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Foreword 

From the viewpoint of an "industrial" this book is most welcome, as one of the 
most significant demonstrations of the maturity of Prolog. 

Logic programming is a fascinating area in computer science, which held for 
years - and still does - the promise of freeing ourselves from programming based on 
the "Von Neumann" machine. In addition computer programming has long been for 
solid theoretical foundations. While conventional engineering, dealing mainly with 
"analogical complexity", developed over some hundred years a complete body of 
mathematical tools, no such toolset was available for "digital complexity". The only 
mathematical discipline which deals with digital complexity is logic and Prolog is 
certainly the operational tool which comes closest to the logical programming ideal. 

So, why does Prolog, despite nearly twenty years of development, still appear 
to many today to be more of a research or academic tool, rather than an industrial 
programming language? 

A few reasons may explain this: 

First, I think Prolog suffers from having been largely assimilated into - and thus 
followed the fate of - Artificial Intelligence. Much hype in the late 1980 created 
overexpectations and failed to deliver, and the counterreaction threw both AI 
and Prolog into relative obscurity. In a way, maybe this is a new chance for the 
Prolog community: the ability to carry out real work and progress without the 
disturbance of limelights and the unrealistic claims of various gurus. 
Second, programming in Prolog is a new experience for computer professionals. 
To quote Kowalski, "algorithm = logic + control", the beauty of logic program­
ming is of course the ability for a developer to focus on the problem, describing in 
a coherent, unified and declarative formalism the knowledge about the problem­
domain and the problem itself. But all programmers who learned from the very 
begining to think primarily about control and about the "machine", making a 
u-turn is a cultural shock and may take a whole generation to change. 
Third, from an industrial developer's point of view, Prolog appeared as a "mixed 
blessing" in its early years. For the average DP manager, burdened by the main­
tenance of thousands of line of Cobol (spaghetti) code, eating up to 70% of his 
resources, the declarative nature of Prolog and some of its features like referential 
transparency appeared attractive as a promising tool for alleviating his biggest 
burden: maintenance. On the other hand, Prolog had a number of shortcomings, 
namely: difficulty in interoperating with other languages, the lack of explicit con­
trol directives, of modularity, and of development environments. This latter point 
was especially serious as the unconventional programming paradigm of Prolog 
requires completely new guides for design, programming, and debugging. 

And finally, the dozens of dialects, from various universities and small companies 
(usually university spin-offs) left an impression of immaturity. 
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Pierre Deransart, AbdelAli Ed-Dbali and Laurent Cervoni's book appears as a 
major advance in giving credibility to Prolog through the first clear and readable 
account of the new standard, with many practical examples and comments. The 
authors - who were involved in the task-force for the definition of the standard 
Prolog - are a perfectly representative team of the academic and industrial world, 
thus bringing together the theoretical rigour and pedagogical clarity of the former 
and the pragmatism of the latter. The result is a book which should be on the book­
shelf of students and of all those who are interested in the real-world applications 
of Prolog. 

A standard is a significant step in improving the industrial strength of Prolog: 
I am convinced that this book is a major contribution to the transformation of 

programming from an art to an industrial, engineering discipline. 

Nanterre, January 1996 

Charles Biro 
Manager of Managing Consulting Services - Technology Advisory 
Services, EDS-France 



Preface 

As I breast the tape on completing a lO-year marathon as convener and project 
editor for the Prolog standardization working group, Pierre Deransart rings me up, 
"Can you write a preface for our book?" 

The late 1970s were a bleak period for Artificial Intelligence (AI) in Britain. A 
report by Professor Lighthill had suggested that the whole subject was flawed and 
had no promise. Such reports are always eagerly accepted by politicians, and AI 
research funding became almost impossible to obtain. 

Then, in 1982, Japan announced its Fifth Generation Computer Project, based 
on Prolog, and British politicians discovered UK had a world expertise. They woke 
up: microprocessors and IT were important - Britain has to do something. The 
Alvey Project encouraging collaborative research was quickly set up. I worked at the 
National Physical Laboratory (NPL) which, being publicly funded, was ineligible 
to take part and receive yet more public money. Its current remit was neither to 
compete with industry producing products, nor to compete with universities in pure 
research. However, standardization was a public good, worthwhile, and therefore 
approved. NPL had experience in the standardization of programming languages, 
and I had been editor of the British Standard BS 6154 (a standard variant of Backus 
Naur Form). So British Standards Institution (BSI) agreed to set up a programme 
to define an international standard for Prolog with NPL providing the convener and 
secretariat. Prolog had spread all over the world, and a British standard would be a 
waste of time and unlikely to influence the progress of Prolog. France, in particular, 
had pioneered and had a strong interest in Prolog. 

Work therefore started in Britain in late 1984 with membership open to any­
one in any country, and a firm intention that work would continue internation­
ally as soon as a New Work Item Proposal was approved. AFNOR (Association 
Fran~aise de Normalisation) formed a Prolog group in 1985, and cooperation pro­
ceeded smoothly. For reasons outside the control of BSI and AFNOR, an interna­
tional working group, ISO/IEC JTCl/SC22 WGI7, was not formed until the end of 
1987. Delays then resulted because many decisions taken by the standards groups 
in BSI and AFNOR were re-opened and re-discussed. 

The standardization of most programming languages is usually initiated by 
experts in the language, but novices at standardization. At first, therefore, there 
was great optimism and enthusiasm - Prolog was a simple and logical language: 
several people had produced formal definitions of the language, and a standard 
could be prepared in two years. We would concentrate on standardizing existing 
practice. In fact, existing systems were found to have unsuspected but important 
differences, the formal definitions were incomplete, and some changes were necessary 
for general international acceptance. 

One key issue was how to define the semantics of Prolog in the standard: in 
English (or French) it would be difficult to avoid ambiguity, unintentional incom-
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pleteness, and to check for consistency and accuracy. Pierre Deransart claimed that 
he could define all the semantics in "stratified logic" which would be both formal 
and yet the basis of an executable interpreter. Further, the method was sufficiently 
powerful to cope with any feature that the standardizers might decide should be 
included in the standard language. 

I remember my anxious 1986 query, "Are you sure this is so? The standardizers 
will not be constrained by difficulties of definition. And can you see the definition 
through to completion and publication?" (I was aware of the difficulties and delay 
that can arise when a project editor has to abandon work). 

I also remember his reply, "Yes, I'm sure". And indeed he did see the work 
through to completion, and coped with all the changes. 

The BSI/ AFNOR decision to rely on a formal semantics became a contentious 
issue when the standardization became fully international. Some countries claimed 
such a definition was difficult to understand, others believed it was unnecessary. In 
the end, it was decided to make the formal definition an "informative" annex of 
the standard, and to rely on an "informal" semantics in the body of the standard. 
However, any programming language standard has to be precise, and it is arguable 
whether the precise informal semantics is any simpler and easier to understand than 
the formal semantics. 

I think many members of the standardization working group have failed to ap­
preciate the beneficial side effects of the formal definition. Pierre Deransart and 
AbdelAli Ed-Dbali have needed to read each draft extremely carefully in order to 
keep the formal specification consistent with the changes. This meant they discov­
ered many errors and inconsistencies in the drafts. And their tools, which permit 
them to obtain an executable version, have allowed them to check almost all the 
examples in the standard. 

Standard Prolog is a version of Prolog which makes plain what experts had 
known but never expressed, for example, when unification is undefined. The stan­
dard also makes it plain that the semantics is based on the abstract (not the con­
crete) syntax. Standard Prolog programs are also simpler to debug because mis­
prints in programs can be found simply, and invalid arguments are more likely to 
raise an exception t.han result in silent failure. A final benefit is that safe powerful 
optimization is possible. 

All Prolog users and implementers will benefit from standard Prolog, and I 
am pleased Pierre and his colleagues have written the first book about it. Their 

executable specification of Standard Prolog (available by anonymous ftp) will 
enable readers to discover what Standard Prolog requires, without needing to 
read the standard itself. 

January 1996 

Roger Seowen 
ISO/IEC JTC1 SC22 WG17 (Prolog) convener and project editor 
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1. Introduction 

"Prolog, the Standard", is the first reference manual on the ISO interna­
tional standard [2] on the programming language Prolog called in this book 
Standard Prolog. 

The standardisation of Prolog is the result of ten years of international 
discussions which began in 1985, which ended in February 1995. In a paper 
entitled The birth of Prolog [4], Alain COLMERAUER and Philippe ROUSSEL 

suggest 1972 as the birth date of the language. Therefore it took more than 
ten years to feel the need for a standard: the explosion of many dialects based 
on the seminal ideas of the inventors imposed this idea progressively. It took 
another ten years to achieve the project. 

This book is its result presented in a fully comprehensive form. 

Prolog is used in industry, in many areas such as computer aided manu­
facturing (operations research, CAD, robotics, circuit design and realisation, 
planning), software engineering (test generation, prototyping and system 
programming, specification, windowing, multimedia and documentation), AI 
systems (expert systems, knowledge bases, man-machine interfaces, natural 
languages analysis), data bases, and application fields like transportation, 
telecommunications, and banking. There are certainly many other potential 
domains of use. The current trends seem to be use of Prolog mixed with 
procedural languages as C or C++. 

Prolog is also the kernel language of many emerging logic programming 
languages which support constraints, functions, and concurrency. 

Existing practice has shown that the use of Prolog increases software 
reliability, reduces production costs, and facilitates product maintenance. 

This book contains a full description of Standard Prolog together with 
an executable specification. The latter is the updated version of the one which 
has been maintained by the authors during the whole process of standardisa­
tion. With this book, any application programmer or Prolog user will be able 
to get acquainted and start working with any standard conforming processor. 



2 1. Introduction 

The book is organised as follows: 
The first three chapters present an introduction to basic concepts of the 

language and some auxiliary concepts which are needed to understand its 
semantics. The main features are: term structures, the unification, and the 
execution model which explains what non determinism (viewed as the multi­
plicity of solutions), backtracking, and control are. 

The fourth chapter is devoted to the description of the primitives of the 
language, consisting of 112 built-in predicates in alphabetical order. Each 
built-in predicate is described in such a way that it is, as far as possible, 
self-explanatory by reading a single page. This has been obtained at the cost 
of some redundancy, but facilitates understanding. 

The remaining chapters are devoted to particular aspects of Standard 
Prolog: arithmetic functors, environment with the file system (sources and 
sinks), flags and directives, syntax, and finally some explanations aimed at 
helping to write portable programs. 

The printed part of the book is completed by a short bibliography and an 
annex, which contains a glossary with the definitions of additional concepts 
used in the book, elements on the lexical analysis, an introduction to the 
non-printed part (the ftp package), compliance rules, and finally a thematic 
index of the built-in predicates and a full index of the main words referring 
to their definition in the text. 

The non-printed part is a package available on the ftp server of Springer­
Verlag. The package contains among different files a runnable specification 
which may be used for two different purposes. One is to try the standard, the 
other is to test a standard conforming processor. 

The runnable specification is a complete description of the syntax of Stan­
dard Prolog and all the built-in predicates; it is a simulation of the exe­
cution model and can be run on most existing processors and allows many 
more examples to be tested than one could imagine. However, it is not at all 
optimised and only very small pieces of code can be tested. 

The package also contains the file of all the examples which have been 
discussed by the standardisers and more. So it is possible to use this file to 
verify whether the processor you are using conforms to the standard, using 
these examples as benchmarks. 

Enjoy playing with it. There are some more documented files in the pack­
age that you will discover, to help you to get fully acquainted with Standard 
Prolog. 

This book describes precisely and completely Standard Prolog in a 
simplified manner. It is even more complete than the standard itself, thanks 
to the runnable specification: it contains potentially an infinite number of 
examples! However some features are not completely described in this book: 
the arithmetic corresponds essentially to the already standardised Language 
Independent Arithmetic. 
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It should be noted that the ISO standard specifies very precisely what 
the syntax and the semantics of the language are. For this purpose it uses 
a number of concepts which are carefully defined in it with no intention to 
standardise them. Therefore, in order to simplify its presentation, some of the 
concepts have been modified or simply abandoned. The fact that these con­
cepts are not used or defined here does not mean that the description contains 
gaps. It means only that we adopted a more informal presentation than the 
standard when we thought it was clear enough, or that some concepts, result­
ing from long discussions over years and international compromises about an 
incompletely designed language, could be removed in an attempt to re-define 
it with a thorough knowledge of it. 

It is also important to observe that the work on the standardisation has 
not been completely achieved. A second part concerning a module system is 
in progress, but will still require some years for its completion. Therefore this 
book does not describe any module system. 

One may be unhappy with the design decisions made by the standardis­
ers, sometimes after arduous discussions. The fact remains that the standard 
represents an exceptional effort of reflection in an attempt to describe com­
prehensively all features of a Prolog language. Most of the previous attempts 
remain to a large extent informal. The users are supposed to learn by prac­
tising some system and little effort has been devoted attempting to explain 
"full" Prolog. The result was that all dialects were different, not just due to 
creative variations, but also because of the informal descriptions, the language 
being finally defined by "what had been implemented". 

Standard Prolog is the first logical programming language to be stan­
dardised and the first Prolog dialect to be described with such a precision. 
One may hope that this will help in comprehending, teaching, and learning 
it, and help to widen its dissemination. 

Standard Prolog is also an attempt to facilitate the writing of portable 
applications. This has of course some intrinsic limits. The choice made by 
the standardisers has been to limit the standard to a "kernel". This means 
that existing processors may contain many other primitives. Moreover some 
features depend on the environment in which processors are run. In order to 
clarify these aspects different notions are used in the description of Stan­
dard Prolog which allow its limits to be understood. A natural question 
thus arises: to what extent does my "standard conforming" processor con­
form to the standard? The answer depends on the category to which the 
unspecified features belong. There are four categories, which are common to 
any standard. 

- Implementation defined feature is a feature which must be documented 
with a processor. Example: the maximal integer. 
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- Implementation dependent feature is a feature which exists but does not 
need to be documented, hence a programmer should not rely on their 
specific properties. For example, the ordering of variables. 

- Undefined feature is a feature which has no specification at all in the stan­
dard. Implementors are free to do "what they want". Portable programs 
should not rely on it. 

- Specific feature is a feature which is considered as an allowed extension 
of the language. Of course programs using such feature are not portable 
without adaptation, or may not be portable at all. For example, definite 
clause grammars. 

Such notions give an idea of what will be found in a conforming to the 
standard processor. Requirements that such a processor should fulfil are re­
called in the annex. 

Finally, notice that this book is a good complement to user's and reference 
manuals accompanying a standard-conforming Prolog dialect which contains 
many more primitives and specific features. Some references are given in the 
bibliography for the interested readers, in particular [3, 7, 6] are tutorial 
introductions. However, to read this book, no specific knowledge in logic 
programming is assumed; only some familiarity with programming language 
description (syntax rules) or with elementary mathematics is required. 

Paris, January 1996 

Pierre Deransart, Research Director, INRIA-Rocquencourt 
AbdelAli Ed-Dbali, Associate Professor, University of Orleans 
Laurent Cervoni, EDS International Senior Consultant, Paris 



2. Prolog Data Structures 

Basic abstract data structures, sufficient to understand the execution model 
and the meaning of the built-in predicates, are introduced. The full syntax 
of these data structures is given in Chapter 9. 

2.1 Terms 

In Standard Prolog a unique data structure is used: terms. 

2.1.1 Definition 

A term is defined recursively by applying a finite number of times the follow­
ing syntax rules!: 

Term 

Com pou nd-term 

Var I Atom I Integer I Float 
Compound-term 

Atom( Term {, Term }* ) 

A term is defined as a variable, an atom, a number (an integer or a float) 
or a compound term, i.e. a functor whose name is an atom together with its 
arguments (a non-empty sequence of terms between parentheses). 

The objects used to build terms belong to the following disjoint sets: 

- The variables denoted by a sequence of letters, digits or underscore char­
acters, beginning with an upper case letter or by the underscore character. 
X1, _y2, Var, Atom, A_variable are examples of variables. Variables 
are used to refer to any object. 

1 Simplified notations are used for syntactic rules: "::=" holds for the defining 
symbol, "I" holds for alternative, "{ ... r" holds for contents repeated zero or 
more times. 
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- The atoms denoted by a sequence of letters, digits or underscore charac­
ters beginning with a lower case letter or a sequence of arbitrary characters 
insinglequotes.x1, atom, '1', 'This is a single atom', this_too 
are examples of atoms. The null atom is denoted ". Atoms formed with 
any characters may be unquoted if there is no ambiguity (see Section 9.5.1 
for details). The sequence of characters forming the atom between the de­
limiters is sometimes referred to as the atom name. Example 'aaa' and 
aaa denote the same atom whose atom name is aaa. Quotes may be nec­
essary. For example, the atom' 'whose atom name is a sequence of 
space characters cannot be unquoted2 • 

Atoms are used in particular to denote names of predicates or functors. 

- The numbers are, as usual, partitioned into integers (negative, null and 
positive integers) and floating-point numbers, or in short floats (see Sec­
tion 6.1.2 for more details). They will be denoted as usual. 33, -33, 33.0, 
-0.33E+02 are examples of integers and floats. 

- The compound terms are characterized by the name of their functor, called 
the functor, and the number of their arguments, called arity. The outer­
most functor of a term is called its principal functor. 
Here are some compound terms: 
. (. (t,e),. (r,m» 
+(X,1.0) 

':-'(legs(X,4), animal(X» 

the functor' , has arity 2. 
the functor '+' has arity 2. 
the functor 'f' has arity 3 and 'g' 
arity 2. 'f' is the principal functor. 
the functor 'animal' has arity 1, ' . -, 
and 'legs' arity 2. 

Atoms and numbers form the constants also called atomic terms. Atoms 
may be viewed as functorsofarity O. hahaha, foo, 'Bar', 1.2, -0.33E+02 
are atomic terms. 

A term is said to be ground if it has no variable in it. The (set of the) 
variables of a term is the set of all the variables occurring in a term. It is 
empty if the term is ground. 

2.1.2 Order of the, terms: the relation term_precedes 

In Standard Prolog the terms are totally ordered according to the following 
rules which define the binary relation term_precedes. 

2 Atoms may also be written with graphic characters (11,3) and escape characters 
(\). For example «1=, \+ are atoms. In a quoted atom the quote character (') 
and the escape character must be duplicated. So "" is the atom consisting 
of a single quote and '\\1' is the atom \I. An atom may also be bracketed. 
For example \+ may be written (\+) or '\ \+', the atom this_too may also be 
written (this_too) or 'this_too'. 
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- All variables precede all Hoating-point numbers, which precede all integers, 
which precede all atoms, which precede all compound terms. 

- All variables are totally ordered but the order is implementation de­
pendent and may vary during computations. 

- All numbers (of the same type) are ordered according to the usual arith­
metic. 

- All atoms are ordered according to the characters forming their name and 
the character codes of the characters (an integer associated with each char­
acter). The null atom precedes all non-null atoms (hence z precedes z_a). 
An atom a1 precedes an atom a2 if the character code of the first character 
of a1 is less than the character code of the first character of a2. If these 
values are equal, the tail character sequences are compared. 
Notice that the order induced by the character codes is implementation 
defined, except that the alphabetical order must be respected and the 
digits must be sequential. More details are provided in Section 9.1.3. 

- Compound terms are ordered according to their arity; if they have same 
arity, by the name of their functor. If they have same arity and same 
functor name, they are ordered by considering successively the order of 
their arguments starting from the first. 
Example: g(X) precedes f(X, V), f(Z,b) precedes f(a,A), according to 
the ASCII table given in Annex 11.3, but is after f(Z, a). f(Z, Z) pre­
cedes f(X, X, X) but its comparison with f (X, X) depends on the processor 
(implementation dependent). 

2.1.3 Operator notation 

For simplicity, terms which use unary or binary functors may be written 
with a prefix, infix or postfix notation, with or without parentheses if there 
is no ambiguity. Such functors are called operators. The programmer may 
specify new operators by their name, priority and class of associativity, to 
avoid any ambiguity when using them without parenthesis. So non-bracketed 
su bexpressions are in decreasing priorities. 

Some of the predefined operators are shown in Table 2.1. The complete 
set of predefined operators as an explanation about priority and class are 
provided in Section 9.2. 

For example (product (0) : - call (0), call (0)) corresponds to the 
term' :-, (product (0) , ',' (call (0) , call(O))) because the priority of 
, : -' is greater than the priority of ' , '. Similarly, (1 * 2 + 3 * 4) is the 
term '+' ( , * ' (1, 2), '*' (3, 4)) as the priority of '*' is less than the 
priority of '+' . 

A dot may be sometimes used to mark the end of a term. When input by 
a Prolog processor, a term is called a read-term and must have a dot as an 
end delimiter. 
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Table 2.1. Some operators 

Priority Class Operators 
1200 xfx 
1100 xfy 
1050 xfy -) 

1000 xfy 
700 xfx is 
500 yfx + 
400 yfx * / 
200 fy 

2.2 Some particular terms 

2.2.1 Predicate indicator 

A predicate indicator is used to denote predicates or functors. It is a ground 
term of the form Namel Ari ty where Name is an atom denoting the name of 
a predicate or a functor and Arity is a non-negative integer denoting the 
number of its arguments. 

Examples: sumlist/2, '.' 12, '1'/2, animal/l, '1' 10. 
It is necessary to indicate the arity together with the name of a predicate 

or a functor, since the same name may be used with different arities, denoting 
different objects. The predicate indicator of a term is the predicate indicator 
of its principal functor. 

2.2.2 List and derived terms 

The list constructors are the atom [] (empty list) and the functor' . '/2, 
where the first argument is a term and the second a list. A list of N elements 
is the term . (ai, . (a2, . ( ... . (aN, []) ... »), but it may be written 
with a simpler notation: [ai, a2, ... , aN] 3. 

One may also use a concatetation functor" [_1_] 12" . By definition, writ-
ing [ai, ... , aN 1 [bl, ... , bM]] is equivalent to writing N> 0 and 
M~ 0, or [ai, ... , aN, bl, ... , bM]. 

[ai, ... , aN 1 t] is the term .(al, .(a2, .( .... (aN, t) ... »). 
Terms formed with the list constructor ' . '/2, but whose "last" subterm is 
not the empty list (t different from the empty list), will be called list-terms. 
Lists and list-terms are disjoint sets of terms. 

List-terms whose last subterm is a variable, like [ai, ... , aN 1 X], are 
called partial lists. List-terms and therefore partial lists have at least one 
element4 . 

3 The classical dot notation is not predefined infix because of its many uses in the 
representation of different objects (list, term end mark, floats). 

4 In the standard a slightly different notion of partial list is used in which a single 
variable is considered as a partial list. That is not the case here. 
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2.2.3 Clause, body and goal 

Some terms represent clauses, bodies or goals. They are called clause-terms, 
body-terms or goal-terms and have a particular (abstract) syntax. In order 
to represent executable programs it is required in Standard Prolog that 
clauses and goals are well-formed . Well-formed clause-, body- and goal­
terms satisfy the following (abstract) syntax: 

Clause 

Head 

Head: - Body 
Predication 

Predication 

A clause-term is defined as a term, whose principal functor is ' : -, /2 (it 
is thus called a mle), with a first argument, called the head and a second, 
called the body, or a term which is a predication (it is thus called a fact). 

Predication Atom I Compound-term 

A predication is defined as a term which is an atom or a compound term. 
It is also called a callable term. 

Body (Body, Body) 
(Body; Body) 
(Body -> Body) 
Variable 
Pred ication 

A body is defined as a term, whose principal functor is ' , '/2 (a conjunc­
tion of bodies), ';' /2 (a disjunction of bodies), ,->, /2 (an implication of 
bodies), a variable or a predication whose principal functor is different from 
, , '/2, '; , /2 or ,->, /2. 

We will say that a body (of a clause or a goal) contains a given term, if 
this term occurs in the position of a predication using the rules defining a 
body. 

For example, the clause 
p(X) :- «cond(X) -> (then(X) , i)) ; else(X)) , cont(X). con­

tains a cut because the predication ! occurs in such a position (second ar­
gument of a conjunction, itself second argument of an implication, etc). But 
the clause 

p(X) :- «cond(X) -> call«q(X), i))) ; Y = !) , cont(Y). 
does not contain any cut (because the 'I' only occurs as an argument). 

Finally, a goal-term is a defined as a body-term: 

Goal Body 



10 2. Prolog Data Structures 

A well-formed clause cannot have a number or a variable as head, and 
has a well-formed body. A well-formed body cannot contain a number. 
Examples of clause-terms: 

product (A) : - A, A. is a well-formed clause. 
try_me :- (write(yes) , fail, 1) ; write(no). IS not well-formed 

(because it contains the number 1). 

(Well-formed) clauses and goals are aimed at describing programs (a se­
quence of clauses and directives), and well-formed goals at describing queries. 

Example: if the first argument of the following predicate sumlist/2 is 
a list of numerical expressions, then, after a successful execution, its second 
argument is the sum of the values of the elements of the list. 

sumlist ([], 0). 
sumlist([X,L],S) :- sumlist(L, R), S is R + X. 

With the goal: sumlist ([1, 2+3, 4*5], R), the computed value of R is 
the integer 26. 

Some programs may have a clear logical meaning, for example the premises 
of the well-known syllogism: 

human('Socrate'). 
mortal (X) :- human(X). 

Clauses may thus be understood as logical assertions (in first order logic, 
interpreting' : -' /2 as the implication) with their variables universally quan­
tified. 



3. Prolog Unification 

Unification is a basic device. Executions of goals result in so called "an­
swer substitutions" which are usually displayed. Therefore we introduce the 
notions of substitution and unifier, and finally we define the unification in 
Standard Prolog. 

3.1 Substitutions 

A substitution is a mapping from variables to terms. 
It is usually assumed that a substitution is the identity mapping with 

the exception of a finite number of variables. For representing such substitu­
tions the notation { Xl <- tl, ... , Xn <- tn } is used, to denote that all 
variables, with the exception of Xl, ... , Xn, are mapped to themselves, and 
each variable Xi is mapped to a term ti different from Xi, for i = 1, ... , n. 
The set { Xl, ... , Xn } is called the domain of the substitution. The set 
{ tl, ... , tn } is called the range of the substitution. 

A substitution is ground if its range is ground (i.e. there is no variable in 
the terms of its range). 
Examples: 

{ X <- a, Y <- f(X, b), Z <- g(X, Y) } 
{ X <- a, Y <- f (a, b) } is a ground substitution. 

The identity substitution corresponds to the identity mapping. Therefore 
its (finite) representation is the empty set and it is called the empty substi­
tution . 

Substitutions denote bindings. Given a variable X and a term t , such 
that { X <- t } belongs to some substitution, the variable X is said to be 
bound to t by some substitution, whatever t may be. If t is different from a 
variable, one says that the variable X is instantiated (by some substitution). 

A substitution cr is naturally extended to a function on terms by defining 
cr( f(tl, ... , tn» to be f(cr(tl) , ... , cr(tn». In particular for any 
constant c, cr(c) is defined to be c. Substitutions will be represented by Greek 
letters acting as postfix operators, hence the application of a substitution cr 
to a term t is denoted: tcr (instead of cr (t»), and tcr is called an instance of 
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t. A term 5 is an instance of the term t if there exists a substitution u such 
that 5 = tu. 
Examples: the application of the previous substitution to the term: 

f (Y, Z) 

gives the term: 
f (f (X, b), g(X, Y» which is an instance of it. 
f (a, b) is also an instance of the same term (applying, for example, the 

substitution { Y <- a, Z <- b }). 

As substitutions are mappings they can be composed. Let Band u be the 
substitutions represented, respectively, by { Xl <- 51, ... , Xn <- sn } 
and by { Yl <- tl, ... , Ym <- tm }. The representation of their com­
position can be obtained from the set { Xl <- slu, ... , Xn <- snu, 
Yl <- tl, ... , Ym <- tm } by removing all bindings Xi <- siu for which 
Xi = siu and all bindings Yj <- tj such that Yj El {Xl, ... , Xn }. 
Example: composing the previous substitution 

{ X <- a, Y <- f(X, b), Z <- g(X, Y) } with: 
{ X <- e, Y <- h (X), Z <- U, T <- HZ) }, gives the substitution: 
{ X <- a, Y <- f(e,b), Z <-gee, heX»~, T <- i(Z) } 

The notion of instance extends to substitutions. A substitution u is an 
instance of the substitution () if there exists a substitution J.L such that u = BJ.L. 

Example: the substitution: 
{ X <- a, Y <- f(e,b) , Z <-gee, heX»~ } is an instance of 
{ X <- a, Y <- f(X, b), Z <- g(X, Y) } by the substitution 
{ X <- e, Y <- heX) }. 

A substitution is idempotent if successive applications to itself yield the 
same substitution (it is equivalent to saying that no variable of its domain 
occurs in the terms of its range). 
Examples: a ground substitution is trivially idempotent; the following sub­
stitution is idempotent 

{ X <- a, Y <- f(T, b), Z <- g(a, U) }. 

A term 5 is a variant of a term t if 5 is obtained from t by mapping 
different variables into different variables2 . 

Example: the term f (T, U, T) is a variant of the term f (X, Y, X), which 
is also a variant of f (Y, X, Y). 

1 "belongs to" 
2 "To be a variant of" is an equivalence relation on terms. 
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A term s is a renaming of the term t with regard to (w. r. t.) a set of 
variables V if s is obtained from t by mapping different variables into different 
variables and no variable of s belongs to V. 
Example: the term f (T, U, T) is a renaming of the term f (X, Y, X) w.r.t. 
the set { X, Y, Z, W, P, Q }, but iCY, U, Y) is not (it is only a renam­
ing). 

3.2 Unifiers 

3.2.1 Definitions 

A substitution u is a unifier of two terms if the instances of these terms by 
the substitution are identical. Formally, u is a unifier of tl and t2 if tlu 
and t2u are identical. It is also a solution of the equation tl = t2, and, 
by analogy, it is called the unifier of the equation. The notion of unifier 
extends straightforwardly to several terms or equations3 . Terms or equations 
are called unifiable if there exists a unifier for them. They are not unifiable 
otherwise. 

A unifier is a most general unifier (MGU) of terms if any unifier of these 
terms is an instance of it. A most general unifier always exists for terms 
if they are unifiable. There are infinitely many equivalent unifiers through 
renaming. 

There is only one most general idempotent unifier for terms, whose domain 
is limited to the variables of the terms, up to a renaming. It is sometimes 
called the "unique" most general unifier. 

Examples: the following equation iCX, Y) iCg(Y) , h (T)) has infinitely 
many solutions: 

{ X <- g(h(T)), Y <- h(T) }, 
{ X <- g(h(a)), Y <- h(a) , T <- a }, 
{ X <- g(h(g(U))), Y <- h(g(U)) , T <- g(U) }, 

The first one is the most general, as all the others are instances of it. 

Considering the equation 
f (X, a) = iCa, X), its solution is: 
{ X <- a }. As it is a ground substitution, it is also an MGU. 

A more complex equation: 
f(X, Y, Z) = f(g(Y, Y), g(Z, Z), U) has a most general solution: 
{ X <- g(g(U, U), g(U, U)), Y <- g(U, U), Z <- U }. 

But the equation X = f (X) has no solution (no unifier for X and f (X)). 

3 All the terms or equation members become identical. 
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3.2.2 Computing a unifier 

In Standard Prolog the unification algorithm is left undefined. However 
the meaning of a program is completely defined, in particular the unification 
is performed by a goal which is an equation (see the built-in predicate' =' /2, 
unify). Instead of giving a direct definition of the unifiers that standard 
conforming programs and processors will produce, some conditions that such 
programs and goals must satisfy have been drawn up, which are indepen­
dent of the implementation techniques. In order to define these conditions, 
a unification algorithm is given here. It is introduced with the purpose of 
helping the definition of the conditions only, and it may be used to find a 
most general idempotent unifier of two terms, if any exists. 

The algorithm is described below by four equation transformation rules 
and by two failure conditions. At every step the state of the computation is 
characterised by a set of equations. The initial set is a set of one or more 
equations. The step consists in application of a transformation rule to one of 
the equations or in checking that an equation satisfies a failure condition. The 
computation terminates if an equation in the current set of equations satisfies 
a failure condition or if none of the rules is applicable to any equation. 

- The transformation rules 

1. Splitting: Replace an equation of the form fCs1, ... , sn) = fCt1, 
... , tn), where n :::: 0 by the equations sl = t1, ... , sn = tn. 

2. Identity removal: Remove an equation of the form X = X, where X is a 
variable. 

3. Swapping: Replace an equation of the form t = X, where X is a variable 
and t is not a variable, by the equation X = t. 

4. Variable elimination: If there is an equation of the form X = u, where X 
is a variable, such that X does not appear in u (negative occurs-check) 
but X appears in some other equation then replace any other equation 
s = t by the equation s{X <- u} = t{X <- u}. 

- The failure tests: halt and report failure if the set includes an equation in 
one of the following forms: 

1. Disagreement: f (sl, ... , sn) = g(t1, ... , tm) where fin :f. g/m, 
n,m:::: O. 

2. Positive occurs-check: X = t where X is a variable and t is a non-variable 
term including X. 

This algorithm is called the Herbrand algorithm. Given two terms it always 
terminates in success (the remaining set of equations defines an MG[JI of the 
two terms) or in failure (there is no unifier). The two actions corresponding 
to a negative or positive occurs-check correspond to the so called occurs-check 
tests. 

4 The Herbrand unification algorithm defines an idempotent MGU. 
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Examples: starting with one equation f (X, Y) f (g(Y), h(T», the split­
ting produces two equations: 

X = g(Y), Y = h(T), 
the first equation does not correspond to any transformation, but a variable 
elimination may be performed with the second, leading to the equations: 

X = g(h(T», Y = h(T), 
which corresponds to the substitution: 

{ X <- g(h(T», Y <- h(T) }, which is an idempotent MGU. 

Notice that the equation: X = f (X) corresponds to the positive occurs-check 
case and leads immediately to a failure. 

3.3 The definition of the unification in Standard Prolog 

3.3.1 A first definition 

An easy first definition of the unification would be to require that the unifier 
of two terms is one of their MGU's, if there are unifiable, and failure oth­
erwise. This definition corresponds to the built-in predicate unify _wi th_oc­
curs_check/2. 

