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Background – MapReduce is a paradigm for distributing large amounts of data across a 

cluster of machines and then analysing the data in parallel in a two-stage process taken from 
the world of functional programming. MapReduce allows for processing to be easily scaled 
across multiple machines. 

Aims – To investigate the feasibility of using the MapReduce paradigm to process video 
and transcode it into different formats and codecs. Our aim was to achieve a performance 
improvement over a sequential single machine transcoder, and investigate this improvement 
as the number of machines used in a cluster is increased. 

Method – The transcoding problem was formulated for MapReduce using Apache 
Hadoop, and then it was used in various scenarios to test its feasibility in clusters of up to 20 
machines. The performance of our solution as the number of nodes in the cluster is increased 
was analysed, and we examined how the performance was affected by the size of the input. 
We also analysed the output of our transcoder in terms of visual quality and compression. 

Results – Our implementation of video transcoding on MapReduce shows a performance 
improvement when large files are used for input, for cluster sizes up to 20. We found input 
file size to have a considerable effect on our system, larger input reducing overhead and 
increasing scalability. 

Conclusions – Transcoding on MapReduce allows for large video files to be processed 
on clusters of machines, achieving a performance improvement with respect to the number of 
machines used. The output is of similar quality and of similar file size to that of a sequential 
encoder. 
 Keywords – Cloud, Distributed, EC2, MapReduce, Parallel, IaaS, Transcoding, Hadoop. 

I. INTRODUCTION 

A. Project Background and Motivation 
Video transcoding is the process of converting video (and usually its associated audio) from 
one encoding format to another (Fhurt, 2008 : 951). Transcoding can also involve keeping the 
encoding format identical while adjusting the quality of the video so that size of the output is 
smaller. As video resolution increases, so does the amount of time it takes to transcode. 
Transmitting video via the web often requires various encodings of different types and quality 
to accommodate various devices and their bandwidth availability. This makes the conversion 
even more time consuming, as it has to be performed multiple times for each output type. The 
media industry, as well as many video-sharing websites, has to perform this type of transcode 
frequently, processing many terabytes of video per day1. As the popularity of web video 
continues to increase, the expectation from consumers is that video content should be 
available almost instantly on whichever device or connection they choose to use.  Improving 
the performance of this transcode operation allows for the delay between content acquisition 
and the availability of the content on the various devices to be reduced. 

MapReduce (Dean and Ghemawat, 2004) is a parallel data processing paradigm 
popularised by Google for ‘web scale’2 processing of information using a cluster of machines. 

                                                
1 http://www.bbc.co.uk/blogs/bbcinternet/2008/03/bbc_iplayer_on_iphone_behind_t.html (“peak data rate of over a gigabit per second”) 
2 http://jacobian.org/writing/web-scale/ [last accessed: 19/04/12] 
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A MapReduce program uses a variant of the Map and Reduce functions from functional 
programming, to define a method of processing input that can scale across machines. The data 
is processed in segments requiring no global communication. This makes it ideal for parallel 
data processing problems, but also allows for other problems to be expressed in a way that 
takes advantage of the simple parallelism model it offers.  

Video transcoding is getting slower as resolution increases, and more widespread as 
more devices begin to receive web video. MapReduce is a candidate for improving its 
performance. To use MapReduce we need to segment the video and audio efficiently for 
processing without damaging its structure and consequently preventing it from being decoded. 
Making good use of the Map and Reduce functions, so that the problem scales across 
machines without large overhead, requires careful consideration of the architecture of the 
system, and is difficult to test thoroughly.  

It should also be noted, however, that MapReduce is still immature; the platforms for its 
implementation are only beginning to see their APIs and performance stabilise. MapReduce is 
usually used for data-driven scenarios, but as it is becoming more popular, and available in 
the cloud as part of various IaaS (Infrastructure as a Service) offerings, using it for 
computationally intensive tasks is becoming more attractive. Assessing to what extent highly 
computational problems can be used on a MapReduce cluster is of interest and the focus of 
this project is to use video transcoding to investigate this. 

B. MapReduce 

As MapReduce forms the basis of our implementation, we will explain its background in 
some detail. MapReduce programs are designed to process large amounts of data in parallel 
(White, 2009:15), requiring that the data be in such a format that it can be split into and 
processed in independent chunks. These chunks are then distributed between many machines, 
and, as the processing operation for each chunk is independent of the others, their processing 
can scale easily without communication overhead between nodes. 

Conceptually, MapReduce programs transform lists of input data elements into output 
data elements, using two different list processing idioms from functional programming: Map 
and Reduce. The first phase of MapReduce is called mapping (Figure 1a).  Data elements are 
provided from a list to a function called the Mapper, which transforms each element 

Figure 1b. Reduce 

Figure 1c. Multiple reducers 

Figure 1a. Map 
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individually to an output data element. This allows for the data elements to be processed in 
parallel over many machines, and the input list to be partitioned over many machines. The 
second phase of MapReduce is called the reducer. This allows data elements to be aggregated 
together to produce an output from a set of input values; namely the output from the map 
phase (Figure 1b). 

In MapReduce, no data value stands alone without a key; each data element is part of a 
key-value pair. The environment is less strict than that of a functional programming setting, 
allowing for the mappers and reducers to produce more than one key-value pair per input 
value (or none). A reducer may also output multiple values and there is support for multiple 
reducers aggregating data based on its key. Supporting multiple reducers requires that the 
input (the output from the map phase) be partitioned, but increases efficiency overall by 
allowing each reducer to run on separate machine.  This partitioning of map output/reduce 
input can be customised, and the scheme used usually relies on the input value keys. Each 
reducer only ever receives all of the values for a specific key, allowing them to process the 
whole key, and its multiple data elements in one independent operation (Figure 1c). This is 
important for the application of the reducer in our implementation. 

C. Video Transcoding 
Video and audio, when stored digitally for distribution, is nearly always encoded by using 
some sort of ‘lossy’ compression. The choice of encoding type and the settings used when the 
encoding is generated dictate three attributes of the video: the output file size, the viewing 
quality and the computational power required for playback. Often the quality of the video is 
impaired to keep the file size down and/or make the encoding playable. Transcoding involves 
changing some of the characteristics of the video or audio (e.g. the frame rate, or frame 
dimensions), or the format of the encoding, or both. It also encompasses the process of 
encoding of the video into a ‘lossy’ format, from its original lossless capture format. In its raw 
form, video generally has a higher bitrate than what is possible for transmission to end users, 
and is also often of too high a quality for playback on end-user devices. 

D. Project Deliverables 
The research question for this project is therefore, ‘Can the MapReduce paradigm be used for 
video transcoding in an effective manner, so that it scales well across machines, has 
comparable output quality to current sequential encoders, and improves performance overall?’ 

