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Abstract

This paper describes the FunnyQT solution to the TTC 2013 Flowgraphs Transformation
Case.

FunnyQT is a model querying and model transformation library for the functional Lisp-
dialect Clojure. It supports the modeling frameworks JGraLab and EMF natively, and it is
designed to be extensible towards supporting other frameworks as well.

FunnyQT provides a rich and efficient querying API, a polymorphic function API, a
model manipulation API, and on top of those, there are several sub-APIs for implementing
several kinds of transformations such as ATL-like model transformations or programmed
graph transformations.

For solving this case, the model transformation API and the polymorphic function API
have been used for the JaMoPP to structure graph transformation. The control and data flow
analysis is performed algorithmically using FunnyQT’s plain querying and model manip-
ulation APIs. The final task requesting a simple DSL for validating the result models has
been tackled by combining FunnyQT’s querying API and Clojure metaprogramming.

1 Introduction

FunnyQT is a new model querying and transformation approach. Instead of inventing yet
another language with its own concrete syntax and semantics, it is implemented as an API for
the functional, JVM-based Lisp-dialect Clojure1. It’s JVM-basing provides wrapper-free access
to all existing Clojure and Java libraries, and to other tools in the rich Java ecosystem such as
profilers.

FunnyQT natively supports the de-facto standard modeling framework EMF [SBPM08] and
the TGraph modeling framework JGraLab2, and it is designed to be extensible towards other
frameworks as well.

FunnyQT’s API is split up in several sub-APIs. On the lowest level there is a core API
for any supported modeling framework providing functions for loading and storing models,
accessing, creating, and deleting model elements, and accessing and setting attribute values.
These core APIs mainly provide a concise and expressive interface to the native Java APIs of
the frameworks. On top of that, there’s a generic API providing the subset of core functionality
that is common to both supported frameworks such as navigation via role names, access to and
manipulation of element properties, or functionality concerned with typing imposed by meta-
models. Furthermore, there is a generic quering API providing important querying concepts
such as quantified expressions, regular path expressions, or pattern matching.

Based on those querying and model manipulation APIs, there are several sub-APIs for im-
plementing different kinds of transformations. For example, there is a model transformation
API similar to ATL [JK05] or ETL [KRP13], or there is an in-place transformation API for writing
programmed graph transformations similar to GrGen.NET [BGJ13].

1http://clojure.org/
2http://jgralab.uni-koblenz.de
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Especially the pattern matching API and the transformation APIs make use of Clojure’s
Lisp-inherited metaprogramming facilities [Gra93, Hoy08] in that they provide macros creat-
ing internal DSLs [Fow10] providing concise, boilerplate-free syntaxes to users. Patterns and
transformations written in these internal DSLs get transformed to usual Clojure code using the
FunnyQT querying and model manipulation APIs by the Clojure compiler.

For solving the tasks of this transformation case3, FunnyQT’s model transformation API
and its polymorphic function API have been used for converting the JaMoPP models into sim-
pler structure graphs (Task 1, Section 2). Both the control flow analylis (Task 2, Section 3) and
the data flow analysis (Task 3, Section 4) have been tackled algorithmically using FunnyQT’s
plain querying and model manipulation APIs. The task of validating the control and data flow
links using a simple DSL (Task 4, Section 5) has been solved by using FunnyQT’s querying API
and Clojure metaprogramming.

2 Task 1: JaMoPP to StructureGraph

According to the case description [Hor13], the goal of this task is to transform a fine-granular
Java syntax graph conforming to the JaMoPP metamodel [HJSW09] into a much simpler struc-
ture graph model that only contains statements and expressions that are neither structured nor
subdivided any further. However, the original Java code of these statements and expressions
should be reflected in the new elements’ txt attribute. This model-to-text transformation is
described in Section 2.1. Thereafter, the model-to-model transformation creating a structure
graph from a JaMoPP model is described in Section 2.2.

2.1 JaMoPP to Text

This model-to-text transformation is implemented using FunnyQT’s polymorphic function API.
A polymorphic function is a function that is declared once, and then arbitrary many implemen-
tations for concrete metamodel types can be added. When a polymorphic function is called, the
actual implementation is determined similarly to the typical dispatch in object-oriented pro-
gramming languages. If there’s no implementation provided for the element’s type or one of
its supertypes, an exception is thrown.

