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Every second, Pusher’s main pub-sub system handles 9,000 new WebSocket

connections. No sweat. But earlier this year, when the system started receiving

spikes of 20,000 new connections every second per server, the sweat began to

bead on our foreheads. What, or who, were these new connections? Were they

malicious or mistaken? Most importantly, how could we keep the system going for

everyone else while we dealt with this mysterious new force? This is the story of

how we quelled the biggest threat to our service uptime for several years. The hero

you will meet today is iptables, Linux’s powerful (but dangerous) tool for

interacting with the networking stack. Come with us and you too will learn how to

wield iptables, and her secret weapons conntrack and hashlimit, to implement

per-IP rate limiting!

Suddenly, one quiet afternoon in March …

At Pusher, one of our key health metrics is “new WebSocket connections per

second”. Each new connection is, say, a web page doing pusher.connect(). For

our main cluster, this ticks along at 50 new connections per server every second. So

we were concerned when, over the course of one day in March, random servers

started experiencing spikes of 1,500 new connections per second.
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What is it? A DDOS? It looked like the DDOS technique called a “SYN flood”, in

which lots of fake TCP connections are opened by the attacker.

It turned out that this was not a malicious DDOS. Actually, faulty WebSocket clients

were deployed somewhere in the wild which were stuck in connection retry loops,

opening tens of thousands of connections per second to a single Pusher app! Not all

of these connections show up in the above graphs because they were being

dropped before our server process was even reporting them.

Noisy neighbors in the multi-tenant
apartment

The flagship Pusher product is a multi-tenant system: a single cluster of Pusher

servers runs apps for thousands of customers. Multi-tenancy has efficiency benefits,

but comes with a significant drawback: there is now potential for a single customer

to use more than their “fair share” of the system, and reduce quality of service for

our other customers. This is the “noisy neighbor” problem.

Normally, noisy neighbors are silenced by Pusher’s limits system. For each tenant,

Pusher limits both the number of connections and the number of messages. When a

server process receives a WebSocket connection, the process first checks whether

the account has reached its limits, and if so then closes the connection.

But in this case, our limits system was not enough. Our servers were rejecting the

new connections from faulty clients, but just the act of handling and closing these

new connections was incurring significant overhead! We found the servers couldn’t

keep up with the connections when they were propagated to our userspace server

process.

The only option left to us was to block the connections in the kernel. The solution

we went for was to use the Linux firewalling system, Netfilter, which in turn can be

manipulated by the iptables tool.

Fix #1: blocking an IP with iptables

Netfilter allows kernel modules to define callback functions that get executed when
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packets are sent or received by the kernel networking stack. These functions will

commonly perform operations like address or port translation, and importantly for

us, they can drop packets entirely. Here’s the task for this section: drop all packets

from a specific blacklisted IP. We’ll guide you through implementing this.

iptables is a userland program and command line tool for manipulating Netfilter

callback functions. Conceptually iptables is based around the concepts of rules

and chains. A rule is a small piece of logic for matching packets. A chain is a series

of rules that each packet is checked against, in order. Packets eventually end up in

one of a predefined set of targets, which determine what is done with the packet.

The key targets are to ACCEPT the packet or DROP the packet . Each rule defines

where to “jump” if a packet matches; this can be to another chain or a target. If the

rule does not match, then the packet is checked against the next rule in the chain.

Each chain has a policy, which is the target packets jump to if they reach the end of

the chain without matching any rules.

Let’s see how you can add a rule that drops all packets from the IP address

123.123.123.123. The rule can be appended with the following command:

A word of warning: iptables can be dangerous. (The sudo should hint at this!) To

follow along at home, you should use a disposable virtual machine. The classic

iptables horror story is sshing to the machine, adding a broken rule, then

suddenly finding your ssh connection is broken. Congratulations, your broken

iptables rule blocked your SSH packets! If you’re lucky, you can take a taxi to the

data centre to fix the machine. Lesson: always test your iptables commands

thoroughly on a local VM!