We propose a method for segmenting video and audio correctly and efficiently, so that it 
can be processed in a MapReduce program, and a complimentary method for correctly putting 
the output data back together into a playable video file. 

We evaluated various aspects of the implementation: 
• We tested the performance of the MapReduce program as the number of parallel tasks 

was increased, for 8 different files sizes ranging from 4MB to 10GB. Smaller file sizes 
were unable to scale as well, as the segmentation relies on input file size. 

• We compared the output quality of our parallel implementation with that of a 
reference sequential encoder, highlighting the effect that segmenting the video has on 
the ability of the encoder to maintain visual quality. 

• We compared the output file size, indicating where the segmentation had been 
detrimental to the compression.  

• We also performed a small user study verifying that the output from our solution is 
comparable to that of a reference sequential encoder, and that the visual quality had 
not been perceptibly affected.  
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II. RELATED WORK 
In this section, we survey previous work in the areas of MapReduce and Distributed Video 
Transcoding.  

A. MapReduce 
Many different operations have been implemented using MapReduce to improve their 
performance. In Chen and Schlosser (2008) processing is achieved through a MapReduce 
implementation that estimates geographic information (‘where is this scene?’), given a 
specific image, by leveraging a data set of around 6 million GPS-tagged images and using 
scene matching to find the most similar image through a reduce-less program. One of the first 
large scale demonstrations of the power of MapReduce in a real world scenario was a New 
York Times archive conversion, where the TIFF images of the public domain scanned articles 
from 1851 to 1922 were converted to PDF format (New York Times, November 1st, 2007). 
Using the MapReduce model, 11 million articles were converted and glued together in less 
than 24 hours of processing, using around 100 nodes of Amazon Web Services’ EC2 
instances.  

Fewer examples are available for video processing, one of them being HP Labs’ 
VideoToon implementation3.  They implement a service to “cartoonize” videos using a series 
of scripts that break the video up into its sub-streams for the map phase and then put them 
back together in the reduce phase after processing. In the specific context of video 
transcoding, Pereira et al (2010) propose a ‘Split and Merge’ generalisation of the MapReduce 
model, and have compared the use of this against several sequential encoders to show the 
performance improvements.  They make a strong case for using this type of model for video 
encoding in the ‘cloud’, but only show how their ‘Split and Merge’ architecture performs with 
video that does not have temporal compression – commonly found in most videos to achieve 
a reasonable reduction in file size.  Garcia et al (2010) also use MapReduce to convert video 
from a DVD, in real time, using a user requested quality setting, for live streaming to their 
device. Their implementation, however, requires that the video be initially converted into a 
segmented format (namely MPEG transport stream segments) that is then processed 
independently, and they target a specific type of output (HTTP Live Streaming) that also 
leaves the output in segments. 

There are many different implementations of the MapReduce paradigm – Hadoop is the 
open-source favourite, with the best support and feature set.  “[Apache] Hadoop Map/Reduce 
is a software framework for easily writing applications which process vast amounts of data 
(multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity 
hardware in a reliable, fault-tolerant manner”4. Hadoop implements the MapReduce model, 
and supports several languages to directly interface with its API (namely Java, among others). 
Hadoop is available to run wherever Linux does, and several pre-built distributions exist for 
its use (Yahoo Hadoop5 and Cloudera6). On-going research exists looking to improve areas of 
Hadoop, for example on distribution and load balancing (Zaharia et al, 2008). This makes the 
use of the MapReduce model in Hadoop an excellent way of taking advantage of these 
improvements as they occur.  

B. Distributed/Parallel Video Processing 
Parallel video processing has been studied extensively over the past 10 years. Shen and Delp 
(1995) identify the two primary strategies: spatial and temporal parallelism. Spatial 
parallelism partitions a single frame of the video into pieces, allowing for the various stages 
of the encoding of each frame to be distributed among processors. Temporal parallelism 

                                                
3 http://www.hpl.hp.com/open_innovation/cloud_collaboration/cloud_demo_transcript.html [last accessed: 19/06/11] 
4 http://hadoop.apache.org/common/docs/current/mapred_tutorial.html#Overview [last accessed: 18/04/12] 
5 http://developer.yahoo.com/hadoop/distribution/ [last accessed: 18/06/11] 
6 http://www.cloudera.com/ [last accessed: 18/06/11] 
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partitions the video into groups of frames that can then be processed by a sequential encoder 
on the various processors (or nodes in a cluster). Spatial parallelism allows for high quality 
coding that can be identical to the output of a sequential encoder, but suffers in terms of 
scalability. On the other hand, temporal parallelism scales very effectively but can produce 
sub-par quality results if the segments of video are too small. Combinations of the two are 
also possible, breaking up the video temporally and then using spatial parallelism on the 
sequence of frames (Rodriguez et al, 2006). 

We focus primarily on temporal parallelism for use with MapReduce. Any form of 
spatial parallelism requires a large amount of communication between threads of execution, at 
high speed, making it suited for shared memory and/or multi-processor environments rather 
than a network of distributed machines. Temporal parallelism gives us independent segments 
of work that can then be distributed easily with a small communication overhead.   

Pereira et al (2010) highlight that one of the key problem areas when splitting the input 
is temporal compression. Many of the codecs that we want to transcode to and from use 
temporal compression to remove redundant data. When using temporal compression, rather 
than simply compressing each frame (essentially image compression, usually based on the 
JPEG format) the codec uses references to previous and future frames to make up the image. 
This takes advantage of the small comparative differences between frames due to the nature 
of their use (e.g. the camera not moving). When required, or at a set interval, the encoder 
places a ‘key-frame’ in the stream; a frame that does not reference any other and holds all of 
the required information to make up the image (Richardson, 2002). Other frames can then 
reference this key-frame to get the extra information they need. The exact format of the 
temporal compression needs to be understood by any distributed video encoding system, so 
that it does not split the video at a point that would leave frames unable to reference data to 
make up the images. As noted in the previous section, Pereira et al (2010) do not address the 
temporal compression problem, rather they show how video that is compressed frame-by-
frame can be broken up and distributed for processing among machines. We address this key 
issue in our implementation, providing a method of breaking up each of the video and audio 
streams in the file into chunks, without affecting the temporal compression structure.   

Schmidt and Rella (2012) further investigate how the size and structure of this split can 
affect the workload distribution in a cluster. They propose an algorithm that attempts to select 
a number of frames that will take a similar amount of processing time for each segment. 
Implementing this was deemed outside of the scope of this work, and we chose to simply 
break the segments up by using a target chunk size in bytes, taking advantage of our segments 
being of a size that is a multiple of the underlying distributed file system, improving data 
locality (See – III. B. Demultiplexing and Chunking). 
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IV. SOLUTION 
Our solution for transcoding video and audio using MapReduce is presented in this section. 
To begin, an overview of the design of the solution is given and how this fits conceptually 
with the MapReduce paradigm. We then describe the process of splitting the input data for 
parallel processing, and detail several issues that need to be addressed to make this process 
robust. Finally, we present the architecture for running a MapReduce cluster in ‘The Cloud’ 
using Amazon Web Services, and describe its workflow. 