But this definition imposes implementing the occurs-check tests in the uni­
fication algorithm. It is easy to observe that these tests which are performed 
very frequently influence the performances of the algorithm5. Therefore, for 
efficiency reasons, a definition which is independent of any algorithm has 
been designed, which is in particular compatible with processors in which 
the unification algorithm does not perform occurs-check tests. 

3.3.2 The occurs-check problem 

Now if one omits the occurs-check tests, we are faced with different problems: 

1. the behaviour of the Herbrand unification algorithm may be unsound: it 
may succeed when it should fail: 
Example: { X = f(X), Y = a } gives the (wrong) "solution" 

{ X <- f(X), Y <- a}. 

2. the Herbrand unification algorithm may not terminate: 
starting with the set of equations: { X = f (Y, X), Y = f (X, y) } the 
fourth transformation rule may be applied indefinitely. 

3. the result of the Herbrand unification algorithm is no longer independent 
of the way the transformation rules are applied: 

5 In some processors, which handle correctly the so called "rational terms", the 
occurs-check may be performed optionally at the end only once. However stan­
dard conforming processors may implement another unification algorithm. 
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starting with the set of equations: { X = f (Y), Y = f (X), Z = a, 
Z = b } the fourth transformation rule may be applied indefinitely on 
the first two equations instead of firstly considering the last two equations 
which immediately lead to a disagreement. 

These depicted situations correspond to what may happen with processors 
which do not implement the occurs-check tests during the execution of a goal. 

A way to avoid these problems is to restrict oneself to equations in which 
the occurs-check tests are never needed and to programs which never require 
such tests. In order to do so, one must be able to recognise the situations in 
which an occurs-check test is needed and to recognise the programs for which 
it is needed or not, or the places where the tests are needed. 

For example, with the set of equations { X = HY), Y = HZ), Z = a, 
Z = b } the Herbrand unification algorithm never needs to perform the 
occurs-check tests, whatever the way to proceed through the transformation 
steps may be. 

Two concepts in Standard Prolog are aimed at capturing these ideas: 
STO and NSTO. 

3.3.3 Subject to occurs-check and not subject to occurs-check 

A set of equations (or two terms) is subject to occurs-check (STO) if there 
is a way to proceed through the steps of the Herbrand Algorithm such that 
the occurs-check happens. 

A set of equations (or two terms) is not subject to occurs-check (NSTO) 
if there is no way to proceed through the steps of the Herbrand Algorithm 
such that the occurs-check happens. 
For example, the set of equations 

{ a = b, X = f(X) } is STO, but the set: 
{ a = b, X = f (Y), Y = f (Z) } is NSTO. 

STO and NSTO are decidable properties for a single unification. 

A Prolog program (including goals) is NSTO if and only if all unifications, 
during the execution of its goals, are NSTO. It is STO otherwise. 

The property STO (or NSTO) for a program is not decidable. Therefore 
these properties may be checked automatically only on subclasses of pro­
grams. 

3.3.4 Normal unification in Standard Prolog 

Unification of two terms is defined in Standard Prolog as: 



3.3 The definition of the unification in Standard Prolog 17 

- If two terms are NSTO and unifiable, then the result is one of their MG Us6 . 

- If two terms are NSTO and the two terms are not unifiable, then the result 
is failure. 

- If two terms are STO then the result is undefined. 

This definition of unification applies both to the normal unification pred­
icate '=' /2 (unify) and also when unification is invoked implicitly in Stan­
dard Prolog as for example in '= .. ' /2 (univ). 

So programs (with goals) are standard-conforming with respect to unifi­
cation if one of the following conditions holds: 

1. they are NSTO on a standard-conforming processor, or 
2. they are STO but the programmer writes his program in such a way 

that all unifications are NSTO on a standard-conforming processor ex­
cept in some places where occurs-check test is needed and the predicate 
unify _wi th_occurs_sheck/2 is explicitly used. 

Although the NSTO condition is complex, writing NSTO programs does 
not seem too difficult: existing practice shows that most of the programs are 
"naturally" NSTO, except when the programmer wants to handle explicitly 
cyclic terms 7 • 

Unfortunately the NSTO property is required to preserve soundness of 
executions and portability, and in many cases it is not at all easy to verify 
this property or to always put the unify_with_occurs_check/2 predications 
in the right places. 

There is no way to perform an automatic transformation because it would 
not preserve the behaviour of the program (the unification is modified). 
Therefore the programmer has to act by himself. 

In Section ID.1, some guidelines are provided to help the programmers to 
identify the "risky" points where they should explicitly use the unification 
with occurs-check in order to preserve portability, and how to do it. The de­
tection of the "risky" points may be performed automatically but the decision 
to introduce the predications must be controlled by the programmer8. 

6 The standard does not specify any particular property of the MGU (but usually 
it is idempotent), nor how to display substitutions. 

7 It is not possible to handle cyclic terms in Standard Prolog. It may be possible 
in some extension. 

8 An automatic transformation would guarantee soundness and avoid loops during 
execution, but it may introduce unexpected failure (probably a mistake in the 
program but one which is extremely difficult to debug). A nice solution would 
be a processor which performs the transformation automatically, but raises a 
warning when a positive occurs-check has been detected during execution. 
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In this chapter, the execution model of Standard Prolog is described. It 
formalises its main characteristics: nondeterminism (multiplicity of the so­
lutions), backtracking and control. Knowledge of this is needed in order to 
understand the meaning of many built-in predicates and the behaviour of a 
program. 

A typical Prolog session consists of loading a program (in the form of a 
Prolog text) in order to include new user-defined procedures in the current 
database (this action is called preparing for execution), then of executing 
prepared goals. 

It is not specified how Prolog texts and goals are prepared for execution, 
with the exception of some directives (see Chapter 7). If there are many 
prepared goals, the order in which they are processed is implementation 
defined. 

Therefore the execution model describes only the execution of a single 
goal (called here the initial goaQ in the context of a given database and 
a given environment, characterised by sources and sinks, Prolog flags, 
operator table and character conversion table 

It takes into account multiple solutions of a goal (Le. re-execution, also 
called backtracking). It also describes the control which makes it possi­
ble to understand how different side-effects, like successive I/O actions, are 
combined. However the standard does not specify how the results of the 
execution of an initial goal are displayed (implementation defined), nor 
how the system interacts with the user, when several solutions are obtained 
( undefined). 

The execution model is first presented for a subset of Standard Pro­
log called definite Prolog. Then the model is extended to handle all the 
procedures. 

4.1 Database and environment 

In Standard Prolog many built-in predicates are aimed at using or updating 
objects of the environment. Four kinds of objects must be considered: the 
database, the sources and sinks, the flags, and the operator and character 
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conversion tables. All are global objects in the execution model III which 
programs update them by side-effects. 

4.1.1 The database 

The database! is a set of procedures uniquely identified by their predicate in­
dicator. It contains all the user-defined procedures and the system procedures 
called built-in predicates. 

With each user-defined procedure is associated a sequence of clause-terms 
whose order corresponds to the order in which the cli .. uses have been input 
(according to directives, Section 8.4). The final ordering of the clauses is 
implementation defined. 

In a database all the clauses are well-formed (Section 2.2.3) and trans­
formed, i.e. all variables X in the position of a predication in the body of the 
clauses have been replaced by call (X) and all the facts also have the form of 
a rule whose body is true. Thus all the clauses in a database have the form 
of a rule2 • 

For example, the clause (in a Prolog text): 
product (A) : - A, A. is stored in the database after preparation for ex­

ecution as the term: 
(product (A) :- call(A) , call(A» 

The fact spider (tarantula) is stored in the database prepared for execution 
as the term: 

(spider (tarantula) :- true) 

Some built-in predicates may perform dynamic updates on procedures in 
the database (like asserta/l). In Standard Prolog, the so called "logical 
database update view" is adopted. It corresponds to the following princi­
ple: the different alternatives which must be explored to execute completely 
a predication are not influenced by subsequent actions. This principle also 
applies to re-executable built-in predicates. It is explained in more detail in 
Section 10.2. 

In a database every procedure is either dynamic or static. A procedure 
is static by default and its clauses cannot be modified. A procedure may be 
declared "dynamic" using directives in a Prolog text (Section 8.4). All the 
built-in predicates are static. 

Every procedure is also public, or private and cannot be inspected3 . All 
the built-in predicates are private. All the dynamic user-defined procedures 

1 We present here the notion called complete database in the standard. 
2 The standard does not force a processor to perform this transformation. Never­

theless everything happens as with such transformation. 
3 It is undefined in the standard how a procedure should be declared public or 

private. 
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are public. Some static user-defined procedures may be public and can be in­
spected using the built-in predicate clause/2. Static user-defined procedures 
are private by default. 

The partitioning of the procedures in a database is shown in Figure 4.1. 

........ fJllbl~c... : private <eo "'-- - ••••• - •• ~: <C •••••••.•••. :;:. 

dynamic 
<£':- •••••••••• - •••••••••••• > 

I built-in 
predi­

cates 
static 

<C-- ••• -- ---> 

user-defined procedures I 

4.1.2 Sources and sinks 

Fig. 4.1. Distribu­
tion of the procedures 
in a database 

A program can output results to a sink or input Prolog data (called read­
terms) from a source. 

source/sinks may be a file, the user's terminal, or other implementation 
defined possibility permitted by the processor. 

Each of them is associated with a finite or potentially infinite sequence of 
bytes or characters. 

Sources and sinks are denoted "logically" by streams. It is specified as an 
implementation dependent ground term, a handle, that gets instantiated 
on opening the stream or its alias (a name given by the user to the stream). 
More details are given in Section 7.1. 

4.1.3 Flags 

A flag is an atom which is associated with a value that is either implemen­
tation defined or modifiable by the user. 

Flags are parameters, specifying for example how the execution model 
should react if a called procedure does not exist (flag unknown) or what 
the maximal integer value is (flag max_integer). More details are given in 
Sections 8.1 and 8.2. 
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4.1.4 Operator and character conversion tables 

Two tables are also global parameters: the operator table and the character 
conversion table. 

Operator notation can be used for inputting or outputting terms in a 
form which depends on the syntactic properties of its operators, defined in 
the operator table (see Sections 7.4 and 9.2). 

The character conversion table associates with some characters of the 
Extended Character Set one-char atoms to which they may be converted by 
inputting terms (see Section 9.1.2 and read_term/3). 

4.2 The execution model for definite Prolog 

In definite Prolog there are only user-defined procedures in the form of defi­
nite clauses, using terms all but numbers, and no built-in predicate; namely 
clauses in which the body is a sequence (denoted by conjunctions) of predi­
cations. So all the clauses have the form: 

h(tO) :- pl(tl), p2(t2), ... , pN(tN). or 
h(tO) :- true. 

where the ti's are (possibly empty) sequences of terms. 
Goals are definite bodies (i.e. a nonempty sequence of predications). 

The execution model of definite Prolog is defined on the principle of a gen­
eral resolution algorithm4 whose input data are a single goal and a database. 

4.2.1 The general resolution algorithm 

The general resolution of a goal G with a database P is defined by the fol­
lowing algorithm: 

1. Start with a current goal which is the initial definite goal G and a current 
substitution which is the empty substitution. 

2. If G is true then stop (success), otherwise 
3. Choose a predication A in G (predication-choice) 
4. If A is true, delete it, and proceed to step (2), otherwise 
5. If no freshly renamed clause in P has a head which unifies with A then 

stop (failure), otherwise 
6. Choose in P a freshly renamed clause H : - B whose head unifies with A 

by substitution (T which is the MGU of H and A (clause-choice), and 

4 In definite Prolog, this algorithm corresponds to a proof procedure (a particular 
case of unit resolution), aimed at finding instances of the initial goal which are 
logical consequences of the definite program. A success corresponds to a suc­
cessful proof and the instance of the initial goal by the answer substitution is a 
(more general) theorem. 
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7. Replace in G the predication A by the body B, flatten and apply the 
substitution ()" to obtain the new current goal, let the new current sub­
stitution be the current substitution composed with u, and proceed to 
step (2). 

A freshly renamed clause means a clause which is renamed w.r.t. all the 
variables which have occurred in all the previous resolution steps. 

The steps (3), (6), and (7) are called resolution step. The substitution u 
is called the local substitution. 

In the case of success (step 2), the current substitution restricted to the 
variables of the initial goal is the answer substitution. 

This algorithm defines in an undeterminate manner successful, failed and 
possibly infinite computations. It is "indeterminate" because the order in 
which the computations may be considered is not fixed. It depends on the 
predication-choice (step 3) and the clause-choice (step 6). It is important to 
observe that the different successes do not depend on these choices, as long 
as all the clauses are considered in step (6.). But it also specifies all possible 
failed and infinite computations, while there is no need for all of them to 
be considered. Therefore in order to have a still precise but more efficient 
model it is useful to fix them in a way which will preserve the multiplicity 
of the potential successes5 , hence what is called the non-determinism of the 
solutions. 

4.2.2 The Prolog computation rule 

In Standard Prolog the choices are fixed as follows: 

- The predication-choice consists of choosing the first predication in the se­
quence G (step 3). 

- The clause-choice consists of choosing the "unifiable" clauses according to 
their sequential order (step 6). 

This is called the standard computation rule6 or Prolog computation rule. 

With this rule a new algorithm may be designed. It uses the notion of 
search-tree. 

5 It retains the "completeness of the solutions" in the sense that any instance of 
the initial goal which is a logical consequence of the (definite) program P is an 
instance of the initial goal composed with the current substitution obtained by 
a successful computation. 

6 In the logic programming literature, computation rule denotes the predication 
choice only. 
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4.2.3 The Prolog search-tree 

The different computations defined by the general resolution algorithm may 
be represented by a tree called the Prolog search-tree that we define as follows. 

- Each node is labelled by the local substitution and the current goal. 
- The labels of the root are the initial goal to be executed and the empty 

substitution. 
- There are two kinds of leaf-nodes: 

- Nodes whose goal label is true, called success nodes. 
- Nodes with a goal label different from true such that there is no renamed 

clause whose head is unifiable with the chosen predication, called failure 
nodes. 

- A non-leaf node has as many children as there are clauses whose head 
(with a suitable renaming) is unifiable with the chosen predication (the 
first predication in the current goal). If B 1 , ... , Bn is the goal associated 
with the node, Bl being the chosen predication, and A :- C1 , ... , Cm is a 
freshly renamed clause with Bl and A unifiable, then the corresponding 
child is labelled with the local substitution which is the MGU u of BJ and 
A, and the current goal which is the sequence of predications obtained after 
flattening, u(CJ, ... , Cm, B2"'" Bn). 
The children are in the same order as the clauses in the database. A left­
to-right order of the children will be assumed. 

There are three kinds of branches: success, failed, infinite. 

- A success brunch corresponds to a success node. 
- A failed brunch corresponds to a failure node. 
- An infinite brunch corresponds to a nonterminating computation following 

the Prolog computation rule. 

If there is no infinite branch in a search-tree, it is a finite search-tree. 
At every node a current substitution may be computed as the composition 

(see Section 3.1) of all the local substitutions along the path starting from the 
root up to that node (inclusive). To every success branch there corresponds 
an answer substitution which is the current substitution associated with the 
(success) leaf, restricted to the variables of the initial goal. 

Notice that the notion of search-tree depends only on the predication­
choice. The clause-choice specifies the way it is visited. Given a search-tree, 
the execution of a goal in the context of a database, with the Prolog com­
putation rule, may be represented by a depth-first left-to-right visit of the 
search-tree. This visit defines the visit order of the nodes of the search-tree, 
hence the order of execution of goals and subgoals. If the search-tree has 
infinite branches, there is no way to visit beyond the first one, which will 
be explored indefinitely. This explains why the execution does not terminate 



4.2 The execution model for definite Prolog 25 

when the traversal visits an infinite branch. It also explains why not all so­
lutions may be computed if there is an infinite branch with some success 
branches afterwards. 

4.2.4 A Prolog search-tree example 

Consider the following database and the goal p (U, V) 

p(I, Y) q(I), r(I, Y) . q(a) true. r(b, bl) true. 
p(I, Y) :- s(I). q(b) true. r(c, cl) true. 

q(c) true. 
s(d) :- true. 

Figure 4.2 shows the corresponding Prolog search-tree with the chosen 
predication underlined. Fresh renaming is denoted by new variables and local 
substitutions are represented before the node, beside the incoming arc. 

p (U, V) 

q (X), r (X, Y) 

true,r(b,Y) 

{y<-:j 
true 

(success) 

{u<-z, 
V<-T} 

s(Z) 

TZ<-d} 
true 
(success) 

true,r(c,Y) 

{Y<-~ 
true 

(success) 
Fig. 4.2. A Prolog 
search-tree example. 

The current substitution computed at the second success leaf is 

{ U <- c, V <- cl, X <- c, Y <- cl } 

The corresponding answer substitution is 

{ U <- c, V <- cl }. 

The tree walk produces the following answer substitutions, in this order: 
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{ U <- b, V (- bl }; 
{ U <- c, V (- c1 }; 
{ U <- d } 

4.2.5 The execution model of definite Prolog: search-tree visit 
and construction algorithm 

Instead of describing the execution of a definite Prolog program by a non 
deterministic resolution algorithm and a Prolog search-tree representing all 
computations after fixing the choices, we synthetize both in a new algorithm 
describing the construction and visit of a search-tree simultaneously. 

The algorithm describes the execution of a goal with a given database. 
It is defined in two parts: the "down walk" similar to the general resolution 
algorithm and the "backtracking" which corresponds to the choice of a not 
yet visited computation path. So, instead of simply "stopping", the algorithm 
will continue towards a backtracking step. 

Let P be the current database. 

1. Start from the root as current node, labelled by the initial goal G, which is 
a sequence of predications, as current goal, and by the empty substitution 
as local substitution, 

2. If the goal G of the current node is true then backtrack (success), 
otherwise 

3. Let A be the first predication in G, 
4. If A is true, delete it, and proceed to step (2.) with the new current goal 

being the tail of the sequence G (if the tail is empty then replace it by 
true), otherwise 

5. If no renamed clause in P has a head which unifies with A then backtrack 
(J ailure), otherwise 

6. Add to the current node as many children as there are freshly renamed 
clauses H : - B in P whose head is unifiable with A with the same order 
as the clauses in P. 
The child nodes are labelled with a local substitution u, which is the MG U 
of A and H (H : - B being the corresponding freshly renamed clause), and 
the current goal G' which is the instance by u of G in which A has been 
previously replaced by B and which has been flattened, 

7. The current node becomes the first child and proceed to step (2). 

The new current substitution is obtained by composing all the local sub­
stitutions along the path from the root up to the current node (inclusive). 

If a node has more than one child, it is non-deterministic. Such a node for 
which A is re-executable is called a choice point. If a node has only one child 
after its first visit it is a deterministic node. A node is said to be completely 
visited after all the branches issuing from it have been completely developed. 
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This algorithm describes how to walk down until success or failure is 
reached. The continuation (backtrack), which consists of visiting again a 
node which has not yet been completely visited, is called backtrackiny1. 

4.2.6 Backtracking 

After constructing a success or failed branch, the possible nodes which may 
be visited are nodes with still non-visited children "on the right" of that 
branch (considering a left-to-right order of the children, this is illustrated in 
Figure 4.3). These nodes may be reached by seeking the first ancestor node 
with a not yet visited child. 

Prolog search-tree 

, 

~---- ... 
root 

, , , , , 

"'" , , 

, 

., - - - - - - non-visited children , , , 

current node Fig. 4.3. A Pro­
log search-tree and its 
non-visited children. 

The new current node is the first child not yet visited and the execution 
continues at step (2). 

If there are no more non-visited children, the execution of the initial goal 
is achieved. What happens then is implementation defined. 

4.2.7 An analogy with the box trace model 

Comparing this model with the usual box trace model helps show how nodes 
are visited. 

A box (Figure 4.4) represents what happens during the execution of the 
chosen predication A. 

7 "Backtracking" corresponds to the idea of re-execution of a goal. This is the 
reason for the name. It is, however, described here as a continuation of a tree 
walk. 
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""II - chosen 
predication -- A 

fail 

exit -
--redo 

Fig. 4.4. Box trace 
model. 

The first visit at the current node where A has been chosen is denoted call 
and the last visit to this node, fail. exit corresponds to a successful execution 
of A alone. 

The different visits (redo) correspond to different attempts to find new so­
lutions for A after an execution of A alone has been successful and all attempts 
to execute the tail goal have been performed. 

Figure 4.5 shows the arrows of the box for the predication A from the 
search-tree point of view. A is the chosen predication and G the tail of the 
current goal. u is the current substitution after a success of A alone. 

~ 
call ~ N: A , G t fail 

~ 
attempts to - / 

execute A -<CA alone hasd d 
.. ' succee e 

V 
exit ~ qG) t redo 

/1~ 
/ I , 

I 

Fig. 4.5. Box trace model: a search­
tree point of view. 
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The "fail" mark (last visit to the node N) must be distinguished from 
the "failure nodes" introduced previously. In fact many branches issued from 
N may be failed, whereas there is only one last visit. 

4.3 The execution model for Standard Prolog 

Up to now it has been assumed that the procedures were user-defined proce­
dures. The model extends straightforwardly to built-in predicates: the search­
tree is visited and constructed according to the Prolog search-tree visit and 
construction algorithm (Sections 4.2.5 and 4.2.6) as long as no built-in pred­
icate is chosen. 

This algorithm is thus adapted to describe the execution of a goal in the 
context of a given environment (database, sources and sinks, flags and tables). 

Steps (5) and (6) of the search-tree visit and construction algorithm are 
modified as follows to take into account the built-in predicates and their 
side-effects. 

Three cases have to be distinguished (Notice that A is different from true, 
since this case is already considered in steps (2) and (4)). 

- A corresponds to a user-defined procedure which exists in the database 
(4.3.1). 

- A does not correspond to any existing procedure (4.3.2). 
- A corresponds to a built-in predicate defined in Chapter 5 or a system 

procedure (in an extension of Standard Prolog), (4.3.3). 

4.3.1 The chosen predication corresponds to an existing 
user-defined procedure 

The execution continues as indicated in steps (5) and (6) of the Prolog search­
tree visit and construction algorithm. 

4.3.2 The chosen predication does not correspond to any existing 
procedure 

The action depends on the value of the flag unknown (Section 8.2). If its value 
is: 

- error: an error is generated whose effect corresponds to the execution at 
the same node of the built-in predicate 

throw (existence..error (procedure. PI)) 8 , 

where PI is the predicate indicator of the chosen predication A 

8 The effect is defined in the description of the built-in predicate throw/1. 
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- warning: an implementation dependent warning is generated, and the 
current goal fails (failure). 

- fail: the current goal fails (failure). 

In both last cases the execution continues as indicated in backtracking 
(see 4.2.6). 

4.3.3 The chosen predication is a built-in predicate 

If the built-in predicate contains side-effects (modification of the search-tree, 
like asserta/1 or cut/o, I/O action like read_term/3, or table update like 
op/3, ... ), the side-effects described with the built-in predicate are per­
formed and the computation continues according to one of the (mutually 
exclusive) following cases. The built-in predicates which provoque a spe­
cific side-effect on the search-tree without involving the database or play 
a particular role in the execution model are called here logic and control 
built-in predicates9 ; they are: call/1, catch/3, ',' /2, ! /0, ';' /2 (Dis­
junction and If-then-else) ,fail/O, halt/O, halt/1, '->'/2, once/1, 
repeat/O, throw/1, true/O. 

- The built-in predicate is a logic and control built-in predicate not in error 
(call/1 and throw/1 only may raise an exception). It has a specific effect 
on the search-tree, specified in its description (adding at most two nodes). 
In all cases the execution continues at step (2) with the new (first) child 
as the current node (see 4.2.5) or with backtracking (see 4.2.6)10. 

- The built-in predicate is deterministic and succeeds with local substitution 
(T. Thus a new unique child is added whose labels are the local substitution 
and the instance by (T of the tail of the current goal. If the tail of the current 
goal is empty, the goal label is just true (hence there is a success branch). 
The execution continues at step (2) with the new child as the current node 
(see 4.2.5, step (2)). 

- The built-in predicate is re-executable and has several possible successes 
with possibly different local substitutionsll . Thus several children are cre­
ated according to the order specified in the description of the built-in pred­
icate. Each child is labelled with the corresponding local substitution as 

9 Some of them are called "control constructs" in the standard because they con­
tribute to the construction and modification of the search-tree, thus producing 
control actions. 

10 fail/O and true/O only lead to backtracking, halt/O, halt/1 and throw/1 force 
a particular backtracking. The other logic and control built-in predicates create 
at least one child. 

11 This concerns: atom_concat/3, bagof/3, clause/2, current_char_conver­
sion/2, current_op/3, current_predicate/2, current_prolog-11ag/2, re­
tract/1, setof/3, stream_property/2, sub_atom/5. 
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specified in the description of the built-in predicate and a goal which is the 
instance by the local substitution of the tail of the current goal. If the tail 
of the current goal is empty, the goal label is just true (hence it will be a 
success branch). The execution continues at step (2) with the first child as 
the current node (see 4.2.5, step (2)). 

- The built-in predicate Jails (failure). Thus the execution continues as indi­
cated in backtracking (4.2.6). 

- The built-in predicate generates an error. The execution is interrupted and 
an error is generated whose effect corresponds to the execution at the same 
node of built-in predicate throw/1 whose argument is error (erroLterm, 
impLdej) where error_term in described with the error cases in the built-in 
predicate description and impLdeJ is an implementation defined term. 
The side-effect of throw/1 is described with this built-in predicate. 
If several errors are generated by a built-in predicate, the error that is 
reported is implementation dependent. 

4.4 Additional error situations 

4.4.1 System error 

There may be a system error at any stage of execution. The conditions in 
which there is a system error, and the action taken by a processor after a 
system error are implementation dependent. The corresponding error­
term is system_error (see, for example, the built-in predicate throw/1). 

4.4.2 Resource error 

There is a resource error at any stage of execution when the processor has 
insufficient resources to complete execution. The corresponding error-term is 
resource_error(Resource) where Resource is an implementation de­
pendent atom (see, for example, the built-in predicate close/2). 

4.5 The side-effects of cut 

Finally we give some details of the built-in predicate "cut" (! /0) aimed at 
performing some control by pruning the search-tree. 

"cut" always succeeds, but it has a drastic side-effect on the search-tree: 
it deletes some search-tree branches in order to force a predication to execute 
quickly without constructing and visiting all sub-search-trees. 
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For example if the first clause of the database (4.2.4) is replaced by 
p(X, Y):- q(X), !, reX, y). 

the clauses for p/2 become: 

p(X, Y) :- q(X). !. reX, Y). 
p(X, Y) :- sex). 

Figure 4.6 shows that the search-tree corresponding to the goal p (U, V), 

depicted in the Figure 4.2, now has only one failed branch. 

p(U,V) 

q(X),! ,r(X, Y) 

~ 
! ,r(a, Y) 

true,r(a,Y) 

(failed) 

cut branches 

Fig. 4.6. A search-tree example 
showing the effect of cut. 

The effect of the "cut" is thus to erase all the hanging nodes between the 
current node and issued from the parent node ofthe goal which was containing 
it (see also the built-in predicate i/O). Doing so, all the nodes which have 
been made deterministic will be skipped when backtracking takes place. 

Notice that many "embedded cuts" may increase the number of success 
branches. This may be understood by the use of the "cut" to specify negation 
by failure. The composition of two negations may increase the number of 
successes (see the built-in predicate \+/1, not provable). 
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The built-in predicates are system procedures. They cannot be modified. All 
are static and private. 

5.1 Presentation 

The built-in predicates are presented in alphabetical orderl with the following 
organisation: 

o predicate indicator name The category to which it belongs2 

An informal introduction by a single sentence. 

I> How to use it: templates (see below) 

One example of goal. (normally a single predication) 

I> Description: A predication used as a pattern 

- The complete definition: cases of success, failure, or other behaviours with 
the exception of the error cases. 

The execution is performed as described is the Section 4.3.3 of the execu­
tion model for the corresponding case. 

1 The order follows the name and arity. If the name is symbolic, another name is 
also used. 

2 The category corresponds to the usual classsification also used in the standard 
with minor changes, see Annex 11.5. All related built-in predicates are grouped 
in the same category. 
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t> Error cases A complete table with all the error cases. 

Conditions Error-term 

o error condition error_term 

With each error case is associated a not necessarily exclusive condition 
and an error-term. When a condition is satisfied, the execution is performed 
as described in Section 4.3.3 of the execution model ("the built-in predicate 
generates an error"). 

t> Examples 

A fev examples to help understanding. 

An example is normally a predication executing the built-in predicate as a goal, 
together with a statement whether the goal succeeds, fails or whether there is an 
error. The statement also describes any side-effect. 

The examples are written assuming that the predefined operator table has not 
been altered. 

In the case of success, the local substitution is also given. The word "lo­
cal" may be omitted. If only Succeeds is mentionned, this is shorthand for 
Succeeds vith empty local substitution. 

In the case of several successes with different answer substitutions, the substi­
tutions are separated by a semi-colon. 

In the case of error, the error-term is given. 
An example may also be a more complex goal term (i.e. a well-formed body­

term different from a single predication) as a user may provide it to a processor. 
The result given is the one obtained by the execution model with this goal-term as 
initial goal. 

With the examples an initial condition may be stated at the beginning (de­
scribing, for example, the initial state of the database). If there is such condition, 
it holds separately for every given goal. 

5.2 Templates 

A temp/ate is a piece of information provided as a traditional indication of the 
normal way of using a built-in predicate. Violation of this condition generates 
an error. It contains a mode declaration together with some type information. 
Here is a short description of the modes used and type information. 

There may be several templates attached to one built-in predicate. In this 
case they are mutually exclusive. 



5.2 Templates 35 

5.2.1 Mode of an argument 

The mode of each argument defines whether or not an argument shall be 
instantiated when the built-in predicate is executed. 

The mode is one of the following atoms: 

+ - the argument shall be instantiated (different from a variable), 
? - the argument shall be instantiated or a variable, 
GI - the argument shall remain unaltered (it is a compound term)3, 
- - the argument shall be a variable that will be instantiated (different from 

a variable) if the goal succeeds. 

5.2.2 Type information 

Type information4 is denoted by one of the following atoms: 

atom - an atom, 
atom_or-Atom~ist - an atom or a list of atoms, 
atomic - an atom or a number, 
body_term - a well-formed body-term, 
byte - a byte (see the Glossary), 
callable_term - an atom or a compound term, 
character - a one-char atom (9.1.1), 
character_code - an integer which is a character code (9.1.3), 
character_code~ist - a list of character codes (9.1.3), 
character~ist - a list of one-char atoms (9.1.1), 
clause_term - a well-formed clause-term, 
close_options - a list of close-options (stream-options supported at stream 

closure), 
compound_term - a compound term, 
E_character - an element of ECS (9.1.1), 
evaluable - an arithmetic expression evaluable without error, 
flag - an atom denoting a flag name, 
flag_value - an atom denoting a possible value for a given flag, 
in_byte - a byte or the integer -1, 
in_character - a one-char atom (9.1.1) or the atom end_of..:file, 
in-E_character - an element of ECS (9.1.1) or the atom end_of..:file, 
in_character _code - an integer which is the character code of a character 

in ECS (9.1.1) or the integer -1, 
integer - an integer, 

3 When the argument is an atomic term, there is no difference between the modes + 
and 41. The mode 41 is therefore only used when the argument can be a compound 
term. 

4 Standard Prolog is a typeless language. This idea of "type" is used here for 
the sole purpose of describing templates. Most of the type information is the 
same as in the standard; some of it has been adapted. 
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iO....lJlode - an I/O mode (7.3.1), 
list - a list, 
nonvar - an atom, a number or a compound term, 
number - an integer or a floating-point number, 
open_options - a list of stream-options supported at stream creation (7.3.2), 

operator-specifier - one of the atoms: xf, yf, xfx, xfy, yfx, fx, fy, 
predicate...indicator - a predicate indicator, 
predicate...indicator-pattern - a predicate indicator pattern (see the 

Glossary), 
read_options~ist - a list of valid read-options (see the Glossary and 

7.4.1), 
source-sink - a source/sink term (an implementation defined ground 

term), 
stream - a stream-term (an implementation dependent non atomic 

ground term), 
streaJlLOr_alias - a stream-term or an alias (an atom), 
stream_position - a stream position (an implementation dependent 

ground term), 
s .. am-property - a valid stream property (see the Glossary and 7.3.4), 
term - a term, 
write_options~ist - a list of valid write-options (see the Glossary and 

7.4.2). 

5.3 The built-in predicates 

The remaining part of this chapter contains the description of all the built-in 
predicates. 
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1 abolish/! Clause creation and destruction 

Removes the (dynamic) user defined procedure identified by its predicate 
indicator, leaving the database in the same state as if this procedure had 
never existed. 

I> How to use it: abolish(Gpredicate~ndicator) 

Example: abolish(legs/2). 

I> Description: abolish(Pred) 

- If Pred is a predicate indicator corresponding to a dynamic user-defined 
procedure in the database then removes all elements concerning this pro­
cedure and succeeds with empty local substitution. 

- If Pred is a predicate indicator and does not correspond to any existing 
procedure in the database then succeeds with empty local substitution. 

I> Error cases 

Conditions 

o Pred is a variable, or Pred is a term 
Name/Arity and either Name or Arity is 
a variable 

oPred is neither a variable nor a term 
whose principal functor is U)/2 

oPred is a term Name/Arity and Arity is 
neither a variable nor an integer 

oPred is a term Name/Arity and Name is 
neither a variable nor an atom 

oPred is a term Name/Arity and Arity is 
an integer less than zero . 

oPred is a term Hame/Arity and Arity is 
an integer greater than the implemen­
tation defined integer maxarity 

o The predicate indicator Pred is that of a 
static procedure 

Error-term 

instantiation_error 

type_error(predicate_indicator, 
Pred) 
type_error(integer, Arity) 

type_error(atom, Name) 

domain_error(not-1ess_than-zero, 
Arity) 
representation_error(max_arity) 

permission_error(modify, 
static_procedure, Pred) 
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[> Examples 

Assume the database initially contains the user-defined procedures: 
legs/2, insect/l. product/l 

with the clauses (all dynamic): 

abolish(legs/2) . 

legs(A. 6) insect(A). 
legs(A. 4) animal(A) . 
legs(A. 8) spider(A). 
insect (bee) true. 
insect (ant) true. 
product (A) call(A) • call(A) . 

