly cast values when passing into function calls:

call my_vector%resize(INT(n,C_LONG))

This nuisance can be simply avoided by replacing occurrences of C’s size type
with the native Fortran integer type:

%apply int { std::size_t }

Note of course that if the native integer type is 32-bit and the long type is 64-bit,
this will prevent any input larger than 0x7fffffff from being passed as an
argument.

Proxy classes

Each C++ class (with the exception of those wrapped using direct C binding)
creates a “proxy class”, a unique derived type in the Fortran module. Each proxy
class holds a single piece of data, a small C-bound struct SwigClassWrapper,
which contains two simple members: a pointer to C-owned memory, and an
enumeration that tracks the ownership of that memory. The proxy class is
responsible for tracking ownership of the C++ class and associating that pointer
with the corresponding C++ methods.

To introduce the class translation mechanism, we observe the transformation of
a simple C++ class

class Foo {
public:

void bar();
};

into a Fortran derived type

type :: Foo
type(SwigClassWrapper), public :: swigdata

contains
procedure :: bar => swigf_Foo_bar

end type

25

The proxy classes that SWIG creates, and how it translates different C++ class
features to Fortran, are the topic of this section.

Constructors and Destructors

In C++, the allocation and initialization of a class instance is (almost without
exception) performed effectively simultaneously using a constructor. The initial-
ization can be arbitrarily complex, and since the constructor can be overloaded,
the instance can be allocated and initialized by several different code paths. In
Fortran, initialization can only assign simple scalars and set pointers to null.

However, “construction” can be done separately by an unbound procedure, which
uses an interface to share the name of the class:

type(Foo) :: f
type(Foo) :: g
f = Foo()
g = Foo(123)
call f%do_something()
call g%do_something_else()

Even though the Fortran 2003 standard specifies when local variables become
undefined (and are finalized if they have a FINAL subroutine), support for
finalization in many compilers still in active use is not entirely reliable. Rather
than relying on the finalization mechanics to clean up and free a C++ object,
destructors for the C++ wrappers wrapped as a release procedure:

call f%release()
call g%release()

To avoid leaking memory, release should always be called when the proxy class
instance is no longer needed. It will free memory if appropriate and reset the C
pointer to NULL. Calling release on an uninitialized variable (or a variable that
has been released) is a null-op.

Because Fortran 2003 does specify support for a special FINAL procedure to clean
up local or dynamic variables, the call to release() can be replaced by adding
a FINAL procedure. The SWIG Fortran interface can generate this procedure,
which will call the C++ destructor:

%feature("final") Foo;
%include "Foo.h"

However, this feature is relatively untested and its behavior could be compiler-
dependent, so extreme caution is recommended when enabling it.

26

Member functions

SWIG generates unique, private procedure names (generally swigf_{classname}_{funcname}
for each class and function. These procedures are bound to the type. If function
overloading is used, “generic” procedures will be added to the derived type.

Type-bound procedures in Fortran proxy classes are treated exactly the same as
for native derived types:

integer(C_INT) :: value
type(Foo) :: food
food = Foo()
call food%do_something()
value = food%get_something()

Function overloading for derived types is implemented using generic interfaces.
Each overloaded function gets a unique internal symname, and they are bound
together in a generic interface. For example, if a member function doit of class
Action is overloaded, a generic binding will be generated inside the Fortran
proxy derived type:

procedure, private :: doit__SWIG_0 => swigf_Action_doit__SWIG_0
procedure, private :: doit__SWIG_1 => swigf_Action_doit__SWIG_1
generic :: doit => doit__SWIG_0, doit__SWIG_1

As with free functions, a member function returning void cannot be overloaded
with a function returning non-void.

Member data

SWIG generates member functions for class member data in the same way that
it generates free functions for global variables. Each public member produces a
“getter”, and unless the data is marked const, it generates a “setter”.

For a struct

struct Foo {
int val;

};

the interface to an instance and its data is:

type(Foo) :: f
f = Foo()
call food%set_val(123)
value = food%get_val()

27

Inheritance

Single inheritance in C++ is mirrored by Fortran using the EXTENDS attribute.
For classes with virtual methods, the user should keep in mind that function
calls are dispatched through C++. In other words, even if you call a base-class
member function in Fortran that wraps a derived class instance, the correct
virtual function call will be dispatched.