A. High-level MapReduce Process 
Figure 4 describes our overall video transcoding process conceptually in the context of 
MapReduce. The Transcode and Remux section is a MapReduce program, and the Demux and 
Merge sections are single machine tasks that are executed as pre- and post-processing 
operations.  

1. Demux: The input file is broken down into chunks of data, per stream, ready for the 
MapReduce operation. This process is called the Demux phase.  

2. Transcode: Each of these chunks is then assigned an available Mapper, which is where 
the actual conversion takes place, converting the chunk of data into the new format as 
desired.  

3. Remux: These output chunks are then grouped and partitioned according to the number of 
available Reducers. The grouping is based on the key that was associated with the output 
from the mapper. This key is the timestamp of the chunk for a given stream. This means 
that the grouped input to the reducer can then be used to perform the reverse of the 
Demux phase, interleaving each of the streams for a particular timestamp into a given 
output container. Because several of these reducers are run, the output is in segments, 
equal to the number of reducers.  

4. Merge: The final phase of the overall transcode is to copy the output to its final 
destination, merging these segments as the copy operation takes place. 

 

Figure 4. Conceptual overview diagram of our MapReduce program for transcoding.  
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B. Demultiplexing and Chunking  
1) Atomic Processing Units 

At the core of any distributed processing is the method by which the input is separated into 
Atomic Processing Units (APUs). We call this process the Demux (short for De-
multiplexing), and it is the first phase of the process of transcoding a video file. This process 
separates input file into its constituent streams of audio and video, and into APUs that can be 
processed separately by the mappers. This phase of the process also has to determine several 
pieces of information in advance that are stored with the APU so that it has all of the 
information it needs when a Mapper is processing it. Once the APUs are defined and sent to a 
Mapper there is no way for them to get any additional information. 

A ‘chunk’ target size is defined that is used to decide when an attempt to split the input 
data should occur. This target size needs to provide a balance between output visual quality 
and scalability. Having small processing units can improve scalability across a cluster in some 
circumstances, but reduces the amount of context the encoder has to maximise compression 
and visual quality. This size is specified in bytes, so as to give each Mapper a similar amount 
of work (be it audio or video). It is preferable to keep the work for each Mapper similar, 
because if any of the mappers take a longer amount of time than another, the performance of 
the system will be reduced. The input is only ever split on specific boundaries which we call 
key-frames. In a video stream, these represent points in the video where an entire frame is 
defined that can stand alone, and does not depend on any other frames, and so we can split at 
this point without breaking the structure of the file. Most input formats call these key-frames 
‘Intra-frames’, but their nomenclature varies. In an audio stream we can split at any point, as 
the packets that we read out of the container are self contained. 

As new packets of data are read from the input file, they are stored in temporary buffers 
for each stream. When the size of the data in the buffer is greater than the ‘chunk’ target size 
that was defined, it is emptied to create a new chunk. When using video we empty the buffer 
up until (but not including) the most recent key-frame, ensuring that the GOP structure (the 
‘Group Of Pictures’ that lie between two key frames) is kept together. When using audio, we 
simply empty the buffer entirely, as it can be broken up at any point. 

A header is then added to the ‘chunk’ data, that stores information about the stream that 
the ‘chunk’ came from, and what the output format should be when this ‘chunk’ is 
transcoded. Figure 5 shows how a chunk of data (the value) is represented along side its key. 

 
Figure 5. Layout of the chunk key-value data for a video stream. 

 

The data is output using a Hadoop (the platform we are using for MapReduce) storage 
format called a SequenceFile. This allows us to store the data in key-value pairs that describe 
where this ‘chunk’ was in the original file (the timestamp), and where it needs to be split 
further during the encode process. When grouping these chunks before the Reduce, we the 
timestamp as our key. 

2) Split Points 
When each of the chunks is processed in the Map phase, it represents a portion of time for a 
particular stream, be that video or audio. The length of time may not be equal between 
chunks, as the data size of the chunk does not correspond to the length of time it represents. 
This can be seen in Figure 6 in the input chunks to the Map function. In the example in Figure 
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6, for simplicity, the video uses twice as much data to encode the same amount of time as 
audio. Because we break up the chunks by data size, we have twice as many video chunks as 
audio.  

To successfully Remux (merge the audio and video streams back together again), we 
need to have chunks of equal time to pass to the Reduce function. To do this, we define ‘split 
points’ in each of the chunks input to the Map function, that describe where the output should 
be split. When we partition each of these output chunks from the Map phase we group them 
by their key and can be sure the length of time of each of the chunks is the same. Figure 6 
shows the flow of data for this process.  

 
Calculating where these split points need to occur requires more understanding of how 

the different chunks of data in the stream interrelate with respect to time. Figure 7 will be 
used to explain this relationship. 

Figure 7 shows an example of the different streams that might be found in a given video 
file, with respect to time. Each chunk has approximately the same data size, but the amount of 
time it represents differs greatly depending on the stream. In our example, the video stream 
has the highest number of chunks, as more data is required to store it than audio. 

Figure 6. Data flow through MapReduce showing time partitioning 

Figure 7. Chunks of data inside of streams with respect to time 
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As we generate each of the chunks of data by reading the packets out of the file, we look 
back through all of the previous chunks we have output and calculate the split points. Each of 
the end timestamps of previous chunks are marked in the key of the chunk we are currently 
processing (See Figure 5). This order is shown in Figure 7, where the split points are always 
from previous chunks. This provides the Mapper with all split points, and the Reducer with 
groupings that are complete and are ready to be interleaved. This process relies on the premise 
that the timestamp for every stream is always increasing as we progress through the file, 
irrespective of the actual stream, and that the timestamps from different streams never 
overlap. 

3) Stream Timestamp Monotonicity 
Whilst it is true that a correctly interleaved file, with highly accurate timestamps, will have 
non-decreasing timestamps across all of its streams; it is not required that this is the case for 
the file to be playable. When playback occurs, each of the streams is buffered and played back 
separately whilst being re-synchronized occasionally by the player. This allows for the frame 
order to be different to the timestamps and file play perfectly.  

If we assume that the file has non-decreasing timestamps across all of its streams, when 
we mark each of our chunks with its split points, we run the risk of missing a split point that 
we were not aware of that simply occurs later in the file. This is as we are assuming that we 
have seen all of the data up until the most recently seen timestamp. To counter this issue, we 
keep a fixed number of chunks in a buffer before output, and also keep a variable number of 
chunks in a queue to improve read performance.  

