
Solving the Petri-Nets to Statecharts Transformation Case
with FunnyQT

Tassilo Horn
horn@uni-koblenz.de

Institute for Software Technology
University Koblenz-Landau

May 24, 2013

Abstract

This paper describes the FunnyQT solution to the TTC 2013 Petri-Nets to Statcharts
Transformation Case.

FunnyQT is a model querying and model transformation library for the functional Lisp-
dialect Clojure. It supports the modeling frameworks JGraLab and EMF natively, and it is
designed to be extensible towards supporting other frameworks as well.

FunnyQT provides a rich and efficient querying API, a model manipulation API, and on
top of those, there are several sub-APIs for implementing several kinds of transformations
such as ATL-like model transformations or programmed graph transformations.

For solving this case, the model transformation API has been used for the initialization
transformation, while the reduction transformation has been tackled algorithmically using
the plain querying and model manipulation APIs.

1 Introduction

FunnyQT is a new model querying and transformation approach. Instead of inventing yet
another language with its own concrete syntax and semantics, it is implemented as an API for
the functional, JVM-based Lisp-dialect Clojure1. It’s JVM-basing provides wrapper-free access
to all existing Clojure and Java libraries, and to other tools in the rich Java ecosystem such as
profilers.

FunnyQT natively supports the de-facto standard modeling framework EMF [SBPM08] and
the TGraph modeling framework JGraLab2, and it is designed to be extensible towards other
frameworks as well.

FunnyQT’s API is split up in several sub-APIs. On the lowest level there is a core API
for any supported modeling framework providing functions for loading and storing models,
accessing, creating, and deleting model elements, and accessing and setting attribute values.
These core APIs mainly provide a concise and expressive interface to the native Java APIs of
the frameworks. On top of that, there’s a generic API providing the subset of core functionality
that is common to both supported frameworks such as navigation via role names, access to and
manipulation of element properties, or functionality concerned with typing imposed by meta-
models. Furthermore, there is a generic quering API providing important querying concepts
such as quantified expressions, regular path expressions, or pattern matching.

Based on those querying and model manipulation APIs, there are several sub-APIs for im-
plementing different kinds of transformations. For example, there is a model transformation
API similar to ATL [JK05] or ETL [KRP13], or there is an in-place transformation API for writing
programmed graph transformations similar to GrGen.NET [BGJ13].

1http://clojure.org/
2http://jgralab.uni-koblenz.de

1

mailto:horn@uni-koblenz.de
http://clojure.org/
http://jgralab.uni-koblenz.de


Especially the pattern matching API and the transformation APIs make use of Clojure’s
Lisp-inherited metaprogramming facilities [Gra93, Hoy08] in that they provide macros creat-
ing internal DSLs [Fow10] providing concise, boilerplate-free syntaxes to users. Patterns and
transformations written in these internal DSLs get transformed to usual Clojure code using the
FunnyQT querying and model manipulation APIs by the Clojure compiler.

For solving the tasks of this transformation case3, FunnyQT’s model transformation API
has been used for the initialization transformation discussed in Section 2, while the reduction
transformation explained in Section 3 has been tackled algorithmically using the plain querying
and model manipulation APIs.

2 The Initialization Transformation

The complete initialization transformation is shown in Listing 2. It uses FunnyQT’s model
transformation API.

A transformation is declared with the deftransformation macro. It receives the name of
the transformation, i.e., initialize-statechart, a vector of input and output models, and
arbitrary many rules.

The argument vector declares that the transformation receives one single input model pn
which is an EMF model, and it receives exactly one output model sc which is also an EMF
model. It could also receive many input or output models, and the models could belong to
different modeling frameworks as well.

The transformation consists of two transformation rules: place2basic-and-or, and
transition2hyperedge. Every rule has exactly one parameter denoting the source element.
The :from clause defines the metamodel type the rule is applicable for. The :to clause specifies
which target elements have to be created. Additionally, arbitrary constraints could be defined
for a rule using a :when clause. Thereafter, arbitrary code may follow for initializing the newly
created elements and calling other rules.