Fortran has no mechanism for multiple inheritance, so this SWIG target language
does not support it. The first base class listed that has not been %ignored will
be treated as the single parent class.

There is no intrinsic way to dynamic_cast to a daughter class, but if a particular
casting operation is needed a small inline function can be created that should
suffice:

%inline %{
Derived& base_to_derived(Base& b) {

return dynamic_cast<Derived&>(b);
}
%}

(Note that this function will not transfer ownership to the new object. Doing
that is outside the scope of this chapter.)

The implementation of function overloading in the Fortran types can cause
compiler errors when member functions are shadowed or overridden in a daughter
class. First, Fortran requires essentially that overriding procedures must have
the exact same function signature including the names of the dummy arguments.
Overriding functions in C++ merely require the same parameter types. Second,
Fortran does not allow a procedure in a parent type to be “shadowed” by the
extending type as C++ does. Finally, a non-generic procedure in the parent
type cannot be shadowed by a generic procedure.

Memory management

A single Fortran proxy class must be able to act as a value, a pointer, or a
reference to a C++ class instance. When stored as a value, a method must be
put in place to deallocate the associated memory; if the instance is a reference,
that same method cannot double-delete the associated memory. Finally, C++
functions must be able to send Fortran pointers both with and without owning
the associated memory, depending on the function. Finally, assignment between
Fortran classes must preserve memory association.

Fortran’s “dummy argument” for the return result of any function (including
generic assignment) is intent(out), preventing the previous contents (if any)
of the assignee from being modified or deallocated. At the same time, the

28

assignment operator must behave correctly in both of these assignments, which
are treated identically by the language:

type(Foo) :: a, b
a = make_foo()
b = a

Note that unlike Python, b is not a pointer to a; and unlike C++, b is not
copy-constructed from a. Instead, a is assigned to b using the assignment(=)
operator. Likewise, a is not “constructed” on the second line: there is no return
value optimization as in C++. Instead, make_foo returns a temporary Foo, and
that temporary is assigned to a.

Because these two assignments are treated equally and a temporary is created
in only one of them, we have to be clever to avoid leaking or double-deleting
memory.

Ideally, as was done in Rouson’s implementation of Fortran shared pointers,
we could rely on the FINAL operator defined by Fortran 2003 to release the
temporary’s memory. Unfortunately, even 15 years after the standard was
ratified, support for FINAL is patchy and unreliable.

Our solution to this limitation is to have the Foo proxy class store not only a
pointer to the C data but also a state enumeration self%swigdata%mem that
describes memory ownership. The enumeration needs to have at least three
options:

• The memory is owned by the proxy class (and must be deleted when calling
release());

• The proxy class is a reference to memory owned by C/C++ (returned by
either a raw pointer or a reference);

• The memory is being allocated and returned from a function, but it must
be captured by the left hand side.

This last option is roughly analogous to the behavior of the deprecated
std::auto_ptr, which was the predecessor to C++11’s move semantics. Besides
the above flags, we also define an uninitialized state NULL for convenience, and a
“const reference” state to enable const correctness. These flags are set by the
SWIG out typemaps in the C wrapper code: if memory is being allocated, the
return flag is MOVE; if a pointer is being returned, REF (or CREF in the const case)
is used.

The crucial trick is to implement an assignment operator that correctly copies,
allocates, or moves memory based on the flags on the left- and right-hand sides,
and sets a new memory state on the recipient. By resetting the state flag in a
generic assignment operator, we guarantee that only temporary classes will ever
have the MOVE state.

For the operation self = other, where other may be a return value from a
function or an existing object, a variety of slightly different actions are taken

29

https://dx.doi.org/10.1109/MCSE.2012.33

depending on the memory ownership flags of self and other. The following
table describes the C++ action performed, where pself is the pointer being
managed by self, pother is the pointer managed by other, both classes are
of type This, and std::move is used in the local namespace. For brevity, the
SWIG_ prefix to the memory flags has been omitted.