Succeeds. also removes legs/2. 
leaving the database with the clauses: 

insect(bee) 
insect (ant) 
product (A) 

true. 
true. 
call(A). call(A). 

insect(X). abolish(insect/l). 
Succeeds twice. with substitutions: 
{ X (- bee} and removes the procedure insect/l; 
{ X (- ant} 

leaving the database with the clauses: 

product (A) call(A). call(A). 

abolish(product(_». type_error(predicate_indicator.product(_Ol» 

abolish(abolish/l). permission_error(modify. 
static_procedure. abolish/l) 
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2 arg/3 Term creation and decomposition 

Relates a term (second argument) and its nth argument. 

I> How to use it: arg(+integer, +compound_term, ?term) 

Example: arg(2, foo(a, b, c), X). 

I> Description: arg(N, Term, Arg) 

- If Term is a compound term, and N is an integer greater than zero and 
less than the arity of Term, and Arg and the Nth argument of Term are 
NSTO (3.3.3) then if Arg is unifiable with the Nth argument of Term by 
substitution IT then succeeds with local substitution IT else fails. 

- If Term is a compound term, and N is an integer greater than zero and less 
than the arity of Term, and Arg and the Nth argument of Term are STO 
then undefined. 

- If N is equal to zero, or Term is a compound term and N is an integer greater 
than the arity of Term then fails. 

I> Error cases 

Conditions 

oN or Term is a variable 
oN is neither a variable nor an integer 
oN is an integer less than zero 

o Term is neither a variable nor a compound 
term 

I> Examples 

arg(2, foo(a, b, c), X). 

arg(2, foo(a, f(X,b), c), f(a,Y)). 

arg(l, foo(a, b, c), b). 

argO, foo(X, b, c), u(X)). 

arg(a, foo(a, b, c) , X) . 

Error-term 

instantiation_error 
type_error(integer, N) 
domain_error(not_less_than-zero, 
N) 
type_error(compound, Term) 

Succeeds with substitution: 
{ X <- b } 

Succeeds with substitution: 
{ X <- a, Y <- b } 

Fails. 

Undefined. 

type_error (integer , a) 
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3 (=:=)/2, (=\=)/2, (»/2, (>=)/2, «)/2, (=<)/2 : 
arithmetic compare Arithmetic comparison 

Compares the values of the arguments according to the operations named 
as specified in Table 5.1 and defined in Section 6.2.2. 

Table 5.1. The arithmetic comparison operators 

Operator Name 

=: = arithmetic equal 
=\= arithmetic not equal 
> arithmetic greater than 
>= arithmetic greater than or equal 
< arithmetic less than 
=< arithmetic less than or equal 

t> How to use it: ~evaluable op ~evaluable 

Arithmetic comparison operators are predefined infix operators. Their 
priority is 700 and they are non-associative (xfx). 

Example: X = 1+2, X + 6 =:= X * 3. 

t> Description: Expression! op Expression2 

- If the evaluations (see Section 6.2) of Expression! and Expression2 are 
errorless and the application of the right basic arithmetic operation cor­
responding to op to the obtained values is errorless (see 6.2.2 and 6.2.4) 
then 

- if the result of the application of the right basic arithmetic operation 
corresponding to op is true then succeeds with empty local substitution. 

- if the result of the application of the right basic arithmetic operation 
corresponding to op is false then fails. 
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t> Error cases 
See Section 6.2 for the exceptions raised by expressions evaluation. 

t> Examples 

x = 1+2, X + 6 =.= X * 3 . 
Succeeds with substitution { X <- 1+2 } 

'=:='(1.0, 1). Succeeds. 

=:=(3*2, 7-1). Succeeds. 

0.333 =:= 1/3 . Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

'=:='(0, 1). Fails. 

1 =:= N+(3/0). instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised.) 

0.3 =:= n. 
where n is an integer which cannot be converted into a float. 

evaluation_error(float_overflow) 

X = 1+2, X+5 =\= X*3 . Succeeds with substitution { X (- 1+2 } 

'=\ \=' (0, 1). Succeeds. 

0.333 =\= 1/3 Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

=\=(1.0, 1). Fails. 

=\=(3*2, 7-1). Fails. 

'=\\='(X, 5). instantiation_error 

1 =\= N+(3/0). instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised) 

0.3 =\= n. 
where n is an integer which cannot be converted into a float. 

evaluation_error(overflow) 

X = 1+2, X+7 > X*3 . Succeeds with substitution { X (- 1+2 } 

>(3*2, 6-1). Succeeds. 

>(1.0, 1). Fails. 



42 5. The Built-in Predicates 

,>, (0, 1). 

0.333 > 1/3 

'>'(1,5). 

N > (3/0). 

0.3 > n. 

Fails. 

Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

instantiation_error 

instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised.) 

where n is an integer which cannot be converted into a float. 
evaluation_error (overflow) 

1 = 1+2, X+6 >= X*3. Succeeds with substitution { X <- 1+2 } 

>=(3*2, 7-1). Succeeds. 

>=(1.0, 1). Succeeds. 

'>='(0, 1). Fails. 

0.333 >= 1/3 Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

'>='(1,5). instantiation_error 

N >= (3/0). instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised) 

0.3 >= n. 
where n is an integer which cannot be converted into a float. 

evaluation_error(overflow) 

1 = 1+2, X+5 < X*3 . Succeeds with substitution { X <- 1+2 } 

'<'(0, 1). Succeeds. 

0.333 < 1/3 Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

«1.0, 1). Fails. 

'<'(3*2, 7-1). Fails. 

'<'(X, 5). instantiation_error 

1 < N + (3/0). instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised.) 
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0.3 < n. 
where n is an integer which cannot be converted into a float. 

evaluation_error(overflow). 

x = 1+2, X+6 =< X*3. Succeeds with substitution { X <- 1+2 } 

'=<'(0, 1). 

=«1.0, 1). 

0.333 =< 1/3 

=< (3*2, 6-1). 

'=<'(X, 5). 

N =< (3/0). 

0.3 =< n. 

Succeeds. 

Succeeds. 

Succeeds or Fails. (Implementation defined) 
(Depends on the definition of the rounding function) 

Fails. 

instantiation_error 

instantiation_error or 
evaluation_error(zero_divisor) 

(It is implementation dependent which error is raised) 

where n is an integer which cannot be converted into a float. 
evaluation_error (overflow) 
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4 asserta/l Clause creation and destruction 

Adds a new clause as the first clause of a procedure. 

t> How to use it: asserta (0elause_term) 

Example: asserta«legs(A, 4) animal(A») . 

t> Description: asserta(Clause) 

Let ': -' (Head, Body) be the term built as follows: 

- if Clause is an atom or a compound term whose principal functor is dif­
ferent from ':-'/2 then Head is Clause and Body is true, 

- if Clause is a compound term ': -' (t 1, t2) where t 1 is a callable term 
and t2 is a well-formed body-term then Head is tl and Body is t2 trans­
formed (4.1.1), 

the clause Head : - Body, freshly renamed, is added before all existing clauses 
of the procedure whose predicate is the functor of Head, and succeeds with 
empty local substitution. 

t> Error cases 

Conditions 

oClause is a variable 
o Head is a variable 
o Head is neither a variable nor a predica­

tion 
oBody is not a well-formed body-term 
o The predicate indicator Pred of Head is 

that of a static procedure 

t> Examples 

Error-term 

instantiation_error 
instantiation_error 
type_error (callable , Head) 

type_error(callable, Body) 
permission_error(modify, 
static_procedure, Pred) 

Assume the database contains the user-defined procedures: 
moose/!, legs/2, insect/!, elk/! 

with the clauses: static: 
dynamic: 

elk (X) 
legs(A, 6) 
legs (A, 7) 

insect (bee) 

moose(X). 
insect(A). 
fail. 
true. 
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Succeeds. 
the dynamic user-defined procedures now has the 
insect/l: 

insect (ant) true. 
insect(bee) true. 

insect(X) ,asserta(insect(ant»,insect(Y). 
Succeeds twice with the substitutions: 

asserta«legs(A, 4) :- animal(A»). 
Succeeds. 

The database of the dynamic user-defined 
three clauses for legs/2: 

legsL01, 4) 
legs(A, 6) 
legs(A, 7) 

asserta«foo(X) :- X». Succeeds. 

{ X <- bee, Y <- ant }; 
{ X <- bee, Y <- bee }. 

procedures now has the 

animalL01) . 
insect(A). 
fail. 

The database of the dynamic user-defined procedures now has one 
clause for foo/l: 

fooL01) callL01) . 

asserta«bar(X) :- X», clause(bar(X), B). 
Succeeds with substitution: { B <- call(X) } 

The database of the dynamic user-defined procedures now has one 
clause for bar/l: 

barL01) :- callL01). 

asserta«bar(X) :- X», clause (bar (X) , foo(Y». 
Fails. 

The database of the dynamic user-defined procedures now has one 
clause for bar/l: 

barL01) callL01) . 

asserta(X) . instantiation error 

asserta(4). type_error(callable, 4) 

asserta( (foo (true; 4»). 

asserta( (atom(_) 

type_error(callable, (true; 4» 

true) ). 
perrnission_error(modify, 

static_procedure, atom/l) 
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5 assertz/l Clause creation and destruction 

Adds a new clause as the last clause of a procedure. 

[> How to use it: assertz «Qclause_term) 

Example: assertz«legs(A, 4) animal(A»)). 

[> Description: assertz (Clause) 

Let ': -' (Head, Body) be the term built as follows: 

- if Clause is an atom or a compound term whose principal functor is dif­
ferent from ':-'/2 then Head is Clause and Body is true, 

- if Clause is a compound term' :-' (ti, t2) where ti is a callable term 
and t2 is a well-formed body-term then Head is ti and Body is t2 trans­
formed (4.1.1), 

the clause Head : - Body, freshly renamed, is added after all existing clauses 
of the procedure whose predicate is the functor of Head, and succeeds with 
empty local substitution. 

[> Error cases 

Conditions 

o Clause is a variable 
oHead is a variable 
oHead is neither a variable nor a predica­

tion 
oBody is not a well-formed body-term 
o The predicate indicator Pred of Head is 

that of a static procedure 

[> Examples 

Error-term 

instantiation_error 
instantiation_error 
type_error(callable, Head) 

type_error(callable, Body) 
permission_error(modify, 
static_procedure, Pred) 

Assume the database contains the user-defined procedures: 
moose/1, legs/2, insect/1, elk/1 

with the clauses: static: 
dynamic: 

elk (X) 
legs(A, 6) 
legs(A, 7) 
insect (bee) 

moose(X). 
insect(A). 
fail. 
true. 
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assertz(insect(ant». 
The database of 
tllO clauses for 

Succeeds. 
the dynamic user-defined 
insect/l: 

insect(bee) 
insect (ant) 

insect(X),assertz(insect(ant»,insect(Y). 

procedures nOll has the 

true. 
true. 

Succeeds tllice llith the substitutions: 

assertz«legs(A, 4) :- animal(A»). 
Succeeds. 

The database of the dynamic user-defined 
three clauses for legs/2: 

legs(A, 6) 
legs(A, 7) 
legsC01, 4) 

assertz«foo(X) :- X». Succeeds. 

{ X <- bee, Y <- bee }; 
{ X <- bee, Y <- ant }. 

procedures now has the 

insect(A). 
fail. 
animal COl) . 

The database of the dynamic user-defined procedures now has one 
clause for foo/l: 

fooC01) callCOl) . 

assertz«bar(X) :- X», clause(bar(X),B). 
Succeeds llith substitution: { B <- call(X) } 

The database of the dynamic user-defined procedures now has one 
clause for bar/l: 

barC01) :- call COl) . 

assertz«bar(X) :- X», clause(bar(X), foo(Y». 
Fails. 

The database of the dynamic user-defined procedures nOll has one 
clause for bar/l: 

barC01) call COl) . 

assertz(X). instantiation_error 

assertz(4). type_error(callable, 4) 

assertz( (foo (true; 4»). 

assertz( (atom(_) 

type_error (callable , (true; 4» 

true) ). 
permission_error(modify, 

static_procedure, atom/l) 
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6 aLend_oLstream/O Stream selection and control 

Tests whether the current input stream has stream position end-of-stream 
or past-end-of-stream. 

I> How to use it: 

I> Description: at-end_oLstream 

- if the current input stream has current stream-property end_oLstream(at) 
or end_oLstream(past) then succeeds with empty local substitution else 
fails. 

I> Error cases 
None. 

I> Examples 

Assume the current input stream is completely scanned. 

Succeeds. 

Assume the current input stream is the user_input. 

Fails. 
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Stream selection and control 

Tests whether a given open stream has stream position end-of-stream or 
past-end-of-stream. 

!> How to use it: 

Example: at_end_oLstream(mickey). 

!> Description: at_end_of-Btream(Stream-<>r_alias) 

- If Stream_oLalias is a stream-term or alias associated with an open 
stream then if it has the property end_oLstream(at) or end_oLstre­
am(past) then succeeds with empty local substitution else fails. 

!> Error cases 

Conditions 

o StreaDLor _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 

!> Examples 

Error-term 

instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias} 
existence_error(stream, 
Stream_or _alias} 

Assume there is an input stream with alias 'mickey' which has been 
completely scanned. 

Succeeds. 

Fails. 

instantiation_error 
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8 atom/1 Type testing 

Tests whether the argument is an atom. 

I> How to use it: atom(?term) 

Example: atom('Yeti'). 

I> Description: atom(Term) 

- If Term is an atom then succeeds with empty local substitution. 
- If Term is not an atom then fails. 

I> Error cases 
None. 

I> Examples 

atom( 'Yety'). 

atom( []). 

atom(f (1». 
atom(10.01) . 

Succeeds. 

Succeeds. 

Fails. 

Fails. 
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9 atom_chars/2 Atomic term processing 

Explodes an atom name into a list of one-char atoms and conversely. 

t> How to use it: atom_chars (+atom, ?character~ist) 
atom_chars (-atom, +characterJlist) 

Example: atom_chars (X, [a, n, n, a] ) . 

t> Description: atom_chars(Atom, List) 

- If Atom is an atom then let L be the list of one-char atoms identical to the 
sequence of characters of the name of Atom, and 
if L and List are unifiable by substitution (T then succeeds with local 
substitution (T else fails. 

- If Atom is a variable and List is a list of one-char atoms then let A be 
the atom whose name is the sequence of the one-char atoms in List, and 
succeeds with local substitution { Atom ...... A }. 

t> Error cases 

Conditions 

oAtom is neither a variable nor an atom 
o Atom is a variable and List is a variable 

or a partial list, or a list with an element 
which is a variable 

oAtom is a variable and List is neither a 
variable nor a partial list nor a list 

oAtom is a variable and an element E of 
the list List is neither a variable nor a 
one-char atom 

t> Examples 

atom_chars (X, [a,n,n,a]). 

atom_chars (anna , 4). 

atom_chars(X, [a I X]) 

Error-term 

type_error(atom, Atom) 
instantiation_error 

type_error(list, List) 

type_error (character , E) 

Succeeds with substitution: 
{ X <- anna } 

Fails. 

instantiation_error 
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10 atom_codes/2 Atomic term processing 

Explodes an atom name into a list of the atom codes corresponding to 
the one-char atoms forming its name and conversely. 

t> How to use it: atom_codes (+atom, ?character_code~ist) 
atom_codes (-atom, +character_code~ist) 

Example: atom_codes(X, [O'a, O'n, O'n, O'a]). 

t> Description: atom_codes(Atom, List) 

- If Atom is an atom then let L be the list of atom codes whose corresponding 
one-char atoms form the name of Atom, and 
if L and List are unifiable by substitution (T then succeeds with local 
substitution (T else fails. 

- If Atom is a variable and List is a list of atom codes then let A be the 
atom whose name is the sequence of the one-char atoms whose atom codes 
are in List, and succeeds with local substitution { Atom +- A }. 

t> Error cases 

Conditions 

oAtom is neither a variable nor an atom 
o Atom is a variable and List is a variable 

or a partial list, or a list with an element 
which is a variable 

oAtom is a variable and List is neither a 
variable nor a partial list nor a list 

oAtom is a variable and an element E of 
the list List is neither a variable nor a 
character code 

Error-term 

type_error(atom, Atom) 
instantiation_error 

type_error(list, List) 

representation_error(char­
acter _code) 



[> Examples 

atom_codes(X, [O'a, O'n, O'n, O'a]). 

atom_codes([], L). 

atom_codes (anna, [O'a, x, O'n, X]). 

atom_codes(X, [O'a I X]). 
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Succeeds with substitution: 
{ X <- anna } 

Succeeds with substitution: 
{ L (- [ 0'[, 0'] ] } 

Fails. 

instantiation_error 
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11 atom_concat/3 Atomic term processing 

Atom concatenation and splitting. 

t> How to use it: atom_concat{?atom, ?atom, +atom) 
atom_concat{+atom, +atom, -atom) 

Example: atom_concat('hello', , world', S3). 

t> Description: atom_concat (Atom.J., Atom.2, Atom_12) 

- If (1) Atom_12 is an atom and Atom_l and Atom.2 are variables or atoms, 
or (2) Atom_12 is a variable and Atom_l and Atom2 are atoms then 
let S be the sorted list5 of all triples (Al, A2, A3) such that A3 is the atom 
formed with the characters forming Al followed by the characters form­
ing A2, and (Al, A2, A3) and (Atom_l, Atom.2, Atom_12) are unifiable 
then 
- if S is empty then fails. 
- if S is not empty then if (Atom_l, Atom.2, Atom_12) and the first not 

already chosen element (Al, A2, A3) of S are unifiable by substitution 
(T then succeeds with local substitution (T. 

NOTE - atom_concat/3 is re-executable as many times as there are elements in S. 
The order of the solutions follows the order of the elements in the sorted list S. 

t> Error cases 

Conditions 

o Atom_1 and Atom_12, or Atom_2 and 
Atom_12 are variables 

o Atom_1 is neither a variable nor an atom 
oAtom_2 is neither a variable nor an atom 
o Atom_12 is neither a variable nor an atom 

Error-term 

instantiation_error 

type_error (atom, Atom_1) 
type_error (atom, Atom_2} 
type_error(atom, Atom_12} 

5 The ordering on the variables is implementation dependent but constant. 



5.3 The built-in predicates 55 

I> Examples 

atom_concat('hello' , ' world', S3). Succeeds with substitution 
{ S3 (- 'hello world' } 

atom_concat(T, ' world', 'small world'). 

atom_concat(Ti, T2, 'hello'). 
with substitutions 

Succeeds with substitution 
{ T (- 'small' } 

Succeeds 6 times, 
{ T1 (- " T2 (- 'hello' , 
{ T1 (- 'h' , T2 (- 'ello' 
{ T1 (- 'he' J T2 (- '110' 
{ Ti (- 'hel' , T2 (- 'la' 
{ T1 (- 'hell' , T2 (- '0' 
{ T1 (- 'hello' , T2 (- " 

atom_concat('hello', ' world', 'small world'). 
Fails. 

atom_concat (small , S2, S4). instantiation_error 

}; 
}; 
}; 
}; 
}; 
}. 
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12 atom~ength/2 Atomic term processing 

Relates an atom and the number of characters forming that atom. 

c> How to use it: atom-1ength(+atom, ?integer) 

Example: atom-1ength( 'enchanted evening', N). 

c> Description: atom-1ength(Atom, Length) 

- If Atom is an atom and Length is a variable or a non-negative integer, then 
let n be the number of characters forming Atom, and if Length and n are 
unifiable (3.2) by substitution (J" then succeeds with local substitution (J" 

else fails. 

c> Error cases 

Conditions 

o Atom is a variable 
oAtom is neither a variable nor an atom 
o Length is neither a variable nor an integer 
o Length is an integer that is less than zero 

c> Examples 

atom_length('enchanted evening', N). 

atom_length('enchanted\ 
evening', N). 

atom_length(", N). 

atom_length('scarlet', 5). 

atom_length(1.23, 4). 

Error-term 

instantiation_error 
type_error(atom, Atom) 
type_error(integer, Length) 
domain_error (not_less_than-zero, 
Length) 

Succeeds with substitution 
{ N (- 17 } 

Succeeds with substitution 
{ N (- 17 } 

Succeeds with substitution 
{ N <- 0 } 

Fails. 

type_error(atom, 1.23) 
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13 atomic/1 Type testing 

Tests whether the argument is an atom or a number. 

I> How to use it: atomic (?term) 

Example: atomic (10.01) . 

I> Description: atomic (Term) 

- If Term is a constant (an atom or a number) then succeeds with empty 
local substitution. 

- If Term is nqt a constant (it is a variable or a compound term) then fails. 

I> Error cases 
None. 

I> Examples 

atomic(iO .01). 

atomic ( 'Yeti'). 

atomic«;». 

atomic(X). 

atomic(f(X,Y». 

Succeeds. 

Succeeds. 

Succeeds. 

Fails. 

Fails. 
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14 bagof/3 All solutions 

Assembles a list of the solutions of a goal for each different instantiation 
of the free variables in that goal. The elements of each list are in order of 
solution, but the order in which each list is found is undefined. 

t> How to use it: bagof(~term, +body_term, ?list) 

Example: bagof(A, legs(A,N), B). 

t> Description: bagof (Template, Bgoal, Blist) 

- If the bagof-subgoal6 G of Bgoal is a well-formed body-term different from 
a variable, 
let W be a witness of the free variables6 of (Template ~ Bgoal), and 
let S be the list, solution off indall ([W ,Template] , G, S), 

- If S is the empty list, then fails. 
- If S is a non-empty list, then let Lp be the list of pairs (L, ¢) such 

that: 
- assuming S' is a sublist of (not already used) elements of S, formed by 
one element of S (the choice is undefined), say [v, t], and all the other 
elements of S, [v', t'], such that v and v' are variants. The order of 
the elements in S' is the same as in S (solution order), and 
- ¢ is a unifier (3.2) of all terms v's in S' and W (it always exists), and 
L is the list formed with the terms t¢ such that the [v, t] 's are elements 
of S', in the same order, and Blist¢ and L are NSTO and unifiable . 

• If Lp is the empty list, then fails . 
• If Lp is a non-empty list, then succeeds with local substitution ¢a 

where a is the unifier of Blist¢ and Land (L, ¢) is an element of 
Lp not yet used. 

NOTES: 

1- According to the definition of findall/3, the transformed bagof-subgoal is ex­
ecuted. 

2- bagof/3 is re-executable as long as Lp is not empty, using not already chosen 
elements of the list Lp (undefined order). 

3- The number of elements of the list Lp, as the behaviour of bagof/3, may be 
undefined if some tried pairs are STO. 

4- If (Template ~ Bgoal) has no free variable and call(G) has at least one solu­
tion the predicate succeeds with one solution only. 

6 See the Glossary. 
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5- The variables of Template and the non free variables of Bgoal remain uninstan­
tiated after each success of bagof (Template, Bgoal, Blist). 

6- In most applications, the free variables are bound to ground terms after each 
success of the bagof-subgoal. In this case there is no need to consider the sub­
stitution <p in the definition, which becomes simpler. 

t> Error cases 

Conditions 

o The bagof-subgoal G of Bgoal is a variable 
oThe bagof-subgoal G of Bgoal is neither 

a variable nor a callable term nor a well­
formed body-term 

o Blist is neither a variable nor a partial 
list nor a list 

t> Examples 

Error-term 

instantiation_error 
type_error (callable , G) 

type_error(list, Blist) 

Assume the database contains the user-defined procedures: 
legs/2, insect/1, animal/1, spider/1 

vith the clauses: legs(A, 6) insect(A) . 
legs(A, 4) animal (A) . 
legs(A, 8) spider(A). 
insect(bee) true. 
insect(ant) true. 
animal (horse) true. 
animal (cat) true. 
animal (dog) true. 
spider (tarantula) true. 

bagof(A, legs(A,N), B). 
Succeeds three times (undefined order) vith substitutions: 

{ N (- 4, B (- [horse, cat, dog] }; 
{ N (- 8, B (- [tarantula] }; 
{ N (- 6, B (- [bee, ant] }. 

(the free variable set is {N}, A remains unbound) 

bagof(X, (X=Y ; X=Z ; Y=1), S). 
Succeeds tvice (undefined order) vith substitutions: 

{ S (- [Y, Z] }; 
{ S (- [_01], Y (- 1 }. 

(the free variable set is {V, Z}, X remains unbound) 

bagof(X, X = f(Y, V), [f(Z, g(Z»]). 
Undefined. 

bagof(X, X - (true; 4), L). 
type_error (callable , 1) 
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15 call/1 metacall Logic and control 

Executes a goal, restricting the scope of the cuts to this goal. 

I> How to use it: call (+body _term) 

Example: X = write( 'hello'), call (X) . 

I> Description: call (G) 

- If G is a well-formed body-term different from a variable (2.2.3), then 
executes transformed G (4.1.1). 

More precisely (see Section 4.3.3), if the current goal is (call(G) , Cont) 7, 

a new child is created whose labels are the empty substitution and the goal 
(G' ,Cont), where G' is transformed G. 

NOTE - The effect of a cut occurring inside the goal G is limited to this goal; it 
has no effect outside of call11. call/1 is said to be opaque (or not transparent) to 
cut. 

I> Error cases 

Conditions 

o G is a variable 
o G is neither a variable nor a callable term 

nor a well formed body-term 

I> Examples 

Error-term 

instantiation_error 
type_error(callable, G) 

Assume the database contains the clauses: 
a(1) 
a(2) 

true. 
true. 

X write('hello'), call(X). Succeeds with substitution: 
{ X (- write('hello') }, 

after outputting 'hello'. 

7 If Cont is empty, then one assumes Cont true. 
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call(!) ; true. Succeeds twice with empty substitution. 

z = !, call( (Z=!, a(X), Z) ). 

call( (Z=!, a(X), Z) ). 

call (fail) . 

call«write(3), X». 

call«write(3), fail, 1». 

Succeeds once with local substitution: 
{ X <- 1, Z <- ! } 

Succeeds twice 
with local substitutions: 

{ X <- 1, Z <- }; 
{ X (- 2, Z (- ! }. 

Fails. 

Outputs '3', then 
instantiation_error 

type_error (callable , 
(write(3), fail, 1» 
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16 catch/3 Exception handling: error catching Logic and control 

Captures errors generated during the execution of a given goal (first ar­
gument) either explicitly in the program (see throw/i) or implicitly when an 
error is raised by the processor, and executes a recover goal (third argument 
after instantiation). 

t> How to use it: catch (+body _term, ?term, ?term) 

Example: catch(p, X, 
(write('warning: error raised when executing p'),nl)). 

t> Description: catch(Goal, Catcher, Recovergoal) 

The meaning must be considered with the built-in predicate throw/1. 

- If Goal is a well-formed body-term different from a variable, the goal 
call (Goal) is executed. If an error occurs during its execution which is 
caught by Catcher, the resulting instance of Recovergoal is executed (see 
throw/i definition). 

More precisely (see Section 4.3.3), if the current goal is (catch(Goal, 
Catcher, Recovergoal), Cont) 8, it creates a new child whose labels are 
the empty substitution and the goal (call (Goal) ,Cont). 

NOTE - If a ball is thrown (see throw/1 definition) in the sub-seach-tree issued 
from that node, there are two possibilities: either it is thrown during the execution 
of call (Goal), and the ball can be caught by Catcher. Or it is thrown during the 

execution of Cont and the ball is not caught by Catcher. 

t> Error cases 

Conditions 

o Goal is a variable 
o Goal is neither a variable nor a well­

formed body-term 

8 If Cont is empty, then one assumes Cont 

Error-term 

instantiation_error 
type_error(callable. Goal) 

true. 
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t> Examples 

Assume the database contains the user-defined procedures: 

with the clauses: p 
p 

true. 
throw(b) . 

reX) 

p/O, q/O, r/l 

throw(X). 

q catch(p, B, write('hellop'», r(c). 

catch(p, X, (write('warning: error raised when executing p'),nl». 

catch(q, C, write(helloq». 

Succeeds twice: 
first time with empty substitution; 
second time with substitution: 

{ X (- b} 
after outputting: 

warning: error raised when executing p 

Succeeds with substitution {C (- c} 
after outputting: helloq 
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Atomic term processing 

Relates a character and its character code (an integer). 

I> How to use it: char_code (+E_character, ?character_code) 
char_code (-E_character, +character_code) 

Example: char_code ( , 1', Y). 

I> Description: char _code (Char, Code) 

- If Char is a variable and Code is the character code of a character in ECS 
(9.1.3) whose name is A, then succeeds with local substitution {Char +-

A}. 
- If Char is a character in ECS whose character code is C then if Code 

and C are unifiable (3.2) by the substitution (T then succeeds with local 
substitution (T else fails. 

I> Error cases 

Conditions Error-term 

o Char and Code are variables 
o Char is neither a variable nor a character 

in ECS 

instantiation_error 
type_error (character , Char) 

o Code is neither a variable nor an integer ·type_error(integer, Code) 
representation_error­
(character_code) 

o Code is an integer which is not a character 
code 

I> Examples 

char_code('l', V). Succeeds with substitution: { Y (- 49 } 
(assuming the character code for the character '1' is 49) 

char_code(X, 163). 
(if there is an extended 

(if there is no extended 

char_code('l', 0'2). 

char_code (1 , 0'1). 

Succeeds with substitution: { X (- 'UU'} 
character UU whose character code is 163) 
representation_error (character_code) 

character whose character code is 163) 

Fails. 

type_error (character , 1) 
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18 char _conversion/2 Term input/output 

Updates the character conversion table used by inputting terms (see 
read_term/3) or during the preparation of Prolog texts. 

I> How to use it: char _conversion (IDE_character, IDE_character) 

Example: char _conversion ( '&', ',') 

I> Description: char _conversion (In_char, Out_char) 

- If In_char and Out_char are characters in ECS (9.1) 
then updates the character conversion table by replacing the value asso­
ciated with In_char in the table by Out_char and succeeds with empty 
substitution. 

NOTES: 

1- Originally each character in ECS is associated with itself. Exceptions to this 
rule are implementation defined. 

2- When In_char and OuLchar are the same, the effect of char _conversion/2 is 
to remove any conversion of a character In_char. 

3- The character conversion table has exactly one entry per character. 
4- The characters In_char and Out_char should be quoted in order to ensure that 

they have not been converted by a character-conversion directive when the 
Prolog text was prepared for execution. 

5- char_conversion/2 affects only characters read by inputting read-terms. When 
it is necessary to convert characters read by character input/output built-in 
predicates (11.5), it will be necessary to program the conversion explicitly using 
current_char_conversion/2. 

I> Error cases 

Conditions 

o In_char is a variable 
o Out_char is a variable 
o In_char is neither a variable nor a char­

acter in ECS 
o Out_char is neither a variable nor a char­

acter in ECS 

Error-term 

instantiation_error 
instantiation_error 
representation_error (char­
acter) 
representation_error (char­
acter) 
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I> Examples 

char_conversion('I:', ','). Succeeds vith empty substitution, 
after updating the character conversion table vith: 

, associated vith the entry I: 

char_conversion('I:', 'I:')} Succeeds vith empty substitution, 
after updating the character conversion table vith: 

I: associated vith itself (identity). 
( I: is not converted anymore) 

NOTE - After the following goal: 
char_conversion('I;', ','), char_conversion("', J J J '), 

char _conversion( 'a', a). 
when the value associated with flag char _conversion is on, all occurrences of 1:, 

" and a as unquoted characters read by term input built-in predicates are converted 
to , ' and a respectively. For example, the three characters aa:a are converted to the 
characters a, a. However the characters 'a&a' represent an atom a&a because 
they are enclosed by the single quotes, and the characters 'aa:a' form an atom 
'a,a'. 
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19 clause/2 Clause retrieval and information 

Selects clauses of the public user-defined procedures in the database. 

I> How to use it: clause (+callable_term, ?callable_term) 

Example: clause (reverse (X, Y) ,B). 

I> Description: clause (Head , Body) 

- If Head is a callable term (an atom or a compound term) and Body is 
a variable or a callable term, let S be the sequence of all the terms (H, 
B) obtained by a sequential search in the database (procedures, followed 
by clauses) such that H : - B is a freshly renamed copy of the clause of 
a public user-defined procedure and (Head, Body) and clause (H, B) are 
NSTO (3.3.3) and unifiable, 
then 
- if S is empty then fails. 
- if S is not empty then if the first element not yet selected of Sand 

(Head, Body) are unifiable (3.2) by substitution (T then succeeds with 
local substitution (T. 

NOTES: 

1- clause/2 is re-executable as many times as the size of S. The order of the 
solutions corresponds to the order of the elements in the sequence S. 

2- Dynamic procedures and public static procedures are inspected. 
3- The number of elements of the sequence S may be undefined if some tried 

pairs are STO. 

I> Error cases 

Conditions 

o Head is a variable 
o Head is neither a variable nor a callable 

term 
o Body is neither a variable nor a callable 

term 
o The predicate indicator Predind of Head 

is that of a private procedure 

Error-term 

instantiation_error 
type_error (callable , Head) 

type_error (callable , Body) 

permission_error(access, 
private_procedure, Predind) 
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[> Examples 

Assume the database contains the user-defined procedures: 
reverse/2, append/3, legs/2, insect/1, elk/1, moose/1 

with the clauses: 
static, public: elk(I) moose(X). 

true. 

dynamic: 

reverse ( [] , [] ) 
reverse ( [E 1 L] ,R) 

legs(A, 6) 
legs(A, 7) 
insect (ant) 
insect (bee) 

reverse(L,Q), append(Q,[E] ,R). 

insect (A) . 
fail. 
true. 
true. 

clause(reverse(I,Y),B). Succeeds twice with substitutions: 
{ I (- [], Y (- [], B (- true }; 
{ I (- [_011_02], Y (- _03, 

B (- (reverse(_02,_04), append(_04,[_01],_03» }. 

clause(elk(N), Body). Succeeds with substitution: 
{ N (- _01, Body (- moose(_01) } or 
{ Body (- moose(N)} (implementation defined) 

clause(x, Body). Fails. 

clause(insect(I), (true; 1». 
Fails. 

clause(reverse(X, Y, Z), T). 
Fails. 

abolish(reverse/2), clause(reverse(X, Y), B). 
Fails. 

retract (elk/1), clause(elk(I), B). 
Fails. 

clause(legs(A, 6), insect(f(A»). 
Undefined. 

clause(X, B). instantiation_error 

clause(insect(I), 1). type_error (callable , 1) 

clause(atomic(_), Body). permission_error(access,private_procedure, 
atomic/1) 
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20 close/l Stream selection and control 

Closes a source/sink according to the default list of close-options (7.3.3). 