When a rule gets called and is applicable with respect to its declared :from type and :when

constraint, it creates the elements declared in :to in the target model, and evaluates its body.
In case there is just one new element declared in :to, it returns just that. If there are many
new elements, it returns them as a vector in their declaration order. Furthermore, a traceability
mapping is created from the source element to the rule’s return value. If a rule gets called
multiple times for a single element, the second and all following calls just return the result of
the first invocation.

1 (deftransformation initialize-statechart [[pn :emf] [sc :emf]]
2 (^:top place2basic-and-or [p]
3 :from ’Place
4 :to [o ’OR, b ’Basic]
5 (eset! b :name (eget p :name))
6 (eset! b :rcontains o)
7 (eset! b :rnext (map transition2hyperedge
8 (eget p :pret)))
9 (eset! b :next (map transition2hyperedge

10 (eget p :postt))))
11 (transition2hyperedge [t]
12 :from ’Transition
13 :to [he ’HyperEdge]
14 (eset! he :name (eget t :name))))

Listing 1: The initialization transformation

The place2basic-and-or rule creates an OR o and a Basic b for any Place p it is called
with, it sets the name of the Basic to the name of the Place, and assigns the new OR as container

3This FunnyQT solution is available at https://github.com/tsdh/ttc-2013-pn2sc and on SHARE
(Section 5)

2

https://github.com/tsdh/ttc-2013-pn2sc


of b. Lastly, it maps the transition2hyperedge rule over the pre/post-transitions of p setting
the results to b’s rnext/next references.

The ^:top metadata at the rule specifies that this rule is called automatically for any Place

in the source Petri-net model pn. In contrast, the transition2hyperedge rule is only called
explicitly from place2basic-and-or.

The result of such a transformation is always a map of traceability information. The keys
of the map are keywords denoting the rules, the values are maps from source elements to rule
results. So in this concrete case, the traceability map returned by the transformation has the
form:

{:place2basic-and-or {<place1> [<or1> <basic1>], ...},
:transition2hyperedge {<transition1> <hyperedge1>, ...}}

The function init-statechart depicted in Listing 2 is a convenience wrapper for applying
the transformation.

15 (defn init-statechart [pn]
16 (let [sc (new-model)
17 trace (initialize-statechart pn sc)]
18 [sc
19 (apply hash-map (mapcat (fn [[p [o b]]] [p o])
20 (:place2basic-and-or trace)))
21 (apply hash-map (mapcat (fn [[p [o b]]] [p b])
22 (:place2basic-and-or trace)))
23 (:transition2hyperedge trace)]))

Listing 2: An initialization transformation wrapper function

It receives a Petri-net model pn, creates a new empty model sc for the statechart, calls
the initialize-statechart transformation, and then mangles the traceability map in order
to return a vector of four components: the initialized statechart model, a map from places
to corresponding OR elements, a map from places to corresponding Basic elements, and a
map from transitions to corresponding hyperedges. The first map is required by the reduction
transformation, whereas the other two maps are only used by the unit-tests for the initialization
transformation (see Section 4).

3 The Reduction Transformation

The reduction transformation is implemented algorithmically based on FunnyQT’s querying
and model manipulation APIs. It consists of four rules (functions):

1. The AND-rule as discussed in the case description [vGR13],
2. the OR-rule as discussed in the case description,
3. an additional, extension rule assigning hyperedges to the nearest Compound state contain-

ing all their predecessor and successor Basic states,
4. and a rule creating a Statechart with an AND top-state if the reduction could be com-

pleted successfully.

3.1 The Reduction Function

The reduction transformation (a plain function) is shown in Listing 3.1.
It receives a Petri-net model pn and calls the statechart initialization function from Listing 2.