Self Other Action
NULL NULL (none)
NULL MOVE pself = pother;
NULL OWN pself = new This(pother);
NULL REF/CREF pself = pother;
OWN NULL delete pself; pself = NULL;
OWN MOVE *pself = move(*pother); delete pother;
OWN OWN *pself = *pother;
OWN REF/CREF *pself = *pother;
REF NULL pself = NULL;
REF MOVE *pself = move(*pother); delete pother;
REF OWN *pself = *pother;
REF REF/CREF *pself = *pother;
CREF NULL pself = NULL;
CREF MOVE (error)
CREF OWN (error)
CREF REF/CREF (error)

The above operations are designed to preserve C++ semantics: if an proxy
object owning memory is assigned, then any existing objects pointing to that
memory will reflect the newly assigned value. This is important for classes whose
interface relies on returning mutable references.

The fact that some classes disallow combinations of copy/move constructors and
assignment complicates the task of evaluating the above actions. SWIG’s built-in
parsing of class features will detect what constructors (if any) are available,
whether an assignment operator is defined, and whether the destructor is public.
If C++11 is enabled in the compiler that uses the SWIG code, standard library
type traits override the SWIG-parsed features and additionally enable move
construction and move assignment. For more complicated cases – such as classes
with default assignment operators but with const data members – you may
define a traits class that explicitly specifies the allowable operations. This may
be needed to avoid compiler errors; an example is in <std_pair.i>.

In all cases, unless the final feature is enabled (and works with the Fortran
compiler), release should be called on every proxy class instance.

30

Opaque class types

SWIG’s default Fortran type (the ftype typemap) for generic types such as
classes (SWIGTYPE) is:

%typemap(ftype) SWIGTYPE "type($fclassname)"

The special symbol $fclassname is replaced by the symbolic name of the
class that matches the typemap. For example, if std::vector<double> is
instantiated:

%template(Vec_Dbl) std::vector<double>;

then Vec_Dbl, the name of the derived type, will replace $fclassname.

If a class has not been wrapped but is encountered (e.g. in a function argument
or return value), a warning will be emitted: no Fortran derived type has been gen-
erated to correspond to the C++ class. A new derived type SwigUnknownClass
will be generated that simply holds an opaque pointer to the C++ object. Cur-
rently the SwigUnknownClass is private to each module and thus cannot be used
by code outside the module. Conceivably it could be made public so that it can
be used by the C interface as a raw void* pointer.

Proxy class wrapper code

The Fortran wrapper code generated for each function can be extended in multiple
ways besides using the fin and fout typemaps. A specific function can have code
prepended to it using the %fortranprepend macro, which is a compiler macro for
%feature("fortran:prepend"), and appended using %fortranappend, which
aliases %feature("fortran:append").

For advanced cases, the function or subroutine invocation can be embedded in
another layer of wrapping using the %feature("shadow") macro. The special
symbol $action will be replaced with the usual invocation.

Advanced details and usage

This section describes some of the advanced features that underpin the SWIG
Fortran wrapping. These features allow extensive customization of the generated
C/Fortran interface code and behavior.

Typemaps

SWIG Fortran extends the typemap system of SWIG with additional typemaps,
modeled after the Java target language’s typemaps. They provide for translating

31

C++ data to and from an ISO-C compatible datatype, and from that datatype
to native Fortran types. These special typemaps are critical to understanding
how SWIG passes data between Fortran and C++.

ISO C Wrapper interface

SWIG-generated Fortran code works by translating C++ data types to simple
C types compatible with ISO C binding, then translating the data types to
more complex Fortran data types. The C-compatible types are known as the
“intermediate layer”.

SWIG Fortran defines two new typemaps to declare the data types used by
Fortran and C in the intermediate layer, and two typemaps for translating the
intermediate layer types to and from the final Fortran types.

To pass Fortran-2003 compatible BIND("C") or ISO_C_BINDING types between
C++ and Fortran, you must declare a compatible ctype and imtype. The
ctype is the C datatype used by the wrapper and intermediate layer, and
imtype is the equivalent Fortran datatype. These datatypes generally must
be either fundamental types or structs of fundamental types. For example, as
described in the Fundamental types section, the int C type is compatible with
integer(C_INT) Fortran type. However, because Fortran prefers to pass data
as pointers, SWIG defines int* as the ctype for int. Otherwise the imtype
would have to be integer(C_INT), value.