[> How to use it: close (<!Istream...or _alias) 

Example: close (mickey) . 

[> Def>cription: close (Stream_or _alias) 

It behaves like: 
close (Stream...or _alias, [])., or equivalently: 
close (Stream_or_alias, [force(false)]). 

[> Error cases 

Conditions 

o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 

[> Examples 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 

Assume that the current output stream has alias 'mickey'. 

close(mickey). closes the stream if there is no resource or 
system error condition and 

succeeds with empty substitution, 
after flushing any buffered information to that stream. 

close(user_input). Succeeds. 

close(mouse(X». domain_error(stream_or_alias, mouse(X» 
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21 close/2 Stream selection and control 

Closes a source/sink according to a list of close-options (7.3.3). 

t> How to use it: close (<Dstream..or _alias, <Dclose_opt ions) 

Example: close(mickey, [force (true») . 

t> Description: close (Stream..or_alias , Options) 

- If Stream_orAlias is a stream-term or alias associated with an open 
stream, and Options is a list of close-options (7.3.3), 
then performs (1) and (2) 
(1) if there is a close-option force(true) , then ignores any resource error 
condition or system error condition that may be satisfied (4.4), 
(2) if the stream associated to Stream_or-alias is an output stream, sends 
to that stream any output which is currently buffered by the processor for 
the stream associated with Stream_or-alias, and 

- if the stream associated to Stream_or_alias is the standard input or 
output stream then succeeds with empty local substitution. 

- if the stream associated to Stream_or_alias is not the standard input 
or output stream, and is the current input (resp. output) stream then 
closes the current input (resp. output) stream, deletes any alias associ­
ated with that stream, the current input (resp. output) stream becomes 
the standard one, and succeeds with empty local substitution. 

- if the stream associated to Stream_or_alias is neither the standard 
input or output stream, nor the current input or output stream then 
closes the stream associated with Stream_or_alias, deletes any alias 
associated with that stream, and succeeds with empty local substitution. 

NOTES: 

1- If Options contains contradictory close-options, the rightmost stream-option is 
the one which applies. 

2- force(false) is the default option. 
3- force(true): data and results may be lost and the stream may be left in an 

inconsistent state. 



t> Error cases 

Conditions 

o Options is a variable or a list with an 
element E which is a variable 

o Options is neither a variable nor a list 
o An element E of the Opt ions list is neither 

a variable nor a close-option 
oStreuLor_alias is a variable 
oStream_or_alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 

t> Examples 
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Error-term 

instantiation_error 

type_error(list, Options) 
domain_error(close_option, 
E) 

instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error (stream, 
Stream_or_alias) 

Assume that the current output stream has alias 'mickey', and 
'mouse' does not correspond to any open stream. 

close (mickey , [force(true)]). closes the stream and 
succeeds with empty substitution, 

after flushing any buffered information to that stream, 
independently of the existence of resource or system errors. 

close(user_input). Succeeds. 

close(mouse, [X]). instantiation_error or 
existence_error(stream, mouse) 

(it is implementation dependent which error is raised) 

close(mouse(I),[]). 
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22 compound/1 Type testing 

Tests whether the argument is a compound term. 

I> How to use it: compound (?term) 

Example: compound(f (X, y» . 

I> Description: compound(Term) 

- If Term is a compound term then succeeds with empty local substitution. 
- If Term is not a compound term (it is a variable, an atom or a number) 

then fails. 

I> Error cases 
None. 

I> Examples 

compound(f(I,Y». 

compound ( [a]) . 

compound(-a). 

compound(-l). 

compound(10.01) . 

compound ( 'ok') . 

compound ( [] ) . 

Succeeds. 

Succeeds. 

Succeeds. 

Fails. 

Fails. 

Fails. 

Fails. 
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23 (,) /2 conjunction Logic and control 

Sequential execution of two goals. 

I> How to use it: 

, , '/2 is a predefined infix operator. Its priority is 1000 and it is right 
associative (xfy). 

Example: (insect(X), fly(X)); (legs(X,6), fly(X)). 

I> Description: (G1 , G2) 

- If G1 and G2 are two well-formed transformed (2.2.3) goals then executes 
Gl and executes G2 in sequence each time G1 is satisfied. 

More precisely (see Section 4.3.3) if the current goal is «Gj , G2) ,Cont)9 
a new child is created whose labels are the empty substitution and the goal 
(G1 , (G2, Cont)). 

NOTE - The conjunction also satisfies the following obvious properties: 
(goal, true) = (true, goal) = goal and 
((goalt,goaI2),goab) = (goalt, (goab,goab)) = (goalt,goaI2,goab) 
(true, true) = true, (true, fail)= fail, and (fail, true) = fail. 

lt is always possible to "flatten" conjunctions of goals or to simplify goals ac­

cording to these rules. 

I> Error cases 
There is no error because in Standard Prolog only well-formed trans­

formed goals are executed. 

I> Examples 

Assume the database contains the 

vith the clauses: legs(A, 6) 
legs(A, 4) 

fly(bee) 

user-defined procedures: 
insect/1, fly/1, legs/2 

insect(A). insect(bee) true. 
animal(A). insect (ant) :- true. 
true. 

(insect(X) ; legs(X,6)) ,fly(X). Succeeds tvice 
vith the same substitution: {X (- bee } 

9 If Cont is empty, then one assumes Cont = true. 
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24 copy _term/2 Term creation and decomposition 

Term duplication: unifies the second argument with a freshly renamed 
copy of the first. 

t> How to use it: copy_term(?term, ?term) 

Example: copy_term(f(X, Y) ,Z). 

t> Description: copy_term (Termi , Term2) 

- If a freshly renamed copy of Termi and Term2 are NSTO (3.3.3) and 
unifiable by the substitution (j then succeeds with local substitution (j. 

- If a freshly renamed copy of Termi and Term2 are N STO and not unifiable, 
then fails. 

- If a freshly renamed copy of Termi and Term2 are STO , then the re­
sult is undefined (success, failure, loop or error are standard conforming 
behaviours) . 

t> Error cases 
None. 

t> Examples 

copy_term(f(X, Y),Z). Succeeds with substitution 
{ Z (- feU, V) } 

copy_term(X, -10). Succeeds. 

copy_term(f(a,X), f(X,b». Succeeds with substitution { X (- a} 

copy_term(f(X,X) , f(A,B». Succeeds with substitution { A (- B } 
(or { B (- A }, implementation dependent) 

copy_term(a, 'ok'). Fails. 

X = f(Y,Z), copy_term(X,U), U == f(Y,Z). 
Fails. 

copy_term(f(a,X), f(X,b», copy_term(f(a,X), f(X,b». 
Fails. 

copy_term(f(X.X). fey, g(Y»). Undefined. 
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25 current_char _conversion/2 Term input/output 

Finds the elements of the character conversion table used by term input, 
different from identity. 

I> How to use it: current_char_conversion (?E_character, 
?character) 

Example: current_char_conversion(C, a). 

I> Description: current_chaLconversion(In_char, Out_char) 

- If In_char is a variable or a character in ECS (9.1) and In_char is a 
variable or a one-char atom then 
let S be the set of all the terms (In, Out) of the character conversion 
table such that In and Out are different and (In, Out) is unifiable with 
(In_char, Out_char), 

- If S is empty then fails. 
- If S is not empty then succeeds with local substitution u which is the 

unifier of (In_char, Out_char) and one of the elements of S not already 
chosen (the choice is implementation dependent). 

NOTE - current_char_conversion/2 is re-executable as many times as the size of 
s. The order of the solutions is implementation dependent. 

I> Error cases 

Conditions 

o In_char is neither a variable nor a char­
acter in ECS 

o Out_char is neither a variable nor a one­
char atom 

Error-term 

type_error (character , 
In_char) 
type_error(character, 
Out_char) 
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I> Examples 

Assume the character conversion table contains the pairs: 
a,a 
a, a 

and 'UU' is not a character in ECS. 
current_char_conversion(C, a). Succeeds tvice vith substitutions: 

{ c<-a}; 
{C<-a}. 

(The order of solutions is implementation dependent) 

current_char_conversion(a, a). Fails. 

current_char_conversion(c, 'UU'). type_error(character, 'UU') 
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26 currentJ.nput/l Stream selection and control 

Identifies the current input stream. 

I> How to use it: current~nput(?stream) 

Example: current_input(S). 

I> Description: current_input (Stream) 

- If Stream is a variable or a stream-term then 
let ST be the current input stream-term, 

- If ST and Stream are unifiable (3.2) by unifier (Y then succeeds with 
local substitution (Y 

- If ST and Stream are not unifiable then fails. 

NOTES: 

1- Stream cannot be an atom, hence it cannot be an alias. 
2- By default the current input stream is the standard input stream. 

I> Error cases 

Conditions Error-term 

o Stream is neither a variable nor a stream­
term 

domain_error (stream, 
Stream) 

I> Examples 

Assume the current input stream is 'user_input'. 

current_input(S). Succeeds with substitution: 
{ S (- '$stream'(132464) } 

(an implementation dependent non atomic ground term) 

current_input(user_input). domain_error (stream , user_input) 
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27 currenLop/3 Term input! output 

Finds the elements of the current operator table (the predefined operators 
are in Table 9.2.2 in Chapter 9). 

I> How to use it: current_op(?integer, ?operator-Bpecifier, 
?atom) 

Example: current_op(P, xfy, OP). 

I> Description: currenLop (Priori ty, Op_specif ier, Operator) 

- If Priority is a variable or an integer between 1 and 1200 inclusive, and 
Op_specifier is a variable or an operator specifier as in Table 9.1, and 
Operator is a variable or an atom, 
then 
let S be the set of all the terms (P,Spec,Op) corresponding to operators 
defined in the current operator table which are unifiable with (Priority, 
Op_specifier, Operator), 

- If S is empty then fails. 
- If S is not empty then succeeds with local substitution 0" which is the 

unifier of (Priority, Op_specifier, Operator) and one of the ele­
ments of S not already chosen (the choice is implementation depen­
dent ). 

NOTE - currenLop/3 is re-executable as many times as the size of S. The order 

of the solutions is implementation dependent. 

I> Error cases 

Conditions 

o Priori ty is neither a variable nor an in­
teger between 1 and 1200 inclusive 

o Op..specifier is neither a variable nor an 
operator specifier 

o Operator is neither a variable nor an 
atom 

Error-term 

domain_error (operator_priority , 
Priority) 
domain_error(operator_specifier, 
Op_specifier) 
type_error(atom, Operator) 
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t> Examples 

current_op(P, xfy, OP). 
If the default operator table has not been altered, then 

Succeeds 4 times vith substitutions: 
{ P <- 1100, OP <- ';' }; 
{ P <- 1050, OP <- ,->, }; 
{ P <- 1000, OP <- ',' }; 
{ P <- 200, OP <- }. 

(The order of solutions is implementation dependent) 

current_op(O, X, Y). domain_error(operator_priority, 0) 
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28 currenLoutput /1 Stream selection and control 

Identifies the current output stream. 

I> How to use it: current-Dutput(?stream) 

Example: current_output (S). 

I> Description: current_output (Stream) 

- If Stream is a variable or a stream-term then 
let ST be the current output stream-term, 

- If ST and Stream are unifiable (3.2) by unifier u then succeeds with 
local substitution u 

- If ST and Stream are not unifiable then fails. 

NOTES: 

1- Stream cannot be an alias. 
2- By default the current output stream is the standard output stream. 

I> Error cases 

Conditions Error-term 

° Stream is neither a variable nor a stream­
term 

domain_error (stream, 
Stream) 

I> Examples 

Assume the current output stream is user_output. 

current_output(S). Succeeds vith substitution: 
{ S <- stream-term } 

(an implementation dependent non atomic ground term) 

domain_error (stream, user_output) 
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29 currenLpredicate/! Clause retriellal and information 

Finds the predicate indicators of the user-defined procedures (dynamic or 
static) in the database. 

t> How to use it: current-predicate (?predicate...indicator _pat­
tern) 

Example: current_predicate (reverse/X). 

t> Description: current-predicate(Term) 

- If Term is a variable or a predicate indicator pattern, let S be the set of 
all the terms A/M such that 
(1) the database contains a user-defined procedure (static or dynamic, not 
abolished) whose predicate indicator is A/M, and 
(2) A/M and Term are unifiable (3.2). 
then 
- If S is empty then fails. 
- If S is not empty then succeeds with local substitution u which is the 

unifier of Term and one of the elements of S not already chosen (the 
choice is implementation dependent). 

NOTES: 

1- current_predicate/2 is re-executable as many times as the size of S. The order 
of the solutions is implementation dependent. 

2- A user-defined procedure is still found even when all its clauses have been re­
tracted. 

3- It is undefined whether private procedures are found. 

t> Error cases 

Conditions 

o Term is neither a variable nor a predicate 
indicator pattern 

Error-term 

type_error (predicate_indicator. 
Term} 
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t> Examples 

Assume the database contains the user-defined procedures: 
reverse/2, reverse/3 and plus/3. 

current_predicate(reverse/X). Succeeds tvice vith substitutions: 
{ X <- 2 }; 

current_predicate(X). 

{ X <- 3 }. 
(the order is implementation dependent) 

Succeeds 3 times vith substitutions: 
{ X <- plus/3 }; 
{ X <- reverse/2 }; 
{ X <- reverse/3 }. 

(the order is implementation dependent) 

current_predicate(reverse/l). Fails. 

current_predicate(4). type_error(predicate_indicator, 4) 
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30 currenLprolog~ag/2 Flag updates 

Finds the pairs < flag, value> where flag is a flag supported by the 
processor and value the value currently 'associated with it. 

[> How to use it: current-prolog-Ilag(?atom, ?term) 

Example: current_prolog-I lag (unknown , V). 

[> Description: current_prolog-I lag (Flag , Value) 

- If Flag is a variable or an atom, let S be the set of all the terms (F, V) 
such that 
(1) F is a flag supported by the processor (including standard ones and 
extensions) and V is the value currently associated with it, 
(2) (F, V) and (Flag, Value) are unifiable (3.2). 
then 
- If S is empty then fails. 
- If S is not empty then succeeds with local substitution a which is the 

unifier of (Flag, Value) and one of the elements of S not already chosen 
(the choice is implementation dependent). 

NOTES: 

1- current_prolog.:flag/2 is re-executable as many times as the size of S. The 
order of the solutions is implementation dependent. 

2- If the flag bounded is false, there is no value for the flags min_integer and 
max_integer, hence current_prolog.:flag(min_integer,N) or current_pro­
log.:flag(max_integer, N) fails. 

[> Error cases 

Conditions Error-term 

o Flag is neither a variable nor an atom type_error(atom, Flag) 
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[> Examples 

Assume the current value of the flag 'unknovn' is 'error', there is 
no flag 'flag' supported by the processor and the flag 'bounded' has 
value 'false'. 

current_prolog_flag(unknovn, V). Succeeds with substitution: 
{ V (- error } 

current_prolog_flag(unknovn, fail). Fails. 

current_prolog_flag(flag, error). Fails. 

current_prolog_flag(min_integer, H). Fails. 

current_prolog_flag(flag(unknovn). V). 
type_error(atom. flag(unknovn» 
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31 I/O cut Logic and control 

Prunes alternative solutions (cuts unexplored hanging branches in the 
search-tree). 

[> How to use it: !. 

Example: insect (X) , ! . 

[> Description: ! 

- Succeeds with empty local substitution, after cutting some alternatives. 

More precisely (see Sections 4.3.3 and 4.5) the effect of ' ! '10 is to make 
deterministic all the nodes10 between the node (inclusive), where the pred­
ication, head of the clause whose body contains this cut, has been chosen, 
and the current node where this cut is executed. 
If the current goal is (!, G), a new child is thus created whose labels are 
the empty substitution and the goal Gll . 

[> Error cases 
None. 

[> Examples 

Assume the database contains the user-defined procedures: 

vith the clauses: insect (bee) 
insect (ant) 

true. 
true. 

insect/1, animal/1 

animal(horse) 
animal(cat) 
animal (dog) 

true. 
true. 
true. 

insect (X) • ! . Succeeds once vith substitution: 
{ X <- bee } 

(insect(X); animal(Y»,!. Succeeds once vith substitution: 
{ X <- bee } 

insect(X). !. animal(Y). Succeeds three times vith substitutions 
{ X <- bee, Y <- horse }; { X <- bee, Y <- cat }; 

{ X <- bee, Y <- dog }. 

10 This means that all the branches corresponding to not yet visited children of 
these nodes are deleted. 

11 If G is empty, then one assumes G = true. 
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32 (;)/2 disjunction Logic and control 

Alternative execution of two goals. 

I> How to use it: (+body _term 

, ; '/2 is a predefined infix operator. Its priority is 1100 and it is right 
associative (xfy). 

Example: (insect (X) , fly(X»; (legs(X,6), fly(X». 

I> Description: (G1 ; G2) 

- IfG1 and G2 are two well-formed transformed (2.2.3) goals and the principal 
functor of G1 is not ,->, /2 then 
executes G1 and skips G2 each time G1 is satisfied, and executes Gz when Gl 

fails if this alternative has not been cut by the execution of G1. 

More precisely (see Section 4.3.3) if the current goal is «G1 ; G2), Cont) 12 

then two children are created whose labels are the empty substitution and 
the goal (G1 ,Cont) for the first, (G2 ,Cont) for the second. 

NOTE - The disjunction corresponds to a non-deterministic node. It may also be 
defined by the two meta clauses ("meta" because the variables Gl, G2 stands for 
subgoals): 

, ; , (Gl, G2) 

'; '(Gl, G2) 

I> Error cases 

G1. 
G2. if the principal functor of Gl is not '->' /2. 

There is no error because in Standard Prolog only well-formed trans­
formed goals are executed. 

I> Examples 

Assume the database contains the clauses: 
legs(A, 6) insect(A). insect (bee) 
legs (horse , 4) :- true. insect (ant) 

(insect(X), fly(X» ; (legs(X,6), fly(X». 

true. fly(bee) 
true. 

true. 

Succeeds twice with the same substitution: { X (- bee } 

12 If Cont is empty, then one assumes Cont = true. 
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33 fail/O Logic and control 

Forced failure. 

t> How to use it: fail 

Example: (X =1 ; Y = 2), write(X) , fail. 

t> Description: fail 

- Fails. 

More precisely fail can be viewed as a user defined predicate with no def­
inition at all. Hence its execution defines a failed branch and the execution 
continues with backtracking (Section 4.2.6). 

NOTE - In contrast to the execution of a predication which does not correspond 
to any existing user defined procedure13 , no message is raised by executing fail/O. 

t> Error cases 
None. 

t> Examples 

(X = 1 ; X = 2), write(X) , fail. 
Outputs on the current output stream 12 and fails. 

repeat, write(l), fail. 
Outputs infinitely on the current output stream 111 ... 

13 Its behaviour depends on the value of the flag unknovn. 
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34 findall/3 All solutions 

Collects all the solutions of a goal in a list (solution order) according to 
a given pattern. 

I> How to use it: findall(~term, ~body_term, ?list) 

Example: findall (X, insect (X), S) 

I> Description: f indall (Term, Goal, Bag) 

- If Goal is a well-formed body-term different from a variable, 
let S be the sequence of the substitutions obtained by successive re­
execution of call (Goal) and 
let L be the list whose elements are freshly renamed copies of Termll- for all 
II- in S in the same order (if there is no element in S, L is the empty list). 
Then 

- If Bag and L are NSTO (3.3.3) and unifiable by substitution 0", then 
succeeds with local substitution 0". 

- If Bag and L are NSTO and not unifiable then fails. 
- If Bag and L are STO then undefined. 

I> Error cases 

Conditions 

o Goal is a variable 
o Goal is neither a variable nor a callable 

term nor a well-formed body-term 
o Bag is neither a variable nor a partial list 

nor a list 

Error-term 

instantiation_error 
type_error (callable , Goal) 

type_error(list, Bag) 
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I> Examples 

Assume the database contains the clauses: 

legs(A. 6) insect (A) . 
legs(A. 4) animal(A) . 
legs(A. 8) spider(A). 
insect (bee) true. 
insect (ant) true. 

findall(I. insect(I). S). Succeeds with substitution: 
{ S <- [bee. ant] } 

findall(I. (1=1; 1=2). S). Succeeds with substitution: 
{ S <- [1. 2] } 

findall(I. (I Y I Y). S). Succeeds with substitution: 
{ S <- L01. _02] } 

findall(I. fail. S). Succeeds with substitution: 
{ S <- [] } 

findall(I. legs(_.I). [I. Y. Z]). Succeeds with substitution: 
{ I <- 6. Y <- 4, Z <- 8 } 

findall(I, insect (I) , [ant, bee]). Fails. 

findall(I, I = f(Y,Y), [f(I,g(I»]). Undefined. 

findall(I, G, S). instantiation_error 

findall(I, (true; 4), S). type_error(callable, (true; 4» 
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35 float/1 Type testing 

Tests whether the argument is a floating-point number. 

I> How to use it: float (?term) 

Example: float(lO.Ol). 

I> Description: float (Term) 

- If Term is a floating-point number then succeeds with empty local substi­
tution. 

- If Term is not a floating-point number then fails. 

I> Error cases 
None. 

I> Examples 

float(10.01) . 

float(-10.01). 

float(- -10.01). 

float{iO) . 

float (X) . 

Succeeds. 

Succeeds. 

Fails. 

Fails. 

Fails. 
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36 flush_output/o Stream selection and control 

Flushes any buffered information to the current output stream. 

~ How to use it: 

Example: flush_output. 

~ Description: flush_output 

- Succeeds with empty local substitution after flushing any buffered infor­
mation to the current output stream. 

NOTE - Behaves like: 
current_output(S), flush_output(S). 

~ Error cases 
None. 

t> Examples 

Assume that the current output stream has alias 'mickey'. 

flush_output. Succeeds vith empty substitution, 
after flushing any buffered information to the stream 'mickey'. 
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37 flush_output/1 Stream selection and control 

Flushes any buffered information to an output stream. 

I> How to use it: flush_output (<Dstream...or _alias) 

Example: flush_output (mickey) . 

I> Description: flush_output(Stream...or..a.lias) 

- If Stream_or_alias is a stream-term or alias associated to an open non­
input stream, then sends to that stream any output which is currently 
buffered by the processor for the stream associated with Stream_or_alias, 
and succeeds with empty local substitution. 

I> Error cases 

Conditions 

o Stream_or ..alias is a variable 
o Stream_or ..alias is neither a variable nor 

a stream-term or alias 
o Stream_or ..alias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 

I> Examples 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(output, 
stream, Stream_or_alias) 

Assume that the current output stream has alias 'mickey' and 
'mouse' does not correspond to any open stream. 

flush_output(mickey). Succeeds vith empty substitution, 
after flushing any buffered information to that stream. 

flush_output(mouse). existence_error(stream, mouse) 
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38 functor /3 Term creation and decomposition 

Relates a term (the first argument) with the name and the arity of its 
principal functor. 

I> How to use it: functor(-term, +atomic, +integer) 
functor(~nonvar, ?atomic, ?integer) 

Example: functor(foo(aa,X), Y, Z). 

I> Description: functor (Term , Name, Arity) 

- If Term is a compound term f (tl' t2, ... ,tn ), n > 0 then if (1, n) is unifi­
able (3.2) with (Name, Ari ty) by substitution u then succeeds with local 
substitution u else fails. 

- If Term is an atomic term c (an atom or a number) then if (c, 0) is 
unifiable with (Name, Ari ty) by substitution u then succeeds with local 
substitution u else fails. 

- If Term is a variable and Name is an atomic term c and Ari ty is the integer 
0, then succeeds with local substitution { Term +- c}. 

- If Term is a variable and Name is an atom f and Arity is an integer 
n,O < n <maxarity, then succeeds with local substitution: { Term +­

f(X l , ••• , X n )}, where Xl, ... ,Xn are distinct implementation depen­
dent fresh variables. 

I> Error cases 

Conditions 

o Term and Name are both variables 
o Term and Ari ty are both variables 
oTerm is a variable and Name is neither a 

variable nor an atomic term 
o Term is a variable and Arity is neither a 

variable nor an integer 
oTerm is a variable, Name is a number and 

Arity is not 0 
o Term is a variable and Arity is an integer 

greater than the implementation de­
fined integer maxarity 

Error-term 

instantiation_error 
instantiation_error 
type_error(atomic, Name) 

type_error (integer , Arity) 

type_error(atom, Name) 

representation_error(max_arity) 
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oTenn is a variable and Arity is an integer 
that is less than zero 

domain_error (not-Iess_than-ze­
ro, Arity) 

I> Examples 

functor(foo(aa,X), Y, Z). Succeeds with local sUbstitution: 
{ Y <- foo, Z <- 2 } 

functor(X, foo, 3). Succeeds with local substitution: 
{ X <- foo(Xl,X2,X3) } 

where Xl, X2, X3 are different implementation 
dependent fresh variables. 

functor(F, 1.5, 1). type_error(atom, 1.5) 



5.3 The built-in predicates 95 

39 geLbytejl Byte input/output 

Reads from the current input stream a single byte (stream altered). 

I> How to use it: get_byte (?inJbyte) 

Example: get_byte (Byte) . 

I> Description: get_byte(Byte) 

- If the current input stream is neither a text stream nor has properties 
end_of..stream(past) together with eoLaction(error), and Byte is a 
variable or an in-byte (a byte or the number -1), 
then it behaves like: 
current~nput(S), get_byte(S, Byte). 

I> Error cases 

Conditions 

oByte is neither a variable nor an in-byte 
o The current input stream is associated 

with a text stream IS 
o The current input stream IS has 

stream properties end_oLstream(past) 
and eof_action(error) 

I> Examples 

Error-term 

type_error(in_byte, Byte) 
permission_error(input, 
binary_stream, IS) 
permission_error(input, 
past_end_of_stream, IS) 

Assume the current input stream has contents: 113,119,101,114, 

get_byte(Byte). Succeeds with substitution: { Byte <- 113 } 
and the current input stream is left as: 119,101,114, 

get_byte(117). Fails. 
and the current input stream is left as: 119,101,114, ... 
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40 geLbyte /2 Byte input/output 

Reads from a binary stream a single byte (stream altered). 

I> How to use it: 

Example: get_byte (mickey , Byte). 

I> Description: geLbyte (Stream..or _alias, Byte) 

- If Stream_or_alias is a stream-term or alias of an open stream which is 
neither an output stream nor a text stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Byte is a 
variable or an in-byte (a byte or the number -1), 
then 
- if the stream position of the stream associated with Stream_Dr_alias 

is past-end-of-stream without the property eoLact ion (error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_or _alias has stream property 
eoLaction(A) . 

- if the stream position of the stream associated with Stream_or _alias is 
end-of-stream, then sets the stream position so that it is past-end-of­
stream, if the number -1 and Byte are unifiable (3.2) by substitution 17 

then succeeds with local substitution 17 else fails. 
- if the stream position of the stream associated with Stream_or _al ias is 

neither past-end-of-stream nor end-of-stream then let B be the next byte 
to be read from the stream associated with Stream_or_alias, advances 
the stream position of the stream associated with Stream_oLalias by 
one byte, if B and Byte are unifiable by substitution 17 then succeeds 
with local substitution 17 else fails. 

I> Error cases 

Conditions 

oByte is neither a variable nor an in-byte 
o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 

Error-term 

type_error{in_byte. Byte) 
instantiation_error 
domain_error{stream_or_alias. 
Stream_or_alias) 
existence_error(stream. 
Stream_or_alias) 



o Stream_or _alias is an output stream 

o Stream_or _alias is associated with a text 
stream 

o Stream_or _alias has stream properties 
end_oLstream(past) and 
eof_action(error) 

t> Examples 
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permission_error(input, 
stream, Stream_or_alias) 
permission_error (input , 
text_stream, 
Stream_or_alias) 
permission_error (input , 
past_end_of_stream, 
Stream_or_alias) 

Assume there is an input stream with alias 
whose contents are: 

'mickey' 
113,119,101,114, 

and 'mouse' is not an open stream. 

get_byte (mickey , Byte). Succeeds with substitution: { Byte (- 113 } 
and the stream is left as: 119,101,114, ... 

get_byte (mickey , 117). Fails, 
and the stream is left as: 119,101,114, 

get_byte (mouse , Byte). existence_error(stream, mouse) 
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41 geLchar /1 Character input/output 

Reads from the current input stream a single character (stream altered). 

t> How to use it: 

Example: get-char (Char) . 

t> Description: get_char(Char) 

- If the current input stream is neither a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Char is a 
variable or a character in ECS (9.1) or the atom 'end_of...file', 
then it behaves like: 
current_input(S), get_char(S, Char). 

t> Error cases 

Conditions 

° Char is neither a variable nor a character 
nor the atom end_of.1ile 

° The current input stream is associated 
with a binary stream IS 

° The current input strea~ IS has 
stream properties end_oLstream(past) 
and eof_action(error) 

° The entity input from the stream is not 
a character in ECS 

t> Examples 

Error-term 

type_error(in_character, 
Char) 
permission_error(input, 
binary_stream, IS) 
permission_error(input, 
past_end_of_stream, IS) 

representation_error (char­
acter) 

Assume the current input stream has contents: qllerty 

get_char(Char). Succeeds llith substitution: { Char (- 'q' } 
and the current input stream is left as: llerty 

get_char(·a·). Fails. 
and the current input stream is left as: llerty ... 
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42 geLchar /2 Character input/output 

Reads from a text stream a single character (stream altered). 

[> How to use it: get_char (<!Istream-OLalias, ?in..E_character) 

Example: get-char (mickey , Char). 

[> Description: get_char (Stream_or _alias, Char) 

- If Stream_or_alias is a stream-term or alias of an open stream which 
is neither an output stream nor a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Char is a 
variable or a character in ECS (9.1) or the atom' end_of..file', 
then 
- if the stream position of the stream associated with Stream_or _alias 

is past-end-of-stream without the property eoLaction(error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_or _alias has stream property 
eoLaction (A)·. 

- if the stream position of the stream associated with Stream_or _alias is 
end-of-stream, then sets the stream position so that it is past-end-of­
stream, if the atom end_of..file and Char are unifiable (3.2) by substi­
tution (1 then succeeds with local substitution (1 else fails. 

- if the stream position of the stream associated with Stream_oLalias 
is neither past-end-of-stream nor end-of-stream then let C be the next 
entity to be read from the stream associated with Stream_oLalias, 
advances the stream position ofthe stream associated with Stream_OLa­
lias by one character, if C is a character in ECS and C and Char are 
unifiable by substitution (1 then succeeds with local substitution (1 else 
fails. 

[> Error cases 

Conditions 

o Char is neither a variable nor a character 
nor the atom end_of-file 

o Stream_or _alias is a variable 
o Stream_or-alias is neither a variable nor 

a stream-term or alias 

Error-term 

type_error(in_character, 
Char) 
instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
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o Stream_or _alias is not associated with 
an open stream 

o Stream_or _alias is an output stream 

o Stream_or _alias is associated with a bi­
nary stream 

o Stream_or _alias has stream properties 
end_of_stream(past) and 
eof_action(error) 

o The entity input from the stream is not 
a character in ECS 

[> Examples 

existence_error(stream, 
Stream_or_alias) 
permission_error(input, 
stream, Stream_orJilias) 
permission_error (input , 
binary_stream, 
Stream_or_alias) 
permission_error(input, 
past_end_of_stream, 
Stream_or_alias) 
representation_error (char­
acter) 

Assume there is an input stream with alias 'mickey' 
whose contents are: 

and there is an input stream with alias 'mouse' 
whose contents are: 

and • donald' is not an open stream. 

qwerty 

'qwerty' 

get_char(mickey. Char). Succeeds with substitution: {Char (- 'q' } 
and the stream is left as: werty ... 

get_char(mouse, Code). Succeeds with substitution: { Char (- •••• } 
(the atom containing just a single quote) 

and the stream is left as: qwerty' 

get_char(mickey. ·a·). Fails, and the stream is left as: werty 

get_char(donald, Char). existence_error(stream, donald) 
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43 geLcode /1 Character inputj output 

Reads from the current input stream the character code of a single char­
acter (stream altered). 

[> How to use it: 

Example: get_code (Code) . 

[> Description: get_code(Code) 

- If the current input stream is neither a binary stream nor has properties 
end_oLstream (past) together with eoLact ion (error), and Code is a 
variable or an in-character code (a character code or the integer -1), 
then it behaves like: 
current_input(S), get_code(S, Code). 

[> Error cases 

Conditions 

o Code is neither a variable nor an integer 
o Code is an integer but not an in-character 

code 
o The current input stream IS is associated 

with a binary stream 
o The current input stream IS has 

stream properties end_oLstream(past) 
and eof_action(error) 

o The entity input from the stream is not 
a character in ECS 

[> Examples 

Error-term 

type_error(integer, Code) 
representation_error (in_char­
acter-code) 
permission_error (input , 
binary_stream, IS) 
permission_error(input, 
past_end_oLstream, IS) 

representation_error(char­
acter) 

Assume the current input stream has contents: qverty 

get_code(Code). Succeeds vith substitution: { Code (- 113 } 
(the value is implementation defined) 

and the current input stream is left as: verty 

get_code('a'). type_error (integer , a) 
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44 geLcode/2 Character input/output 

Reads from a text stream the character code of a single character (stream 
altered). 

[> How to use it: get_code(Gstream.or_alias. 
?in_character _code) 

Example: get-code (mickey , Code). 

[> Description: get_code (Stream.or _alias, Code) 

- If Stream_or _alias is a stream-term or alias of an open stream which 
is neither an output stream nor a binary stream nor has properties 
end_oLstream(past) together with eof..action(error), and Code is a 
variable or a in-character code (a character code or the integer -1), 
then 
- if the stream position of the stream associated with Stream_or..alias 

is past-end-of-stream without the property eoLaction(error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_oLalias has stream property 
eof _act ion (A) . 