By doing this, we can check as we write each chunk to the queue, that the end timestamp 
of this new chunk is not missing as a split point from any of the yet-to-be-written chunks that 
are still in memory, and, if they are, change them accordingly. We found that a fixed buffer of 
4 chunks fixed all of the monotonicity issues for our test files, and that a maximum queue size 
of 5 resulted in a read performance increase, as well as a longer output buffer for changes, 
especially when the data was being streamed over the network.  

C. System Architecture and ‘The Cloud’ 

1) Hadoop and HDFS 

Apache Hadoop7 was chosen as our implementation of MapReduce. As described in the 
original MapReduce paper, it also contains an implementation of a distributed file system, 
called HDFS (Hadoop Distributed File System). This is key to understanding how each of the 
map and reduce tasks run, and how they allocated resources.  

When the data is initially copied onto the cluster, a block size is specified, much like on 
a traditional file system. However, this block size is much larger, usually around 32-128 MiB, 
and it is used to determine when to split the input and commit the block. Each block is 
randomly committed to different nodes in HDFS, and optionally replicated to other nodes for 
redundancy. The result is that the input file is spread almost evenly across all of the machines 
in the cluster.  

When the data is processed on the cluster using MapReduce each of the APUs in a given 
block is processed as part of a Map Task. Each Map Task may run the Map function several 
times, once for each APU that it finds inside of the block. A fixed number of Map Tasks run 
on one machine at any given time, each taking up a Map Task Slot on the machine while they 
run. A Map Task Slot represents a multi-dimensional resource slice, consisting of CPU, 
memory and hard disk on a given machine in the cluster, and a fixed number are allocated 
prior to execution. 

                                                
7 http://hadoop.apache.org/ [last accessed: 17/04/12] 
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This method of breaking up the input is the fundamental means by which MapReduce 
achieves its parallelism automatically. In the Demux phase we aim to split our input 
video/audio into ‘chunks’ that are themselves a single APU and are as close as possible to the 
size of the blocks that HDFS is using to store and distribute the data. This makes each Map 
Task in our scenario nearly always a single invocation of the Map function, a single ‘chunk’ 
and single APU. This reduces the overhead in each Map Task, and also makes the ‘chunks’ as 
large as possible, helping improve the visual quality of the output. 

 
2) Amazon Cloud Architecture 

In order to run a Hadoop cluster for testing with access to the computational resources 
required for video transcoding, we designed and implemented a system for operating the 
cluster in the ‘Cloud’ using Amazon Web Services (AWS). Amazon Elastic MapReduce 
(EMR) is a service that coordinates the setup and configuration of a Hadoop cluster of a given 
size, allocating the correct number of computers and charging for the cluster on a pay-as-you-
go basis. Data is stored using Amazon’s Simple Storage Service (S3), where transfer to and 
from the cluster, keeping inside of the AWS data centre, is free-of-charge and data storage 
costs are charged per gigabyte-month. 

A ‘Transcode Job’ is defined as the process where a cluster transcodes one or more input 
files. We define a ‘Transcode Job Definition file’ that is stored on S3 and describes the 
settings for each of the transcodes that take place as part of a job. 

 

 
The workflow for a ‘Transcode Job’ using AWS is as follows and can be traced through 

Figure 9:  
1. The file(s) to be transcoded are uploaded to S3 from the submission machine using 

one or more HTTP connections. 
2. The workflow is submitted to EMR, specifying the processing parameters for the 

transcode job through the use of a transcode job definition file that is stored and 
uploaded to S3. 

3. Each transcode operation is then processed from the definition file. The master node 
then copies the file from S3, and the Demux process splits the file into chunks, 
distributing it randomly amongst each of the slave nodes. 

4. A Hadoop job is then submitted to the cluster’s ‘JobTracker’, the process in Hadoop 
that coordinates the allocation of tasks. Each slave begins processing the Map Tasks 

Figure 9. AWS cloud architecture overview 
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that it gets assigned. The ‘JobTracker’ assigns the Map Tasks to the slaves that are 
storing the data locally first, and the random distribution of blocks in HDFS means 
that nearly all slaves are able to process local data. Once all of the Map Tasks are 
complete, the Reduce phase runs, transferring the intermediate data from the 
appropriate nodes in the cluster and storing the output in the HDFS. 

5. The Merge operation then begins on the Master node, taking each of the segments of 
output from the Reduce phase from the distributed file system, and merging them into 
a final file that it then copies onto S3 for persistent storage. 

6. The final output is then copied from S3 back onto the machine that submitted it (or 
left on S3 and served to clients on the web directly).  We then repeat from step 3 until 
all the files in the job definition file are processed. 

Throughout the execution of a ‘Transcode Job’ the Master node on the cluster and each 
of the Map Tasks that are running on the slave nodes report their progress back to a key-value 
database system provided by Amazon called SimpleDB. We record the progress and the log 
output of each Map execution so that we can give an overall progress of the job as it executes, 
and inspect the logs if needed. We also record the time that each of the phases begins for each 
file being processed, and we use this information to analyse the performance of the cluster 
overall. All of this information is read directly out of SimpleDB by the machine that submits 
the job, and can be read incrementally as it is added.  

Figure 9 also shows the Map Task Slots running on each slave (denoted as small squares 
inside of the slaves), a total of 4 per machine. Each of these slots runs a ‘TaskTracker’ and it 
is this ‘TaskTracker’ that communicates with either the underlying HDFS instances on the 
local machine, or that of a remote machine to get the data for input to the Map Task it is 
currently running. It should also be noted that Hadoop manages the retry of Map Tasks that 
fail, and also the retry of any nodes that fail, providing a limited amount of redundancy to 
independent failures in the cluster. 

3) Map Task Resource Allocation 

Each of the slave machines running in the cluster are Amazon’s High-CPU Extra Large 
instances, with 7Gb of memory and 8x 2.33Ghz cores (more specifically two quad core Xeon 
E5410 processors). This makes them ideal for video transcoding, and when combined in a 
cluster, a formidable amount of computational power (~1.459 teraFLOPS, for a 19 node 
cluster). Whilst some of the memory in the physical machine is lost to the virtualisation 
system Amazon use to implement the Elastic Compute system (a modified version of Xen8), 
very little CPU power is lost, as the majority of the instructions operate directly on the 
underlying hardware.  

