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Introduction

The discontinuous Petrov-Galerkin finite element
method has been described as least squares finite ele-
ments with a twist. The key difference is that least
squares methods seek to minimize the residual of the
solution in the L2 norm, while DPG seeks the mini-
mization in a dual norm realized through the inverse
Riesz map. Exact mass conservation has been an is-
sue that has plagued least squares finite elements
for a long time. In this work, we augment our DPG
system with Lagrange multipliers in order to exactly
enforce local conservation. Effectively, this turns our
minimization problem into a constrained minimiza-
tion problem. We note that standard DPG, while
not guaranteed to be conservative, appears to be
nearly conservative in practice.

DPG is a Minimum Residual
Method

Let U and V be trial and test Hilbert spaces for
a well-posed variational problem b(u, v) = l(v). In
operator form this is Bu = l, where B : U → V ′.
We seek to minimize the residual for the discrete
space Uh ⊂ U :

uh = arg min
wh∈Uh
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Use the Riesz inverse to minimize in the V -norm
rather than its dual:
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First order optimality requires the Gâteaux deriva-
tive to be zero in all directions δu ∈ Uh, i.e.,(

R−1
V (Buh − l), R−1

V Bδu
)
V

= 0, ∀δu ∈ Uh.
By definition of the Riesz operator, this is equivalent
to 〈

Buh − l, R−1
V Bδuh

〉
= 0 ∀δuh ∈ Uh .

Identify vδuh := R−1
V Bδuh as the optimal test func-

tion for trial function δuh. This gives us
b(uh, vδuh) = l(vδuh).

DPG for Convection-Diffusion

Start with the strong-form PDE.
∇ · (βu)− ε∆u = g

Rewrite as a system of first-order equations.
∇ · (βu− σ) = g

1
ε
σ −∇u = 0

Multiply by test functions and integrate by parts
over each element, K.
−(βu− σ,∇v)K + ((βu− σ) · n, v)∂K = (g, v)K

1
ε
(σ, τ )K + (u,∇ · τ )K − (u, τn)∂K = 0

Declare traces and fluxes to be independent un-
knowns and incorporate boundary conditions to ob-
tain the final variational formulation.
−(βu− σ,∇v)K + (f̂ , v)∂K + 1

ε
(σ, τ )K

+ (u,∇ · τ )K − (û, τn)∂K = (g, v)K

Local Conservation

The local conservation law in convection diffusion is∫
∂K
f̂ =

∫
K
g ,

which is equivalent to having vK := {v, τ} =
{1K,0} in the test space. In general, this is not sat-
isfied by the optimal test functions. Following Moro
et al[1], we can enforce this condition with Lagrange
multipliers:

L(uh,λ) = 1
2
∥∥∥R−1

V (Buh − l)
∥∥∥2
V
−
∑
K

λK 〈Buh − l,vK〉︸ ︷︷ ︸
〈f̂ ,1K〉∂K−〈g,1K〉K

,

where λ = {λ1, · · · , λN}.
Finding the critical points of L(u,λ), we get the
following equations.
∂L(uh,λ)
∂uh

= b(uh, R−1
V Bδuh)− l(R−1

V Bδuh)

−
∑
K

λKb(δuh,vK) = 0 ∀δuh ∈ Uh

∂L(uh,λ)
∂λK

= −b(uh,vK) + l(vK) = 0 ∀K

One of that consequences of enforcing local conserva-
tion via Lagrange multipliers is that we’ve replaced
our symmetric positive-definite system with a sad-
dlepoint problem.

Convection-Diffusion Results

The locally conservative DPG formulation maintains
nearly identical error convergence behavior as stan-
dard DPG for the Erickson-Johnson problem.
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The locally conservative DPG formulation maintains
flux imbalances close to machine precision, even for a
discontinuous source term. Standard DPG becomes
more conservative under refinement.
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Inviscid Burgers’ Equation Results

Extension of the theory to other fluid problems like
the inviscid Burgers’ equation is fairly trivial.
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Stokes Flow Results

Least squares finite elements lose 80% mass flux in
Stokes flow around a cylinder. Locally conservative
DPG maintains round-off order flux imbalance.

Velocity magnitude

Conclusions

•We’ve turned our minimization problem into a
saddlepoint problem.

•The computational cost is one extra degree of
freedom per element.

•Enforcement occasionally changes the refinement
strategy.

•Standard DPG is nearly conservative in practice.
•Nearly identical results with better conservation.
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