The function stmt2str implements the model-to-text transformation required for solving
task 1. It is declared as follows.

1 (declare-polyfn stmt2str [elem])

declare-polyfn declares a new polymorphic function. Its name is stmt2str, and it re-
ceives exactly one parameter elem. It’s task is to create a string representation matching the
concrete Java syntax for the provided JaMoPP model element.

After the polymorphic function has been declared, implementations for concrete meta-
model types can be added using defpolyfn. For example, this is the implementation for
JaMoPP elements of type ClassMethod:

1 (defpolyfn stmt2str ’members.ClassMethod
2 [method]
3 (str (eget method :name) "()"))

I.e., to convert a JaMoPP method element to a string, the method’s name is concatenated
with a pair of parentheses.

For structured elements, the implementations simply call the polymorphic function for their
children concatenating the results. For example, this is the polymorphic function for converting
elements of type AssignmentExpression to a string.

3This FunnyQT solution is available at https://github.com/tsdh/ttc-2013-flowgraphs and on
SHARE (Section 6)
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1 (defpolyfn stmt2str ’expressions.AssignmentExpression
2 [ae]
3 (str (stmt2str (eget ae :child)) " "
4 (stmt2str (eget ae :assignmentOperator)) " "
5 (stmt2str (eget ae :value))))

The child of the assignment expression is some variable, the assignment operator is one of
=, +=, -=, *=, or /=, and value is an arbitrary expression. These three components are converted
to strings and then concatenated.

Basically, there could be one polymorphic function per JaMoPP type occuring in one of the
input models. However, to save some lines of code, some implementations are defined for some
superclass and dispatch on concrete subclasses themselves. One of these implementations is
that for operators which will be invoked for the assignmentOperator in the previous listing:

1 (defpolyfn stmt2str ’operators.Operator
2 [op]
3 (type-case op
4 ’operators.Multiplication "*"
5 ’operators.Subtraction "-"
6 ’operators.Addition "+"
7 ’operators.Division "/"
8 ’operators.LessThan "<"
9 ’operators.GreaterThan ">"

10 ’operators.Assignment "="
11 ’operators.MinusMinus "--"
12 ’operators.PlusPlus "++"
13 ’operators.AssignmentPlus "+="
14 ’operators.Equal "=="))

type-case gets some model element and several clauses. Each clause consists of a meta-
model type and an expression. The expression paired with the first matching metamodel type
is evaluated to form the result of the type-case. If no clause matches, an exception is thrown.
As can be seen, there are several Java operators missing (e.g., AssignmentMinus aka -=), be-
cause they don’t occur in the provided input models.

All in all, the polymorphic stmt2str function consists of 22 implementations for various
JaMoPP metamodel types accounting to a total of about 120 lines of code.

2.2 JaMoPP to Structure Graph

The model-to-model transformation part of task 1 is implemented using FunnyQT’s ATL- or
ETL-like model transformation API. It realizes the JaMoPP to structure graph transformation
requested by task 1, and it also creates the vars and params important for the data flow analysis
as requested by task 3 (Section 4).

Before going into the details of the transformation, one helper function used-vars needs to
be introduced.

1 (defn used-vars [s]
2 (reachables s [p-seq [p-* <>--]
3 [p-restr ’references.IdentifierReference]
4 :target]))

It takes a JaMoPP statement s and returns the set of variables used inside this statement.
reachables gets an element and regular path expression, and it returns the set of elements
that can be reached by traversing paths matching the regular path expression. Here, the path
expression specifies that from s zero or many (p-*) containment references from container to
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child (<>--) may be traversed. The intermediate results are then filtered to elements of type
IdentifierReference, and from those the target reference is traversed leading to a variable.

The actual transformation starts by defining its name and input and output models.

5 (deftransformation java2flowgraph [[in :emf] [out :emf]]

There could be arbitrary many input and output models, and they could be of different
kinds, e.g., a transformation could receive a JGraLab TGraph and some EMF model, and create
an output EMF model. Here, it gets only the JaMoPP EMF input model which is bound the the
variable in, and one single structure graph output model bound to out, which is also an EMF
model.

In the body of such a transformation, arbitrary many rules may be declared. The first rule
is the method2method rule shown in the next listing. The ^:top metadata preceeding the rule
name specifies that the rule is a top-level rule. Such rules are applied to all matching elements
by the transformation itself, whereas non-top-level rules have to be called explicitly from a
top-level rule (directly or indirectly).