This would appear to make it ideal to have Hadoop allocate 8 Map Task Slots, and 8 
Reduce Task Slots to each machine, essentially forcing the CPU affinity of each task to one of 
the given processing cores. However, after some initial benchmarks, it became clear that for 
high-resolution files there was not enough memory available for 8 Map/Reduce Tasks, HDFS, 
the TaskTracker system and the Linux kernel on each machine. Map Tasks failed frequently 
and the Linux kernel was forced to kill high memory usage tasks, making the cluster highly 
unstable. In response to this issue, 4 Map Task Slots were allocated to each machine and the 
video encoder was set to enable multi-threading. After further benchmarking with different 
numbers of threads, 4 low priority threads per encoder were allocated, over subscribing the 
number of cores (32 threads vs. 8 cores). The side-effect of this is that in return for some 
overhead from the process scheduler in the kernel, we are able to use all of the processing 
power of the machine, even when one or more of the Map Tasks running on the machine can 
only use a single processing core (such as audio transcoding). It also brought down the overall 

                                                
8 http://www.xen.org/ [last accessed: 12/04/12] 
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execution time of Map Tasks for large resolution files, which helped to improve the 
performance of the cluster overall (this effect is explained further in our evaluation section). 

D. Solution Development 

1) Implementation Tools and Languages 

Apache Hadoop accepts Map and Reduce functions in the form of Java classes. However, 
Java does not have the support built-in or an external library with functionality to encode 
video with the performance characteristics that are required to be able to outperform 
sequential transcoders that use assembly optimisations extensively. FFmpeg9 is an open-
source project, written in the C programming language, that has good performance, support 
for the decoding and encoding of numerous compression formats, and the multiplexing of 
many container formats. Its underlying functionality is made available through several well-
defined libraries. We used the Java Native Interface (JNI) to implement the required 
interoperability layer so that FFmpeg could be used for our transcoder and to break up the 
video into chunks and merge them into a playable file. Serialisation of the input data into 
chunks for the Map phase and intermediate chunks for the Reduce phase uses a C serialisation 
library called TPL10. We define TPL structures that mimic the internal C structs of the 
FFmpeg libraries to store the video/audio data and stream information. 

2) Building and Testing 
The project was developed using a mixture of C++ and Java using Xcode and Eclipse 
respectively, primarily on Mac OS.  The native libraries were complied for Mac OS X and 
Linux 2.6, linking dynamically against the FFmpeg components. The Linux libraries were 
complied on-demand as the cluster was launched using a series of shell scripts. git11 was used 
for version control throughout the project, committing frequently and keeping a log of 
changes as development progressed. The Map and Reduce functions were tested 
independently using a mock Hadoop testing framework as part of JUnit. The transcoding 
components were tested with small console applications that called their respective functions 
without the use of Java. Each phase of the overall transcode process was then tested 
separately to ensure its output was correct, and then finally the overall system was brought 
together and tested in the cloud using Hadoop. The verification and validation of this output, 
and the performance of these tests form the basis of our results and evaluation.  

Development of the project took place incrementally, passing through several phases 
after which each could be tested: 

1. Initial sample prototypes in C++ interfacing with FFmpeg 
2. JNI boundary ‘boiler-plate’ code 
3. Demux system 
4. Map function 
5. Reduce function 
6. Map and Reduce job definition 
7. Transcode Job submission API for EMR. 
 

  

                                                
9 http://www.ffmpeg.org/general.html#SEC6 [last accessed: 21/01/12] 
10 http://tpl.sourceforge.net/ [last accessed: 17/04/12] 
11 http://git-scm.com/ [last accessed: 17/04/12] 
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VI. RESULTS 
We performed several experiments focusing on three key areas; parallel scalability, output 
quality, and compression. For each of these areas we used a common set of test input files 
chosen specifically to provide us with a range of input formats, quality settings and sizes. 
Table 1 lists these input files and their attributes in detail. The output in each of the tests is 
H.264 video, and AAC audio, in a Matroska12 container. Every audio and video stream is 
processed and present in the output; only the data streams are skipped (e.g. chapter markings 
and subtitles). We present their resolution in pixels/sec to simplify the comparison of actual 
video content stored per second, as the test cases have differing frame rates. 

 

TABLE 1. TEST INPUT FILES.  

 
Each of the input files, when broken up for parallel processing in the Demux phase, 

creates a different number of Map Tasks. Table 2 presents the number of Map Tasks per file, 
and the target block size that we chose to help increase their scalability.  The block size 
settings in Table 2 are used throughout all of the experiments. This block size dictates the 
approximate size of each ‘chunk’ that the Demux phase produces for processing, and also the 
size of each block in HDFS. Each block is distributed across the cluster of machines. We 
chose these block sizes based on a performance test on a subset of our cluster size range, 
using 2, 4 and 6 machines, varying the block size between 4MiB and 32MiB. 

 
     TABLE 2. CHOSEN TEST INPUT FILE BLOCK SIZES. 

# File Size Block Size Number of Map Tasks 
1 4.6MB 4 MiB 1 
2 183MB 8 MiB 21 
3 237MB 8 MiB 28 
4 364MB 8 MiB 43 
5 798MB 8 MiB 95 
6 1.54GB 16 MiB 91 
7 6.32GB 16 MiB 376 
8 10.52GB 24 MiB 417 

 
A. Scalability Results 

Our most extensive test was of the performance of the MapReduce solution across a varying 
number of machines. This was to ensure that our solution could scale properly, and to analyse 
the effect adding machines to the cluster has on the overall performance increase. 

                                                
12 http://matroska.org/ [last accessed: 26/04/12] 
13 All file size units are presented using SI decimal prefixes, e.g. MB = 1,000,000 bytes (not 1,048,576 bytes). 
14 Test file 1 has multiple video streams, effectively increasing its length without adding extra audio. 
15 Test file 5 has more audio than the other files to test performance when many audio streams are present. 
16 Test file 7 contains a 6-channel (5.1 Dolby Digital) stream at a sample rate of 48Khz per channel. 

# File Size13 Video pixels/sec Audio samples/sec Length (sec) Approx.  
bit rate 

Type (Video/Audio) 

1 4.6MB 2.4M pixels/sec x 414 64Khz 34 1090 kbit/s WMV/WMA 
2 183MB 5.76M pixels/sec 96Khz 1308 1121 kbit/s MPEG4/MP3 
3 237MB 3.84M pixels/sec 96Khz 2745 691 kbit/s H.264/AAC 
4 364MB 7.92M pixels/sec 96Khz 2607 1119 kbit/s MPEG4/MP3 
5 798MB 8.16M pixels/sec 96Khz x 6 streams15 2653 2405 kbit/s H.264/AAC+AC3 
6 1.54GB 15.6M pixels/sec (‘HD’) 88.2Khz 2470 4988 kbit/s H.264/AAC 
7 6.32GB 16.8M pixels/sec (‘HD’) 96Khz and 288Khz16 8284 6103 kbit/s H.264/AAC+AC3 
8 10.52GB 49.9M pixels/sec (‘HD’) 288Khz 9701 8670 kbit/s H.264/HEAAC 
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Figure 10 presents the performance increase that is gained over using a single machine for 
each of our test files, using cluster sizes ranging from 1 to 19 (and so with 4 Map Task Slots 
per machine, 4 to 76 Map Task Slots). We processed each of test files in three rounds to 
produce average performance values for the varying cluster sizes. To reduce the overall cost 
of the experiment, only odd numbered cluster sizes were tested in each round. We denote 
‘cluster size’ to be the number of slave machines in the cluster. The ‘speed up’ is with 
reference to the average time it took to process the file on a machine with a single slave, 
shown on the graphs below in Figure 10. This does not include the time for Demux or Merge, 
concentrating on the scalability of the distributed phases of our solution.  