As discussed above, this function returns a vector containing the new statechart and three
traceability maps. By imitating the result structure in the let, the new statechart is assigned to
sc, and the map from places to OR objects is assigned to place2or. The other two maps are
not needed for the reduction, so they are assigned to a variable _, which is conventionally used

3



as “don’t care”. This technique of binding parts of the contents collections directly by imitating
their structure is known as destructuring in the Lisp-world.

All Clojure datastructures are immutable. However, the transformation rules will need to
modify the place2or traceability map. Therefore, it is wrapped in and atom. An atom is a
mutable reference that can be swapped to a new value atomically.

24 (defn create-statechart [pn]
25 (let [[sc place2or _ _] (init/init-statechart pn)
26 place2or (atom place2or)]
27 (iteratively (fn []
28 (let [r (and-rule pn sc prep place2or)
29 r (or (and-rule pn sc postp place2or) r)
30 r (or (or-rule pn sc place2or) r)]
31 r)))
32 (create-top sc)
33 (assign-hyperedges sc)
34 sc))

Listing 3: The reduction function implementing the transformation

Starting with line 27, the rules are applied. The higher-order function iteratively takes a
function and applies it as long as it returns logically true4

The anonymous function it is called with applies the and-rule once for pre-places and
once for post-places, and finally it calls the or-rule. The results of the rules are combined
using disjunction in such a way that all rules get applied in that sequence and the final result r
is logical true if at least one rule could be applied.

Lastly, the create-top rule creating a Statechart element and its top-AND-State, and the
assign-hyperedges rule are applied. The final result is the new statechart sc.

3.2 Reduction Helper Functions

Before discussing the rules, the helper functions depicted in Listing 3.2 are explained.

35 (defn refs-as-set [ref elem]
36 (set (eget-raw elem ref)))
37

38 (def postt (partial refs-as-set :postt))
39 (def pret (partial refs-as-set :pret))
40 (def postp (partial refs-as-set :postp))
41 (def prep (partial refs-as-set :prep))

Listing 4: Helper functions for the reduction rules

The function refs-as-set gets a (multi-valued) reference name as a keyword and some
model element, and it returns the value of this reference coerced to a set5.

Then, there are four partial applications of this function where its first parameter is already
preset, thus leaving functions that just receive an element. That is, postt and pret are func-
tions for getting the set of post- and pre-transitions of a given Place, and postp and prep are
functions for getting the set of post- and pre-places of a given Transition.

3.3 The AND Rule

The AND rule is depicted in Listing 3.3. In contrast to the Figure 2 in the case description
[vGR13], it doesn’t delete all places q1 to qn to create a new place p, but instead it reuses q1 as

4In Clojure, everything is logically true except for false and nil.
5eget-raw is similar to eget, except that the former just returns the EMF collection, i.e., a mutable EList, wheras

the latter also coerces to an immutable Clojure collections. Because we are coercing to an immutable Clojure set
anyway, this is unneeded effort here.

4



p and deletes only q2 to qn. This is consistent with Louis Rose’s EOL solution, and it even feels
more natural at least for algorithmic solutions.

The rule function receives the Petri-net model pn, the statechart model sc, either the func-
tion prep or postp as prep-or-postp, and the traceability map atom place2or.

42 (defn and-rule [pn sc prep-or-postp place2or]
43 (loop [ts (eallobjects pn ’Transition), applied false]
44 (if (seq ts)
45 (let [t (first ts), preps-or-postps (prep-or-postp t)]
46 (if (> (count preps-or-postps) 1)
47 (let [p (first preps-or-postps), prets (pret p), postts (postt p)]
48 (if (forall? #(and (= prets (pret %))
49 (= postts (postt %)))
50 (rest preps-or-postps))
51 (let [new-or (ecreate! sc ’OR), new-and (ecreate! sc ’AND)]
52 (eset! new-and :contains (mapv @place2or preps-or-postps))
53 (eadd! new-or :contains new-and)
54 (swap! place2or assoc p new-or)
55 (doseq [op (rest preps-or-postps)]
56 (edelete! op))
57 (recur (rest ts) true))
58 (recur (rest ts) applied)))
59 (recur (rest ts) applied)))
60 applied)))

Listing 5: The AND rule

It uses loop and recur which implement a local tail-recursion, i.e., a recursion that doesn’t
consume space on the call-stack. loop defines the initial bindings, and recur restarts the loop
with new bindings. So initially, ts is bound to the sequence of all transitions in the model, and
applied, which is used to indicate to the caller if at least one match has been found, is false.