6 (^:top method2method [m]
7 :from ’members.ClassMethod
8 :when-let [mstmts (seq (eget m :statements))]
9 :to [fgm ’flowgraph.Method, ex ’flowgraph.Exit]

10 (eset! fgm :txt (stmt2str m))
11 (eset! ex :txt "Exit")
12 (eset! fgm :stmts (map stmt2item mstmts))
13 (eset! fgm :exit ex)
14 (eset! fgm :def (map param2param (eget m :parameters))))

It receives a model element m which must be of type ClassMethod in order for the rule to be
applicable. The :when-let clause states that this rule is only applicable to methods that contain
statements4. If it does, these statements are bound to mstmts. The reason for this restriction is
that the input JaMoPP models contain many methods of classes in the Java standard library, but
those don’t have statements because they were not parsed from source code. The only method
parsed from code is the single test method contained in the provided Java files.

The :to clause declares the objects to be created. Here, for a given JaMoPP method, a
corresponding flowgraph method and its exit element are created.

The remainder of the rule is its body. Here, the txt attribute of the new method and its exit
are set, the former using the polymorphic stmt2str function discussed in Section 2.1.

The method’s stmts reference is set by applying another rule, stmt2item, to the statements
of the JaMoPP method. The higher-order function map takes a function and a collection and
applies the function to every element of the collection returning a sequence of function results.
Similarly, the method’s parameters are transformed by mapping them to the param2param rule
for setting the method’s def reference.

When a rule is called and is applicable, the elements specified in the :to clause are created,
the body is evaluated, a vector containing the newly created elements in the order of their
declaration in :to is returned, and a mapping from input element to returned result is created.
As a special case, if a rule creates only one target element, the mapping is from input element
to that output element instead to a vector containing only one output element.

When the rule is applied another time for the same input element, it simply returns the
result of the first application without creating anything new.

A special kind of rules are generalizing rules such as the one shown in the next listing.

15 (stmt2item [stmt]
16 :generalizes [local-var-stmt2simple-stmt condition2if block2block

4(seq coll) is the canonical non-emptyness check in Clojure.
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17 return2return while-loop2loop break2break continue2continue
18 label2label stmt2simple-stmt])

This is quite similar to mapping disjunction in QVT Operational Mappings. When this
rule is called, the rules specified in the :generalizes vector are tried one after the other, and
the first applicable one is applied, and its result is returned. The rules are ordered from most
specific to most lax, and the last rule, stmt2simple-stmt is a catch-all rule applicable to any
JaMoPP statement.

Since it is also the most complex rule, it is depicted in the next listing.

19 (stmt2simple-stmt [s]
20 :from ’statements.Statement
21 :to [fgss ’flowgraph.SimpleStmt]
22 (eset! fgss :txt (stmt2str s))
23 (doseq [aex (reachables s [p-seq [p-* <>--]
24 [p-restr ’expressions.AssignmentExpression]])]
25 (eadd! fgss :def (var-creating-rule (the (used-vars (adj aex :child)))))
26 (eaddall! fgss :use (map var-creating-rule (used-vars (adj aex :value)))))
27 (doseq [umex (reachables s [p-seq [p-* <>--]
28 [p-restr ’expressions.UnaryModificationExpression]])]
29 (let [var (var-creating-rule (the (used-vars (adj umex :child))))]
30 (eadd! fgss :def var)
31 (eadd! fgss :use var))))

It receives a JaMoPP statement s, creates a new SimpleStmt fgss in the target model, and
sets its txt attribute using the polymorphic stmt2str function.

The remainder of the rule deals with setting the new simple statement’s def and use ref-
erences. The variable aex iterates over all assignment expressions5 inside of the statement s
and adds the defined variable to the new simple statement’s def reference, and the variables
providing the value to the use reference. var-creating-rule is another rule generalizing the
two rules transforming JaMoPP method parameters and local variables to flowgraph Param

and Var objects, respectively. The regular path expression used for finding assignment expres-
sions in line 23 reads: from s traverse zero-or-many containment references in the direction
from container to contained elements, and then restrict all those reachable elements to those of
type AssignmentExpression. Because it uses the zero-or-many iteration p-*, it might also be
that s doesn’t contain an assignment statement but it is an assignment statement itself.