- if the stream position of the stream associated with Stream_or _alias is 
end-of-stream, then sets the stream position so that it is past-end-of­
stream, if the integer -1 and Code are unifiable (3.2) by substitution u 
then succeeds with local substitution u else fails. 

- if the stream position of the stream associated with Stream_or_alias 
is neither past-end-of-stream nor end-of-stream then let C be the next 
entity to be read from the stream associated with Stream_oLalias, ad­
vances the stream position of the stream associated with Stream_or_alias 
by one character, if C is a one-char atom and the character code of C and 
Code are unifiable by substitution u then succeeds with local substitu­
tion u else fails. 

[> Error cases 

Conditions 

o Code is neither a variable nor an integer 
o Code is an integer but not an in-character 

code 

Error-term 

type_error(integer, Code) 
representation_error (in_char­
acteLcode) 



o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
oStream_or_alias is an output stream 

oStream-Dr_alias is associated with a bi­
nary stream 

o Stream_or Alias has stream properties 
end_of_stream(past) and 
eof_action(error) 

o The entity input from the stream is not 
a character in ECS 

t> Examples 
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instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(input, 
stream, Stream_or_alias) 
permission_error(input, 
binary _stream, 
Stream_or_alias) 
permission_error (input , 
past_end_of-stream, 
Stream_or Alias) 
representation_error(char­
acter) 

Assume there is an input stream with alias 'mickey' 
whose contents are: qwerty 

and there is an input stream with alias 'mouse' 
whose contents are: 

and 'donald' is not an open stream. 
'qwerty' 

get_code(mickey, Code). Succeeds with substitution: { Code (- 113 } 
(the value is implementation defined) 

and the stream is left as: werty ... 

get_code (mouse , Code). Succeeds with substitution: {Code (- 39 } 
(the value is implementation defined) 

and the stream is left as: qwerty' 

get_code (mickey , O'p). Fails, and the stream is left as: werty 

get_code (donald , Code). existence_error(stream, donald) 
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45 halt/O Logic and control 

Stops the execution of the user top-level goal. 

I> How to use it: halt 

Example: halt. 

I> Description: halt 

- Exits from the execution of the (initial) top-level goal; the behaviour of 
the processor is thus implementation defined. 

I> Error cases 
None. 

I> Examples 

halt. Stops the execution of the initial top level goal. 
The behaviour of the processor is implementation defined. 

catch«read(G),G), X, (vrite('SOS!'), halt». 
If the execution of the goal G raises an exception, it 

viII be caught, and SOS! viII be output on the current 
output stream before the execution stops. 
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46 haiti! Logic and control 

Stops the execution of the user top-level goal, passing some information 
to the processor. 

I> How to use it: halt (+integer) 

Example: halt (1) . 

I> Description: halt (lnt) 

- If lnt is an integer then exits from the execution of the (initial) top-level 
goal, passing the value lnt as a message to the processor whose behaviour 
is thus implementation defined. 

NOTE - This built-in predicate never succeeds or fails. 

I> Error cases 

Conditions Error-term 

oInt is a variable 
oInt is neither a variable nor an integer 

instantiation_error 
type_error(integer, lnt) 

I> Examples 

halt (1) . Stops the execution of the initial top level goal. 
The behaviour of the processor is implementation defined, 
according to the value 1 passed to the processor. 

halt(a). type_error(integer, a) 

Assume rescue/2 is 
integers in the range 
of halt/l. 

a relation between caught error-terms and 
of the implementation defined argument values 

catch«read(G) ,G) , X, (write('SOS!'), rescue(X,Y), halt(Y»). 
If the execution of the goal G raises an exception, it will 
be caught, and SOS! will be output on the current output 
stream before some implementation defined action is performed 
according to the value Y passed to the processor. 
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47 (-»/2: if-then Logic and control 

Prolog implication. 

c> How to use it: 

, ->, /2 is a predefined infix operator. Its priority is 1050 and it is right 
associative (xfy). 

Example: (X = 0 -> write('null')). 

c> Description: Cond -> Then 

- If Cond and Then are two well-formed transformed (2.2.3) goals and 
,->, (Cond, Then) is defined out of the context of a disjunction (i.e. it 
is not the first argument of ' ; '/2) then 

- if Cond succeeds then cuts the choice points issued from Cond only and 
executes Then. 

- if Cond fails then fails 14. 

More precisely (see Section 4.3.3), if the current goal is «Cond -> Then), 
Cont) 15, it adds a new child whose labels are the empty substitution and 
the goal « call (Cond) , ! , Then), Cont). 

NOTES: 

1- Cond is not transparent to cut. 
2- Its behaviour is equivalent to the meta-clause ("meta" because the variables 

COND, THEN stands for subgoals) : 
'->'(COND, THEN) :- COND,!,THEN. 

c> Error cases 
There is no error because in Standard Prolog only well-formed trans­

formed goals are executed. 

14 Therefore if-then/2 cannot be interpreted as a logical implication (otherwise it 
should succeed when the first argument fails); (Cond -) Then; true) could be 
used instead. 

15 If Cont is empty, then one assumes Cont = true. 
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t> Examples 

Assume the database contains the user-defined procedures: 
legs/2, insect/1 

with the clauses: legs(A, 6) insect(A). 
legs(horse, 4) true. 
insect(bee) true. 
insect (ant) true. 

x o -) write('null'). Succeeds with substitution: 
{ X (- O} after outputting: null 

legs(A,6) -) write(insect(A». Succeeds once with substitution 
{ A (- bee} after outputting: insect(bee) 

X \= 0 -) write('positive'). Fails. 

fail -) (true; true). Fails. 
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48 {;)/2 if-then-else Logic and control 

Prolog alternative implication. 

[> How to use it: 

, ; '/2 is a predefined infix operator. Its priority is 1100 and it is right 
associative (xfy). 

->/2 is a predefined infix operator. Its priority is 1050 and it is right 
associative (xfy). 

Example: (X = 0 -> write ('null'); write ('non-null')) . 

[> Description: (Cond -> Then; Else) 

- IfCond, Then and Else are well-formed transformed (4.1.1) goals then 
- if Cond succeeds then cuts the choice points issued from Cond only and 

executes Then, ignoring Else. 
- if Cond fails then executes Else. 

More precisely (see Section 4.3.3) if the current goal is «Cond -> Then; 
Else), Cont) 16 then two children are created whose labels are the empty 
substitution and the goal (Call (Cond) ,!, Then, Cont) for the first and 
(Else, Cont) for the second. 

NOTES: 

1- Cond is not transparent to cut. 
2- Its behaviour is equivalent to the meta-clause ("meta" because the variables 

COND, THEN, ELSE stands for subgoals) : 
«COND -> THEN); ELSE) :- (Call(COND),!,THEN);ELSE. 

3- If-then-else satisfies the property: 
(Cond -) fail; true) = \+(Cond) 

[> Error cases 
There is no error because in Standard Prolog only well-formed trans­

formed goals are executed. 

16 If Cont is empty, then one assumes Cont = true. 
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I> Examples 

(X = 0 -) write('null'); vrite('positive')). 
Succeeds with substitution 

{ X (- 0 } after outputting: null 

(X 1, (X o -) write('null'); write('positive'))). 
Succeeds with substitution 

{ X (- 1 } after outputting: positive 

«(!, X=l, fail) -) true; fail); X=2). 

fail -) true ; true. 

«!, X=l, fail) -) true; fail). 

Succeeds with substitution 
{ X (- 2 } 

Succeeds. 

Fails. 
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49 integer /1 Type testing 

Tests whether the argument is an integer. 

t> How to use it: integer (?term) 

Example: integer(lO). 

t> Description: integer (Term) 

- If Term is an integer then succeeds with empty local substitution. 
- If Term is not an integer then fails. 

t> Error cases 
None. 

t> Examples 

integer(10) . 

integer(-10). 

integer(- -10). 

integer(10.01) . 

integer(X). 

integer( 'o_k'). 

Succeeds. 

Succeeds. 

Fails. 

Fails. 

Fails. 

Fails. 
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50 is/2 evaluate expression A rithmetic evaluation 

Unifies the first argument and the value of the second argument. 

c> How to use it: is(?nonvar, 0evaluable) 

is/2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: X = at an (1. 0) , Y is cos(X)**2 + sin(X)**2 

c> Description: Result is Expression 

- If the evaluation of Expression is errorless (see Section 6.2) and produces 
the value V then 
if Result and V are unifiable (3.2) by the substitution (7 then succeeds 
with local substitution (7 else fails. 

c> Error cases 
See Section 6.2 the exceptions raised by expression evaluation. 

c> Examples 

x = atan(1.0), Y is cos(X) •• 2 + sin(X) •• 2 . 
Succeeds with substitution (approximate value) 

{ X (- atan(1.0), Y (- 1.000 } 

X = 1+2, Y is X*3. Succeeds with substitution {X (- 1+2, Y (- 9 } 

Result is 3+11.0. Succeeds with substitution { Result (- 14.0 } 

is(foo, 77). Fails. 

1.0 is 1. Fails. 

X is (N+l)+(3/0). instantiation_error or 
evaluation_error(zero_divisor) 

(it is implementation dependent which one is raised) 
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51 nl/O Character input/output 

Outputs to the current output text stream the implementation depen­
dent new-line character. 

c> How to use it: nl 

Example: nl, put_char(t). 

c> Description: nl 

- If the current output stream is not a binary stream, 
then outputs the implementation dependent new-line character to the 
current output stream, changes the stream position on the current output 
stream, and 
succeeds with empty local substitution. 

c> Error cases 

Conditions Error-term 

oThe current output stream as is associ­
ated with a binary stream 

permission_error(output, 
binary_stream, OS) 

c> Examples 

Assume the current output stream has contents: 

nl, put_char(t). Succeeds vith empty substitution 
and the current output stream is left as: 

> ... qver 

> ... qver 
>t 

Assume the current output stream is a binary stream vith alias 
'mickey' . 

nl. permission_error (output , binary_stream, mickey) 
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52 nl/I Character input/output 

Outputs to a text stream the implementation dependent new-line 
character. 

[> How to use it: nl (@stream--<>r_alias) 

Example: nl(mickey), put_char (mickey, t). 

[> Description: nl(Stream_oLalias) 

- If Stream_oLalias is a stream-term or alias of an open stream which is 
neither an input stream nor a binary stream, 
then 
outputs the implementation dependent new-line character to the stream 
associated with stream-term or alias Stream_oLalias, 
changes the stream position on the stream associated with Stream_oLalias, 
succeeds with empty local substitution. 

[> Error cases 

Conditions 

o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is an input stream 

oStream_or_alias is associated with a bi­
nary stream 

[> Examples 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(output, 
stream, Stream_or_alias) 
permission_error (output , 
binary_stream, 
Stream_or_alias) 

Assume there is an output stream with alias 'mickey' 
whose contents are: > ... qwer 

nl(mickey) , put_char(mickey, t). Succeeds with empty substitution, 
and the current output stream is left as: > ... qwer 

>t 
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53 nonvar/l Type testing 

Tests whether the argument is not a variable. 

I> How to use it: nonvar(?term) 

Example: nonvar ( 'ok') . 

I> Description: nonvar(Term) 

- If Term is not a variable then succeeds with empty local substitution. 
- If Term is a variable then fails. 

I> Error cases 
None. 

I> Examples 

nonvar( 'ok'). 

nonvar(33.3). 

nonvar(foo). 

nonvar(a(b» . 

foo = Foo, nonvar(Foo). 

nonvar(Foo). 

nonvarL) . 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Fails. 

Fails. 
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54 (\ +) /1 not provable Logic and control 

Negation by failure: if the goal succeeds then fails else succeeds. 

c> How to use it: 

(\ + ) /1 is a predefined infix operator (its priority is 900 and it is right 
associative fy). 

Example: X = 3, \+«X = 1 ; X = 2)). 

c> Description: \+(Goal) 

- If Goal is a well-formed body-term different from a variable and succeeds 
then fails. 

- If Goal is a well-formed body-term different from a variable and fails then 
succeeds with empty local substitution. 

More precisely (see Section 4.3.3), if the current goal is (\+(Goal) , 
Cont) 17, two new children are created whose labels are the empty substi­
tution and the goal (call (Goal) ,! ,fail) for the first and Cont for the 
second. 

c> Error cases 

Conditions Error-term 

o Goal is a variable 
o Goal is neither a variable nor a callable 

term nor a well-formed body-term 

instantiation_error 
type_error(callable, Term) 

c> Examples 

x = 3, \+«X 1 X 2». Succeeds ~ith substitution { X <- 3 } 

\+(fail) . Succeeds. 

\+(!); X = 1. Succeeds ~ith substitution { X <- 1 } 

\+«X = 1 ; X = 2», X = 3. Fails. 

17 If Cont is empty, then one assumes Cont = true. 
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x = 1, \+«X = 1 x 2». Fails. 

\+«fail, 1». type_error (callable , (fail, 1» 

Assume the folloving definition of the "barber paradox": 
shave (barber ,X) \+ shave(X, X). 

shave (barber , 'Donald'). Succeeds. 

shave (barber , barber). Loops. 

The folloving program tests vhether the arguments are unifiable: 
test_Prolog_unifiable(X, Y) :- \+ \+ X = Y. 

test_Prolog_unifiable(f(a,X), f(X, a». Succeeds. 

test_Prolog_unifiable(f(a,X), f(X, b». Fails. 

Undefined. 

The folloving tva programs shov that adding cuts in a program may 
increase the number of successes: 

p1 \+ q1. p2 \+ q2. 

q1 fail. q2 !, fail. 
q1 true. q2 true. 

p1. Fails. 

p2. Succeeds. 
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55 number/1 Type testing 

Tests whether the argument is a number. 

t> How to use it: number (?term) 

Example: number(iO.Oi). 

t> Description: number (Term) 

- If Term is a number then succeeds with empty local substitution. 
- If Term is not a number (an atom, a compound term or a variable) then 

fails. 

t> Error cases 
None. 

t> Examples 

number(10.01) . 

number(-10). 

number ( 'ok') . 

number(X). 

number(f(X. Y». 

Succeeds. 

Succeeds. 

Fails. 

Fails. 

Fails. 
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56 number_chars/2 Atomic term processing 

Relates a number and the list of the one-char atoms forming its writable 
representation. 

t> How to use it: number_chars (+number , ?character-1ist) 
number_chars (-number , +character-1ist) 

Example: number _chars (X, [' 3', '.', '3', 'E', +, '0', '1']). 

t> Description: numbeLchars (Number, List) 

- If List is a list of one-char atoms parsable as a number of value N then if 
Number and N are unifiable (3.2) by the substitution (J then succeeds with 
local substitution (J else fails. 

- If Number is a number and List is not a list then let L be the list of one-char 
atoms whose names correspond to the sequence of characters which would 
be output by writing Number by write_canonical(Number) (as described 
in 7.4.3 in the items 2 and 3 (with option quoted(true»), the result is 
implementation dependent), and 
if List and L are unifiable by the substitution (J then succeeds with local 
substitution (J else fails. 

t> Error cases 

Conditions 

o Number is neither a variable nor a number 
o Number is a variable and List is a variable 

or a partial list or a list with an element 
which is a variable 

o Number is a variable and List is neither 
a variable nor a partial list nor a list 

o List is a list and one of its elements E is 
not a one-char atom 

o List is a list of one-char atoms and it is 
not parsable as a number 

Error-term 

type_error (number , Number) 
instantiation_error 

type_error(list, List) 

type_error(character, E) 



5.3 The built-in predicates 119 

I> Examples 

number_charsCX, ['3', '3', 'E', +, '0', '1']). 
Succeeds with substitution: { X (- 33.0 } 

number_charsC33.0, ['3', '.', '3', 'E', +, '0', '1']). 

number_charsC33.0, V). 

Succeeds. 

Succeeds with substitution: 
{ Y (- ['3', '.', '3', 'E', +, '0', '1'] } 

Cthe list is implementation dependent) 

X 33.0, number_charsCX, C), number_charsCY, C), X == Y. 
Succeeds. 

number_charsCA, ['\n', ' " '3']). 
Succeeds with substitution: { A (- 3 } 

number_charsC4.2, ['4', '2' I X]). 

number_chars (A, ['0', 

Fails or 
Succeeds with some substitutions: 

{X (- ['.', '0', 'E', '-', '1'] } or 
{X<- ['0', '.J, '0', 'e', '-', '2']} 

or ... 
(The result is implementation dependent) 

a)) . 
Succeeds with substitution: { A (- 97} 

(The result is implementation defined) 

number_chars(3.33, ['3', " '3', 'E', +, '0']). 
Fails. 

number_chars (4. 2, ['a', '2', ',J, '0', 'e', '-', '1']). 
syntax_error (imp_dep_atom) 
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57 number_codes/2 A tomic term processing 

Relates a number and the list of character codes whose characters form 
its writable representation. 

I> How to use it: number_codes (+number, ?character_code-1ist) 
number_codes(-number, +character_code-1ist) 

Example: number _codes (33, [0' 3, 0' 3] ) . 

I> Description: number _codes (Number, List) 

- If Number is a variable and List is a list of character codes corresponding 
to a character sequence of one-char atoms parsable as a number of value N 
then 
if Number and N are unifiable (3.2) by the substitution (j then succeeds 
with local substitution (j else fails. 

- If Number is a number and List is a variable or a list of character 
codes corresponding to a character sequence of one-char atoms pars able 
as a number then let L a list of character codes corresponding to the 
sequence of characters which would be output by writing Number by 
wri te_canonical (Number) (as described in 7.4.3 in the items 2 and 3 (with 
option quoted(true)), the result is implementation dependent), and 
if List and L are unifiable by the substitution (j then succeeds with local 
substitution (j else fails. 

I> Error cases 

Conditions 

o Number and List are variables 
o Number is neither a variable nor a number 
o List is neither a variable nor a list of 

character codes 
o List is a list and an element E of List is 

not a character code 
o List is a list of character codes and it is 

not parsable as a number 

Error-term 

instantiation_error 
type_error (number , Number) 
domain_error ( 
character_code-1ist, List) 
representation_error (charac­
ter-code) 
syntax_error (imp_depJLtom) 
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[> Examples 

number_codesC33, [0'3, 0'3]). Succeeds. 

number_codesCX, [0'3, 0'3]). Succeeds with substitution: 
{ X <- 33 } 

number_codesC33, V). Succeeds with substitution: 
{ Y <- [0'3, 0'3] } 

number_codesC33.0, V). Succeeds with substitution: 
{ Y <- [0'3, 0'., 0'3, O'E, 0'+, 0'0, 0'1] } 

Cthe list is implementation dependent) 

X 3.3e+Ol, number_codesCX, C), number_codesCY, C), X == Y. 
Succeeds with substitution: 

{ X <- 3.3, Y <- 3.3, C <- [0'3, 0'., 0'3] } 
Cthe list is implementation dependent) 

number_codesC3.3, [0'3,0'.,0'3, O'E, 0'+, 0'0]). 

number_codesC4.2, ['a', '2', 

Succeeds or 
Fails. 

Cimplementation dependent) 

'0', 'e', '-', '1']). 
domain_errorCcharacter_code_list, 

['a't '2' t '.', '0', 'e', '-' J '1']) 
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58 once/1 Logic and control 

Executes a goal once only, whatever may be the number of solutions. 

[> How to use it: once (+body _term) 

Example: once ( (X = 1 ; X = 2». 

[> Description: once(Goal) 

- If Goal is a well-formed body-term different from a variable then executes 
Goal only once (until the first success, if any). 

More precisely (see Section 4.3.3), if the current goal is (once (Goal) , 
Cont) 18, a new child is created whose labels are the empty substitution 
and the goal (Goal, !, Cent). 

NOTE - once(Goal) behaves like call (Goal , !). 

[> Error cases 

Conditions Error-term 

o Goal is a variable 
o Goal is neither a variable nor a callable 

term nor a well-formed body-term 

instantiation_error 
type_error(callable, Goal) 

[> Examples 

once«X = 1 ; x 2». Succeeds with substitution: { X (- 1 } 

once(repeat). Succeeds. 

once(fail). Fails. 

once (X = f (X» . Undefined. 

once«fail; 1». type_error(callable, (fail; 1» 

18 If Cont is empty, then one assumes Cont true. 
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59 op/3 Term input/output 

Updates the operator table used by inputting and outputting terms. The 
table specifies which atoms will be regarded as operators when a sequence of 
tokens is parsed or written by the I/O built-in predicates, or when a prolog 
text is prepared for execution. 

I> How to use it: op(0integer, 0operator-specifier, 
0atom_or _atom~ist) 

Example: op (30, xfy, ++). 

I> Description: op(Priority, Op_specifier, Operator) 

- If Priority is an integer between 0 and 1200 inclusive, and 
Operator is an atom or a list of atoms such that no atom is" and 
Op-specifier is an operator specifier such that inclusion of the operators 
of Operator in the current operator table would not breach its validity 
(9.2.4), 
then updates the operator table as follows: 
for every atom Op in Operator, 
- if Op is currently an operator with the same operator class (prefix, infix 

or postfix) 19 as Op-specifier then if Priori ty = 0 then Op is removed, 
so that Op is no longer an operator of that class, else (Priority > 0) 
the priority of the operator Op with specifier Op_specifier is updated 
to Priority, 

- if Op is not currently an operator with the same operator class then if 
Priori ty is different from 0 then Op is made an operator with specifier 
Op_specifier and priority Priority, 

and succeeds with empty local substitution. 

NOTES: 

1- In the event of an error being detected in an Operator list argument, it is 
undefined which, if any, of the atoms in the list is made an operator. 

2- A Priority of zero can be used to remove an operator from the operator table. 
3- It does not matter if the same atom appears more than once in an Operator 

list; this is not an error and the duplicates simply have no effect. 
4- In general, except for ' • ' , any operator can be removed from the operator table 

and its priority or specifier can be changed. 
5- op/3 never fails. 

19 See Table 9.1. 
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I> Error cases 

Conditions 

oPriority is a variable 
oPriority is neither a variable nor an in­

teger 
o Priority is an integer but not between 0 

and 1200 inclusive 
oOp...specifier is a variable 
oOp...specifier is neither a variable nor an 

atom 
oOp...specifier is not an operator specifier 

oOp..specifier is a specifier such that in­
clusion of the operators of Operator in 
the current operator table would breach 
its validity 

oOperator is a variable or a list with an 
element E which is a variable 

oOperator is neither a variable nor an 
atom nor a list 

oAn element E of the Operator list is nei­
ther a variable nor an atom 

o Operator is ',' or an element of the 
Operator list is ',' 

I> Examples 

Error-term 

instantiation_error 
type_error(integer, 
Priority) 
domain_error(operator_priority, 
Priority) 
instantiation_error 
type_error(atom, 
Op_specifier) 
domain_error(operator_specifier, 
Op..specifier) 
permission_error (create , 
operator, Operator) 

instantiation_error 

type_error(list, Operator) 

type_error(atom, E) 

permission_error(modify, 
operator, ',') 

Assuming the predefined operator table is unaltered. 

op(30, xfy, ++). Succeeds, making ++ a right associative 
infix operator vith priority 30. 

op(O, yix, ++). Succeeds. making ++ no longer an infix operator. 

op(30, xfy. ++), op(40, xfx, ++). 
Succeeds, making ++ a non-associative 

infix operator vith priority 40. 

op(1201. xfy. ++). domain_error(operator_priority. 1201) 

op(30, IFY. ++). instantiation_error 

op(30. xfy. ++). op(50. yf. ++). 
permission_error(create. operator, ++) 

(there cannot be an infix and a postfix operator vith the same name) 
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60 open/3 Stream selection and control 

Opens a source/sink which is a text stream with the default options. 

I> How to use it: open(~source-Bink, ~io~ode, -stream) 

Example: open(' /user/peter/data', read, D). 

I> Description: open (Source-Bink, Mode, Stream) 

- If Source-Bink is a source/sink-term and corresponds to a source/sink 
which may be opened, and 
Mode is an I/O mode atom (7.3.1), and 
Stream is a variable, 
then opens the source/sink Source-Bink for input or output as indi­
cated by Mode, and succeeds with local substitution: { Stream +- stream­
term } (where stream-term is an implementation dependent non 
atomic ground term). 

NOTES: 

1- open(Source_sink, Mode, Stream) behaves like: 
open(Source_sink, Mode, Stream, []). 

2- A permission error when Mode is write or append means that Source_sink does 
not specify a sink that can be created, for example, a specified disk or directory 
does not exist. If Mode is read then it is also possible that the file specification 
is valid but the file does not exist. 

3- The effect of opening more than once a source/sink is undefined. 

I> Error cases 

Conditions 

o Source...sink is a variable 
o Source..sink is neither a variable nor a 

source/ sink-term 
o The source/sink specified by Source_sink 

does not exist 
oThe source/sink specified by Source_sink 

cannot be opened 
o Mode is a variable 
o Mode is neither a variable nor an atom 
oMode is an atom but not an I/O mode 

Error-term 

instantiation_error 
domain_error (source_sink , 
Source_sink) 
existence_error(source_sink, 
Source_sink) 
permission_error(open, 
source_sink, Source_sink) 
instantiation_error 
type_error(atom, Mode) 
domain_error(io~ode. Mode) 
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o Stream is not a variable 

I> Examples 

type_error (variable , 
Stream) 

Assuming '/user/peter/data' is the path name of an existing file. 

open('/user/peter/data', read, D). 
opens the file '/user/peter/data' as text stream for input, then 
Succeeds with substitution: { D <- 'Sstream'(132464) } 

(an implementation dependent non atomic ground term) 
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61 open/4 Stream selection and control 

Opens a source/sink. 

I> How to use it: open(~source-sink, ~ioJmode, -stream, 
!Dopen-.Options) 

Example: open ( , /user /peter / data', read, 0, [type (binary)] ) . 

I> Description: open(Source-sink, Mode, Stream, Options) 

- If Source-sink is a source/sink term (an implementation defined 
ground term) and corresponds to a source/sink which may be opened, 
Mode is an I/O mode atom (7.3.1), 
Stream is a variable, . 
Options is a list of stream-options supported at stream creation (7.3.2) 
with no variable as element, such that, if one of its elements is alias (A), 
A is not already associated with an open stream, or if one of its elements 
is reposition(true), it is possible to reposition this stream20 , 

then opens the source/sink Source-sink for input or output as indicated 
by Mode and Options, and succeeds with local substitution: { Stream <­

stream-term } (where stream-term is an implementation dependent 
non atomic ground term). 

NOTES: 

1- A permission error when Mode is write or append means that Source_sink does 
not specify a sink that can be created, for example, a specified disk or directory 
does not exist. If Mode is read then it is also possible that the file specification 
is valid but the file does not exist. 

2- The effect of opening more than once a source/sink is undefined. 
3- If Options contains contradictory stream-options, the rightmost stream-option 

is the one which applies. 

I> Error cases 

Conditions 

o Source_sink is a variable 
o Source_sink is neither a variable nor a 

source/ sink-term 

20 A stream may have several aliases. 

Error-term 

instantiation_error 
domain_error(source_sink. 
Source_sink} 
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o The source/sink specified by Source_sink 
does not exist 

o The source/sink specified by Source_sink 
cannot be opened 

o Mode is a variable 
oMode is neither a variable nor an atom 
oMode is an atom but not an I/O mode 
o Stream is not a variable 

o Options is a variable 
o Options is a list with an element E which 

is a variable 
o Options is neither a variable nor a list 
o An element E of the Options list is neither 

a variable nor a valid stream-option 
oAn element E of the Options list is 

alias(A) and A is already associated with 
an open stream 

o An element E of the Options list is 
reposition(true) and it is not possible 
to reposition this stream 

t> Examples 

existence_error(source_sink, 
Source_sink) 
permission_error(open, 
source_sink, Source_sink) 
instantiation_error 
type_error(atom, Mode) 
domain_error(io~ode, Mode) 
type_error(variable, 
Stream) 
instantiation_error 
instantiation_error 

type_error(list, Options) 
domain_error (stream_option , 
E) 
permission_error (open , 
source_sink, alias(A» 

permission_error (open , 
source_sink, 
reposition(true» 

Assuming '/user/peter/data' is the path name of an existing file. 

open('/user/peter/data', read, D, [type(binary)]). 
The stream corresponding to the file '/user/peter/data' is 
opened as binary for input, then 

Succeeds vith substitution { D (- '$stream'(132464) } 
(an implementation dependent non atomic ground term) 

Assuming '/user/ali/data' is the path name of an existing file. 

open('/user/ali/data', read, DD, []). 
The stream corresponding to the file '/user/ali/data' is 
opened as text for input, then 

Succeeds with substitution { D (- '$stream'(142464) } 
(an implementation dependent non atomic ground term) 
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Byte input/output 

Reads from the current input binary stream a single byte leaving the 
stream position unaltered. 

t> How to use it: peekJbyte(?inJbyte) 

Example: peek_byte(Byte). 

t> Description: peek_byte (Byte) 

- If the current input stream is neither a text stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Byte is a 
variable or an in-byte (a byte or the number -1), 
then it behaves like: 
current_input(S), peek_byte(S, Byte). 

t> Error cases 

Conditions 

° Byte is neither a variable nor an in-byte 
° The current input stream IS is associated 

with a text stream 
° The current input stream IS has 

stream properties end_oLstream(past) 
and eoLaction(error) 

t> Examples 

Error-term 

type_error(in_byte, Byte) 
permission_error (input , 
text_stream, IS) 
permission_error (input , 
past_end_of_stream, IS) 

Assume the current input stream has contents: 113,119,101,114, ... 

peek_byte{Byte). Succeeds with substitution: {Byte (- 113 } 
and the current input stream is left as: 113,119,101,114, ... 

Fails. 
and the stream is left as: 113,119,101,114, ... 
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63 peek_byte/2 Byte input! output 

Reads from a binary stream a single byte leaving the stream position 
unaltered. 

t> How to use it: peek_byte (CDstream-<>r Alias, ? in_byte) 

Example: peek_byte (mickey, Byte). 

t> Description: peek_byte (Stream_or_alias , Byte) 

- If Stream_or _alias is a stream-term or alias of an open stream which is 
neither an output stream nor a text stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Byte is a 
variable or an in-byte (a byte or the number -1), 
then 
- if the stream position of the stream associated with Stream_or _alias 

is past-end-of-stream without the property eoLaction(error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_oLalias has stream property 
eoLaction(A) . 

- if the stream position of the stream associated with Stream_or _alias 
is end-of-stream, then if the number -1 and Byte are unifiable (3.2)by 
substitution (j then succeeds with local substitution (j else fails. 

- if the stream position of the stream associated with Stream_oLalias 
is neither past-end-of-stream nor end-of-stream then let B be the next 
byte to be read from the stream associated with Stream_or _alias, if 
B and Byte are unifiable by substitution a then succeeds with local 
substitution (j else fails. 

t> Error cases 

Conditions 

oByte is neither a variable nor an in-byte 
o Stream_or _alias is a variable 
o Stream_or-alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 

Error-term 

type_error (in_byte , Byte) 
instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias} 



o StrellllLor_alias is an output stream 

o Stream_or_alias is associated with a text 
stream 

o Stream_or _alias has stream properties 
end_of_stream(past) and 
eof_action(error) 

t> Examples 
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permission_error(input, 
stream, Stream_or_alias) 
permission_error(input, 
text_stream, 
Stream_or_alias) 
permission_error(input, 
past_end_of_stream, 
Stream_or _alias) 

Assume there is an input binary stream with alias 'mickey 
whose contents are: 113,119,101,114, 

and 'mouse' is not an open stream. 

peek_byte (mickey, Byte). 
Succeeds with substitution: { Byte <- 113 } 

and the stream is left as: 113,119,101,114, ... 

peek_byte(mickey, 119). 
Fails, 

and the stream is left as: 113,119,101,114, ... 

peek_byte(mouse, Char). 
existence_error(stream, mouse) 

peek_byte(user_output, X). 
permission_error(input, stream, user_output) 
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Character input/output 

Reads from the current input text stream a single character leaving the 
stream position unaltered. 

t> How to use it: peek-char (?in..E_character) 

Example: peek_char (Char) . 

t> Description: peek_char(Char) 

- If the current input stream is neither a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Char is a 
variable or a character in ECS or the atom 'end_of...:file', 
then it behaves as: 
current_input(S), peek_char(S, Char). 

t> Error cases 

Conditions 

o Char is neither a variable nor a character 
in ECS nor the atom end_oLfile 

o The next entity to be read from the 
stream is not a one-char atom 

oThe current input stream IS is associated 
with a binary stream 

o The current input stream IS has 
stream properties end_oLstream(past) 
and eoLaction (error) 

t> Examples 

Error-term 

type_error(in_character, 
Char) 
representation_error(char­
acter) 
permission_error(input, 
binary_stream, IS) 
permission_error (input , 
past_end_oLstream, IS) 

Assume the current input stream has contents: qverty 

peek_char(Char). Succeeds vith substitution: { Char <- q } 
and the current input stream is left as: qverty 

peek_char('a'). Fails. 
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65 peek_char /2 Character input/output 

Reads from a text stream a single character leaving the stream position 
unaltered. 

t> How to use it: 

Example: peek_char (mickey , Char). 

t> Description: peek_char (Stream_or _alias, Char) 

- If Stream_oLalias is a stream-term or alias of an open stream which 
is neither an output stream nor a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error) , and Char is a 
variable or a character in ECS or the atom 'end_of..f ile' , 
then 
- if the stream position of the stream associated with Stream_oLalias 

is past-end-of-stream without the property eoLaction(error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_oLalias has stream property 
eoLaction(A) . 

- if the stream position of the stream associated with Stream_oLalias 
is end-of-stream, then if the atom end_of-file and Char are unifiable 
(3.2) by substitution (J" then succeeds with local substitution (J" else fails. 

- if the stream position of the stream associated with Stream_oLalias 
is neither past-end-of-stream nor end-of-stream then let C be the next 
entity to be read from the stream associated with Stream_or_alias, and 
if C is a character in ECS then if C and Char are unifiable by substitution 
(J" then succeeds with local substitution (J" else fails. 

t> Error cases 

Conditions 

o Stream_or-alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is an output stream 

Error-term 

instantiation_error 
domain_error {stream_or_a1ias, 
Stream_or _alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error {input , 
stream, Stream_or_alias) 
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oStream_or_alias is associated with a bi­
nary stream 

o Stream_or _alias has stream properties 
end_of..stream(past) and 
eof_action(error) 

o Char is neither a variable nor a character 
in ECS nor the atom end_of-file 

o The next entity to be read from the 
stream is not a character in ECS 

[> Examples 

permission_error(input. 
binary_stream. 
Stream_or_alias) 
permission_error(input. 
past_end_of_stream. 
Stream_or_alias) 
type_error(in_character. 
Char) 
representation_error(char­
acter) 

Assume there is an input stream with alias 'mickey' 
whose contents are: 

and there is an input stream with alias 'mouse' 
whose contents are: 

and 'donald' is not an open stream. 

qwerty ... 