If there are no transitions left6 (the else-branch of the if in line 44), the function returns
with the current value of applied. If there are still transitions, the first one is bound to t and
its set of pre- or post-places is bound to preps-or-posts (line 45).

If there aren’t more than one pre- or post-places of t (the else branch of the if in line 46),
the loop gets restarted with the rest of transitions and the current value of applied. If there
are more than one pre- or post-places, the first one is bound to p, and prets and postts are its
pre- and post-transitions (line 47).

If the other pre- or post-places don’t have the same sets of pre- and post-transitions (the
else-branch of the if in line 48), the loop is restarted with the remaining transitions and the
current value of applied. However, if the pre- and post-transitition sets are all equal, the rule
matches. In that case, lines 51 to 56 create a new OR and a new AND where the OR contains
the AND, and the AND contains all the OR states corresponding to the pre- or post-places of the
current transition t7. The first place p is preserved and its traceability mapping is updated to
point to the new OR (line 54). The other places are deleted in lines 55 and 56. Finally, the loop

is restarted with the remaining transitions and an applied value of true.

3.4 The OR Rule

The OR rule is depicted in Listing 3.4. In contrast to the case description, it doesn’t delete the
places (or corresponding OR states) q and r to create a new place (or corresponding OR state)
p, but instead it reuses q as p and only deletes r.

The or-rule gets the Petri-net model pn, the statechart model sc, and the traceability map
atom place2or. It’s mechanics for searching for matches in terms of loop and recur are al-
most identical to the and-rule, so the rule is described a bit more concisely here. One minor

6(seq coll) is the canonical non-emptiness check in Clojure.
7@some-atom atomically dereferences an atom resulting in its current value.

5



difference is that the variable ts is initially bound to a vector of all transitions. eallobjects
returns a lazy sequence, that is, a sequence where elements are computed (realized) when they
are consumed. Since this rule deletes transitions, the fail-fast EMF model iterator underlying
the lazy sequence will break. The explicit conversion to a vector enforces that all transitions are
computed beforehand.

61 (defn or-rule [pn sc place2or]
62 (loop [ts (vec (eallobjects pn ’Transition)), applied false]
63 (if (seq ts)
64 (let [t (first ts), preps (prep t), postps (postp t)]
65 (if (= 1 (count preps) (count postps))
66 (let [q (first preps), r (first postps)]
67 (if (or (identical? q r)
68 (and (not (member? r (adjs q :pret :postp)))
69 (not (member? r (adjs q :postt :prep)))))
70 (let [merger (@place2or q), mergee (@place2or r)]
71 (when-not (identical? q r)
72 (eaddall! q :pret (eget-raw r :pret))
73 (eaddall! q :postt (eget-raw r :postt))
74 (edelete! r)
75 (eaddall! merger :contains (eget-raw mergee :contains))
76 (edelete! mergee))
77 (edelete! t)
78 (recur (rest ts) true))
79 (recur (rest ts) applied)))
80 (recur (rest ts) applied)))
81 applied)))

Listing 6: The OR rule

Lines 65 to 69 specify the application condition of the rule. If the pre- and post-place sets of
the current transition t both contain only a single place q and r, respectively, and if either q and
r are identical or r is neither reachable from q by traversing the pret reference followed by the
postp reference, nor reachable from q by traversing the postt followed by the prep reference,
then t is a matching transition.

In that case, and if q and r are not identical, r’s pret and postt references are merged into
q, and r is deleted. Similarly, the OR states corresponding to q (merger) and r (mergee) are
merged, i.e., the contents of mergee are transferred to merger, and mergee is deleted. Finally,
the loop is restarted with the remaining transitions and an applied value of true.

