Comparing RNA-Seq Samples

Some Cross-sample Normalization May Be Required

Why cross-sample normalization is important

Cross-sample Normalization Required Otherwise, housekeeping genes look diff expressed due to sample composition differences Subset of genes highly expressed in liver

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of **(a)** technical replicates and **(b)** liver versus kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-fold-changes of the housekeeping genes. **(c)** An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney the overall bias in log-fold-changes.

Adapted from: Robinson and Oshlack, Genome Biology, 2010

Normalization methods for Illumina high-throughput RNA sequencing data analysis.

From "A comprehensive evaluation of normalization methods for Illumina high throughput RNA sequencing data analysis" Brief Bioinform. 2013 Nov;14(6):671-83 <u>http://www.ncbi.nlm.nih.gov/pubmed/22988256</u>

Differential Expression Analysis

Thx, Charlotte Soneson! 🙂

Differential Expression Analysis Involves

- Counting reads mapped to features
- Statistical significance testing

Beware of small counts leading to notable fold changes

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	Νο
Gene B	100	200	2-fold	Yes

Variation Observed Between Technical Replicates

* plot from Brennecke, et al. Nature Methods, 2013

Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution

See: http://en.wikipedia.org/wiki/Poisson_distribution

Example: One gene*not* differentially expressed

Example: SampleA(gene) = SampleB(gene) = 4 reads

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences

No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

From: <u>http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for</u> and from supplementary text of Busby et al., Bioinformatics, 2013

Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per sample	Sample A Number of reads	Sample B Number of reads	P-value (Fishers Exact Test)
100,000	1	2	1
1,000,000	10	20	0.099
10,000,000	100	200	8.0e-09

Technical vs. Biological Replicates

RNA-Seq Technical replicates aren't essential

(Technical variation is well-modeled by the Poisson distribution)

"We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice **to sequence each mRNA sample only once**" Marioni et al., Genome Research, 2008

However, biological replicates *ARE* essential

total_variance = technical_variance + biological_variance

(Total variance well-modeled by negative binomial distribution)

"... **at least six biological replicates should be used**, rising to at least 12 when it is important to identify SDE genes for all fold changes." *Schurch et al., RNA, 2016*

DE Accuracy Improves with Higher Biological Replication

*Figure taken and adapted from Schurch et al., RNA, 2016

Planning Experiments: How many reads and how many replicates?

Input: max total reads, max total replicates, max total \$\$\$

Tools for DE analysis with RNA-Seq

ROTS
TSPM
DESeq2
EBSeq
NBPSeq
SAMseq
NoiSeq

(italicized not in R/Bioconductor but stand-alone)

See: http://www.biomedcentral.com/1471-2105/14/91

A comparison of methods for differential expression analysis of RNA-seq data Soneson & Delorenzi, 2013

Typical output from DE analysis

	logFC	logCPM	PValue	FDR
TRINITY DN876 c0 g1 i1	-7.15049572793027	10.6197708379285	0	0
TRINITY_DN6470_c0_g1_i1	-7.26777912190146	7.03987604865422	1.687485656951e-287	6.46813252309319e-284
TRINITY_DN5186_c0_g1_i1	-7.85623682454322	9.18570464327063	1.17049180235068e-278	2.99099671894011e-275
TRINITY_DN768_c0_g1_i1	7.72884741150304	9.7514619195169	4.32504881419265e-272	8.28895605240022e-269
TRINITY_DN70_c0_g1_i1	-12.7646078189688	7.86482982471445	3.92853491279431e-253	6.02322972829624e-250
TRINITY_DN1587_c0_g1_i1	-5.89392061881667	9.07366563894607	6.32919557933429e-243	8.08660221852944e-240
TRINITY_DN3236_c0_g1_i1	-7.27029815068473	8.02209568234202	3.64955175271959e-235	3.99678053376405e-232
TRINITY_DN4631_c0_g1_i1	-7.45310693639574	6.91664918183241	4.30540921272851e-229	4.1256583780971e-226
TRINITY_DN5082_c0_g5_i1	-5.33154406167545	10.6977538760467	2.74243356676259e-225	2.33594396920022e-222
TRINITY_DN1789_c0_g3_i1	10.2032564835076	7.32607652700285	1.44273728647186e-213	1.10600240380933e-210
TRINITY_DN4204_c0_g1_i1	4.81030233739325	9.88844409410644	9.27180216086162e-205	6.46160321501501e-202
TRINITY DN799 c0 g1 i1	-4.22044475626154	6.9937398638711	1.24746518421083e-197	7.96922341846683e-195
TRINITY DN196 c0 g2 i1	4.60597918494257	9.86878463857276	1.9819997623131e-192	1.16877001368402e-189
TRINITY_DN5041_c0_g1_i1	-4.27126549355785	9.70894399883	1.8930437900069e-185	1.03657669244235e-182
TRINITY_DN1619_c0_g1_i1	-4.47156415953777	9.22535948721718	1.76766063029526e-181	9.03392426122899e-179
TRINITY_DN899_c0_g1_i1	-4.90914328409143	7.93768691394594	1.11054513767547e-180	5.32089939088761e-178
TRINITY_DN324_c0_g2_i1	4.87160837667488	6.84850312231775	2.20092562166991e-179	9.92487989160089e-177
TRINITY_DN3241_c0_g1_i1	-4.77760618069256	7.94111259715689	1.60585457735621e-173	6.83915621667372e-171
TRINITY_DN4379_c0_g1_i1	3.85133572453294	7.23712813663389	3.48140532848425e-164	1.4046554341137e-161
TRINITY_DN1919_c0_g1_i1	4.05998814332136	6.95937301668582	1.8588621194715e-161	7.12501850393425e-159
TRINITY_DN2504_c0_g1_i1	-6.92417817059644	6.20370039359785	2.42022459856956e-160	8.83497227268296e-158
		-		-

Up vs. Down regulated

Visualization of DE results and Expression Profiling

Plotting Pairwise Differential Expression Data

Significantly differently expressed transcripts have FDR <= 0.001 (shown in red)

Comparing Multiple Samples

Heatmaps provide an effective tool for navigating differential expression across multiple samples.

Clustering can be performed across both axes: -cluster transcripts with similar expression patters.

-cluster samples according to similar expression values among transcripts.

Examining Patterns of Expression Across Samples

Can extract clusters of transcripts and examine them separately.