'qwerty' ... 

peek_char(mickey. Char). Succeeds with substitution: {Char (- q } 

peek_char(mouse. Code). 

peek_char(mickey. a). 

peek_char(mickey. 1). 

and the stream is left as: qwerty 

Succeeds with substitution: { 
(the atom consisting of a 

and the stream is left as: 

Fails. 
and the stream is left as: 

Char <- ""} 
single quote) 

'qwerty' ... 

qwerty ... 

peek_char (donald. Char). existence_error(stream. donald) 
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66 peek_code/l Character input/output 

Reads from the current input text stream the character code of a single 
character leaving the stream position unaltered. 

I> How to use it: 

Example: peek_code (Code) . 

I> Description: peek_code(Code) 

- If the current input stream is neither a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Code is a 
variable or an in-character code (a character code or the integer -1), 
then it behaves like: 
current_input(S), peek_code(S, Code). 

I> Error cases 

Conditions 

o Code is neither a variable nor an integer 
o Code is neither a variable nor an in­

character code 
o The current input stream IS is associated 

with a binary stream 
o The current input stream IS has 

stream properties end_oLstream(past) 
and eof_action(error) 

o The next entity to be read from the 
stream is not a character in ECS 

I> Examples 

Error-term 

type_error (integer , Code) 
representation_error(in_charac­
ter_code) 
permission_error(input, 
binary_stream, IS) 
permission_error (input , 
past_end_of_stream, IS) 

representation_error(char­
acter) 

Assume the current input stream has contents: qwerty ... 

peek_code(Code). Succeeds with substitution: { Code (- 113 } 
(the value is implementation defined) 

and the current input stream is left as: qwerty ... 

peek_code(O'p). Fails. 
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Character input/output 

Reads from a text stream the character code of a single character leaving 
the stream position unaltered. 

l> How to use it: peek_code(~stream_or_alias, 

?in_character_code) 

Example: peek_code (mickey, Code). 

l> Description: peek_code (Stream_or Alias, Code) 

- If Stream_or_alias is a stream-term or alias of an open stream which 
is neither an output stream nor a binary stream nor has properties 
end_oLstream(past) together with eoLaction(error), and Code is a 
variable or an in-character code (a character code or the integer -1), 
then 
- if the stream position of the stream associated with Stream_or_alias 

is past-end-of-stream without the property eoLaction(error) then 
performs the action specified in 7.3.2 appropriate to the value of A 
where the stream associated with Stream_or _alias has stream property 
eoLaction(A) . 

- if the stream position of the stream associated with Stream_or _alias 
is end-of-stream, then if the integer -1 and Code are unifiable (3.2) by 
substitution (j then succeeds with local substitution (j else fails. 

- if the stream position of the stream associated with Stream_or _alias 
is neither past-end-of-stream nor end-of-stream then let C be the next 
entity to be read from the stream associated with Stream_or_alias, and 
if C is a character in ECS then if the character code of C and Code are 
unifiable by substitution (j then succeeds with local substitution (j else 
fails. 

l> Error cases 

Conditions 

o Code is neither a variable nor an integer 
o Code is neither a variable nor an in­

character code 
oStream_or_alias is a variable 

Error-term 

type_error(integer, Code) 
representation_error(in_chara­
cter_code) 
instantiation_error 



oStream_or_alias is neither a variable nor 
a stream-term or alias 

o Stream_or _alias is not associated with 
an open stream 

o StreanLor-alias is associated with an 
output stream 

o Stream_or-alias is associated with a bi­
nary stream 

o Stream_or _alias has stream properties 
end_oLstream(past) and 
eof_action(error) 

o The next entity to be read from the 
stream is not a character in ECS 

I> Examples 

5.3 The built-in predicates 137 

domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
StreauLor_alias) 
permission_error(input, 
stream, Stream_or_alias) 
permission_error (input , 
binary_stream, 
Stream_or_alias) 
permission_error (input , 
past_end_of_stream, 
StreauLor_alias) 
representation_error(char­
acter) 

Assume there is an input stream with alias 'mickey' 
whose contents are: qwerty ... 

and there is an input stream with alias 'mouse' 
whose contents are: 'qwerty' ... 

and 'donald' is not an open stream. 

peek_code (mickey , Code). Succeeds with substitution: { Code <- 113 } 
(the value is implementation defined) 

and the current input stream is left as: qwerty ... 

peek_code (mouse , Code). Succeeds with substitution: {Code <- 0'" } 
and the stream is left as: 'qwerty' ... 

peek_code (mickey , O'p). Fails, 
and the stream is left as: qwerty ... 

peek_code (donald , Code). existence_error(stream, donald) 
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68 puLbyte/l Byte input/output 

Outputs to the current output stream a single byte. 

I> How to use it: put_byte (+byte) 

Example: put_byte (84) . 

I> Description: put_byte (Byte) 

- If the current output stream is not a text stream and Byte is a byte, 
then it behaves like: 
current_output(S), put_byte(S, Byte). 

I> Error cases 

Conditions 

oByte is a variable 
o Byte is neither a variable nor a byte 
o The current output stream as is associ­

ated with a text stream 

I> Examples 

Error-term 

instantiation_error 
type_error(byte. Byte) 
permission_errorCoutput. 
text_stream. aS) 

Assume the current output stream has contents: 
113.119.101.114 

put_byte(84). Succeeds with empty substitution. 
and the current output stream is left as: ...• 113.119.101.114.84 

type_errorCbyte. t) 
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69 puLbyte/2 Byte input/output 

Outputs to a binary stream a single byte. 

[> How to use it: 

Example: put_byte (mickey, 113). 

[> Description: put_byte (Stream_or _alias, Byte) 

- If Stream_oLalias is a stream-term or alias of an open stream which is 
neither an input stream nor a text stream and Byte is a byte, 
then outputs Byte to the stream associated with Stream_or Alias, changes 
the stream position to take account of the byte which has been output, and 
succeeds with empty local substitution. 

[> Error cases 

Conditions 

o Byte is a variable 
o Byte is neither a variable nor a byte 
o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_oLalias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 
o Stream_or _alias is associated with a bi­

nary stream 

[> Examples 

Error-term 

instantiation_error 
type_error(byte, Byte) 
instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or _alias) 
permission_error(output, 
stream, Stream_or_alias) 
permission_error (output , 
t ext _stream, 
Stream_or_alias) 

Assume there is an output stream with alias 'mickey' 
whose contents are: ... , 113,119,101,114 

put_byte (mickey , 84). Succeeds with empty substitution, 
and the stream is left as: 113,119,101,114,84 

put_byte(mickey, 't'). type_error (byte , t) 

put_byte (mickey , C). instantiation_error 
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70 puLchar /1 Chamcter input/output 

Outputs to the current output text stream a single character. 

I> How to use it: 

Example: puLchar(t). 

I> Description: put_char(Char) 

- If the current output stream is not a binary stream and Char is a character 
in ECS, 
then it behaves like: 
current_output(S), put_char(S, Char). 

I> Error cases 

Conditions 

a Char is a variable 
a Char is neither a variable nor a character 
a Char is neither a variable nor a character 

in ECS 
oThe current output stream OS is associ­

ated with a binary stream 

I> Examples 

Error-term 

instantiation_error 
type_error (character , Char) 
representation_error(char­
acter) 
permission_error(output, 
binary_stream, OS) 

Assume the current output stream has contents: ... qwer 

Succeeds with empty substitution, 
and the current output stream is left as: 

type_error(character, 1) 

representation_error(character) 

qwert 

(assuming 'UUU' is not a character in ECS) 
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71 puLchar/2 Character input/output 

Outputs to a text stream a single character. 

t> How to use it: 

Example: put_char (mickey , t). 

t> Description: put_char (Stream_or _alias, Char) 

- If Stream_oLalias is a stream-term or alias of an open stream which is 
neither an input stream nor a binary stream and Char is a character in 
ECS, then outputs the character Char to the stream associated with 
Stream_oLalias, changes the stream position, and succeeds with empty 
local substitution. 

t> Error cases 

Conditions 

o Char is a variable 
o Char is neither a variable nor a character 
o Char is neither a variable nor a character 

inECS 
o StreanLor _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias IS not associated with 

an input stream 
o Stream_or _alias is associated with a bi­

nary stream 

t> Examples 

Error-term 

instantiation_error 
type_error(character, Char) 
representation_error (char­
acter, Char) 
instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error (output , 
stream, Stream_or_alias) 
permission_error (output , 
binary _stream, 
Stream_or_alias) 

Assume there is an output stream with alias 'mickey' 
whose contents are: qwer 

put_char (mickey , t). 

put_char (mickey , 1). 

Succeeds with empty substitution, 
and the stream is left as: 

type_error(character, 1) 

qwert 
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72 puLcode/l Character input/output 

Outputs to the current output stream a single character corresponding to 
a given character code. 

t> How to use it: put_code (+character_code) 

Example: put_code (Code) . 

t> Description: put_code (Code) 

- If the current output stream is not a binary stream and Code is a character 
code, 
then it behaves like: 
current_output(S), put_code(S, Char). 

t> Error cases 

Conditions 

o Code is a variable 
o Code is neither a variable nor an integer 
o Code is an integer but not a character 

code 
oThe current output stream is associated 

with a binary stream os 

t> Examples 

Error-term 

instantiation_error 
type_error (integer , Code) 
representation_error(charac­
ter_code) 
permission_error (output , 
binary_stream, OS) 

Assume the current output stream has contents: ... q!ler 

put_code(O't). Succeeds !lith empty substitution, 
and the current output stream is left as: ... q!lert 

put_code('ty'). type_error(integer, ty) 
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Chamcter input/output 

Outputs to a text stream a single character corresponding to the given 
character code. 

I> How to use it: 

Example: put_codeCmickey, O't). 

I> Description: put-code CStream_or _alias, Code) 

- If Stream_or..alias is a stream-term or alias of an open stream which is 
neither an input stream nor a binary stream and Code is a character code, 
then 
outputs the character whose character code is Code to the stream associated 
with Stream_or_alias, changes the stream position, and succeeds with 
empty local substitution. 

I> Error cases 

Conditions 

o Code is a variable 
o Code is neither a variable nor an integer 
o Code is an integer but not a character 

code 
o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is not associated with 

an input stream 
o Stream_or _alias is associated with a bi­

nary stream 

I> Examples 

Error-term 

instantiation_error 
type_error(integer, Code) 
representation_error(charac­
ter_code) 
instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
perrnission_error(output, 
stream, Stream_or_alias) 
permission_error(output, 
binary_stream, 
Stream_or_alias} 

Assume there is an output stream with alias 'mickey' 
whose contents are: qwer 

put_code(mickey, O't). Succeeds with empty substitution, 
and the stream is left as: ... qwert 
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74 read/1 Term input/output 

Reads from the current input stream a single term. 

I> How to use it: read (?term) 

Example: read(T). 

I> Description: read(Term) 

- If the current input stream is not a binary stream and does not have 
properties end_of _stream (past) together with eof _act ion (error) , then 

it behaves like: 
current_input (Stream) , read_term (Stream , Term, [ ]). 

NOTE - The number of characters which are input is undefined if an error occurs 
during the execution of read/1. 

I> Error cases 

Conditions 

oThe current input stream IS is associated 
with a binary stream 

o The current input stream IS has 
stream properties end_oLstream(past) 
and eof_action(error) 

o The term to be read breaches an imple­
mentation defined limit specified by 
Flag where Flag is the flag max_arity, 
max_integer, or min_integer 

o The sequence of tokens cannot be parsed 
as a term using the current operator table 

I> Examples 

read(T) . 

Error-term 

permission_error (input , 
binary_stream, IS) 

permission_error (input , 
past_end_of_stream, IS) 

representation_error(Flag) 

If the contents of the current input stream are: 
foo(A+B, A+C) .term2 .... 

Succeeds with substitution: 
{ T <- foo(_Ol + _02, _01 + _03) } 
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The current input stream is left as: term2 .... 

read(foo(X,a» . 
If the contents of the current input stream are: 

foo(a,a).term2. 
Succeeds with substitution: { X <- a } 

The current input stream is left as: term2. 

read(foo(X,a» . 
If the contents of the current input stream are: 

foo(a,b).term2. 
Fails. 

The current input stream is left as: term2. 

read(foo(X,f(X»). 
If the contents of the current input stream are: 

foo(Y,Y).term2. 
Undefined. 

The current input stream is left as: term2. 

read(T). 
If the contents of the current input stream are: 3.1 

syntax_error(violation) 
where 'violation' is an implementation dependent atom. 
The current input stream is left with position past-end-of-stream. 
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75 read/2 Term input! output 

Reads from a text stream a single term. 

[> How to use it: read (<<Istream..or _alias, ?term) 

Example: read (mickey , T). 

[> Description: read (Stream_or _alias, Term) 

- If Stream_or_alias is a stream-term of an open stream which is nei­
ther output nor binary stream and does not have properties end_of-Btre­
am(past) together with eoLaction(error), 
then it behaves like: 
read_term(Stream..or_alias, Term, [ ]). 

NOTE - The number of characters which are input is undefined if an error occurs 

during the execution of read/2. 

[> Error cases 

Conditions 

° Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
° Stream_or _alias is not associated with 

an open stream 

° Stream_or _alias is an output stream 

° Stream_or _alias is associated with a bi­
nary stream 

o Stream_or _alias has stream properties 
end_oLstream(past) and 
eof_action(error) 

o The term to be read breaches an imple­
mentation defined limit specified by 
Flag where Flag is the Hag max_arity, 
max_integer, or min_integer 

° The sequence of tokens cannot be parsed 
as a term using the current operator table 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
St) 
existence_error(stream, St) 

permission_error(input, 
stream, St) 
permission_error(input, 
binary_stream, St) 
permission_error (input , 
past_end_of_stream, St) 

representation_error(Flag) 

syntax_error (impJiep..atom) 
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t> Examples 

read(mickey, T). 
If the contents of the stream associated with mickey are: 

foo(A+B, A+C).term2. 
Succeeds with substitution: 

{ T (- foo(_Ol + _02, _01 + _03) } 
The stream associated with mickey is left as: term2 .... 

read (mickey , foo(X,a». 
If the contents of the stream associated with mickey are: 

foo(a,a).term2. 
Succeeds with substitution: { X (- a } 

The stream associated with mickey is left as: term2. 

read(mickey, foo(X,a». 
If the contents of the stream associated with mickey are: 

foo(a.b). term2. 
Fails 

The stream associated with mickey is left as: term2 .... 

read(mickey. foo(X.f(X»). 
If the contents of the stream associated with mickey are: 

~oo(Y,Y). term2. 
Undefined. 

The stream associated with mickey is left as: term2 .... 

read(mickey. T). 
If the contents of the stream associated with mickey are: 

syntax_error(violation) 
where 'violation' is an implementation dependent atom. 

The stream associated with mickey is left in an undefined position. 
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76 read_term/2 Term input/output 

Reads from the current input stream a single term and instantiates ac­
cordingly the read-options list. 

I> How to use it: read_term{?term, +read_options-list) 

Example: read_term (T , [variables (U)] ) . 

I> Description: read_term{Term, Options) 

- If the current input stream is not a binary stream and does not have 
properties end_oLstream{past) together with eof..action(error) , and 
Options is a list of valid read-options21 with no variable as element, 
then it behaves like: 
current_input(Stream), read_term(Stream, Term, Options). 

NOTES: 

1- The number of characters which are input is undefined if an error occurs during 
the execution of read_term/2. 

2- The behaviour of read_term/2 is undefined if Term and Options share some 
variables. 

I> Error cases 

Conditions 

o Options is a variable 
o Options is a list with an element E which 

is a variable 
o Options is neither a variable nor a list 
o An element E of the Opt ions list is neither 

a variable nor a valid read-option 
o The term to be read breaches an imple­

mentation defined limit specified by 
Flag where Flag is the Hag max_arity, 
max_integer, or min_integer 

o The sequence of tokens cannot be parsed 
as a term using the current operator table 

o The current input stream IS is associated 
with a binary stream 

21 See the Glossary. 

Error-term 

instantiation_error 
instantiation_error 

type_error(list. Options) 
domain_error(read_option. 
E) 

representation_error(Flag) 

syntax_error (imp_dep..atom) 

permission_error(input, 
binary_stream, IS) 
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o The current input stream IS has 
stream properties end_oLstream(past) 
and eof_action(error) 

permission_error (input , 
past_end_oLstream, IS) 

[> Examples 

read_term(T, [variables(U)]). 
If the contents of the current input stream are: 

foo(A+_, A+_).term2. 
Succeeds with substitution: 

{ T <- foo(_01+_02, _01+_03) , 
U <- L01, _02, _03] }. 

The stream associated with the current input stream is left as: 
terrn2. . .. 

read_term(T, [variables(VL), variable_names(VN), singletons(VS)]). 
If the contents of the current input stream are: 

foo(A+_, A+C).term2. 
Succeeds with substitution: 

{T <- foo(Xl+X2, Xl+X3) 
VL <- [Xl, X2, X3] 
VN <- ['A' = Xl, 'C' = X3] , 
VS <- ['C' = X3] }. 

The stream associated with the current input stream is left as: 
term2 .... 

read_term(foo(X,a) , [variables(U)]). 
If the contents of the current input stream are: 

foo(a,b).term2. 
Fails. 

read_term(foo(X,f(X», [variable(U)]). 
If the contents of the current input stream are: 

foo (Y, Y). term2. . .. 
Undefined. 

The stream associated with the current input stream is left as: 
terrn2 .... 

read_term(T, [variable(X)]). 
domain_error(read_option, variable(X» 

read_term(T, []). 
If the contents of the current input stream are: 3.1 

syntax_error(violation) 
where 'violation' is an implementation dependent atom. 
The current input stream is left with position past-end-of-stream. 
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77 read_term/3 Term input/output 

Reads from a text stream a single term and instantiates accordingly the 
read-option list. 

t> How to use it: read_term (<Dstream_or _alias, ?term, 
+read_options...l ist) 

Example: read_term(mickey, T, [variables (V)] ). 

t> Description: read_term(Stream..or-alias, Term, Options) 

- If Stream_or.-a.lias is the stream-term of an open stream which is nei­
ther output nor binary stream and does not have properties end_of _stre­
am (past) together with eof _act ion (error) , and Opt ions is a list of valid 
read-options22 with no variable as element, 
then let S be the sequence of the characters in Stream_or-alias such 
that: 
the last character of the sequence is the first end token on the stream, and 
each character of the sequence is the same corresponding character ChaT on 
Stream_or-alias if the char-conversion flag is off or Char is a quoted 
character, otherwise it is the corresponding character according to the cur­
rent character conversion table (9.1.2). 

if Sis parsable as a term T', then let T be T', freshly renamed, and J1. be 
the substitution denoting the instantiation of the variables of Options for 
the term T as described for the read-options (7.4.1), and 
- if T and Term are NSTO (3.3.3) and unifiable by the substitution a 

then succeeds with local substitution J1.a. 
- if T and Term are N STO and not unifiable then fails. 
- if T and Term are STO then undefined. 

NOTES: 

1- The number of characters which are input is undefined if an error occurs during 
the execution of read_term/3. 

2- The behaviour of read_term/3 is undefined if Term and Options share some 
variables. 

22 See the Glossary. 



I> Error cases 

Conditions 

o Opt ions is a variable 
o Options is a list with an element E which 

is a variable 
o Opt ions is neither a variable nor a list 
o An element E ofthe Options list is neither 

a variable nor a valid read-option 
o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
oStream_or_alias is not associated with 

an open stream 
o Stream_or _alias is an output stream 

o Stream_or _alias is associated with a bi­
nary stream 

o Stream_or _alias has stream properties 
end_of_stream{past) and 
eof_action{error) 

o The term to be read breaches an imple­
mentation defined limit specified by 
Flag where Flag is the flag max_arity, 
max_integer, or min_integer 

o The sequence of tokens cannot be parsed 
as a term using the current operator table 

I> Examples 

read_term(mickey, T, [variables{V)]). 
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Error-term 

instantiation_error 
instantiation_error 

type_error{list, Options) 
domain_error {read_option , 
E) 

instantiation_error 
domain_error {stream_or_alias, 
Stream) 
existence_error{stream, 
Stream) 
permission_error{input, 
stream, Stream_or_alias) 
permission_error {input , 
binary _stream, 
Stream_or_alias) 
permission_error {input , 
past_end_of_stream, St) 

representation_error(Flag) 

If the contents of the stream associated with mickey are: 
foo{A+_, A+_).term2. 

Succeeds with substitution: 
{ T <- foo(_01+_02, _01+_03) , 

V <- [_01, _02, _03] }. 
The stream associated with the current input stream is left as: 

term2 .... 

read_term(mickey, T, 
[variables (VL), variable_names (VN), singletons(VS)]). 

If the contents of the stream associated with mickey are: 
foo{A+B, A+_). term2. 

Succeeds with substitution: 
{T <- foo(Xl+X2, Xl+X3) 

VL <- [Xl, X2, X3] 
VB < - [ , A' Xl , ' B' = X2] 
VS <- ['B' = X2] }. 
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The stream associated ~ith mickey is left as: term2. 

read_term(mickey, foo(l,a), [variables(VL), variable_names(VW), 
singletons(VS»)). 

If the contents of the stream associated ~ith mickey are: 
foo(a,b). term2. 

Fails 
The stream associated ~ith mickey is left as: term2. 

read_term(mickey, foo(l,f(X», [variables(VL»)). 
If the contents of the stream associated ~ith mickey are: 

foo(Y,Y). term2. 
Undefined. 

read_term(mickey, T, [variables(VL), _). 
instantiation_error 

read_term(mickey, T, [variable(X»)). 
domain_error(read_option, variable(X» 

read_term(mickey, T, f)~. 

If the contents of the stream associated ~ith mickey are: 3.1 
syntax_error(violation) 

~here 'violation' is an implementation dependent atom. 
The stream associated ~ith mickey is left ~ith position 
past-end-of-stream. 
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78 repeat/O Logic and control 

Succeeds repeatedly and indefinitely. 

[> How to use it: repeat. 

Example: repeat, write( 'hello'), fail. 

[> Description: repeat 

- It has the same behaviour as if it were defined by the two clauses: 

repeat 
repeat 

true. 
repeat. 

[> Error cases 
None. 

[> Examples 

repeat, write('hello '), fail. 

repeat, !. 

repeat, !, fail. 

repeat, X = f(X), !. 

repeat, fail. 

Outputs indefinitely: 
hello hello hello hello ... 

Succeeds. 

Fails. 

Undefined. 

Loops. 

repeat, f(X,Y,X) f(g(X),g(Y),Y), fail. 
Loops, repeating an undefined action. 
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79 retract/1 Clause creation and destruction 

Retracts from the database the clauses which are unifiable with the argu­
ment. 

I> How to use it: retract (+clause_term) 

Example: retract (insect (X» . 

I> Description: retract(Clause) 
Let (Head,Body) be the term built as follows: 

- if Clause is not a compound term whose principal functor is : -/2 then 
Head is Clause and Body is true, 

- if Clause is a compound term ) : -) (H) B) then Head is H and Body is B. 

- If Head is a callable term (an atom or a compound term) then 
Let S be the sequence of all the terms (A, C) obtained by a sequential 
search in the database such that 
(1) the database contains a clause in a dynamic user-defined procedure of 
the form A) : - C), such that A : - C is a freshly renamed copy, and 
(2) (Head,Body) and (A, C) are NSTO (3.3.3) and unifiable. 
then 
- if S is empty then fails. 
- if S is not empty then succeeds with local substitution u which is the 

unifier of (Head, Body) and the first element of S not yet used. 

NOTES: 

1- retract/! is re-executable as many times as the size of S. The order of the 
solutions corresponds to the order of the elements in the sequence S. 

2- The number of elements of the sequence S may be undefined if some tried 
pairs are STO. 

I> Error cases 

Conditions 

o Head is a variable 
o Head is not a callable term 
o The predicate indicator PI of Head is that 

of a static procedure 

Error-term 

instantiation_error 
type_error(callable, Head) 
permission_error (access , 
static_procedure, PI) 
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I> Examples 

Assume the database contains the user-defined procedures: 
moose/l, legs/2, insect/l, elk/l 

vith the clauses: (dynamic:) legs(A, 6) 
legs(A, 4) 
legs(A, 8) 
insect (bee) 
insect (ant) 
product (A) 

insect(A). 
animal(A) . 
spider(A). 
true. 
true. 
call(A) , call(A). 

retract(insect(X». Succeeds tvice vith the substitutions: 
{ X (- bee }; 
{ X (- ant }. 

After the last success, all the clauses of insect/1 
have been removed. 

insect(X) , (retract(insect(Y»; true). 
Succeeds 4 times vith the substitutions: 

{ X (- bee, Y (- bee }; 
{ X (- bee, Y (- ant }; 
{ X (- bee }; 
{ X (- ant }. 

All the clauses of insect/l have been removed after the second 
success. 

retract«legs(A, 4) :- X». Succeeds vith the substitution: 
{ X (- insect(A) } 

and removes the clause 'legs(A, 4) :- animal(A).'. 
Other possible substitution: {A (- _01, X (-insect(_Ol) } 

• (undefined) 

retract«product(X) :- call(X), call(X»). 
Succeeds vith empty substitution. 

and removes the clause 'product(A) call (A) , call(A)'. 

retract «product (X) 

retract«legs(X, 4) 

retract«product(X) 

retract(X). 

retract(4). 

retract(atom(_». 

4». Fails. 

animal (f(X» ». 
Undefined. 

X, call(X»). 
Undefined. 

instantiation_error 

type_error(callable, 4) 

permission_error(access, 
static_procedure, atom/l). 
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80 set~nput/l Stream selection and control 

Sets the current input stream. 

I> How to use it: set_input «(Dstream-<lr _alias) 

Example: set_input ('user-input'). 

I> Description: set_input (Stream-<lLalias) 

- IfStream_or_alias is a stream-term or alias of an open stream which is not 
an output stream then sets the current input stream to Stream_or_alias 
and succeeds with empty substitution. 

I> Error cases 

Conditions 

o StreaULor _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
oStream_or_alias is associated with an 

output stream 

I> Examples 

Error-term 

instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or-alias) • 
permission_error(input, 
stream, Stream_or_alias) 

Assume there is an open input stream vith alias 'mickey' and the 
current input stream is 'user_input'. 

set_input(·mickey·). Succeeds, 
and the current input stream is nov ·mickey·. 

set_input(Mickey). instantiation_error 
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81 seLoutput/l Stream selection and control 

Sets the current output stream. 

I> How to use it: set_output «(Dstream...or _alias) 

Example: seLoutput ( , user-output' ) . 

I> Description: set_output (Stream...or _alias) 

- If Stream_or _alias is a stream-term or alias of an open stream which is not 
an input stream then sets the current output stream to Stream_or _alias 
and succeeds with empty substitution. 

I> Error cases 

Conditions 

o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
oStream_or_alias is associated with an in­

put stream 

I> Examples 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error (output , 
stream, Stream_or_alias) 

Assume there is an open output stream vith alias 'mickey' and the 
current output stream is 'user_output'. 

set_output{'mickey'). Succeeds, 
and the current output stream is nov 'mickey'. 

set_output(Kickey). instantiation_error 
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82 seLprolog....fiag/2 Flag updates 

Assigns a value to a flag. 

I> How to use it: set_prolog-IlagC+flag, ~term) 

Example: set_prolog-Ilag (unknown , fail). 

I> Description: set_prolog-IlagCFlag, Value) 

- If Flag is a valid changeable flag of the processor and Value is one of 
the autorized value for this flag then the current value of the flag Flag is 
updated to Value and succeeds with empty local substitution. 

I> Error cases 

Conditions 

o Flag or Value is a variable 
o Flag is neither a variable nor an atom 
oFlag is an atom but an invalid flag for the 

processor 
o Flag is an atom and a valid flag but Value 

is inappropriate for Flag 
o Flag is an atom and a valid flag and 

Value is appropriate, but Flag is not 
changeable 

I> Examples 

set_prolog_flag(unknovn, fail). 
Succeeds, 

Error-term 

instantiation_error 
type_error(atom, Flag) 
domain_error(prolog~lag, 

Flag) 
domain_error (flag_value , 
Flag + Value) 
permission_error (modify , 
flag, Flag) 

after Updating the value of the flag 'unknovn' to 'fail'. 

set_prolog_flag(max_arity, 1000000000). 
permission_error(modify, flag, max_arity) 
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83 set...Btream_position/2 Stream selection and control 

Assigns a given position to the position property of a given stream. 

I> How to use it: set_stream_posi tion«(Dstream...or _alias, 
(Dstream-position) 

Example: set_stream-position(mickey, 1). 

I> Description: set-stream_posi tion(Stream...or _alias, Position) 

- If Stream_or _alias is a stream-term or alias of an open stream with prop­
erty reposition(true) and Position is a stream position term then sets 
the current stream position of the stream to Position and succeeds with 
empty substitution. 

NOTE - Position is an implementation dependent ground term. Therefore, 
usually, it will previously have been returned as a position/1 stream property of 

the stream. 

I> Error cases 

Conditions 

oStream_or_alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias has stream property 

reposition(false) 
oPosition is a variable 
oPosition is neither a variable nor a 

stream position term 

I> Examples 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or-alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(reposition, 
stream, Stream_or_alias) 
instantiation_error 
domain_error (stream_position , 
Position) 

Assume there is an input stream with alias 'mickey' which has 
properties: reposition(true), position('end_of_file'). 

set_stream_position(mickey. 1). Succeeds after repositioning the 
stream 'mickey' and updating its position property with 
position(l). 
(The stream position term is implementation dependent) 
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84 setof/3 All solutions 

Assembles as a list the solutions of a goal for each different instantiation 
of the free variables in that goal. Each list is sorted (with duplicates removed) 
but the order in which each list is found is undefined. 

I> How to use it: setof(~term, +body_term, ?list) 

Example: setof(A, legs(A,N), B). 

I> Description: setof(Template, Sgoal, Slist) 

- If the bagof-subgoal23 G of Sgoal is a well-formed body-term different from 
a variable, 
let W be a witness of the free variables23 of (Template - Sgoal), and 
let S be the list, solution of findal1 ( [W, Template], G, S), 

- If S is the empty list, then fails. 
- If S is a non-empty list, then let Lp be the list of pairs (L ,4» such that: 

- assuming S' is a sublist of (not already used) elements of S, formed 
by one element of S (the choice is undefined), say [w, t], and all the 
other elements of S, [w'. t'], such that wand w' are variants. The 
elements in S' are ordered according to the total order defined by the 
relation term-precedes after elimination of duplicates24 . And 
- 4> is a unifier (3.2) of all terms w's in S' and W (it always exists), and 
L is the list formed with the terms t4> such that the [w, t]'s are elements 
of S' , in the same order, and Slist4> and L are NSTO and unifiable . 

• If Lp is the empty list, then fails . 
• If Lp is a non-empty list, then succeeds with local substitution 4>u 

where u is the unifier of Slist4> and Land (L, 4» is an element of Lp 
not yet used. 

NOTES: 

1- According to the definition of findall/3, the transformed bagof-subgoal is ex­
ecuted. 

2- setof/3 is re-executable as long as Lp is not empty, using not already chosen 
elements of the list Lp (undefined order). 

3- setof/3 behaves like bagof/3 except that the lists are sorted instead as being 
in solution order. 

23 See the Glossary. 
24 When two compared subterms are different variables this order is implemen­

tation dependent, but it must remain the same when ordering S' . 
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4- The order used for term ordering may not be the same (implementation de­
pendent) for the lists produced for different solutions. 

5- The number of elements of the list Lp, as the behaviour of setof/3, may be 
undefined if some tried pairs are STO. 

6- If (Template' Sgoal) has no free variable and call (G) has at least one solu­
tion the predicate succeeds with one solution only. 

7- The variables of Template and the non free variables of Sgoal remain uninstan­
tiated after each success of setof (Template, Sgoal, Slist). 

8- In most applications, the free variables are bound to ground terms after each 
success of the bagof-subgoal. In this case there is no need to consider the sub­
stitution 1> in the definition, which becomes simpler. 

t> Error cases 

Conditions 

o The bagof-subgoal G of Sgoal is a variable 
oThe bagof-subgoal G of Sgoal is neither 

a variable nor a callable term nor a well­
formed body-term 

o Slist is neither a variable nor a partial 
list nor a list 

t> Examples 

Error-term 

instantiation_error 
type_error(callable, G) 

type_error(list, Slist) 

Assume the database contains the user-defined procedures: 
member/2, legs/2, insect/l, animal/l, spider/l 

qith the clauses: legs(A, 6) insect(A). 
legs(A, 4) animal(A) . 
legs(A, 8) spider(A). 
insect (bee) true. 
insect (ant) true. 
animal (horse) true. 
animal (cat) true. 
animal (dog) true. 
spider(tarantula) true. 
member (X , [X I L] ) true. 
member(X, [y I L)) member (X , L). 

setof(A, legs(A,N). B). Succeeds three times qith substitutions: 
{ B (- [cat, dog, horse], N (- 4 }. 
{ B (- [tarantula], N (- 8 }; 
{ B (- [ant, bee], N (- 6 }; 

(undefined order, the free variable set is {N}, A remains unbound) 

setof(N-L, bagof(A, legs(A,H), L), S). 
Succeeds qith substitution: 

{ S (- [4-[horse, cat, dog], 6-[bee, ant], 8-[tarantula]] } 
(the free variable set is empty, A remains unbound) 
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setof(X, (X=2; X=2), S). Succeeds once with substitution: {S (- [2]} 
(the free variable set is empty, X remains unbound) 

setof(X, (X=Y; X=Z) , S). Succeeds once with substitution: 
{ S (- [y, Z] }, or { S (- [Z, Y] } 

(implementation dependent) 

setof(X, (Y"(X=1 ; Y=2) ; X=3), S). 
Raises firstly a warning: 

"the procedure '"'/2 is undefined." 
(Assuming there is no definition for the procedure '"'/2, and 
that the value associated with flag 'undefined_predicate'is 
warning.), then Succeeds with substitution: { S (- [3] } 
(the free variable set is {Y}) 

setof(X, member(X,[V,U,f(U),f(V)]), L). 
Succeeds with substitution: 

{ L (- [U,V,f(U) ,fey)] } or { [V,U,f(V) ,f(U)]. } 
(implementation dependent, the free variable set is {U,V}) 

setof(X, member(X, [V,U,f(U),f(V)]),[a.b,f(a),f(b)]). 
Succeeds with substitution: 

{ U (- a, V (- b } or { U (- b, V (- a } 
(implementation dependent, the free variable set is {U,V}) 

setof(X, (exists(U,V) "member(X, [V,U,f(U),f(V)]», [a,b,f(b),f(a)]). 
Succeeds. (empty free variable set) 

setof(X, member(X,[V,U,f(U),f(V)]), [a,b,f(b),f(a)]). 
Fails. 

setof(f(X,Y), X Y, [f(g(Z),Z)]). 
Undefined. 

setof(X, X"(true 4), L). 
type_error(callable, (true 4» 



5.3 The built-in predicates 163 

85 stream_property /2 Stream selection and control 

Enumerates all the pairs of open streams together with their properties. 