In any case, the transition t is deleted, and the rule recurs to check the remaining transitions.

3.5 Extension: The HyperEdge Assignment Rule

The hyperedge assignment rule is shown in Listing 3.5. It assigns each HyperEdge in the target
statechart model to the Compound state that contains all its rnext and next states.

The rule receives the statechart model sc.

82 (defn assign-hyperedges [sc]
83 (doseq [e (eallobjects sc ’HyperEdge)]
84 (eset! e :rcontains
85 (first (apply clojure.set/intersection
86 (map #(reachables % [p-+ --<>])
87 (concat (eget e :next) (eget e :rnext))))))))

Listing 7: The hyperedge assignment rule

It iterates over all HypedEdge elements in the model, and for each hyperedge e, it sets its
rcontains reference. The container element is determined as follows.

6



For every Basic state in e’s next and rnext references, the ordered set of containers is
computed using a regular path expression. The reachables function gets the start element of
the search, and a vector describing the path expression. It returns the ordered set of elements
reachable by a path matching the regular path expression. Here, the --<> defines that elements
should be traversed towards their container, and by wrapping it in [p-+ ...] this iteration
may take place one or many times (transitive closure). Thus, the ordered result set contains all
containers in the order from nearest to farthest in the containment hierarchy. The intersection
of all those ordered sets is an ordered set of all Compound states containing all predecessor and
successor Basic states of e, and its first element is the deepest one in the overall containment
hierarchy.

If the reduction rules didn’t terminate with exactly one Place left and one single top-level
OR state, as it happens with some of the test models, the intersection above is empty. In that
case, the rcontains reference is set to nil, i.e., it is left unset.

3.6 The Statechart Creation Rule

The final rule of the transformation is the create-top rule shown in Listing 3.6. It receives the
target statechart model sc as argument.

88 (defn create-top [sc]
89 (let [top-ors (filter #(not (eget % :rcontains)) (eallobjects sc ’OR))]
90 (when (= 1 (count top-ors))
91 (let [statechart (ecreate! sc ’Statechart), top (ecreate! sc ’AND)]
92 (eset! statechart :topState top)
93 (eset! top :rcontains top-ors)))))

Listing 8: The statechart creation rule

If there is exactly one OR state that’s not contained in some other Compound state, the reduc-
tion process has been applied successfully. In that case, a new Statechart element statechart
and a new AND state top are created. top is set as topState of the statechart, and the contents
of top are set to the single top-level OR state.

4 Extension: Validation

As an extension to the case (in addition to the hyperedge assignment rule discussed in Sec-
tion 3.5), a small testing project for validating the result statechart models of this transforma-
tion case has been implemented. It is published at github8 where also its usage documentation
can be found.

This project is capable of testing the correctness of the result statecharts of provided eleven
Petri-nets, and it also checks the result statecharts generated from the 15 performance testing
Petri-nets.

The following constraints are checked for the primary test cases:
1. For the test cases where a complete reduction is feasible, there has to be exactly one

Statechart element containing exactly one AND state containing the top-most OR state
created by the reduction rules.

2. For every element type in the statechart metamodel, the expected number of instances is
checked against the actual number of instances.

3. The expected containment hierarchy is checked against the actual containment hierarchy.
If at least one hyperedge is contained in some Compound state, the correct containments
of hyperedges is also tested. Else, a warning is issued referring to the hyperedge contain-
ment extension.

8https://github.com/tsdh/ttc-2013-pn2sc-validation

7

https://github.com/tsdh/ttc-2013-pn2sc-validation


4. The expected contents of the rnext and next references of each HyperEdge are checked
against their actual contents.

For the large results of the performance test cases, only the checks 1 and 2 are performed.

5 Running the Transformation on SHARE

The FunnyQT solution of this case3 (and the other cases) are installed on the SHARE image
Ubuntu12LTS_TTC13::FunnyQT.vdi. Running the solution is simple.