Warnings over with, let’s analyse the above command. In English, it translates to:

append a rule to the INPUT chain (the chain all packets destined for this server

arrive on) and if a packet matches source IP 123.123.123.123, then drop it.

Let’s visualise what this chain looks like now. Follow the diagram below: if it receives

a packet from IP 1.2.3.4, what target does it reach? Answer: It reaches the

ACCEPT target. It first hits the only rule in the INPUT chain, which it does not match.

It then falls through to the default policy of the INPUT chain, which is the ACCEPT
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$ sudo iptables --append INPUT --source 123.123.123.123 --jump DROP
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target.

In the shell, you don’t get a pretty diagram like that. Instead, you run iptables --

list. Here’s the textual equivalent of the above diagram:

With the above rule, we are able to block blacklisted IP addresses from ever

communicating with our service. This is great in a bind, but it’s pretty brutal! First, we

only needed to block new connections (identified by the TCP SYN flag), and leave

current connections intact. Second, we only needed to rate limit these connections,

not block them entirely.

It turns out such rate limiting is not possible with out-of-the-box iptables. All

iptables rules are stateless, but rate limiting requires state (for counters). For more

power and flexibility, we need iptables modules. These modules are required to

define more complex, stateful rules like a connection rate limiter. First up is a module

called conntrack conntrack to the rescue!

$ sudo iptables --list

Chain INPUT (policy ACCEPT)

target     prot opt source               destination

DROP       all  --  123.123.123.123      anywhere

Chain FORWARD (policy ACCEPT)

target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)

target     prot opt source               destination
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called conntrack. conntrack to the rescue!

Modules warmup: the conntrack and log
modules

As an introduction to iptables modules, let’s create a rule that will log all new TCP

connections. To do this, we’ll use two modules: conntrack to find new TCP

connections, and log to log them.

Normal iptables rules work independently on each IP packet. But to rate limit

connections, we need to track “connections” as well as packets. For this, there is the

Netfilter connection tracking system. This maintains a set of all connections and

updates the connection states as new packets arrive. A single connection is

identified by the layer 3 and 4 connection information, e.g. the IP address and port

respectively. To access this connection information, we use conntrack, which is an

iptables module. With conntrack, you can create rules which access the

connection of the current packet. For example, --match conntrack --ctstate

NEW will only match packets where the connection is in the NEW state. Here, -m

defines a module to use in the rule, and subsequent parameters apply to that

module.

Logging is provided by a module called log. The log module defines a new target:

LOG. If a rule jumps to this target, a string is logged to the syslog with the kern

facility (in /var/log/kern.log on Debian/Ubuntu by default). LOG is a “non-

terminating target”, which means that the next rule is checked in the chain

immediately before we jumped to LOG, whether or not the log rule matches. Let’s

add a new rule to log each dropped packet:

$ sudo iptables --flush  # start again

$ sudo iptables --append INPUT --protocol tcp --match conntrack --

ctstate NEW --jump LOG --log-prefix "NEW TCP CONN: "
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Check your understanding: if the above table receives a packet from 10.0.0.51,

will it get logged? Answer: Yes! The packet hits the conntrack rule, which checks

whether it’s a new connection. There is no mention of 10.0.0.51 in conntrack’s

connection states, so it must be a new connection. Therefore, the packet matches

the rule, and jumps to LOG.  Take a look in the system log:

Warning: this might look like it’s working correctly, but it might not be! If you leave it

for a while, you might eventually see lines like this:

We never told conntrack to drop packets; we only told it to log new connections! It

turns out conntrack has a maximum number of tracked connections, and once

$ tail -f /var/log/kern.log

Aug 30 15:47:32 ubuntu-xenial kernel: [10766.412639] NEW TCP CONN: 

IN=enp0s8 OUT= MAC=08:00:27:dd:80:b3:08:00:27:e2:1b:be:08:00 

SRC=10.0.0.51 DST=10.0.0.50 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=20232 