[> How to use it: stream-property(?stream, ?stream_property) 

Example: stream_property(S, file-name(F)). 

[> Description: stream_property(Stream, Stream_property) 

- If Stream is a variable or a stream-term and Stream_property a variable 
or a valid stream property term, then 
let SP be the set of all pairs (S ,P) such that S is the stream-term of 
a currently open stream which has property P and (S,P) and (Stream, 
Stream_property) are unifiable (3.2), 

- if SP is empty then fails. 
- if SP is not empty then if (Stream, Stream-property) and one not 

already chosen element (S,P) of SP (the choice is implementation 
dependent) are unifiable by substitution u then succeeds with local 
substitution u. 

NOTE - stre8lLproperty/2 is re-executable as many times as there are elements 
in SP. 

[> Error cases 

Conditions 

o Stream is neither a variable nor a stream­
term 

o Stream_property is neither a variable nor 
a valid stream property 

Error-term 

domain_error (stream, 
Stream) 
domain_error (stream_property , 
StreamLproperty) 
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I> Examples 

stream_property(S, file_name(F». 
Succeeds as many times as there are open streams with substitution: 

{ S (- a stream-term, 
F <- the name of the file to which it is connected }; ... 

stream_property(S, output). 
Succeeds as many times as there are open output streams 

{ S <- a stream-term }; 

stream_property(S, property). 
domain_error(stream_property, property) 

with substitution: 
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86 sub~tom/5 Atomic term processing 

Enumeration of subatoms with their position and length. 

t> How to use it: sub_atom(+atom, ?integer, ?integer, 
?integer, ?atom) 

Example: sub_atom(anna, L1, 2, L2, A). 

t> Description: sub_atom(Atom, Before, Length, After, Sub_atom) 

- If Atom is an atom, and Sub_atom is a variable or an atom, and Before, 
Length and After are variables or non-negative integers then 
let S be the list, ordered25 according to the term ordering relation, of all 
quadruples (11, 12, 13, A2) such that the name of Atom is the concate­
nation of the possibly empty character sequences Ai, A2 and A3, whose 
repective lengths are 11, 12, 13, and (11, 12, 13, A2) and (Before, 
Length, After, Sub_atom) are unifiable (3.2) then 

- if S is empty then fails. 
- if S is not empty then if (Before, Length, After, Sub_atom) and the 

first not already chosen element (11, 12, 13, A2) of S are unifiable by 
the substitution (J" then succeeds with local substitution (J". 

NOTES: 

1- sub_atom/5 is re-executable as many times as there are elements in S. The order 
of the solutions follows the order of the list S (it is implementation defined 
according to the char-code mapping 9.1.3). 

2- The three lengths correspond respectively to the number of characters before 
the sub-atom, the length of the sub-atom and the number of characters after 
the sub-atom. 

t> Error cases 

Conditions 

o Atom is a variable 
oAtom is neither a variable nor an atom 
o Bef ore is neither a variable nor an integer 
oBefore is an integer that is less than zero 

Error-term 

instantiation_error 
type_error(atom, Atom) 
type_error(integer, Before) 
domain_error(not-1ess_than-zero, 
Before) 

25 The implementation dependent ordering on the variables is constant during 
sorting. 
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o Length is neither a variable nor an integer 
o Length is an integer that is less than zero 

o After is neither a variable nor an integer 
o After is an integer that is less than zero 

o Sub_atom is neither a variable nor an 
atom 

I> Examples 

type_error (integer , Length) 
domain_error(not-1ess_than-zero, 
Length) 
type_error(integer, Length) 
domain_error (not-1ess_than-zero, 
After) 
type_error(atom, Sub_atom) 

sub_atom(anna, Ll, 2, L2, A). Succeeds 3 times with substitutions: 
{ Ll <- 0, L2 <- 2, A <- 'an' }; 
{ Ll <- 1, L2 <- 1, A <- 'nn' }; 
{ Ll <- 2, L2 <- 0, A <- 'na' }. 

sub_atom(abracadabra, 0, 5, I, S). 
Succeeds with substitution: 

{ I <- 6, S <- 'abrac' }. 

sub_atom(abracadabra, B, 2, A, ab) . 
Succeeds twice with substitutions: 

{ B <- 0, A <- 9 }; 
{ B <- 7, A (- 2 }. 

sub_atom(abracadabra, I, 5, 0, S2). 
Succeeds with substitution: 

{ I <- 6, S2 <- 'dabra' }. 

sub_atom( , ab' , B, L, A, Sa) . Succeeds 6 times with substitutions: 
{ B <- 0, L <- 0, A <- 2, Sa <- }; 
{ B <- 0, L <- 1, A <- 1, Sa <- a }; 
{ B <- 0, L <- 2, A <- 0, Sa <- ab }; 
{ B <- 1, L <- 0, A <- 1, Sa <- }; 
{ B <- 1, L <- 1, A <- 0, Sa <- b }; 
{ B <- 2, L <- 0, A <- 0, Sa <- }. 

sub_atom('ab', B, L, A, 'ba'). Fails. 

sub_atom('ab', B, 'a', A, 'ba'). 
type_error(integer, 'a') 
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87 (@»/2 term greater than Term comparison 

Tests whether the second argument term-precedes the first. 

t> How to use it: tOterm to> tOterm 

) to» /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: foo(b) to> foo(a). 

t> Description: Terml to> Term2 

- IfTerm2 term_precedes (2.1.2) Terml then succeeds with empty local sub­
stitution else fails. 

t> Error cases 
None. 

t> Examples 

foo(b) ~> foo(a) 

'~>'(1, 1.0). 

north(a) ~> foo(a, b) 

foo(b, y) ~> foo(a, X». 

foo(X, a) ~> foo(Y, b). 

north(a) ~> south(a). 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds or 
Fails. (implementation dependent) 

Fails. 
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88 (@>=)/2 term greater than or equal Tenn comparison 

Tests whether the second argument is identical to or term-precedes the 
first. 

I> How to use it: (Dterm 10>= (Dterm 

, 10>=' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: foo(b) 10>= foo(a). 

I> Description: Term} 10>= Term2 

- If Term2 is indentical to or term_precedes (2.1.2) Term} then succeeds 
with empty local substitution else fails. 

I> Error cases 
None. 

I> Examples 

foo(b) ~>= foo(a). 

x ~>= X. 

'\0>='(1, 1.0). 

north(a) \0>= foo(a, b) 

foo(b, Y) \0>= foo(a, X». 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

'\O>='(foo(b, X), foo(a, Y». Succeeds. 

north(a) \0>= south(a). Fails. 

'\0>=' (short, shorter). Fails. 

foo(X, a) \0>= foo(Y, b). Succeeds or 
Fails. (Implementation dependent) 
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89 (==) /2 : term identical Term comparison 

Tests whether both arguments are identical. 

l> How to use it: ~term == ~term 

'==' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: f (X, X) == f (X, X). 

l> Description: Terml == Term2 

- If Terml and Term2 are identical then succeeds with empty local substitu­
tion else fails. 

l> Error cases 
None. 

l> Examples 

f(X,X) == f(X,X). 

x = Y, X == Y. 

Succeeds. 

Succeeds once with substitution: 
{ X <- Y } or { Y <- X } 

(implementation dependent) 

X = f(g(A,B),g(A,B», X = f(U,V), U == V. 
Succeeds with substitution: 

{ X <- f(g(A,B),g(A,B», U <- g(A,B), V <- g(A,B) } 

1.0e+l == 10.0. Succeeds. 

X == Y. Fails. 

f(X,X) == f(X,Y). Fails. 

1 == 1. O. Fails. 
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90 (@<)/2: term less than Term comparison 

Tests whether the first argument term-precedes the second. 

!> How to use it: «Iterm «1< «Iterm 

'«1<' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: foo(a) «1< foo(b). 

!> Description: Termi «1< Term2 

- IfTerml term_precedes (2.1.2) Term2 then succeeds with empty local sub­
stitution else fails. 

!> Error cases 
None. 

!> Examples 

foo(a) G< foo(b) . 

1.0 G< 1. 

foo(a, I) G< foo(b, Y). 

foo(l, b) G< foo(Y, a). 

foo(a, b) G< north(a). 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds vith empty substitution or 
fails. 

(implementation dependent) 

Fails. 
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91 (@=<)/2 term less than or equal Term comparison 

Tests whether the first argument is identical to or term-precedes the sec­
ond. 

l> How to use it: IDterm ID=< IDterm 

'<ll=<' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: foo(a) iD=< foo(b). 

l> Description: Term! ID=< Term2 

- If Term! is indentical to or term_precedes (2.1.2) Term2 then succeeds 
with empty local substitution else fails. 

l> Error cases 
None. 

l> Examples 

foo(a) ~=< foo(b). 

aardvark ~=< zebra. 

short ~=< short. 

short ~=< shorter. 

foo(a, X) ~=< foo(b, Y). 

'~=<, (X, X). 

'~=<. (X, Y). 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds. 

Succeeds or 
Fails. (implementation dependent) 

'~=<'(foo(X, b), foo(Y, a». Succeeds or 
Fails. (implementation dependent) 
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92 (\==)/2 term not identical Term comparison 

Tests whether the arguments are different terms. 

c> How to use it: @term \== @term 

'\ \ ==' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: f(X,X) \== f(X, Y). 

c> Description: Terml \== Term2 

- If Terml and Term2 are not identical then succeeds with empty local sub­
stitution else fails. 

c> Error cases 
None. 

c> Examples 

f(X,X) \== f(X,Y). 

x \== Y. 

f(X,X) \== f(a, X) 

f(X,X) \== f(X,X). 

1.0e+l \== 10.0. 

Succeeds. 

Succeeds. 

Succeeds. 

Fails. 

Fails. 
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93 throw/I exception handling: error throwingLogic and control 

Raises an error and throws a "ball" to be caught by some ancestor 
"catcher" (see catch/3). 

t> How to use it: throw(+term) 

Example: catch(throw(exit(1», exit(X), write(X». 

t> Description: throw(Ball) 

- If Ball is not a variable, the execution model (see Section 4.3.3) reacts as 
follows: 
It seeks in the search tree for the closest ancestor node whose chosen pred­
ication has the form catch(Goal, Catcher, Recovergoal), which is still 
executing its Goal argument26 and such that a freshly renamed copy Ball ' 
of Ball unifies with Catcher by substitution (J'. 

- If there is no such ancestor then a "system-error" is raised (see below) 
and the behaviour is implementation dependent. 

- If there is such ancestor node whose goal label is (catch(Goal, Catch­
er, Recovergoal), Cont)27 then 
(1) all the nodes between the current node and the ancestor are made 
deterministic (none of these nodes can thus be selected by backtracking) 
and 
(2) a second child is added to the ancestor node whose labels are the 
substitution (J' and the goal (call (Recovergoal) , Cont)(J', 
and backtracks (4.2.6). The execution will thus continue, with the new 
child as current node, at step (2.) of algorithm 4.2.5. 

t> Error cases 

Conditions 

o Ball is a variable 
o A freshly renamed copy of Ball does not 

unify with the catcher argument of any 
ancestor node whose chosen predication 
is catch/3 

26 and not Recovergoal. 
27 If Cont is empty, then one assumes Cont 

Error-term 

instantiation_error 
system_error 

true. 
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I> Examples 

Assume the database contains the user-defined procedures: 
p/O, q/O, rll 

vith the clauses: p 
p 

true. 
throv(b). 

reX) throv(X). 

q catch(p, B, vrite('hellop '», r(c). 

catch(throw(exit(l». exit(X). write(X». 

catch(q. C. write(helloq». 

catch(throw(true). X.X). 

catch(throw(fail). X. X). 

Succeeds with substitution {X <- 1 } 
after outputting: 1 

Succeeds with substitution {C <- c } 
after outputting: helloq 

Succeeds with substitution 
{ X <- true } 

Fails. 

catch(throw(f(X.X». f(X. g(X». write(may_be». 
Undefined. 

catch(throw(l). X. (fail;X». type_error(callable. (fail;l» 

catch(throw(fail). true. G). system_error 
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94 true/O Logic and control 

Succeeds. 

I> How to use it: true 

Example: X =1, true, Y = 2. 

I> Description: true 

~ Succeeds with empty local substitution. 

More precisely true is a basic goal used in the description of the search­
tree visit and construction algorithm (see Section 4.2.5). If the current goal 
is (true, G), then the new current goal becomes G. If the current goal is 
true, then it corresponds to a success branch, and the execution continues 
with backtracking (Section 4.2.6). 

I> Error cases 
None. 

I> Examples 

X =1, true, Y = 2. Succeeds with substitution { X <- 1, Y <- 2 } 
(it behaves exactly like: X =1, Y = 2.) 

(X Y -) fail; true). Is equivalent to: X \= Y. 
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95 (\=)/2 (not Prolog) unifiable Term unification 

Tests whether two terms are not unifiable 

[> How to use it: ?term \= ?term 

'\ \ =' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: f(a,X) \= f(X,b). 

[> Description: Terml \= Term2 

- If Terml and Term2 are N STO (3.3.3) and not unifiable then succeeds 
with empty local substitution. 

- If Terml and Term2 are N STO and unifiable then fails. 
- IfTerml and Term2 are STO then the result is undefined (failure, success, 

loop or error are possible behaviours28 ). 

[> Error cases 
None. 

[> Examples 

f(a,X) \= f(X,b). 

'\\='(1, 1.0). 

f(X, a) \= f(g(Y), Y). 

Succeeds. 

Succeeds. 

Fails. 

f(l, X) \= f(2, a(X». Undefined. 
(STD case by possible equalisation of the second arguments, 

a success in most existing processors). 

28 X = f (X), Y = f (Y), X \ = Y may succeed, loop, fail or raise an error message. 
Succeeds if rational ("infinite") terms are allowed, loops if the unification does not 
terminate, fails on conforming processors with occurs-check test, raises an error 
message on strictly conforming processors (in a debugging mode for example). 
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96 (=) /2 (Prolog) unify Term unification 

Explicit Prolog unification of two terms. Both arguments are made equal. 

t> How to use it: ?term = ?term 

'=' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: f (X, a) = f (g (Y), Y). 

t> Description: Terml = Term2 

- IfTerml and Term2 are NSTO (3.3.3) and unifiable by substitution 17 then 
succeeds with local substitution 17. 

- If Terml and Term2 are N STO and not unifiable then fails. 
- IfTerml and Term2 are STO then the result is undefined (success, failure, 

loop or error are possible behaviours29 ). 

t> Error cases 
None. 

t> Examples 

f(X, a) = f(g(Y), V). Succeeds ~ith substitution: 
{ X <- g(a), Y <- a } 

g(X) = f(a). Fails. 

f(l, X) = f(2, a(X». Undefined. 
(STD case by possible equalisation of the second arguments, 

a failure in most existing processors). 

29 X = f (X). Y = f (Y). X = Y may succeed, loop, fail or raise an error message. 
Succeeds if rational ("infinite") terms are allowed, loops if the unification does not 
terminate, fails on conforming processors with occurs-check test, raises an error 
message on strictly conforming processors (in a debugging mode for example). 
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97 unify _with_occurs_check/2 : unify Term unification 

(First order) logical unification of two terms. Both arguments are made 
identical. 

~ How to use it: 

~ Description: unify _wi th_occurs_check (Term!, Term2) 

- If Term! and Term2 are unifiable (3.2) by the substitution (J" then succeeds 
with local substitution (J". 

- If Term! and Term2 are not unifiable then fails. 

~ Error cases 
None. 

~ Examples 

uni£y_with_occurs_check(f(a,X), £(X,a». Succeeds with substitution: 
{ X <- a } 

Fails. 

uni£y_with_occurs_check(£(X, Y, X, 1), f(a(X), a(Y), Y, 2». 
Fails. 

uni£y_with_occurs_check(£(1, X),£(2, a(X»). 
Fails. 
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98 (= .. )/2: univ Term creation and decomposition 

Term construction or decomposition. 
In the case of success the second argument is the list whose head is the 

principal functor of the first argument and the tail the list of its arguments. 

[> How to use it: +nonvar = .. ?list 
-term =.. + list 

'= .. ' /2 is a predefined infix operator. Its priority is 700 and it is non­
associative (xfx). 

Example: f(a,b) [X I Y]. 

[> Description: Term =.. List 

- if Term is a compound term of the form I(t l , t z , .. . ,tn), n > 0 and List is 
a variable or an acceptable lisfo, and List and [t, tl, t z , ... ,tn] are NSTO 
(3.3.3) then if they are unifiable by substitution (J then succeeds with 
local substitution (J else fails. 

- if Term is a compound term of the form l(tl, tz, ... ,tn ), n > 0 and List 
is a variable or an acceptable list and List and [t, tl, tz, .. . ,tn] are STO 
then undefined. 

- if Term is atomic (an atom or a number) and List is is a variable or an 
acceptable list then if [Term] is unifiable with List by substitution (J then 
succeeds with local substitution (J else fails. 

- if Term is a variable and List is a list of the form [c] such that c is atomic 
then succeeds with local substitution { Term t- c }. 

- if Term is a variable and List is a list of the form [I, t l , tz, ... ,tn], 0 < n < 
maxarity such that I is an atom then succeeds with local substitution 
{ Term t- I(tl , tz, . .. ,tn ) }. 

[> Error cases 

Conditions Error-term 

o Term is a variable and List is not a list instantiation_error 

30 An acceptable list is either an empty list, or a singleton list with a variable or a 
number as element, or a nonempty list whose head is a variable or an atom and 
its tail is a list of terms, or a partial list. 
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o Term is a variable and List is a list whose 
head is a variable 

o Term is a variable and List is the empty 
list 

o Term is a variable and List is a list whose 
tail has a length greater than the imple­
mentation defined integer maxarity 

oList is a list whose head H is neither an 
atom nor a variable, and whose tail is not 
the empty list 

oList is a list whose head H is a compound 
term, and whose tail is the empty list 

o List is neither a variable nor a partial list 
nor a list 

t> Examples 

instantiation_error 

domain_error (non_empty_list, 
List) 
representation_error(max_arity) 

type_error(atom, H) 

type_error (atomic , H) 

type_error(list, List) 

f(a,b) = .. [X I Y]. Succeeds vith substitution: 
{ X (- f, Y (- [a,b] } 

fCa,b) L. Succeeds vith substitution: 
{ L (- [f, a, b] } 

T [f, X, 1]. Succeeds vith substitution: 
{ T (- f(X,l) } 

foo(a, b) = .. [foo, b, a]. Fails. 

f (X) =.. [f, U (X)] . Undefined. 

X =.. [f 00, a I Y]. instantiation_error 

foo(a,b) [foo(X, Y)] . type_error (atomic , foo(X,Y» 



5.3 The built-in predicates 181 

99 var/l Type testing 

Tests whether the argument is a variable. 

t> How to use it: var(?term) 

Example: var(X). 

t> Description: var(Term) 

- If Term is a variable then succeeds with empty local substitution. 
- If Term is not a variable (it is thus an atom, a number or a compound 

term) then fails. 

t> Error cases 
None. 

t> Examples 

var(X). 

var(X), X = fey). 

X = Y , var(X). 

X = fey) , var(X). 

var(a). 

Succeeds. 

Succeeds with substitution { X (- fey) } 

Succeeds with substitution { X <- Y } 
(or { Y <- X }, irnplernentaion dependent) 

Fails. 

Fails. 
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100 write/! Term input/output 

Outputs a term to the current output stream in a form which is defined by 
the option list [numbervars (true), quoted (false), ignore_ops (false)] . 

I> How to use it: write (?term) 

Example: write(X = a). 

I> Description: write (Term) 

- If the current output stream is not a binary stream, 
then outputs the term Term, freshly renamed, to the current output stream 
in a form which is defined by the write-options list [numbervars (true) , 
quoted(false), ignore_ops(false)] (7.4.2), changes the stream posi­
tion to take account of the characters which have been output, and succeeds 
with empty local substitution. 

NOTE - It behaves like: 
current_output(S), write_term(S, Term, [numbervars(true)]). 

I> Error cases 

Conditions 

o The current output stream is associated 
with a binary stream as 

I> Examples 

Error-term 

permission_error(output, 
binary_stream, aS) 

Assume the contents of the current output text stream are: 
term. 

write(X = a). Succeeds with empty substitution, and 
the current output stream is left as: term._001=a 
(the part of the variable name '001' is implementation dependent) 

write('$VAR'(51». Succeeds with empty substitution, and 
the current output stream is left as: term.Z1 
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101 write/2 Term input/output 

Outputs a term to a text stream in a form which is defined by the write­
option list [numbervars (true), quoted (false) , ignore_ops (false)]. 

I> How to use it: wri te «Ostream..or _alias, ?term) 

Example: write (mickey, X = a ). 

I> Description: write (Stream_or _alias, Term) 

- If Stream_or _alias is the stream-term or alias of an open stream which is 
neither an input nor a binary stream, 
then outputs the term Term, freshly renamed, in a form which is defined 
by the write-options list [numbervars(true) , quoted(false), igno­
re_ops (false)] (7.4.2), changes the stream position to take account of 
the characters which have been output, and succeeds with empty local 
substitution. 

NOTE - It behaves like: 
write_term(S, Term, [numbervars(true»)). 

I> Error cases 

Conditions 

o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 
o Stream_or _alias is associated with a bi­

nary stream 

Error-term 

instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(output, 
stream, Stream_or_alias) 
permission_error (output , 
binary _stream, 
Stream_or_alias) 



184 5. The Built-in Predicates 

t> Examples 

Assume the contents of the open output text stream associated 
with 'mickey' are: term. 

write (mickey , X = a). Succeeds with empty substitution, and 
the stream associated with 'mickey' is left as: '" term._001=a 
(the part of the variable name '001' is implementation dependent) 

write (mickey , '$VAR'(51». Succeeds with empty substitution, and 
the stream associated with 'mickey' is left as: ... term.Zl 

write(X, '$VAR'(51». instantiation_error 
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102 write_canonical/1 Term input/output 

Outputs a term to the current output stream in a form which is defined by 
the option list [quoted (true) , numbervars (false), ignore_ops(true)]. 

I> How to use it: write_canonical (?term) 

Example: write_canonical (X = a). 

I> Description: write_canonical (Term) 

- If the current output stream is not a binary stream, 
then outputs the term Term, freshly renamed, to the current output 
stream in a form which is defined by the write-options list [quoted (true) , 
numbervars(false), ignore_ops(true)] (7.4.2), changes the stream po­
sition to take account of the characters which have been output, and suc­
ceeds with empty local substitution. 

NOTE -It behaves like: 
current_output(S), write_term(S, Term, [quoted(true), 

ignore_ops(true)]). 

I> Error cases 

Conditions Error-term 

o The current output stream is associated 
with a binary stream as 

permission_error(output, 
binary_stream, aS) 

I> Examples 

Assume the contents of the current output text stream are: 
... term. 

write_canonical(X = a). Succeeds with empty substitution, 
and the stream associated with mickey is left as: 

... term.=(_OOl,a) 
(the part of the variable name '001' is implementation dependent) 

write_canonical([1,2,3]). Succeeds with empty substitution, 
and the current output stream is left as: ... term .. (1,.(2,.(3,[]») 
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103 write_canonical/2 Term input/output 

Outputs a term to a text stream in a form which is defined by the option 
list [quoted(true), numbervars (false), ignore_ops (true)]. 

t> How to use it: write_canonical (GstreamJ>r_alias , ?term) 

Example: write_canonical (mickey, X = a). 

t> Description: write_canonical (Stream-Dr _alias, Term) 

- if Stream_orAlias is a stream-term or alias of an open stream which is 
neither an input nor a binary stream, 
then outputs the term Term, freshly renamed, in a form which is defined 
by the write-options list [quoted (true) , numbervars (false), igno­
re_ops(true)] (7.4.2), changes the stream position to take account of 
the characters which have been output, and succeeds with empty local 
substitution. 

NOTE - It behaves like: 
vrite_term(Stream_or_alias, Term, [quoted(true), ignore_ops(true)]). 

t> Error cases 

Conditions 

oStream_or_alias is a variable 
oStream_or_alias is neither a variable nor 

a stream-term or alias 
oStream..or_alias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 
oStream_or_alias is associated with a bi­

nary stream 

Error-term 

instantiation_error 
domain_error (stream..or_alias, 
Stream..or_alias) 
existence_error(stream, 
Stream..or_alias) 
permission_error(output, 
stream, Stream_or~ias) 
permission_error(output, 
binary_stream, 
StreaDLor_alias) 
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c> Examples 

Assume the contents of the open output text stream associated 
with 'mickey' are: term. 

write_canonical(mickey. 'X = a'). Succeeds with empty substitution, 
and the stream associated with • mickey , is left as: 

... term.'X = a' 

vrite_canonical(mickey. X = a). Succeeds with empty substitution, 
and the stream associated with 'mickey' is left as: 

... term.=(X,a) 

write_canonical(mickey. [1,2,3]). Succeeds with empty substitution, 
and the stream associated with 'mickey' is left as: 

... term .. (1,. (2 •. (3, []))) 

write_canonical (mickey. '$VAR'(51)). 
Succeeds with empty substitution 

and the stream associated with 'mickey' is left as: 
term. $VAR(51) 

vrite_canonical(X, '$VAR'(51)). instantiation_error 
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104 write_term/2 Term input/output 

Outputs a term to the current output stream in a form which is defined 
by the given write-options list. 

I> How to use it: write_term(?term, +write_options-1ist) 

Example: write_term(X = a , [ignore_ops (true)]) . 

I> Description: write_term(Term, Options) 

- If Options is a list of valid write-options31 , with no variable as element, 
then outputs the term Term, freshly renamed, to the current output stream 
in a form which is defined in Section 7.4.3, changes the stream position to 
take account of the characters which have been output, and succeeds with 
empty local substitution. 

NOTES: 

1- It behaves like: 
current_output(S), vrite_term(S, Term, Options). 

2- The default option values are false. 

I> Error cases 

Conditions 

o Options is a variable 
o Options is neither a variable nor a list 
o Options is a list with an element E which 

is a variable 
o An element E ofthe Options list is neither 

a variable nor a valid write-option 
o The current output stream is associated 

with a binary stream Os 

31 See the Glossary. 

Error-term 

instantiation_error 
type_error(list, Options) 
instantiation_error 

domain_error(vrite_option, 
E) 

permission_error(output, 
binary_stream, OS) 
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I> Examples 

Assume the contents of the current output text stream are: 
... term. 

vrite_term(X = a , [ignore_ops(true»)). 
Succeeds with empty substitution, and 

the current output stream is left as: ... term.=(_001,a) 
(the part of the variable name '001' is implementation dependent) 

vrite_term([1,2,3), []). Succeeds with empty substitution, and 
the current output stream is left as: ... term.[1,2,3) 

write_term('$VAR'(51), [numbervars(false»)). 
Succeeds with empty substitution, and 

the current output stream is left as: ... term.$VAR(51) 

vrite_term('$VAR'(51), [numbervars(true»)). 
Succeeds with empty substitution, and 

the current output stream is left as: term.Z1 

write_term('$VAR'(51), X). instantiation_error 

vrite_term(3, [quoted(no), numbervars(false»)). 
domain_error(vrite_option, quoted(no» 
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105 write_term/3 Term input/output 

Outputs a term to a text stream in a form which is defined by the given 
write-options list. 

[> How to use it: write_term(~stream-Dr_alias, ?term, 
+write_options-1ist) 

Example: write_term(mickey, X = a, [ignore_ops(true)]). 

[> Description: wri te_term(Stream-DLalias, Term, Options) 

- If Stream-Dr_alias is a stream-term or alias associated to an open stream 
which is neither an input nor a binary stream, and Options is a list of 
valid write-options32 (7.4.2), with no variable as element, 
then outputs the term Term, freshly renamed, in a form which is defined in 
Section 7.4.3, changes the stream position to take account ofthe characters 
which have been output, and succeeds with empty local substitution. 

NOTE - The default options values are false. 

[> Error cases 

Conditions 

o Options is a variable 
o Options is neither a variable nor a list 
o Options is a list with an element E which 

is a variable 
oAn element E ofthe Options list is neither 

a variable nor a valid write-option 
oStrealLor_alias is a variable 
o Stream_or-alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 

32 See the Glossary. 

Error-term 

instantiation_error 
type_error(list, Options) 
instantiation_error 

domain_error (vrite_option, 
E) 

instantiation_error 
domain_error (stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error (output , 
stream, Stream_or_alias) 
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o Stream_or-alias is associated with a bi­
nary stream 

permission_error(output, 
binary _stream, 
Stream_or_alias) 

I> Examples 

Assume the contents of the open output text stream associated with 
alias 'mickey' are: ... term. 

write_term(mickey, X a, [ignore_ops(true)]). 
Succeeds with empty substitution, and 

the stream associated with 'mickey' is left as: ... term.=(_OOl,a) 
(the part of the variable name '001' is implementation dependent) 

write_term(mickey, [1,2,3], []) 
Succeeds with empty substitution, and 

the stream associated with 'mickey' is left as: term. [1,2,3] 

write_term(mickey, '$VAR'(51), [numbervars(false)]). 
Succeeds with empty substitution, and 

the stream associated with 'mickey' is left as: term.$VAR(51) 

write_term(mickey, '$VAR'(51) , [numbervars(true)]). 
Succeeds with empty substitution, and 

the stream associated with 'mickey' is left as: ... term.Zl 

write_term(mickey, '$VAR'(51), X). 
instantiation_error 

write_term(mickey, 3, [quoted(no), numbervars(false)]). 
domain_error(write_option, quoted(no)) 
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106 writeq/l Term input/output 

Outputs a term to the current output stream in a form which is defined by 
the option list [quoted (true) , numbervars(true), ignore_ops(false)]. 

c> How to use it: writeq(?term) 

Example: wri teq (X = a). 

c> Description: wri teq (Term) 

- if the current output stream is not a binary stream, 
then outputs the term Term, freshly renamed, to the current output 
stream in a form which is defined by the write-options list [quoted (true) , 
numbervars(true), ignore_ops(false)] (7.4.2), changes the stream po­
sition to take account of the characters which have been output, and suc­
ceeds with empty local substitution. 

NOTE - It behaves like: 
current_output(S), vrite_term(S, Term, [quoted(true), 

numbervars(true)J). 

c> Error cases 

Conditions 

o The current output stream is associated 
with a binary stream os 

c> Examples 

Error-term 

permission_error(output, 
binary_stream, OS) 

Assume the contents of the current output text stream are: 
... term. 

vriteq(X = a). Succeeds with empty substitution, and 
the current output stream is left as: term.X=a 

writeq('$VAR'(51». Succeeds with empty substitution, and 
the current output stream is left as: term.Zl 
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107 writeq/2 Term input/output 

Outputs a term to a text stream in a form which is defined by the option 
list [quoted (true) , numbervars(true), ignore_ops(false)]. 

I> How to use it: writeq(~streamJ)r_alias, ?term) 

Example: wri teq (mickey, X = a). 

I> Description: wri teq (Stream_or _alias, Term) 

- If Stream_or _al ias is a stream-term or alias associated to an open stream 
which is neither an input nor a binary stream, 
then outputs the term Term, freshly renamed, in a form which is defined by 
the write-options list [quoted (true), numbervars (true), ignore_ops­
(false)] (7.4.2), changes the stream position to take account of the char­
acters which have been output, and succeeds with empty local substitution. 

NOTE - It behaves like: 
vrite_term(S, Term, [quoted(true), numbervars(true)]). 

I> Error cases 

Conditions 

o Stream_or _alias is a variable 
o Stream_or _alias is neither a variable nor 

a stream-term or alias 
o Stream_or _alias is not associated with 

an open stream 
o Stream_or _alias is associated with an in­

put stream 
o Stream_or-alias is associated with a bi­

nary stream 

Error-term 

instantiation_error 
domain_error(stream_or_alias, 
Stream_or_alias) 
existence_error(stream, 
Stream_or_alias) 
permission_error(output, 
stream, Stream_or_alias) 
permission_error (output , 
binary_stream, 
Stream_or_alias) 
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I> Examples 

Assume the contents of the open output text stream associated with 
'mickey' are: ... term. 

vriteq(mickey, X = a). Succeeds with empty substitution, and 
the stream associated with 'mickey' is left as: ... term.X=a 

writeq(mickey. '$VAR'(Sl». Succeeds with empty substitution, and 
the stream associated with 'mickey' is left as: ... term.Zl 

writeq(X, '$VAR'(51». instantiation_error 
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6.1 Arithmetic expressions 

6.1.1 Arithmetic terms 

Some terms represent arithmetic expressions when they are in the following 
positions: 

- the right-hand argument of the built-in predicate is/2, 
- both arguments of the arithmetic comparison built-in predicates 

(=:=)/2, (=\=)/2, «)/2, (»/2, (=<)/2, (>=)/2. 

In that case they will be formed as a term (according to the rules defined 
in Section 2.1.1), using arithmetic functors and numbers only, otherwise the 
evaluation of the expression raises an exception (see below). 