Likewise starting with line 27, if the statement s contains or is a UnaryModificationExpression
such as i++, the def and use references are set to the flowgraph var element corresponding to
the JaMoPP variable being modified.

The complete java2flowgraph model-to-model transformation consists of 15 rules with 94
lines of code in total.

3 Task 2: Control Flow Analysis

The sole purpose of this task is to create cfNext links between FlowInstr elements in the
flowgraph model created by the model-to-model transformation realizing task 1. Every such
flow instruction should be connected to every other flow instruction that may be the next one in
the program’s control flow. This challenge has been tackled algorithmically using FunnyQT’s
plain quering and model manipulation APIs.

The idea of the algorithm is quite easy. It uses a sequence of statements as intermediate
representation to work on realizing a pre-order depth-first iteration with look-ahead through
the method’s statements. In the general case, every flow instruction in that sequence has to
be connected with the immediately following flow instruction in the sequence. For various

5Clojure’s doseq is similar to Java’s enhanced for-each loop, but it also allows for nested iterations.
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kinds of statements, special rules are needed. For example, when encountering a block in the
sequence (which is no flow instruction), the the block is replaced with its contents.

Since the next statement in the sequence might not be a flow instruction but some structured
statement like a block, an if-statement, or a loop, there’s the helper function cf-peek.

1 (defn cf-peek [el]
2 (if (has-type? el ’flowgraph.FlowInstr)
3 el
4 (recur (first (econtents el)))))

It receives some element el. If that element is a flow instruction, it is simply returned. Else,
the function calls itself recursively with the first element of its contents, thus delivering the first
flow instruction of a possibly nested composite statement. For example, when it is called for a
label containing a block whose first statement is a loop, it will return the the expression which
is the loop’s condition.

recur is a Clojure special form enabling a tail-recursion that doesn’t consume space on the
call stack. If recur doesn’t occur in tail-position, the Clojure compiler will throw an exception.

The function cf-synth synthesizing the control flow links using the algorithm sketched
above will be explained in the next listings. It receives the sequence of statements v, the
method’s Exit node exit, the current loop’s loop-expr, the statement following the current
loop loop-succ, and a map label-succ-map that assigns to each label reachable in the current
scope the statement following the labeled statement. The exit parameter is used for handling
return statements, and the last three parameters are used for handling break and continue state-
ments. Initially, the function is called with v only containing the method, and exit bound to
that method’s exit. All other parameters are nil.

5 (defn cf-synth [v exit loop-expr loop-succ label-succ-map]
6 (when (seq v)
7 (let [[el & [n & _ :as tail]] v]
8 (type-case el

If the sequence v is not empty, its first element is bound to el, and its rest is bound to tail.
Furthermore, the first element of the rest (i.e., the second element of the sequence) is bound to
n. This technique of binding components of collections by mimicing the collection’s structure
is known as destructuring in the Lisp-world.

After binding these elements, a type-case dispatches on el’s metamodel type. If the ele-
ment is a method, a control flow link to that method’s first flow instruction is created, and the
function recurses with the method’s statements.

9 ’flowgraph.Method
10 (let [stmts (econtents el)]
11 (eadd! el :cfNext (cf-peek (first stmts)))
12 (recur stmts exit nil nil nil))

If the current element is a simple statement and there’s a next element in the sequence, a
control flow link is added to the first flow instruction of that next statement. Then, the function
recurses with the tail of the sequence keeping the remaining parameters as-is.

13 ’flowgraph.SimpleStmt
14 (do (when n (eadd! el :cfNext (cf-peek n)))
15 (recur tail exit loop-expr loop-succ label-succ-map))

If the current element is a block, the function simply recurses with that block’s statements
prepended to the tail of the sequence keeping the remaining parameters as-is. That is, a block
is replaced with its contents.
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16 ’flowgraph.Block
17 (recur (concat (econtents el) tail)
18 exit loop-expr loop-succ label-succ-map)

If the current element is an expression of some if- or loop-statement and there’s a next
statement in the sequence, a control flow link is added to the first flow instruction of that next
statement. Again, the function recurses with the tail of the sequence keeping the remaining
parameters as-is.

19 ’flowgraph.Expr
20 (do (when n (eadd! el :cfNext (cf-peek n)))
21 (recur tail exit loop-expr loop-succ label-succ-map))

If the current element is a label, the function recurses with that label’s statement prepended
to the tail of the sequence. A mapping from this label to the statement following it is added to
the label-succ-map. This statement’s first flow instruction is where the control flow continues
when breaking to this label.