DF PROTO=TCP SPT=33528 DPT=1234 WINDOW=29200 RES=0x00 SYN URGP=0

Aug 30 15:48:39 ubuntu-xenial kernel: [10833.521111] NEW TCP CONN: 

IN=enp0s8 OUT= MAC=08:00:27:dd:80:b3:08:00:27:e2:1b:be:08:00 

SRC=10.0.0.51 DST=10.0.0.50 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=42506 

DF PROTO=TCP SPT=42156 DPT=1233 WINDOW=29200 RES=0x00 SYN URGP=0

nf_conntrack: table full, dropping packet.



conntrack reaches this limit, all new connections are dropped! The details are

pretty ugly,  but in short you must set the maximum high enough to avoid dropped

connections, and you must set a “number of buckets” high enough to avoid poor

performance:

After all this, you have a system which distinguishes NEW connections from

ESTABLISHED ones (and ones in other states). With this, we could jump to DROP

instead of LOG to block all new connections. This would be an improvement over our

previous attempt, which brutally blocked all connections. But it’s still not what we

want. We don’t want to block all new connections, only ones which exceed a certain

rate. For this, we need another module: the limit module.

Fix #2: Rate limiting with the limit
module

The limit module enables rate limiting against all packets which hit a rule. First

we’ll create a new chain, RATE-LIMIT. We’ll send packets to the RATE-LIMIT chain

if they are in the NEW connection state. Then, in the RATE-LIMIT chain, we will add

the rate limiting rule.

Then in the RATE-LIMIT chain, create a rule which matches no more than 50

packets per second. These are the connections we’ll accept per second, so jump to

ACCEPT (I’ll explain limit burst later )
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$ conn_count=$(sysctl --values net.netfilter.nf_conntrack_count)

$ sysctl --write net.netfilter.nf_conntrack_max=${conn_count}  # Set 

this much higher than your conn count!

$ sysctl --write 

net.netfilter.nf_conntrack_buckets=$((${conn_count}/4))  # Technical 

reasons, see footnote

$ sudo iptables --flush  # start again

$ sudo iptables --new-chain RATE-LIMIT

$ sudo iptables --append INPUT --match conntrack --ctstate NEW --jump 

RATE-LIMIT
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ACCEPT. (I ll explain --limit-burst later.)

The limit rule rate-limits packets by not matching them, so they fall through to the

next rule. These packets we’ll drop:

The rate limit (above, 50/sec) is enforced as follows. Each limit rule has a bank

account which stores “credits”. Credits are tokens to be spent on matching packets.

The limit rule only earns credits one way: through its salary, which is one credit per

“tick”. The above rule earns one credit every 20ms, thus restricting its spending to at

most 50 matches per second. When a new packet comes in, if the rule has at least

one credit, the credit is spent and the packet is matched. Otherwise, the packet falls

through due to insufficient funds. Now, follow the diagram above: will a packet from

5.5.5.5 be accepted or dropped? Answer: The packet will reach the DROP target.

The packet will first be identified by conntrack as a new connection, because its

source is not in the connection states. It therefore jumps to the RATE-LIMIT chain.

Here, the limit module checks its credits, but there are 0! Therefore, limit does

$ sudo iptables --append RATE-LIMIT --match limit --limit 50/sec --

limit-burst 20 --jump ACCEPT

$ sudo iptables --append RATE-LIMIT --jump DROP



not match the packet, so it falls through to the next rule which jumps to the DROP

target.

This “credit” scheme allows “bursty” traffic. If 100 different users just happen to

connect at the same time, we want to allow them all. The credit scheme’s tolerance

of random fluctuation is desirable, but it has an undesirable side-effect. Note that,

during the night when users are asleep, the rule could earn a huge amount of

credits, which can then be spent to allow users to overload the system in the

morning when they all open connections at once. We want to allow “bursty” traffic,

but only up to a limit.