1. Open a terminal.
2. Change to the Petri-Nets to Statecharts project:

$ cd ~/Desktop/FunnyQT_Solutions/ttc-2013-pn2sc/

3. Run the test cases:
$ lein test

This will run the complete transformation (initialization + reduction) on all provided test
Petri-net models (the 11 main test cases and the performance test cases) and print the execution
times. The result models are also validated using the testing project discussed in Section 4.
The result models and visualizations of the main test cases’ results are saved to the results

directory.
Furthermore, the stand-alone initialization transformation is applied to every provided

model as well. Again, the times needed to apply the transformation are printed.

6 Evaluation

In this section, the solution is evaluated according to the evaluation criteria listed in the case
description [vGR13].

Transformation correctness. The validation project discussed in Section 4 that has been im-
plemented as an extension to this case allows for testing the result statechart models. For the
main test cases, every important aspect of the result models including the containment hierar-
chy and the predecessors and successors of hyperedges are checked, and for the performance
test cases, only the number of instances of every metamodel class is checked. All tests pass for
the result models of this solution. Similarly, all tests pass for the result models created by the
reference GrGen.NET solution.

The validation project has also been tested with intentionally slightly wrong models, e.g.,
some next link is missing at some hyperedge, there’s some additional element, or an element is
contained by the wrong Compound state. In all those cases, an assertion of the validation project
failed. So there’s a high confidence that if the result models pass the tests, the transformation
producing them is correct.

Transformation performance. Table 1 shows the evaluation times of the initialization tranfor-
mation, the reduction transformation, and the complete transformation involving initialization
and reduction. The times needed for loading and saving the models from/to XMI files, the
times needed for validation, and the times needed for creating visualizations are excluded.

The measurements have been done directly on the SHARE demo. As stated in Section 5,
lein test will first evaluate the complete transformation on all models, and then it’ll evaluate
the initialization transformation again on all models. The evaluation times printed there are
contained in the tables third and first column, respectively. The second column is the difference
between the value in the third column and the value in the first column.

8



Test Case Init. only Red. only Init. & Red.
1 1 ms 81 ms 82 ms
2 1 ms 37 ms 38 ms
3 <1 ms 23 ms 24 ms
4 <1 ms 9 ms 10 ms
5 <1 ms 2 ms 3 ms
6 <1 ms 2 ms 3 ms
7 <1 ms 15 ms 16 ms
8 <1 ms 20 ms 21 ms
9 <1 ms 7 ms 8 ms
10 <1 ms 7 ms 8 ms
11 <1 ms 9 ms 10 ms

sp200 12 ms 140 ms 152 ms
sp300 18 ms 92 ms 110 ms
sp400 24 ms 97 ms 121 ms
sp500 28 ms 107 ms 125 ms

sp1000 69 ms 223 ms 292 ms
sp2000 109 ms 267 ms 376 ms
sp3000 153 ms 448 ms 601 ms
sp4000 226 ms 517 ms 743 ms
sp5000 274 ms 743 ms 1017 ms
sp10000 553 ms 1509 ms 2062 ms
sp20000 960 ms 3652 ms 4612 ms
sp40000 1887 ms 9457 ms 11344 ms
sp80000 3849 ms 26442 ms 30291 ms
sp100000 4755 ms 35639 ms 40394 ms
sp200000 9407 ms 105257 ms 114664 ms

Table 1: Evaluation times on SHARE

That the first test cases evaluate a bit slower than subsequent ones is probably caused by
the JVM just-in-time compiling critical code paths. Fluctuations in the evaluation times of
models of comparable size are also partly caused by JVM-internals such as garbage collection.
Nevertheless, the order of magnitude is stable across multiple runs of the transformations.

Anyhow, the evaluation times are quite good, both absolute as well as relative compared
to the input model sizes. The initialization transformation scales linearly with the size of the
input Petri-net models. The reduction transformation also scales in that order of magnitude.
When taking the time needed for the sp1000 model as a baseline, then the sp10000 model is
transformed in 0.7n milliseconds for n being the time expected when assuming a linear corre-
lation between model size and execution time. The sp40000 model takes n milliseconds, the
sp100000 takes 1.6n milliseconds, and the sp200000 model takes 2.4n milliseconds.