The ctype and imtype each have keywords that are usually required. By default,
ctype corresponds to an input value, i.e. a function argument. Often the output
value of a function is a different type (e.g. simply an int instead of int*). The
out keyword allows this to be overridden:

%typemap(ctype, out="int") int
"const int*"

The imtype is used both as a dummy argument and as a temporary variable in
the fortran conversion code. Because these also may have different signatures,
an in keyword allows the dummy argument to differ from the temporary:

%typemap(imtype, in="integer(C_INT), intent(in)") int
"integer(C_INT)"

Fortran proxy datatype translation

The fin and fout typemaps are Fortran proxy wrapper code analogous to
the in and out in the C wrapper code: they are used for translating native
Fortran objects and types into types that can be transmitted through the ISO
C intermediate code. For example, to pass a class by reference, the Fortran

32

class class(SimpleClass) :: self is converted to the corresponding C class
via the stored C pointer using the fin typemap, which is expanded to:

farg1 = self%swigdata%ptr

This argument is then passed into the C function call:

fresult = swigc_make_class(farg1)

and the output is translated back via the fout typemap, which in this case
expands to:

swig_result%swigdata%ptr = fresult

Allocating local Fortran variables in wrapper codes

Advanced SWIG users may know that

%typemap(in) int (double tempval) { /.../ }

is a way to declare a temporary variable tempval in the C wrapper code.
The same feature is emulated in the special typemaps findecl and foutdecl,
which are inserted into the variable declaration blocks when the corresponding
types are used. If findecl allocates a temporary variable, the ffrearg typemap
(analogous to the freearg typemap for C in arguments) can be used to deallocate
it.

An example for returning a native allocatable Fortran string from a C++
string reference must declare a temporary array pointer to the C data, then copy
the result into a Fortran string.

%typemap(ftype, out="character(kind=C_CHAR, len=:), allocatable")
const std::string&

"character(kind=C_CHAR, len=*), target"

// Fortran proxy translation code: temporary variables for output
%typemap(foutdecl) const std::string&
%{
integer(kind=C_SIZE_T) :: $1_i
character(kind=C_CHAR), dimension(:), pointer :: $1_chars

%}

// Fortran proxy translation code: convert from imtype $1 to ftype $result
%typemap(fout) const std::string&
%{

call c_f_pointer($1%data, $1_chars, [$1%size])
allocate(character(kind=C_CHAR, len=$1%size) :: $result)
do $1_i=1,$1%size

$result($1_i:$1_i) = $1_chars($1_i)

33

enddo
%}

Special class typemaps

To facility the wrapping and customizability of C++ classes, there are a few
additional special typemaps that only apply to classes. They generally should
not need to be modified.

The fdata typemap declares the data object that is stored by the Fortran proxy
class. Note that only the base class of any inheritance hierarchy contains this
data.

The fdestructor typemap becomes the Fortran wrapper code for the release
type-bound procedure. The special token $action is replaced by the call to the
C wrapper for the destructor. Currently, all classes have the same destructor
action but this may change.

Fragments

The %insert(section) %{ ...code... %} directive can be used to inject code
directly into the C/C++ wrapper file as well as the Fortran module file. The
Fortran module uses several additional sections that can be used to insert
arbitrary extensions to the module. For example, if an %insert directive is
embedded within a class %extend, new type-bound procedures can be manually
added to the derived type.

The generated C++ wrapper file has the following sections denoted by
{sectionname}

{begin}
{runtime}
{header}
#ifdef __cplusplus
extern "C" {
#endif
{wrapper}
#ifdef __cplusplus
}
#endif
{init}

The generated Fortran module looks like:

{fbegin}
module [MODULE_NAME]
use, intrinsic :: ISO_C_BINDING

34

{fmodule}
implicit none
private
{fpublic}
! module generic interfaces
{fparams}
{ftypes}

interface
{finterfaces}

end interface
contains
{fwrapper}

end module

Direct C binding

It is sometimes desirable to simply expose C functions and types to Fortran.
(Of course, this may be done only when the data types involved are ISO-C
compatible.)

Generating C-bound Fortran types from C structs

In certain circumstances, C++ structs can be wrapped natively as Fortran
BIND(C) derived types, so that the underlying data can be shared between C
and Fortran without any wrapping needed. Structs that are “standard layout”
in C++ can use the %bindc feature to translate

struct BasicStruct {
int foo;
double bar;

};

to

type, bind(C) :: BasicStruct
integer(C_INT), public :: foo
real(C_DOUBLE), public :: bar

end type

Roughly speaking, standard layout structs have no virtual member functions,
inheritance, or C++-like member data. All structs in C are compatible with
Fortran, unless they bit have fields or use the C99 feature of “flexible array
members”.

