Bipartite Configuration Model for Python
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

Bipartite Configuration Model for Python

The Bipartite Configuration Model (BiCM) is a statistical null model for binary bipartite networks [Squartini2011, Saracco2015]. It offers an unbiased method for analyzing node similarities and obtaining statistically validated monopartite projections [Saracco2017].

The BiCM belongs to a series of entropy-based null models for binary bipartite networks, see also

  • BiPCM - Bipartite Partial Configuration Model
  • BiRG - Bipartite Random Graph

Please consult the original articles for details about the underlying methods and applications to user-movie and international trade databases [Saracco2017], [Straka2017].


Mika J. Straka

Version and Documentation

The newest version of the module can be found on

The complete documentation is available at and in the file docs/BiCM_manual.pdf

How to cite

If you use the bicm module, please cite its location on Github and the original articles [Saracco2015] and [Saracco2017].


[Saracco2015] F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015).

[Saracco2017] F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, and T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, New J. Phys. 19, 053022 (2017)

[Squartini2011] T. Squartini, D. Garlaschelli, Analytical maximum-likelihood method to detect patterns in real networks, New Journal of Physics 13, (2011)

[Straka2017] M. J. Straka, G. Caldarelli, F. Saracco, Grand canonical validation of the bipartite international trade network, Phys. Rev. E 96, 022306 (2017)

Copyright (c) 2015-2017 Mika J. Straka