This is exactly what --limit-burst fixes. The burst limit is a cap on the number of

credits that the rule can have in its account. The above rule is only allowed 20

credits. If the rule already has 20 credits when a tick happens, it doesn’t earn any

more credits. This “use it or lose it” logic prevents enormous build-ups of credit, and

thus prevents overloading the system. (The burst limit also happens to be the rule’s

initial number of credits, so it doesn’t have to wait to build up credits.) See an

example:

Another quiz! If a limit rule is configured as --limit 50/sec --limit-burst 20,

and then receives 1 packet every millisecond over a period of 1 second, how many

packets will be matched? Answer: 70. The first 20 packets will be accepted in the

first 20ms, depleting the credit to 0. The credit will recharge by 1 every 20ms (1/50

seconds), allowing a single packet through each time it is recharged. This gives a

total of 50.

Without the limit module, we were blocking all new connections. This was useless,

and the limit module is a big improvement: we can now prevent our server from

getting destroyed by huge numbers of new connections. But there is a fundamental

limitation with limit in our multi tenant system: it applies this rate limit globally If a



limitation with limit in our multi-tenant system: it applies this rate limit globally. If a

single client exceeds the limit, connections from clients who are using their fair

share will be dropped.

One solution would be to match on a blacklist of source IP addresses. But this would

require us to manually add new IPs to the tables (or implement our own system for

doing this). Ideally we want to rate limit every source IP address separately. This is

exactly what the hashlimit module is for.

Fix #3: Rate limiting per IP address with
hashlimit

hashlimit generalises the limit module. Whereas limit applies a single limit

globally to all connections, hashlimit applies limits to groups of connections (a

group can be a single source address). This works similarly to the limit module, but

now each connection group gets its own credit account.

All limit rules can be defined with hashlimit by putting all connections in one big

global group. This is what hashlimit does by default. So we can define the

previous limit rule with hashlimit like this:

To instead limit per source IP, we need to tell hashlimit to group by source IP

address. We do this with the --hashlimit-mode parameter, which defines how to

group the packets. With --hashlimit-mode srcip, we create a group per source

IP:

$ sudo iptables --flush  # start again

$ sudo iptables --new-chain RATE-LIMIT

$ sudo iptables --append RATE-LIMIT \

    --match hashlimit \

    --hashlimit-upto 50/sec \

    --hashlimit-burst 20 \

    --hashlimit-name conn_rate_limit \

    --jump ACCEPT

$ sudo iptables --append RATE-LIMIT --jump DROP

$ sudo iptables --append RATE-LIMIT \



Follow the diagram. If a packet comes in on the connection from 1.2.3.4:3456,

what happens to the packet? Click to reveal the answer ...

Like conntrack, hashlimit tables have a maximum number of entries, and you

should not let the table fill up. You can view the current hash table entries in

/proc/net/ipt_hashlimit/conn_rate_limit. You should set --hashlimit-

htable-max higher than the number of lines. You should also set --hashlimit-

htable-size to max/4.

Success!

We finally had the tools to rate limit new connections: conntrack and hashlimit.

Here’s the satisfying moment when the rules were deployed:

p pp

    --match hashlimit \

    --hashlimit-mode srcip \

    --hashlimit-upto 50/sec \

    --hashlimit-burst 20 \

    --hashlimit-name conn_rate_limit \

    --jump ACCEPT

$ sudo iptables --append RATE-LIMIT --jump DROP
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This was a great success: our servers breathed a massive sigh of relief, and the

noisy neighbor was effectively silenced. What is more, there was no noticeable

performance impact of these iptables rules, relative to everything else we are

running. This is amazing considering these rules are executed against every single

packet hitting the system!