22 ’flowgraph.Label
23 (recur (cons (eget el :stmt) tail) exit loop-expr loop-succ
24 (assoc label-succ-map el n))

If the current element is a return statement, a control flow link is added to the exit node of
the method. Thereafter, the function recurses again with unchanged parameters.

25 ’flowgraph.Return
26 (do (eadd! el :cfNext exit)
27 (recur tail exit loop-expr loop-succ label-succ-map))

If the current element is a break statement, two cases have to be distinguished. If the break
is labled, a control flow link is added to the first flow instruction of the statement following the
label. The statement following the label is looked up in the label-succ-map.

If the break is not labled, a control flow link is added to the first flow instruction in the
statement following the surrounding loop which is bound to loop-succ.

In any case, the function recurses with the tail of the sequence keeping all other parameters
as-is.

28 ’flowgraph.Break
29 (do (if-let [l (eget el :label)]
30 (eadd! el :cfNext (cf-peek (label-succ-map l)))
31 (eadd! el :cfNext (cf-peek loop-succ)))
32 (recur tail exit loop-expr loop-succ label-succ-map))

If the current element is a continue statement, the same two cases have to be distinguished.
In case of a labeled continue, a control flow link to the first flow instruction of that label is
added. Because Java allows only to continue to labeled loops, this flow instruction is the ex-
pression of that loop’s condition.

If the continue is not labeled, a control flow link to the nearest surrounding loop’s expres-
sion, loop-expr, is added.

33 ’flowgraph.Continue
34 (do (if-let [l (eget el :label)]
35 (eadd! el :cfNext (cf-peek l))
36 (eadd! el :cfNext loop-expr))
37 (recur tail exit loop-expr loop-succ label-succ-map))
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If the current element is a loop, this loop’s condition is bound to expr, and its body is
bound to body. The function recurses with the expression, the body, and again the expression
prepended to the tail of the sequence. The effect is that there will be a control flow link from
the expression to the first flow instruction in the body (the true-case of the loop condition),
control flow links from the final non-return/break/continue flow instructions in the body to
the expression (the repeation), and a control flow link from the expression to the first flow
instruction following the loop (the false-case of the loop condition). In the recursive call, the
current loop expression loop-expr is bound to expr, and the statement following the loop
loop-succ is bound to n, thus establishing a new scope for contained and non-labeled break
and continue statements.

38 ’flowgraph.Loop
39 (let [[expr body] (econtents el)]
40 (recur (cons expr (cons body (cons expr tail)))
41 exit expr n label-succ-map))

If the current element is an if-statement, its condition is bound to expr, its then-statement
is bound to then, and its else-statement (which might be nil) is bound to else.

First the function recurses with a vector containing only the expression, the then-statement,
and the first flow instruction in the statement following the if-statement. The effect is that a
control flow link will be added from the expression to the first flow instruction in the then-
statement, and the final non-return/break/continue flow instructions in the then-statement
will be connected to the first flow instruction following the if-statement. Note that this call is
done by calling the function itself rather than recur, because the call is not in tail-position.

Depending on wether the if-statement has an else-part, the function then recurses either
with the expression and else-statement prepended to the tail, or with only the expression
prepended to the tail. In the first case, the effect is that a control flow link will be cre-
ated from the expression to the first flow instruction in the else-statement, and the final non-
return/break/continue flow instructions in the else-statement will be connected to the first
flow instruction following the if-statement. In the other case, a control flow link will be created
from the expression to the first flow instruction following the if-statement.

42 ’flowgraph.If
43 (let [[expr then else] (econtents el)]
44 (cf-synth [expr then (cf-peek n)]
45 exit loop-expr loop-succ label-succ-map)
46 (if else
47 (recur (cons expr (cons else tail))
48 exit loop-expr loop-succ label-succ-map)
49 (recur (cons expr tail)
50 exit loop-expr loop-succ label-succ-map)))

Finally, if the current element is the method’s exit node, a sanity check is performed. At this
point, the sequence v should be exhausted, so there must be no next statement n.