It is clear from Figure 10 that the scalability of our solution varied depending on the 
input size and type. In the three larger test cases presented in the graph on the right, File 8 was 
able to achieve a performance increase of 16.4x that of a single node in the cluster, when 
using 19 machines. In the graph on the left, it can be seen that the smaller files were limited 
by their number of Map Tasks, achieving smaller performance increases. 

B. Visual Quality (PSNR) 
To analyse the visual quality of the output from the transcoder, we chose to use a common 
objective visual quality measurement called PSNR (Peak Signal to Noise Ratio, a logarithmic 
representation of Mean Squared Error). PSNR compares the output from a transcoder to a 
reference file to give a measurement of the quality lost during the transcode. As we are only 
interested in the difference between the output from our MapReduce transcode 
implementation, and that of our reference sequential transcoder17, we focus on the difference 
between the two PSNR values. Taking PSNR measurements compares every output frame 
with every original frame, producing a large amount of data per test file. We present the 
percentage of the output that produces frames of lower quality, the same quality and better 
quality, giving a succinct indicator of difference between the sequential and parallel 
transcoders. We also include the difference between the two average PSNR values for the 
reference and MapReduce output, giving us an indicator of whether the overall quality has 
been significantly affected. The standard deviation for the PSNR differences is also presented 
to make it clear if the differences vary wildly or are close to the average. 

We took measurements using two common types of transcode, Constant Rate Factor 
(CRF) and Average Bitrate (AB) to ensure that we assessed the quality for both output. CRF 
aims to maintain a given visual quality throughout, whereas AB aims to target a particular 
output bitrate (and so file size) for the file overall. AB is important for files that are streamed 
via bandwidth-constrained connections, where a large change in bitrate for a scene that 

                                                
17 The transcoder used was the FFmpeg command line transcoder, found at: http://ffmpeg.org/about.html [last accessed: 16/04/12] 

Figure 10. Performance increase over a single machine as the number of Map Task Slots in the cluster increases. 
N.B. The y-axis scale differs between the graphs. 
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requires more data to maintain its quality (as happens in CRF) would prevent the video from 
playing back smoothly. CRF is mainly used for files that are on local secondary storage, such 
as downloads from online video stores. 

In Table 3 positive differences imply an improvement in visual quality over the 
reference file and negative differences imply degradation. 

TABLE 3. PSNR DIFFERENCE VALUES FOR CRF AND AVERAGE BITRATE ENCODINGS 

# Input Size CRF PSNR 
Difference Counts 

AB PSNR 
Difference Counts 

Average & 
Standard Deviation 

CRF PSNR Difference 

Average & 
Standard Deviation 

AB PSNR Difference 
 Lower  Same Higher Lower  Same Higher Average Std. Dev. Average Std. Dev. 

1 4.6MB N/A18 N/A18 N/A18 N/A18 

2 183MB 15% 69% 15% 52% 1% 47% 0.0011 dB 0.0850 dB -0.0651 dB 0.8877 dB 
3 237MB 42% 18% 40% 45% 0% 54% 0.8878 dB 0.2718 dB -0.0006 dB 0.9693 dB 
4 364MB 29% 45% 26% 43% 0% 57% -0.0972 dB 1.0717 dB 0.0345 dB 1.5434 dB 
5 798MB 27% 46% 26% 44% 0% 56% 0.0008 dB 0.2504 dB 0.1986 dB 1.3777 dB 
6 1.54GB 40% 15% 44% 47% 0% 52% 0.0307 dB 0.8156 dB 1.1796 dB 4.5603 dB 
7 6.32GB 33% 35% 32% 41% 0% 59% -0.0198 dB 1.3605 dB 0.7466 dB 3.3237 dB 
8 10.52GB 34% 38% 28% 44% 0% 56% -0.0185 dB 0.2992 dB 0.0385 dB 1.9680 dB 

Mean Values: 0.1121 dB 0.5935 dB 0.3046 dB 2.0900 dB 

When the encoder is using CRF, it is clear that the average quality produced is not 
affected greatly by our method of ‘chunking’ the input. The average PSNR difference in all 
but one of the files is less than 0.05 dB. In some examples (especially File 2) the average 
quality is greater than that of the sequential transcoder for CRF. It should be noted however, 
that the differences in PSNR for CRF occurred largely around the chunk boundaries. In all of 
the CRF tests a sizable percentage of the frames had identical quality to that of the reference 
transcoder. The standard deviation of the PSNR differences for CRF was low, indicating that 
most of the differences were close to the mean and a low number of frames had a greatly 
improved or degraded quality.  

When encoding using AB, it is also clear that the average quality produced is not 
affected greatly by our ‘chunking’ of the input. However, unlike CRF, nearly every frame was 
different to that of the reference transcoder, resulting greater standard deviation and overall 
visual quality degradation. Figure 11 shows an example of a sample of 10,000 frames from 
Test file 4 when encoding using AB and CRF. It shows that using CRF produces better visual 
quality than AB, resulting in many frames that have no difference to the reference transcoder.  

                                                
18 As Test file 1 contains multiple video streams, it is excluded from this test. Our MapReduce implementation does not support multiple 

output target average bitrates for different video streams, and so it would be unfair to include this test file.  

Figure 11. PSNR difference over reference transcoder for a 10,000 frame sample in Test file 4. 
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C. User Study Results 
To ensure that the quality difference we found during a visual quality analysis was not 
perceptible to the viewer we conducted a user study. The candidates compared 2 sets of 2 
videos; each set comparing the output from our solution with the output from a reference 
sequential transcoder. The first set was a video encoded using CRF, and the second set was a 
video encoded using AB. For each comparison we asked participants which video, if any, 
they preferred with respect to colour, visual quality, audio quality, audio/video 
synchronisation, and overall preference. The results from the trial produced 2 scores for each 
pair of video clips, one for each video clip in the set. Each score corresponded to a preference 
the user gave to a given property of the clip, adding 1 to the score for each, with a maximum 
of 5. Each candidate was presented with the clips in a random order for each pair, and the 
order of the video sets was randomised. This ensured that the order the videos were presented 
in had no unexpected effects on the results. Each random order from the 8 possible 
permutations was performed twice, totalling 16 candidates. 