Transformation understandability. Although the solution requires some understanding of
Clojure, it shouldn’t be hard to get a grasp on it.

The initialization transformation uses a FunnyQT facility allowing to specify typical model
transformations with a syntax and semantics similar to ATL or ETL, so people knowing these
languages should feel right at home.

The reduction transformation is a bit more complex, but the application conditions of the
rules and the actions that are performed are taken quite literally from the case description with
the exception that some elements are preserved and merged instead of replaced.

One important aspect with respect to understandability is also the fact that the transforma-
tions are very concise. In total, the initialization and the reduction transformation need just the
93 lines of code that was depicted completely in the previous sections. The initialization trans-
formation including its wrapper function mangling the traceability mappings is just 23 lines of

9



code. The complete reduction transformation with its four rules, the few helper functions, and
the function iteratively applying the rules as long as possible amounts to 70 lines of code.

Bonus criteria. The bonus tasks dealing with verification and simulation support haven’t been
tackled.

The initialization transformation could be extended quite easily to deal with the change
propagation scenarios, simply because FunnyQT transformations are written in the full-fledged
programming language Clojure having access to any JVM library’s features. Thus, adapters
performing the required changes on the target statechart could be registered to handle notifi-
cations about new, deleted, or updated elements in the source Petri-net using the standart EMF
notification framework. Since the initialization transformation created a complete traceability
mapping, referring to previously created elements is easy.

There is no support special support for reversing the transformation, or for defining the trans-
formation bidirectionally in the first place.

Proper debugging support is also not yet ready for prime-time in the Clojure world. There
are some attempts at debuggers allowing to set breakpoints and examine the lexical extent
around the breakpoint, but those are not too usable right now. Another difficulty with func-
tional languages involving some kind of laziness is that errors might be signaled at a location
very different to where the bug is actually manifested in the source code. Nevertheless, Fun-
nyQT has rather good model visualization tools that have been used while programming the
reduction rules in order to visualize the matching elements when a rule has been applicable.

References

[BGJ13] Jakob Blomer, Rubino Geiß, and Edgar Jakumeit. The GrGen.NET User Manual. Insti-
tute for Programme Structures and Data Organisation, Department of Informatics,
University Karlsruhe, January 2013.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.

[Gra93] Paul Graham. On Lisp: Advanced Techniques for Common Lisp. Prentice-Hall, Inc.,
1993.

[Hoy08] Doug Hoyte. Let Over Lambda. Lulu.com, April 2008. http://letoverlambda.
com.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-Michel
Bruel, editor, MoDELS Satellite Events, volume 3844 of Lecture Notes in Computer Sci-
ence, pages 128–138. Springer, 2005.

[KRP13] Dimitrios Kolovos, Louis Rose, and Richard Paige. The Epsilon Book. http://
www.eclipse.org/epsilon/doc/book/, January 2013.

[SBPM08] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2 edition, 2008.

[vGR13] Pieter van Gorp and Louis M. Rose. The Petri-Nets to Statecharts Transfor-
mation Case. http://planet-sl.org/ttc2013/images/userdirs/122/
ttc2013/pn2sc.pdf, 2013.

10

http://letoverlambda.com
http://letoverlambda.com
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://planet-sl.org/ttc2013/images/userdirs/122/ttc2013/pn2sc.pdf
http://planet-sl.org/ttc2013/images/userdirs/122/ttc2013/pn2sc.pdf

	Introduction
	The Initialization Transformation
	The Reduction Transformation
	The Reduction Function
	Reduction Helper Functions
	The AND Rule
	The OR Rule
	Extension: The HyperEdge Assignment Rule
	The Statechart Creation Rule

	Extension: Validation
	Running the Transformation on SHARE
	Evaluation