Currently the C binding feature for structs must be activated using a special
macro %fortran_bindc_struct:

35

%fortran_bindc_struct(BasicStruct);

In C++, these structs must be “standard layout”, i.e. compatible with C.

Calling %fortran_bindc_struct(Foo) inhibits default constructor/destructor
generation for the class, and it sets up the necessary type definitions to treat
the struct as a fundamental type.

Every member of the struct must be BIND(C) compatible. This is enforced with
a separate typemap bindc that translates the member data to Fortran type
members. For example, the basic int mappings are defined (using macros) as:

%typemap(bindc) int "integer(C_INT)"
%typemap(bindc) int* "type(C_PTR)"
%typemap(bindc) int[ANY] "integer(C_INT), dimension($1_dim0)"
%typemap(bindc) int[] = int*;

The bindc typemap is used when wrapping global constants as well.

Interfaces with Fortran C-bound types

If types defined in the SWIG Fortran module are to be used as part of the
interface (as is the case with structs), it is necessary to “import” the type into
the interface to use it. This is accomplished by the import keyword argument
to the imtype typemap. For example, whenever the following typemap is used
in the intermediate wrapper:

%typemap(imtype, import="SwigArrayWrapper") FooArray
"type(SwigArrayWrapper)";

an import directive will be inserted into the Fortran proxy function:

module thinvec
use, intrinsic :: ISO_C_BINDING
implicit none

type, public, bind(C) :: SwigArrayWrapper
type(C_PTR), public :: data
integer(C_SIZE_T), public :: size

end type
interface
subroutine swigc_foo(farg1) &

bind(C, name="swigc_foo")
use, intrinsic :: ISO_C_BINDING
import :: SwigArrayWrapper ! Will not compile without this line
type(SwigArrayWrapper) :: farg1

end subroutine

36

This extra typemap trickery should only be needed if you’re generating bound
types without using the %fortran_bindc_struct macro.

Generating direct Fortran interfaces to C functions

In addition to generating functions with translation code, it is also possible to
specify that a function be directly bound and not wrapped. For this feature
to work correctly, all function arguments and return types must be inherently
Fortran/C interoperable. If using C++, the function must be defined using
extern "C" linkage; and in fact, when SWIG is asked to wrap a function with
that linkage, it defaults to binding it. Use the %nobindc my_func_name; feature
to suppress this behavior.

The C++ code:

extern "C" {
// These functions are simply bound, not wrapped.
void print_sphere(const double origin[3], const double* radius);
}

is automatically translated into

subroutine print_sphere(origin, radius) &
bind(C, name="print_sphere")

use, intrinsic :: ISO_C_BINDING
real(C_DOUBLE), dimension(3), intent(in) :: origin
real(C_DOUBLE), intent(in) :: radius

end subroutine

Known Issues

A number of known limitations to the SWIG Fortran module are tracked on
GitHub.

37

https://github.com/sethrj/swig/issues/59
https://github.com/sethrj/swig/issues/59

	Overview
	Fundamental concepts
	Nomenclature
	Identifiers
	Running SWIG
	Compiling a simple Fortran program
	Compiling more complex Fortran/C/C++ programs

	Basic Fortran/C data type interoperability
	Fundamental types
	Other integer types
	Boolean/logical values
	Characters

	Pointers and references
	Strings
	Arrays
	Byte strings
	Classes and structs
	Ignored or unimplemented forward-declared classes
	Enumerations
	Function pointers
	Handles and other oddities

	Basic C/C++ features
	Functions
	Function overloading
	Global variables
	Global constants

	Classes
	Exceptions

	Provided typemaps
	Std::string
	Std::vector
	Other C++ standard library containers
	Smart pointers
	Fortran-to-C array translation
	Returning array pointers
	MPI compatibility
	Integer types

	Proxy classes
	Constructors and Destructors
	Member functions
	Member data
	Inheritance
	Memory management
	Opaque class types
	Proxy class wrapper code

	Advanced details and usage
	Typemaps
	ISO C Wrapper interface
	Fortran proxy datatype translation
	Allocating local Fortran variables in wrapper codes
	Special class typemaps

	Fragments
	Direct C binding
	Generating C-bound Fortran types from C structs
	Interfaces with Fortran C-bound types
	Generating direct Fortran interfaces to C functions

	Known Issues