51 ’flowgraph.Exit (assert (nil? n))))))

The entry point to the control flow transformation is the function synthesize-cf-edges

shown in the next listing. It receives a flowgraph model and calls the cf-synth function for
any method contained in the model providing the method’s exit node via its exit parameter.

52 (defn synthesize-cf-edges [model]
53 (doseq [m (eallobjects model ’flowgraph.Method)
54 :let [exit (the (eallobjects model ’flowgraph.Exit))]]
55 (cf-synth [m] exit nil nil nil)))
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The control flow transformation consists of 55 lines of code and has been completely printed
and discussed in this section.

4 Task 3: Data Flow Analysis

The purpose of this task is to create dfNext links between FlowInst elements where the target
element is a control flow successor of the source element, the target element uses (reads) a vari-
able that was defined (written) by the source element, and the variable hasn’t been rewritten
in between. This definition has been implemented exactly as stated here, because although it’s
not the most efficient algorithm for the task, it is very clear and concise.

The function find-nearest-definers receives a flow instruction fi and a variable uv

used by it, and it returns a vector of the nearest control flow predecessors that define that
variable.

1 (defn find-nearest-definers [fi uv]
2 (loop [preds (mapcat #(adjs % :cfPrev) (if (coll? fi) fi [fi]))
3 r []
4 known #{}]
5 (if (seq preds)
6 (let [definers (filter #(member? uv (eget % :def)) preds)
7 others (remove #(member? uv (eget % :def)) preds)]
8 (recur (remove #(member? % known) (mapcat #(adjs % :cfPrev) others))
9 (into r definers)

10 (into known preds)))
11 r)))

In Clojure, loop and recur implement a local tail-recursion, that is, inside a loop a recur

form recurses not to the surrounding function but to the surrounding loop. Initially, preds is
bound to the immediate control flow predecessors of fi6, the result variable r is bound to the
empty vector, and known is bound to the empty set.

If there are no predecessors, the result r is returned (the else-branch of the if). If there are
control flow predecessors, those are sorted into definers, i.e., flow instructions that define uv.
The other predecessors are sorted into others, i.e., flow instructions that don’t write uv.

Then it is recursed to the surrounding loop. preds is rebound to those control flow prede-
cessors of others that aren’t already known in order not to recurse infinitely in case of control
flow cycles, the result vector r is rebound to the current r value plus the new definers, and
known is rebound to the union of the current known value and the current preds.

The function synthesize-df-edges shown in the next listing is the entry point to the data
flow analysis receiving the flowgraph model. It performs a nested iteration over all flow in-
structions, the variables used by them, and the definers of these used variables. A data flow
link is added from every nearest definer to the flow instruction.

12 (defn synthesize-df-edges [model]
13 (doseq [fi (eallobjects model ’flowgraph.FlowInstr)
14 used-var (eget fi :use)
15 nearest-definer (find-nearest-definers fi used-var)]
16 (eadd! nearest-definer :dfNext fi))
17 (doseq [v (vec (eallobjects model ’Var))]
18 (edelete! v)))

Lastly, all Var elements in the model are deleted. This isn’t requested by the task, but
because the unit tests of the transformation also create visualizations of the result models, a
smaller model size with much fewer links results in a nicer layout.

6mapcat gets a function and a collection, where the function has to result in a collection again. It applies the
function to every element of the collection concatenating the results.
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Like with the control flow transformation, the data flow transformation consisting of 18
lines of code has been completely printed and discussed.

5 Task 4: Control and Data Flow Validation

The goal of task 4 is to enable offloading testing effort for the transformations solving tasks 1
to 3 to programmers knowing Java but not the transformation language used. Therefore, some
simple DSL should be provided that lets them write down the expected control and data flow
links. Some tool should be able to read that DSL and validate it against some result model.
This tool should print all missing cfNext/dfNext links, i.e., links defined in the specification
but not occuring in the result model, and it should print all false links, i.e., links occuring in the
model but not in the specification.

Before digging into the FunnyQT solution’s implementation of this task, the next listing
shows the specification for the Test0.java.xmi model.

