
MeTTa-morph

Presenters: Patrick Hammer, Peter Isaev

Design goals

➢ Speed up a MeTTa subset with a compiler

➢ Not a full MeTTa replacement!

➢ Allow conveniently calling compiled MeTTa
functions from MeTTa interpreter

Multi-step compilation

MeTTA

Scheme
 C

Binary

1→2: Transformation with Scheme Macros
2→3: Chicken Scheme compiler
3→4: GCC/Clang C compiler

Hyperon integration

➢ Easily integrated with Hyperon API: !(extend-py! mettamorph)

➢ Allows speeding up crucial components considerably in the short-term

➢ Compilation invoked via !(compile “code”), no plumbing needed!

Timing

➢ Tail-recursive
factorial and tuple
element counting

➢ Range via tuple
concatenation

➢ Non-recursive
tuple disjoint check

Speedup

Runtime !(factorial 30) !(range 1 30) !(TupleCount
 (1 … 30))

!(StampDisjoint
(1 … 30) (1 … 30))

MeTTa 3.919s 8.489s 15.459s 2.068s

MeTTa-morph 0.017s 0.018s 0.025s 0.020s

Speedup 227 447 616 103

➢ MeTTa-morph extension is ready to be used!

➢ Speedup factor usually in the range of hundreds!

But can it run MeTTa-NARS? YES!

Takeaways

➢ Fast execution of MeTTa is possible and demonstrated!

➢ Potential design aspects could be shared with the Rholang translation effort?

➢ Limitations are listed in the repository.

Repository: https://github.com/patham9/metta-morph

Thank you!

Presenters: Patrick Hammer, Peter Isaev