By taking an average of these scores across all of the candidates, we are able to obtain 
enough data to perform a two-tailed T-test. The T-test shows us that there is no significant 
difference between the mean scores for either video clip, for either of the test videos trialled. 
We can therefore be confident that the output from our solution is not perceptibly different 
from the output of the reference sequential transcoder. Table 4 presents the mean and standard 
deviation scores for each of the clips, and the T-value for the two-tailed T-tests. 

   TABLE 4. USER STUDY RESULTS   

 Video 1 (CRF)  
MapReduce 

Video 1 (CRF) 
Reference  

Video 2 (AB) 
MapReduce 

Video 2 (AB) 
Reference 

Mean: 0.69 0.56 0.88 1.31 
Standard Deviation: 1.14 0.96 1.15 1.45 
T-value: 0.34 -0.95 

 
D. Output File Size Comparisons 

To evaluate the effect that breaking up the transcode operation has on the compression of the 
video, we compared the output files sizes of our MapReduce transcoder with that of the 
reference transcoder for both CRF and AB encoding, using the same output data as the visual 
quality tests. 

In table 5, positive differences imply an increase in file size over the reference, 
conversely negative values imply a decrease. 

    TABLE 5. OUTPUT FILE SIZES FOR VARYING TRANSCODE SETTINGS   

# Input Size CRF File Size 
% Difference 

Average Bitrate 
% File Size Difference 

1 4.6MB -1.8% N/A 
2 183MB 0.2% 0.9% 
3 237MB -6.2% 0.7% 
4 364MB -2.5% 1.1% 
5 798MB -11.4% 0.5% 
6 1.54GB -0.8% -1.6% 
7 6.32GB 5.8% -0.1% 
8 10.52GB 0.0% -0.6% 

As we can see from the Table 5, the AB file compression was not affected by our input 
segmentation by any more than 1.6%. CRF, however, was affected more substantially, with a 
maximum of 11.4%. 
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VII. EVALUATION  
Our original research question for this project was, ‘Can the MapReduce paradigm be used for 
video transcoding in an effective manner, so that it scales well across machines, has 
comparable output quality to current sequential encoders, and improves performance overall?’ 

We will now evaluate each aspect of this question, and comment on the overall 
suitability of MapReduce for video transcoding based on our performance results and 
evaluation of the output. 

A. Solution Strengths and Limitations 

1) Can the solution scale over many machines effectively? 

Making use of the cluster effectively is an important part of any distributed system, especially 
one that uses pay-as-go IaaS service, such as ours. Ensuring that when further machines are 
added to the cluster that their extra computational power is taken advantage of, is important to 
our solution being useful in real world scenarios, which often have various elastic loads. 

Our scalability tests (Figure 10) clearly showed that files smaller than the block size do 
not gain any performance increases (e.g. test file 1). This is because with only one block to 
process, only one Map Task is created and so the capacity of the cluster is always under-
utilised. Test files 2, 3 and 4 clearly stop gaining any large performance increase after the 
number of Map Task Slots in the cluster exceeds the number of Map Tasks they have to 
process (21, 28 and 43 respectively). Files 5 and 6 scaled well initially and always had enough 
Map Tasks to fully utilise the cluster, although their rate of increase in performance 
decreased, as in the other test files. In 5 and 6, there was no increase in performance between 
17 and 19 machines, highlighting the extremes of their scalability. Our two largest test files 
scale best overall. 7 and 8 achieve constant performance increases through all of the tests, and 
look to be able to scale further as cluster size is increased, beyond our maximum of 19. 

None of our test files showed an increase i5 and 6 n performance equal to the number of 
machines in the cluster. This is because of various overheads and inefficiencies in Hadoop 
and the MapReduce process. The believe the two main contributory factors are: 

Task Overhead: Every Map Task that runs incurs an overhead in start-up and shutdown 
time, and numerous small tasks cause this overhead to take up more of the execution time 
per Map Task.  
“Straggler Tasks”: The last ‘wave’ of Map Tasks to run contains many tasks of different 
execution times, but the total time it dictated by the slowest Map Task in the wave instead of 
utilising the entire cluster efficiently. This execution time difference could be reduced 
through better choice of the size of APUs in each block, at the sacrifice of some data not 
being local to every machine. Making the Map Tasks smaller at the sacrifice of visual 
quality could also reduce the disparity, but increase start-up/shutdown overhead. 

It appears that the best use case for scalability for our implementation is for large files 
(e.g. 7 and 8), which split well, and have medium-to-high pixels/sec to process during each 
Map Task. 

Although there is a best-case scenario for transcoding video using MapReduce, our 
scalability results succinctly show that the system does work well for most non-trivial tasks, 
where a performance improvement would be desirable. In our tests, we did not allow for 
multiple jobs to be submitted to the cluster at once and we did not allow for any sort of 
dynamic resizing of the cluster. This was to ensure the results were comparable and fair. If the 
implementation was to be used in a real world scenario, the cluster utilisation could be kept 
high by running multiple transcode jobs at a time and adding more machines as needed. This 
makes the MapReduce model much more flexible in a cluster scenario than simply allocating 
a single input file to each machine in a cluster. 



 

18 

2) Does the ‘chunking’ degrade the visual quality of the encoding? 
It is clear from the PSNR data in Table 3 and Figure 11 that the output quality from our 
solution differs from the reference in both the CRF and AB encoding types. We compared an 
example CRF setting, and an example AB setting to give us an idea of how much effect the 
chunking of the input has on quality.  

The AB algorithm relies on information about previously encoded data to make 
optimisations to quality without affecting the average output bitrate.  As it only has a record 
of the frames it has previously encoded in the current chunk, and not the whole file, it cannot 
make these optimisations as well as in the reference transcoder. This results in AB’s output 
frame quality varying much more wildly than that of CRF, as Figure 11 shows. CRF relies on 
the ability to ‘look ahead’ into the input data before making a decision about frame quality, 
but it seems to be less sensitive to being parallelised. 

Whilst the output quality did differ, the user study confirmed that it was difficult for a 
human to perceive the difference overall. Our study aimed to see if a human could detect the 
difference between our encoded videos and their associated reference video, as we know there 
is a difference from the PSNR analysis. The focus of the study was on whether participants 
could perceive sizable differences in a normal viewing situation, rather than examining the 
video carefully to notice minor differences. To this extent, participants were presented each of 
the clips only once and were unable to compare the clips ‘side-by-side’. The results showed 
participants were unable to notice any significant differences between the videos. Many of the 
candidates commented in their questionnaire on how difficult it was to actually notice any 
difference at all. It should be noted that in Video 2 of the user study, when using AB, the 
average score for the reference version was higher than the MapReduce version. This was a 
correct observation by the participants, but was not statistically significant enough to change 
our overall analysis. 