Keeping an eye on your dropped
connections

Dropping packets is risky because if an error is made in the rule, legitimate

connections will be silently dropped. To keep an eye on your rate-limited

connections, you have a couple of options. One is iptables --list --verbose,

which shows the number of packets that have matched a rule; the count is under the

pkts column. For more information, you can use the log module from earlier. Let’s

add a new rule to log each dropped packet:

$ sudo iptables --append RATE-LIMIT \

    --match hashlimit \

    --hashlimit-mode srcip \

    --hashlimit-upto 50/sec \

    --hashlimit-burst 20 \

    --hashlimit-name conn_rate_limit \

    --jump ACCEPT

$ sudo iptables --append RATE-LIMIT --jump LOG --log-prefix 

"IPTables-Rejected: "

$ sudo iptables --append RATE-LIMIT --jump REJECT



You may find it excessive to log every single packet that is dropped; most likely it

will be just as useful if we log a sample. How can we do this? Answer: the limit

module again! Let’s see how we can do this:

This means only one dropped packet per second will be logged. I think this is a neat

demonstration of how these simple and general modules can be composed in rules;

we have used the limit module to achieve two things that are superficially very

different: rate limit and logging!

Persisting iptables

iptables chains and rules are stored in-memory. If you reboot the machine they are

lost. For that reason, iptables has a tool for saving and loading rule definitions. To

save the current set of rules to a file, run

$ sudo iptables --append RATE-LIMIT --match limit --limit 1/sec --

jump LOG --log-prefix "IPTables-Rejected: "

$ sudo iptables-save | tee rules.txt



To restore the rules run:

We have this run on startup as an upstart task.

Conclusion

Hopefully we have demonstrated the power and flexibility of iptables: with just a

few commands, we implemented a very efficient per-IP rate limiter, and the use-

cases go way beyond just rate limiting. iptables has a reputation for being

unfriendly. Yes, it’s easy to kill your server with one wrong command, but it’s also

possible to save your server from attackers with just one good command! Yes,

iptables is fiddly, low-level, and leaks many implementation details, but its

efficiency goes well beyond what you can achieve in your userland process. And

yes, iptables is poorly documented, but hopefully this blog post helps remedy that!

Footnotes

1. You can also REJECT packets by sending an ICMP error response, which could

inform the client of what it is doing wrong. In these examples we will stick to

DROP for simplicity. ↩

*filter

:INPUT ACCEPT [66:3398]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [45:3516]

:RATE-LIMIT - [0:0]

-A RATE-LIMIT --match hashlimit --hashlimit-upto 50/sec --hashlimit-

burst 20 --hashlimit-mode srcip --hashlimit-name conn_rate_limit -j 

ACCEPT

-A RATE-LIMIT --match limit --limit 1/sec -j LOG --log-prefix 

"IPTables-Rejected: "

-A RATE-LIMIT -j REJECT --reject-with icmp-port-unreachable

COMMIT
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$ sudo iptables-restore < rules.txt
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2. The conntrack module tracks its connection state structs in a global hash

table. Most hash table implementations ensure good performance by

dynamically resizing their number of buckets, but conntrack module does not

implement this resizing! Instead, the number of hash table buckets is set

statically with nf_conntrack_buckets. This leaves conntrack open to

performance degradation if the number of entries in the table grows larger than

the number of buckets. To protect against this performance degradation,

conntrack has this artificial maximum number of entries, nf_conntrack_max.

The ratio between the two settings, nf_conntrack_buckets and

nf_conntrack_max, is important for performance. The conntrack

documentation recommends nf_conntrack_max =

nf_conntrack_buckets*4, but leaves this problem to the user.

This imposes quite a burden on the user of conntrack! She must avoid

dropped packets by setting nf_conntrack_max higher than her server’s

maximum number of hash table entries. This means she must know that

maximum number, but this depends on many messy things: concurrent

connections, various configured TTLs, and hash table access patterns. More,

she must avoid performance degradation by setting nf_conntrack_buckets

in line with her chosen nf_conntrack_max. She must also ensure this config is

persisted in her sysctl configuration file. ↩

3. Like conntrack, hashlimit uses hash tables which do not dynamically resize,

and protects against bad performance with a configurable maximum number of

entries. Also like conntrack, hashlimit lets you shoot yourself in the foot with

a wrong number of buckets. ↩

4. iptables-restore is not entirely idempotent: it will reset the packet counts. ↩
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