(make-test test-fg-transform-test0 "models/Test0.java.xmi"
#{["testMethod()" "int a = 1;"] ;; expected cfNext links
["int a = 1;" "int b = 2;"]
["int b = 2;" "int c = a + b;"]
["int c = a + b;" "a = c;"]
["a = c;" "b = a;"]
["b = a;" "c = a / b;"]
["c = a / b;" "b = a - b;"]
["b = a - b;" "return b * c;"]
["return b * c;" "Exit"]}

#{["int a = 1;" "int c = a + b;"] ;; expected dfNext links
["int b = 2;" "int c = a + b;"]
["int c = a + b;" "a = c;"]
["a = c;" "b = a;"]
["a = c;" "c = a / b;"]
["a = c;" "b = a - b;"]
["b = a;" "c = a / b;"]
["b = a;" "b = a - b;"]
["c = a / b;" "return b * c;"]
["b = a - b;" "return b * c;"]})

make-test is the entry point to the validation DSL. It creates a new test case with the given
name (e.g., test-fg-transform-test0) which tests some concrete model whose XMI file is
provided. Then, a set of expected cfNext links and a set of expected dfNext links follow. Every
link is represented as a vector containing the expected source and target flow instructions,
every flow instruction being represented as string of its concrete Java syntax. These strings
identify the flow instructions unambiguously, because in the test cases, no statement occurs
more than once.

Alternatively, instead of providing the links as sets of tuples, only the expected number
of cfNext/dfNext links may be provided. For the larger models, writing down the expected
control and data flow links is simply not feasible.

(make-test test-fg-transform-test9 "models/Test9.java.xmi" 14452 27202)

Of course, here the validation might succeed although the model is wrong anyway, how-
ever such a slight validation is still much better than no validation at all.

make-test is a macro. A macro is a function that will be called by the Clojure compiler
at compile-time. It receives the unevaluated arguments given to it, that is, its parameters are
bound to code. Clojure, like all Lisps, is homoiconic, meaning that code is represented using
usual Clojure data structures, e.g., lists, vectors, symbols, literals, etc. Thus, the macro is able
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to transform the code provided to it using standard Clojure functions to some new bunch of
code that takes its place.

Without going into details, simple macros usually use a syntax-quoted form as the template
for the code to generate, and inside such a template the parameters of the macro can be inserted
by unquoting them with a tilde. Furthemore, new variables can be introduced by suffixing
them with a hash. Those variables get an automatically generated name that is guaranteed
to be unique and thus cannot clash with symbols contained in the code provided as macro
arguments.

1 (defmacro make-test [n file expected-cfs expected-dfs]
2 ‘(deftest ~n
3 (let [fg-trg# (run-flowgraph-transformations ~file)
4 exp-cfs# ~expected-cfs
5 exp-dfs# ~expected-dfs
6 cfs# (set (map (fn [[s# t#]] [(eget s# :txt) (eget t# :txt)])
7 (ecrosspairs fg-trg# :cfPrev :cfNext)))
8 dfs# (set (map (fn [[s# t#]] [(eget s# :txt) (eget t# :txt)])
9 (ecrosspairs fg-trg# nil :dfNext)))]

10 (cond
11 (set? exp-cfs#) (let [cf-d1# (clojure.set/difference exp-cfs# cfs#)
12 cf-d2# (clojure.set/difference cfs# exp-cfs#)]
13 (is (empty? cf-d1#) "Missing cf-edges")
14 (is (empty? cf-d2#) "Too many cf-edges"))
15 (number? exp-cfs#) (do
16 (println "Only checking number of cfNext links.")
17 (is (= exp-cfs# (count cfs#))))
18 :else (println "No expected cfNext links given."))
19 (cond
20 (set? exp-dfs#) (let [df-d1# (clojure.set/difference exp-dfs# dfs#)
21 df-d2# (clojure.set/difference dfs# exp-dfs#)]
22 (is (empty? df-d1#) "Missing df-edges")
23 (is (empty? df-d2#) "Too many df-edges"))
24 (number? exp-dfs#) (do
25 (println "Only checking number of dfNext links.")
26 (is (= exp-dfs# (count dfs#))))
27 :else (println "No expected dfNext links given.")))))

In line 2, make-test generates a new unit test with the name given as parameter n. In
line 3, the transformations are run7, and the result model is bound to a variable. Likewise, the
expected links are bound to variables. Lines 6 and 8 bind the links actually contained in the
model to variables. The FunnyQT function ecrosspairs returns the sequence of crosslinks
restricted to those matching given source and target reference names. Each link is represented
as a vector of source and target element. Using map, these links are converted to the form of the
links in the sets of expected links, i.e., every link is represented by a vector of the source and
target element’s txt attribute.