Overall, our MapReduce implementation performs adequately with respect to visual 
quality. It is clear that the output is different from the reference transcoder, especially when 
using AB, but the amounts by which they differ do not appear to be significant in our test 
cases. 

3) Is the file compression affected? 
The difference in file size is least apparent in the Average Bitrate (AB) case, where the 
encoder is targeting a specific bitrate and file size. The differences for CRF encoded video 
vary much more than AB. In most cases, the file size output by the MapReduce transcoder is 
smaller, evidence of the CRF algorithm being affected by the chunking. CRF makes use of a 
large input buffer, something that chunking prevents from occurring. It uses this buffer to 
assess which frames can be encoded with less data and have the least perceptible change in 
quality (rather than actual statistical quality difference, such as PSNR). It is clear from Table 
5 that CRF does not produce the same file compression when it is been transcoded using our 
MapReduce solution. 

Overall, however, the file size differences are not large. In the AB case, where the output 
size is of most importance to the transcode, the differences are negligible. In the CRF case, 
where quality is the focus of the transcode, the difference is most substantial, but does not 
change the output file size by more than 12%. 

4) Is there a performance increase overall? 
In most of the test files we were able to achieve a performance increase over a reference 
sequential encoder when using a cluster of machines. In the best case, test file 8, the 
performance increase, if we include the time to Demux and Merge the file, was 10.2x that of 
the reference transcoder when using 19 identical machines (and one low cost master node). 
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This took the overall transcode time from 15,267 secs on a single machine with the reference 
transcoder, to 1492 secs on the cluster.  

When comparing our results against our reference sequential transcoder, it is clear that 
the overall performance increase is reduced when include our sequential Demux and Merge 
phases. If the input file for processing was to be output in several different types and quality 
levels, the Demux process could be performed once, and then reused. The cost of the Demux 
operation is largely constant irrespective of cluster size, and so its percentage cost worsens as 
execution time is reduced. This makes the use of our solution most attractive when the input 
is processed several times for different settings, and the Demux cost can be spread across each 
of the executions, especially when the input is large and well suited toward scalability. 

Making the Demux and Merge phases Hadoop jobs, that run in parallel over many 
machines would be possible in some cases. The Demux phase could be made parallel through 
the use of the distributed file system (S3) that it is stored on, and in some cases, where the 
output type supports segmentation, the Merge could be parallelised as well. However, this 
was deemed outside of the scope of our work, due to its complexity and restriction of our 
output type. 

B. Project Approach 

1) MapReduce 

The choice of MapReduce as a paradigm for distributed transcoding allowed for rapid 
development of the initial solution, but finding a balance for block size was difficult. It was 
desirable for the block size to be as large as possible to reduce the visual quality degradation 
but small to increase scalability.  

Also, tuning the settings of the cluster to maximise performance showed Hadoop and the 
MapReduce paradigm to be quite inflexible. The settings for Map Task Slots and general 
machine utilisation are static, and chosen when the cluster is initially setup. Using blocks of 
data as the only method to break up input for parallelisation limits the level of parallelism that 
can be achieved, especially when this has to be fixed and cannot be modified easily after 
Demux. The current version of Hadoop does not yet offer enough dynamic resource allocation 
to fully utilise the cluster it runs on for processing tasks, such as ours, that have different 
requirements per job.  

Hadoop 2.019 (which is currently in beta) aims to address some of these dynamic 
requirements by decoupling resource management from the applications that run on the 
cluster. It allows for the cluster to run modified versions of MapReduce, or even MPI 
(Message Passing Interface) paradigm applications, whilst allowing for the resource 
management to customized and controlled separately. Hadoop 2.0 should be able to address 
our dynamic configuration and resource allocations issues, however it is currently unavailable 
for use in Amazon Elastic MapReduce and so outside the scope of this project. 

2) Stream Decomposition 
The decision to break the content up into its constituent streams of audio and video had 
ramifications on the design of the Demux phase, resulting in the complexity described in III. 
B, Demultiplexing and Chunking. However, it allowed us to improve the simplicity of the 
Transcoder and Mapper and allowed for us to use spatial parallelism over several threads on 
each machine. This use of spatial parallelism was made efficient by only having to consider 
one stream at a time and resulted in us being able to process high-resolution Map Tasks 
without running out of memory on our nodes. 

Splitting up the streams did add more complexity to the MapReduce design than was 
anticipated. It arguably added more complexity in the Demux, Reduce and Merge than it 

                                                
19 http://hadoop.apache.org/common/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html [last accessed: 28/04/12] 
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gained in simplicity of the Transcoder, but we feel the performance and memory advantages 
it gave us justified the design decision. 

VIII. CONCLUSION 
We have successfully verified the feasibility of MapReduce as a solution for video 
transcoding and proposed a method for decomposing the streams of input efficiently. Whilst 
we found that the scalability of the solution is limited with smaller files, large test cases 
perform well. The visual quality of our output was degraded when using both the AB and 
CRF encoding strategies, but our user study confirmed that this was not noticeable when 
perceived in normal viewing conditions. The video compression achieved by our solution did 
not differ significantly from that of the reference transcoder.  

We believe that future work should be concentrated on implementing a 2-pass encoding 
procedure that would improve the quality and compression of our output, at the detriment of 
some performance. 2-pass encoding decodes the entire video initially, calculating statistics 
about each of the frames and the video as a whole, which are then used to optimise the chosen 
encoding strategy. Whilst this does add extra computation to the beginning of our transcode 
operation, it would provide the encoders with all the information they require to perform 
optimally. The complexity of this procedure limits the flexibility of the transcoder and 
increases the complexity of the transcode overall. Now that we have proven MapReduce as a 
platform for transcoding and presented a solution for processing video correctly, we feel that 
2-pass would be an ideal extension to further develop the solution into a feasible production 
transcoder, for use in elastic load scenarios in ‘The Cloud’. 

Further investigation into how Hadoop 2.0 can be integrated into our solution to solve 
the resource allocation issues, and to allow us utilise the cluster efficiently in the last ‘wave’ 
of tasks, is of interest. Combining this work with 2-pass transcoding, would allow custom task 
scheduling to break up the input into different sizes for each wave, ensuring that we process 
the video as efficiently as possible and still maintain visual quality throughout. 

To summarise, we believe MapReduce, whilst having originally had a data-processing 
oriented background, provides a good platform for distributed video transcoding. MapReduce 
can clearly be used for computational loads, as our results and evaluation have shown, and 
improvements to Hadoop look to make this more viable in the future. 
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