In lines 11 to 18 and lines 20 to 27, the set differences between expected and actual links
and vice versa are calculated. Both should be empty, else there are either missing or too many
links. is is similar to JUnit’s Assert.assertTrue() method. In case the expected links were
provided as a number, only the actual number of links is validated against it.

6 Running the Transformation on SHARE

The FunnyQT solution to this case (and the other cases) are installed on the SHARE image
Ubuntu12LTS_TTC13::FunnyQT.vdi. Running the solution is simple.

1. Open a terminal.
7run-flowgraph-transformations is a function that takes a model file and applies the 3 transformations one after

the other returning the final program dependence graph. It also times the execution, saves the result model, and
generates visualizations for smaller models.
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2. Change to the Petri-Nets to Statecharts project:
$ cd ~/Desktop/FunnyQT_Solutions/ttc-2013-flowgraphs/

3. Run the test cases:
$ lein test

This will run the complete transformation (JaMoPP to structure graph with vars, control
flow analysis, data flow analysis, validation) on all provided test JaMoPP models and print the
execution times. The result models and visualizations of the main test cases’ results are saved
to the results directory.

7 Evaluation

In this section, the FunnyQT solution to the Flowgraphs case is evaluated according to the
critera listed in the case description [Hor13].

All tasks have been solved, and the results of every task are complete and correct. For all
smaller input models, the expected control and data flow links have been derived from the Java
code manually. They match exactly the actual links in the result models.

For the larger models where a writing down the expected links is not practical, the result
models contain at least the correct number of links. Because the larger test models were gen-
erated by duplicating the body of the method in Test6.java, the expected number of control
and data flow links could be calculated.

Table1 depicts the amount of lines of code (including empty lines) for the solutions to the
four tasks.

Implementation LOC
Task 1 (M2M) 94
Task 1 (M2T) 129
Task 2 57
Task 3 19
Task 4 49
Total 351

Table 1: Quantity of the transformations

The model-to-model transformation part of task 1’s solution (which also performs subtask
3.1) accounts for 94 LOC, and the model-to-text transformation part accounts for another 129
LOC. This is not overly concise, but mainly a result of the large JaMoPP input metamodel.
Given that the solution to task 1 uses parts of the FunnyQT API that are relatively similar
to the well-known languages ATL or ETL, and to OCL operations defined in the contexts of
metamodel classes, they shouldn’t be hard to understand for anybody in the fields of model
transformations.

The transformation synthesizing control flow edges (task 2) is by far the most complex one.
Nevertheless, the implemented algorithm is easily comprehensible, and with 57 LOC also quite
concise.

The data flow analysis task is an easy task anyway, so its conciseness of only 19 LOC isn’t
too astonishing.

The implementation of the validation task 4 consists of 49 LOC, plus another 244 LOC of
specifications for the eleven provided test cases.

Table2 shows the execution times on SHARE of the transformations implementing task 1
to 3 for all provided models. The model Test9.java.xmi is the largest model. It consists of
approximately 50000 model elements. It takes 2.7 seconds to transform that into a simpler flow-
graph model consisting of 20000 elements. The solution of task 2 then needs 225 milliseconds
to synthesize about 15000 control flow links, and the data flow transformation needs another
1.2 seconds to synthesize about 27000 data flow links.
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Model Task 1 Task 2 Task 3 Total
Test0 15.8 ms 0.5 ms 1.7 ms 18.0 ms
Test1 7.6 ms 0.7 ms 3.1 ms 11.4 ms
Test2 7.3 ms 0.6 ms 2.3 ms 10.2 ms
Test3 6.4 ms 4.2 ms 2.3 ms 12.9 ms
Test4 2.6 ms 0.2 ms 0.4 ms 3.2 ms
Test5 2.2 ms 0.2 ms 0.9 ms 3.3 ms
Test6 3.9 ms 0.3 ms 1.3 ms 5.5 ms
Test7 107.2 ms 7.0 ms 49.4 ms 163.6 ms
Test8 505.5 ms 57.9 ms 240.1 ms 803.5 ms
Test9 2697.8 ms 224.7 ms 1222.6 ms 4165.1 ms
Test10 5.7 ms 0.6 ms 0.9 ms 7.2 ms
Test11 1.5 ms 0.2 ms 0.3 ms 2.0 ms

Table 2: Transformation execution times
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