The arithmetic functors that are permitted in expressions are listed in 
Table 6.1. Some of them are predefined operators in Standard Prolog (see 
Table 9.2.2 in Chapter 9). 

6.1.2 Numbers 

Numbers are partioned into two subsets denoted I (integers) and F (fioating­
point numbers). 

- An integer is a member of a set I defined as follows (see Section 9.5.1 for 
the translation of an integer token into an integer). 

It depends on the value of the flag bounded: 
- false: 1= Z, the mathematical relative integers. 
- true: I = {x E Z I minint ~ x ~ maxint} , where minint and 

maxint denote the values of the flags min_integer and max_integer 
respectivelyl. 

1 In Standard Prolog minint and maxint satisfy: 
maxint > a 

and one of: minint = -(maxint) 
minint = -(maxint + 1). 
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Table 6.1. Predefined arithmetic functors: 
functors that can be used in arithmetic expressions. 

abs/l 
'+'/2 
atan/l 
,/\\, /2 
'\'/2 
'«'/2 
'\\/'/2 
'»'/2 
ceiling/l 
cos/l 
exp/l 
'**'/2 
float/l 
float_fractional_part/l 
float_integer_part/l 
'/'/2 
'//'/2 
floor/l 
log/l 
mod/2 
'*'/2 
rem/2 
round/l 
sign/l 
'-'/1 
sin/l 
sqrt/l 
'-'/2 
truncate/l 

absolute value 
addition 
arc tangent 
bitwise and 
bitwise complement 
bitwise left shift 
bitwise or 
bitwise right shift 
smallest integer not smaller than 
cosme 
natural antilogarithm 
exponentiation 
conversion to float 
float fractional part 
float integer part 
floating-point division 
integer division 
largest integer not greater than 
natural logarithm (base e) 
modulo 
multiplication 
integer remainder 
integer nearest to 
sign of 
sign reversal 
sine 
square root 
subtraction 
integer equal to the integer part of 

There is also another parameter, specified by the flag 
integer...rounding...iunction, which influences the definitions of the inte­
ger division ( ) / / ) /2) and the integer remainder () rem) /2). 

- A floating-point number is a member of a set F defined as follows (see 
Section 9.5.1 for the translation of a float token into a floating-point num­
ber). 
F is a finite subset of R (the reals) characterized by five parameters: 

r E Z (the radix of F) 
p E Z (the precision of F) 
em in E Z (the smallest exponent of F) 
em ax E Z (the largest exponent of F) 
den arm E {true, false} 

(whether F contains denormalized values) 
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More details may be found in the standard [2] or in Annex A.5.2 of 
ISO/lEe 10967-1 - Language Independent Arithmetic (LIA) [1]. 

6.2 Expression evaluation 

The evaluation of an arithmetic expression may cause exceptions. So the 
value of a ground expression whose evaluation does not raise an exception is 
first defined, then exceptions are described as "error cases" . 

6.2.1 Value of an expression 

The value of a ground arithmetic expression is defined as follows. 

- The result of the evaluation of a number is this number. 
- The result of the evaluation of a compound term with principal functor FIN 

consists of evaluating the N arguments in an implementation dependent 
order and applying the operation corresponding to the arithmetic functor 
F IN to the N obtained values. 

I> Error cases If many errors may be raised during the evaluation of an 
expression, it is implementation dependent which one is raised. 

Conditions 

o A sub expression is a variable 
o A sub expression is an atom A 
o A subexpression is a compound term 

whose principal functor FIN is not an 
arithmetic functor 

o A sub expression is a compound term 
whose principal functor is atan/1, cos/1, 
exp/1, log/1, sin/1 or sqrt/1, and 
whose argument is not a variable and is 
evaluated to a value V which is not a num­
ber 

oA subexpression is a compound term 
whose principal functor is a bitwise op­
erator such that none of its arguments is 
a variable but one of them is evaluated to 
a value V which is not an integer 

o The value of some operation IS 

inLoverflow 
o The value of some operation is 

floaLoverflow 
o The value of some operation is under­

flow 
o The value of some operation is 

zero_divisor 

Error-term 

instantiation_error 
type_error(evaluable, A) 
type_error(evaluable, F/N) 

type_error (number , V) 

type_error(integer, V) 

evaluation_error (int_over­
flov) 
evaluation_error(float_o­
verflov) 
evaluation_error(underflov) 

evaluation_error{zero_divisor) 
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o The value of some operation is unde­
fined 

evaluation_error (undefined) 

oThe Hag bounded has value false and a 
system exception is raised because of ex­
haustion of resources 

system_error 

6.2.2 Arithmetic comparison operator definitions 

The following table identifies the basic arithmetic operations corresponding 
to each arithmetic comparison built-in predicate (one operation depending 
on the types of the arguments, lor F): 

Predicate indicator 
'=:='/2 
'=\\=' /2 
'<'/2 
'=<'/2 
'>'/2 
'>='/2 

Operation 
eq[, eqF, eqF[, eq[F 
neq[, neqF, neqF[, neq[F 
155[, lSSF, lSSF[, lSSIF 
leq[, leqF, leqF[, leq]F 
gtr[, gtrF, gtrFI, gtr[F 
geq[, geqF, geqF[, geq[F 

See the profiles of the basic arithmetic operators in Section 6.2.4. 

6.2.3 Arithmetic functors definitions 

The following table identifies the basic arithmetic operations corresponding to 
each arithmetic functor not defined in Section 6.2.5 (one operation depending 
on the types of the arguments, I or F): 

Arithmetic functor 
abs/l 
'+'/2 
ceiling/l 
float/l 
f loat...fractional.~art/ 1 
float_integer_part/l 
'/'/2 
'//'/2 
floor/l 
mod/2 
'*'/2 
rem/2 
round/l 
sign/l 
'-'/1 
'-'/2 
truncate/l 

Operations 
abs[, absF 
add[, addF , addF], addIF 
ceilingF~[ 

floatI~F, floatF~F 
jractpariF 
intpartF 
divF, divII, divF], div[F 
intdiv[ 

floorF~[ 
modI 
mull, mulF, mUlF[, mul[F 
rem[ 
rOUndF~[ 

sign[, signF 
neg[, negF 
sub[, subF , subF [, SUbIF 
truncateF~I 
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6.2.4 Profile of the basic arithmetic operations 

The arithmetic system of Standard Prolog is based on the recent ISO stan­
dard for language independent arithmetic [1] in which all the basic arithmetic 
operations are specified. All details are provided in the standard [2]. There­
fore we do not fully develop their definitions, but only give their profiles, 
which show the exceptional values raised by the basic operations (hence by 
the arithmetic comparison built-in predicates and the arithmetic functors not 
defined in the next section). 

absF : F -+ F 
absI : I -+ I U {int-overflow} 
addFI : F x 1-+ F U {float-overflow, underflow} 
addF : F x F -+ F U {floaLoverflow, underflow} 
addlF : I x F -+ F U {float_overflow, underflow} 
addl : I x I -+ I U {inLoverflow} 
ceilingF_1 : F -+ I U {int-overflow} 
divFI : F x I -+ F U {float_overflow, underflow,zero_divisor} 
divF : F x F -+ F U {float_overflow, underflow, zero_divisor} 
diVIF : I x F -+ F U {float_overflow, underflow, zero_divisor} 
div II : I x I -+ F U {float_overflow, underflow, zero_divisor} 
eqFI : F x I -+ {true, false} U {float-overflow} 
eqF : F x F -+ {true, false} 
eqIF : I x F -+ {true, false} U {float-overflow} 
eql: I x I -+ {true, false} 
floatF_F : F -+ F 
floatI_F : 1-+ F U {float_overflow} 
floorF_1 : F -+ I U {int-overflow} 
fractpartF : F -+ F 
geqFI: F x I -+ {true, false} U {float_overflow} 
geqF: F x F -+ {true, false} 
geqlF: I x F -+ {true, false} U {float_overflow} 
geql: I x I -+ {true, false} 
gtrFI: F x I -+ {true, false} U {float-overflow} 
gtrF: F x F -+ {true, false} 
gtrlF: I x F -+ {true, false} U {float_overflow} 
gtr/: I x I -+ {true, false} 
intdivl : I x I -+ I U {inLoverflow, zero_divisor} 
intpartF : F -+ F 
leqFI: F x I -+ {true, false} U {float_overflow} 
leqF: F x F -+ {true, false} 
leqlF: I x F -+ {true, false} U {float_overflow} 
leqr: I x I -+ {true, false} 
IssF/: F x I -+ {true, false} U {floaLoverflow} 
lsSF: F x F -+ {true, false} 
IssIF: I x F -+ {true, false} U {float_overflow} 
IS8/: I x I -+ {true, false} 
modI : I x I -+ I U {zero_divisor} 
mu.1FI : F x 1-+ F U {float_overflow, underflow} 
mu.1F : F x F -+ F U {float-overflow, underflow} 
mu.iJF : I x F -+ Fu {float-overflow, underflow} 
mu.iJ : I x I -+ I U {int_overflow} 
negF : F -+ F 
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negr : [ ---> [U {inLoverflow} 
neqFl: F x [---> {true, false} U {floaLoverflow} 
neqF: F x F ---> {true, false} 
neqrF: [x F ---> {true, false} U {floaLoverflow} 
neqr: [x [---> {true, false} 
remr : [ X [ ---> [U {zero_divisor} 
roundF~r : F ---> [U {inLoverflow} 
signF: F ---> F 
signr : [ -+ [ 

subFl : F x [ ---> F U {floaLoverflow, underflow} 
subF : F x F ---> F U {floaLoverflow, underflow} 
subrF : [x F ---> F U {floaLoverflow, underflow} 
subr : [ X [ -+ [U {inLoverflow} 
truncateF~r : F ...... [U {inLoverflow} 

6.2.5 Arithmetic functors defined in Standard Prolog 

atan/l : (I U F) -+ F 
, /\\' /2 : [ x [ ...... [ 
'\\'/2:[ ...... [ 
, < <' /2 : [ X [ ---> [ 

'\\1'/2: [x[ ...... [ 
, > > '/2 : [ X [ ...... [ 

cos/l : (I U F) ...... F 
exp/l : (I U F) ...... F U {floaLoverflow, underflow} 
, **' /2 : (I U F) x (I U F) -+ F U {floaLoverflow, underflow, undefined} 
log/l : (I U F) ...... F U {undefined} 
sin/l : (I U F) -+ F 
sqrt/l : ([ U F) ...... F U {undefined} 

[> Description: atan(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function atan/1 to its value are errorless then atan(Expr) has the 
value of the principal value R of the arc tangent of V which satisfies 
-7r/2 :'S: R:'S: 7r/2 

Example: 

PI is atan(1.0) * 4. 
Succeeds with substitution { PI <- 3.14159 } 

(approximate value) 
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[> Description: (EXprl 1\ EXpr2) 

- If the evaluation of Exprl and EXpr2, resulting in the respective values V1 
and V2, and the application of the function ' 1\ \ ' 12 to these values are 
errorless then (EXprl 1\ EXpr2) has the value such that each bit is set 
iff each of the corresponding bits in V1 and V2 is set. 
The value is implementation defined if V1 or V2 is negative2 . 

Example: 

B is (17 * 256 + 125) 1\ 255). 
Succeeds with substitution { B <- 125 } 

[> Description: \ (Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function '\ \ ' 11 to its value are errorless then \ (Expr) has the value 
such that each bit is set iff the corresponding bit in V is not set. 
The value is implementation defined. 

Examples: 

B is \(10). 
Succeeds with substitution { B <-

implementation defined value } 

B is \( \(10)). 

Succeeds with substitution { B <- 10 } 

[> Description: (EXprl« EXpr2) 

- If the evaluation of Exprl and EXpr2, resulting in the respective values 
V1 and V2, and the application of the function '«' 12 to these values are 
errorless then (EXprl « EXpr2) has the value of V1 left-shifted V2 bit 
positions, where the V2 least significant bit positions of the result are zero. 
The value is implementation defined if V2 is negative, or V2 is larger 
than the bit size of an integer. 

2 The value is implementation defined when an operand or value is negative 
because the representation of a negative integer is implementation defined. 
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Example: 

B is '«'(16,2). 
Succeeds with substitution { B <- 64 } 

I> Description: (EXprl \I EXpr2) 

- If the evaluation of Exprl and EXpr2, resulting in the respective values Vi 
and V2, and the application of the function ' \ \I' /2 to these values are 
errorless then (ExprJ \I EXpr2) has the value such that each bit is set 
iff at least one of the corresponding bits in Vi and V2 is set. 
The value is implementation defined if Vi or V2 is negative. 

Example: 

B is '\\/'(125,255). 
Succeeds with substitution { B <- 255 } 

I> Description: (EXprl » EXpr2) 

- If the evaluation of ExprJ and EXpr2, resulting in the respective values 
Vi and V2, and the application of the function '»' /2 to these values are 
errorless then (Exprj » EXpr2) has the value of Vi right-shifted V2 bit 
positions. 
The value is implementation defined depending on whether the shift is 
logical (fill with zeros) or arithmetic (fill with a copy of the sign bit). 
The value is implementation defined if V2 is negative, or V2 is larger 
than the bit size of an integer. 

Example: 

B is '»'(16, 2). 
Succeeds with substitution { B <- 4 } 

(fill with zeros, implementation defined) 

I> Description: cos(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function cos/ito its value are errorless then cos (Expr) has the value 
of the cosine of V (measured in radians). 
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Example: 

PI is atan(1.0) * 4, X is cos(PI I 2.0). 
Succeeds with substitution { PI <- 3.14159, X <- 0.0000 } 

(approximate values) 

t> Description: exp(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function exp/l to its value are errorless then exp(Expr) has the value 
of the exponential function of V. 

Example: 

E is exp(1.0). 
Succeeds with SUbstitution { E <- 2.7818 } 

(approximate value) 

t> Description: (EXprl ** EXpr2) 

- If the evaluation of Exprl and EXpr2, resulting in the respective values 
Vl and V2, and the application of the function '**' 12 to these values are 
errorless then (EXprl ** EXpr2) has the value of Vi raised to the power 
of V2. 
If Vl and V2 are both zero, the value is 1. O. 

Example: 

X is -5.0 ** 3 . 
Succeeds with substitution { X <- -125.0000 } 

(approximate value) 

t> Description: log(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function logll to its value are errorless then log(Expr) has the value 
of the natural logarithm of V. 

Example: 

One is log(2.7818). 
Succeeds with substitution { One <- 1.0000 } 

(approximate value) 



204 6. Prolog Arithmetic 

[> Description: sin(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function sinll to its value are errorless then sin(Expr) has the value 
of the sine of V (measured in radians). 

Example: 

PI is atan(1.0) * 4, X is sin(PI I 2.0). 
Succeeds with substitution { PI <- 3.14159, X <- 1.0000 } 

(approximate values) 

[> Description: sqrt(Expr) 

- If the evaluation of Expr, resulting in the value V, and the application of 
the function sqrt/l to its value are errorless then sqrt (Expr) has the 
value .,j(V). 

Example: 

X is sqrt(1.21). 
Succeeds with substitution { X <- 1.1000 } 

(approximate value) 
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This chapter describes the I/O system of Standard Prolog and how terms 
are input and output. 

7.1 Overview 

A source/sink is a fundamental notion. A source (resp. sink) is a physical 
object from which a processor inputs data (resp. to which a processor outputs 
results), for example a file, terminal, interprocess communication channel, or 
other implementation defined possibility permitted by the processor. Each 
source/sink is associated with a finite or potentially infinite sequence of bytes 
or characters. It always has a beginning, but only has an end if it is finite. 
A source/sink is specified as an implementation defined ground term (a 
source/sink-term) in a call of open/4. 

A program can output results to a sink or input Prolog data from a source. 

Streams provide a logical view of the source/sinks. 

Any stream may be associated with an alias which is an atom given by 
the user which may be used to refer to that stream or a stream-term (an 
implementation dependent non atomic ground term). The association is 
created when a stream is opened, and automatically ends when the stream is 
closed. A particular alias will refer to at most one stream at anyone time, but 
a stream may be associated with more than one alias. All subsequent refer­
ences to the source/sink are made by referring to the stream-term associated 
with a stream or its alias. 

Here is a simple example: 

test :- open('/usr/editor/myfile.txt', write, MyStream, 
[type(text) , alias(mickey)]), 

write_term(mickey, 'Hello, world', [quoted(true)]), 
close (MyStream, [force(true)]). 

Each I/O operation will name a stream and can give an option list. 

Two streams are predefined and open during the execution of every goal, 
referring to the keyboard and the screen respectively: the standard input 
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stream has the alias user_input and the standard output stream has the 
alias user _output. They are the current input and current output streams. 
But current input and output can be redirected using the built-in predicates 
set_input/1 and set_output/1. 

When the current input (resp. output) stream is closed, the standard 
input (output) stream becomes the current input stream. 

The standard input and output streams cannot be closed. 

Output to a stream need not be sent to the sink connected to that stream 
immediately. When it is necessary to be certain that output has been deliv­
ered, this can be done by executing the built-in predicate flush_output/1. 
A stream is always flushed when it is closed. All further details are provided 
in the definitions of the I/0 built-in predicates. 

The stream position of a stream is represented by an implementation 
dependent ground term (a stream position term) which uniquely identifies 
an absolute position of the source/sink to which the stream is connected dur­
ing the time that the stream is open and defines where in the source/sink 
the next input or output will take place. It is implementation defined 
whether or not the stream position of a particular source/sink can be arbi­
trarily changed during execution of a Prolog goal. If it can, then: 

1. At any time, the stream can be repositioned by calling 
set_stream_position/2. 

2. Two positions are represented by implementation defined terms which 
correspond to end-oJ-stream and past-end-oJ-stream (see the stream prop­
erties in Section 7.3.4). 

When an output stream is repositioned, further output will overwrite the 
existing content of the sink. 

When an input stream is repositioned, the content of the stream is unal­
tered, and can be re-input. 

7.2 Streams in Standard Prolog 

Streams in Standard Prolog are text streams or binary streams. It is 
implementation defined whether record-based streams, non-record-based 
streams, or both are supported. 

7.2.1 Text streams 

A text stream is a sequence of characters where each character is a member 
of the extended character set (ECS, 9.1.1). A text stream is also regarded as 
a sequence of lines where each line is a possibly empty sequence of characters 
followed by an implementation dependent new-line character. 
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A processor may add or remove space characters at the ends of lines 
in order to conform to the conventions for representing text streams in the 
operating system. Any such alterations to the stream are implementation 
defined. 

It is implementation defined whether the last line in a text stream is 
followed by a new-line character. If so, closing a stream which is a sink will 
cause a new-line character to be output if the stream does not already end 
with one. 

The effect of outputting a symbolic control character (9.5.1) to a text 
stream is implementation defined. 

When a stream is connected to a record-based stream, each record is 
regarded as a line during Prolog execution. 

7.2.2 Binary streams 

A binary stream is a sequence of bytes. 
If bytes are output to a sink via a binary stream, and then input from that 

sink via a binary stream, then the bytes input are identical to those output, 
except that an implementation defined number of zero-valued bytes may 
be appended to the end of the data input. 

7.3 Properties of the streams 

Streams are created with the built-in predicate open/4 by providing an 
I/O mode and an option list. They are closed with the built-in predi­
cate close/2 and another option list. During their life-time they have cur­
rent stream properties which may be consulted using the built-in predicate 
stream_property /2. 

7.3.1 I/O modes 

An I/O mode is an atom which defines the I/O operations that may be per­
formed on a source/sink. The following I/O modes are specified in Standard 
Prolog: 

read - The source/sink is a source. If it is a file, it will already exist and 
input starts at the beginning of that source. 

write - The source/sink is a sink. If the sink already exists then it is emp­
tied (the initial content is lost), and output starts at the beginning of 
that sink, else an empty sink is created. 

append - The source/sink is a sink. If the sink already exists then output 
starts at the end of that sink, else an empty sink is created. 
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1.3.2 Options at stream creation 

The stream-options supported at stream creation in Standard Prolog are: 

type (T) - Specifies whether the stream is a text stream or a binary stream. 
T will be: 
text - the stream is a text stream, or 
binary - the stream is a binary stream. 
DEFAULT: text 

reposition(bool) - bool will be: 

true - it is possible to reposition the stream. 
false - it is implementation defined whether or not it is possible 

to reposition the stream. 
DEFAULT: false 
It depends on the particular source/sink whether or not repositioning is 
possible, for example, it is impossible when the source/sink is a terminal. 

alias(A) - A will be an atom (used as an alias to denote the stream). 
DEFAULT: only the standard streams have default aliases: user _input 
and user _output 

eoLaction(action) - The effect of attempting to input from a stream 
whose stream position is past-end-of-stream will be specified by the value 
of the atom action: 
error - A permission-error exception is raised signifying that no more 

input exists in this stream (see read_term/3). 
eoLcode - The result of input is as if the stream position is end-of­

stream. 
reset - The stream position is reset so that it is not past-end-of-stream, 

and another attempt is made to input from it. This is likely to be use­
ful when inputting from a source such as a terminal. There may also 
be an implementation dependent operation to reset the source 
to which the stream is attached. 

DEFAULT: implementation defined 

If the stream-option list contains contradictory stream-options, the rightmost 
option is the one which applies. 

1.3.3 Options at stream closure 

A close-option modifies the behaviour of close/2 if an error condition is sat­
isfied while trying to close a stream. Its purpose is to allow an error handling 
routine to do its best to reclaim resources. 

The stream-option supported at stream closure in Standard Prolog is: 

force (bool) - bool will be: 
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false - If an error condition is satisfied, the stream is not closed. 
true - If a resource error condition or system error condition is sat­

isfied, there is no error; instead the stream is closed and the goal 
succeeds. This option closes the stream but data and results may be 
lost, and the stream may be left in an inconsistent state. 

DEFAULT: false 

If the close-option list contains contradictory stream-options, the rightmost 
option is the one which applies. 

7.3.4 Current stream properties 

The stream properties supported in Standard Prolog are: 

file..name(F) - When the stream is connected to a source/sink which is 
a file, F is an implementation defined term which identifies the file 
which is the source/sink for the stream. 

mode(M) - M is the I/O mode (7.3.1) which was specified when the 
source/sink was opened. 

input - This stream is connected to a source. 

output - This stream is connected to a sink. 

alias(A) - A is one of the aliases (an atom) associated with the stream 
(there may be several aliases). 

position(P) -

- If the stream has property reposition (true) , P is the current stream 
position of the stream (an implementation dependent ground 
term). The terms P denoting stream positions end-of-stream and past­
end-of-stream are implementation defined. 

- If the stream has property reposi tion(false), it is implementation 
defined what should be P. 

end_oLstream(E) - E is: 

at - the stream position is end-of-stream. 
past - the stream position is past-end-of-stream. 
not - the stream position is neither end-of-stream nor past-end-of­

stream. 

eoLaction(A) - A has the value which was specified when the source/sink 
was opened (7.3.2). 

reposition(bool) - bool has the value which was specified when the source/ 
sink was opened (7.3.2). 
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type(T) - T has the value which was specified when the source/sink was 
opened (7.3.2). 

Table 7.1 defines the properties of the standard streams. 

Table 7.1. Properties of the standard streams 

standard input standard output 

mode (read) mode (append) 
input output 

alias (user_input) alias (user_output) 
eof_action(reset) eof_action(reset) 
reposition(false) reposition(false) 

type(text) type(text) 

7.4 Inputting and outputting terms 

Terms are input from sources and output on sinks using respectively the 
built-in predicates write_term/3 and read_term/3 and their derived built­
in predicates. They all use read-options or write-options. 

7.4.1 Read-options list 

A read-options list is a list of read-options which affect the built-in predi­
cate read_term/3 and similar ones. The read-options supported in Standard 
Prolog are: 

variables(Vars) - After inputting a term, Vars is a list of the variables 
in the term resulting from inputting, in left-to-right traversal order. 

variable.names(V N _list) - After inputting a term, V N Jist is a list of 
elements where each element is a term A = V such that 
V is a variable of the term resulting from inputting, corresponding to a 
non anonymous variable in the original term, and 
A is an atom whose name is the characters of V in the original term. 

singletons(V N Jist) - After inputting a term, V N Jist is a list of elements 
where each element is a term A = V such that 
V is a non anonymous variable which occurs only once in the term result­
ing from inputting, and 
A is an atom whose name is the characters of V in the original term. 
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7.4.2 Write-options list 

A write-options list is a list of write-options which affects the built-in pred­
icate write_term/3 and similar ones. The write-options supported in Stan­
dard Prolog are: 

quoted(bool) - bool will be: 
true - each atom and functor is quoted if this would be necessary for 

the term to be input by read_term/3. 
false - each atom and functor is written as specified by its syntax. 
DEFAULT: false 

ignore_ops(bool) - bool will be: 
true - Each compound term is output in functional notation. Neither 

operator notation nor list notation is used when this write-option is 
in force (see 7.4.3, case 5). 

false - Compound terms are output using operator notation or list 
notation (see 7.4.3, case 51, second and third items). 

DEFAULT: false 

numbervars(bool) - bool will be: 
true - a term of the form' $VAR' (N), where N is an integer, is output 

as a variable name consisting of a capital letter possibly followed by 
an integer. The capital letter is the (i +1) th letter of the alphabet 
and the integer is j, where 

i = N mod 26 
j = N II 26 

The integer j is omitted if it is zero. For example, 
'$VAR'(O) is vritten as A 
'$VAR'(1) is vritten as B 

'$VAR'(25) is vritten as Z 
'$VAR'(26) is vritten as A1 
'$VAR'(27) is vritten as B1 

false - Variables are output with normal syntax as described in the 
next Section 7.4.3, case 1. 

DEFAULT: false 

If the write-options list contains contradictory write-options, the right­
most write-option is the one which applies. 

1 The standard omits to specify a particular way to output curly bracketed terms. 
Therefore a functional notation should be assumed. 
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7.4.3 Writing a term 

When a term Term is output using wri te_term/3 and similar built-in predi­
cates, the action which is taken in Standard Prolog is defined by the rules 
below: 

1. If Term is a VARIABLE, a character sequence representing that variable is 
output. The sequence begins with _ (underscore) and the remaining char­
acters are implementation dependent. The same character sequence 
is used for each occurrence of a particular variable in Term. A different 
character sequence is used for each distinct variable in Term. 
If Term has the form '$VAR' (N) for some positive integer N, and there is 
an effective write-option numbervars (true) , a variable name as defined 
in Section 7.4.2 is output, 

2. If Term is an INTEGER with value N l , a character sequence representing 
Nl is output. The first character is - if the value of Nl is negative. The 
other characters are a sequence of decimal digit characters. The first 
decimal digit is 0 if the value of Term is zero. 

3. If Term is a FLOAT with value Fl , a character sequence representing Fl is 
output. The first character is - if the value of Fl is negative. The other 
characters are an implementation dependent sequence of characters 
which conform to the syntax for floating-point numbers. 
If there is an effective write-option quoted (true), then the characters 
output are such that if they form a number with value F2 in a term input 
by read_term/3, then 

Fl = F2 
A processor may output the floating point value 1.5 as 1. S or 1. SE+OO 

or O.1Se1. 

4. If Term is an ATOM then if there is an effective write-option quoted(true) 
and the sequence of characters forming the atom could not be input as 
a valid atom without quoting, then Term is output as a quoted token, 
else Term is output as the sequence of characters forming the name of the 
atom. 

5. If Term is a COMPOUND TERM then 

- if Term has a principal functor, different from' . ' /2, which is not an 
operator defined in the current operator table, or if there is an effective 
write-option ignore_ops (true), then the term is output in functional 
notation, that is: 

a) The atom of the principal functor is output. 
b) ( (open char) is output. 
c) Each argument of the term is output. 
d) ,(comma char) is output between each successive pair of arguments. 
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e) ) (close char) is output. 

- if Term is a list-term or a list and there is an effective write-option 
ignore_ops (false), then Term is output using list notation, as shown 
in Section 2.2.2. 

- If Term has a principal functor which is an operator different from 
, . ' /2, and there is an effective write-option ignore_ops (f alse), then 
the term is output in operator notation, that is: 

a) The atom of the principal functor is output in front of its argument 
(prefix operator), between its arguments (infix operator), or after 
its argument (postfix operator). In all cases, a space is output to 
separate an operator from its argument(s) if any ambiguity could 
otherwise arise. 

b) Each argument of the term is output. When an argument is itself 
to be output in operator notation, it is preceded by ( (open) and 
followed by ) (close) if the principal functor is an operator whose 
priority is so high that the term could not be re-input correctly with 
same set of current operators, or if the argument is an atom which 
is a current operator. 

- if Term is a list-term or a list and there is an effective write-option 
ignore_ops (false), but '.' /2 is declared as operator, then unde­
fined (two of the previous cases may apply). 
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In Standard Prolog Flags are reserved atoms with an associated predefined 
value, which define some parameters of a processor. Some of them are fixed 
with a given processor; their value is implementation defined and cannot 
be updated. Some others may be modified by the user and are said changeable. 

Directives are predefined built-in predicates. They are used in Prolog text 
only as queries to be immediately executed when loading it. They are aimed 
at initialising changeable flags, or at updating the predefined operator table or 
the character conversion table. They are also used to influence the preparation 
of Prolog texts or term inputting during program execution. Such directives 
are needed in particular because there is no "consulting" built-in predicate 
in Standard Prolog. 

8.1 Unchangeable flags 

They concern the integer arithmetic and the maximum arity of a predicate 
or functor. Their default value is implementation defined. Their current 
associated value may be obtained in a program by using the built-in predicate 
current_prolog...:flag/2. 

Flag: bounded 

POSSIBLE VALUES: true, false 

- It is used in the definition of I (the integers, Section 6.1.2). 

Flag: max-ari ty 

POSSIBLE VALUE: The default value only (denoted maxarity or unbounded). 

- maxarity is a positive integer which is the maximum arity allowed for any 
compound term. 

- The value is unbounded when the processor has no limit for the number of 
arguments for a compound term. 
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Flag: integer...rounding...function 

POSSIBLE VALUES: down, toward..zero 

- It is used in the definition of I (the integers, Section 6.1.2). 

Flag: max-integer 

POSSIBLE VALUE: The default value only (denoted maxint). 

- It is used in the definition of I (the integers, Section 6.1.2). 

Flag: min_integer 

POSSIBLE VALUE: The default value only (denoted minint). 

- It is used in the definition of I (the integers, Section 6.1.2). 

8.2 Changeable flags 

Their current associated value may be updated during the preparation of a 
Prolog text by the directive seLprolog...flag/2, or in a program by using 
the built-in predicate seLprolog...flag/2. Current flags and values may be 
obtained in a program by using current-prolog...flag/2. 

Flag: char _conversion 

POSSIBLE VALUES: on, off 
DEFAULT: on 

- If the value is on, unquoted characters in Prolog texts being prepared for 
execution or when inputting terms are converted according to the current 
character conversion table (9.1.2). 

- If the value is off, unquoted characters in Prolog texts and term inputting 
are not converted. 

Flag: debug 

POSSIBLE VALUES: on, off 
DEFAULT: off 

- If the value is off, procedures have the meaning defined in Standard 
Prolog. 

- If the value is on, the effect of executing any predication is implementa­
tion defined. 
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Flag: double_quotes 

POSSIBLE VALUES: chars, codes, atom 
DEFAULT: implementation defined. 

- This flag determines the subterm corresponding to a double quoted list 
token appearing in a Prolog text or in a term input by read_term/3 (9.5.1). 
- If the value is chars, a double quoted list token is input as a list of one 

char atoms. 
- If the value is codes, a double quoted list token is input as a list of 

character codes. 
- If the value is atom, a double quoted list token is input as an atom. 

Flag: unknown 

POSSIBLE VALUES: error, warning, fail 
DEFAULT: error 

- It defines the effect of attempting to execute a procedure which does not 
exist (see Section 4.3.2 in Chapter 4). 

8.3 Directives for initialising flags and tables 

They have the same procedure name and actions as the corresponding built­
in predicate, but they act on the Prolog text in which they occur. Their 
arguments will satisfy the same constraints as those required for an errorless 
execution of the corresponding built-in predicate, otherwise their behaviour 
is undefined. 
It is implementation defined whether or not a directive affects the values 
associated with flags in other Prolog texts or during execution. 

seLprolog...flag/2 

A directive set_prolog...flag(Flag, Value) enables the value associated 
with a Prolog flag to be altered in subsequent Prolog text preparation or 
term inputting. 

op/3 

A directive op (Priori ty, Op_specifier, Operator) enables the operator 
table (defined in Section 9.2) to be altered in subsequent Prolog text prepa­
ration or term inputting. Its initial state is defined by the predefined operator 
Table 9.2.2. 
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char_conversion/2 

A directive chaLconversion (In_char, Out_char) enables the character 
conversion table, to be altered in subsequent Prolog text preparation or term 
inputting. The table is defined in Section 9.1.2. 

8.4 Directives for preparation of Prolog texts and goals 

They act on the Prolog text in which they occur. They should not be redefined 
and the procedures indicated in the arguments of the directives will not be a 
built-in predicate. The effect in that case is undefined. 

discontiguous/l 

A directive discontiguous (PI) where PI is a predicate indicator, a list of 
predicate indicators or a predicate indicator sequence, specifies that each 
user-defined procedure indicated by PI may be defined by clauses which are 
not in consecutive order in that Prolog text. 

More than one directive discontiguous (PI) may specify the clauses of the 
user-defined procedure P to be discontiguous. The first directive 
discontiguous (PI) indicating procedure P will precede all clauses for the 
procedure P (otherwise the effect of the directive is undefined). 

dynamic/l 

A directive dynamic (PI), where PI is a predicate indicator, a list of predicate 
indicators or a predicate indicator sequence, specifies that each user-defined 
procedure indicated by PI is dynamic. 

More than one directive dynamic(PI) may specify a user-defined procedure 
P to be dynamic in a Prolog text. If P is defined to be a dynamic procedure in 
one Prolog text, then a directive dynamic (PI) indicating P will occur in every 
Prolog text which contains clauses for P. The first directive dynamic (PI) that 
specifies a user-defined procedure P to be dynamic will precede all clauses for 
P (otherwise the effect of the directive is undefined). 

NOTE - The standard suggests public/1 as a directive to declare public static predefined 

user procedures. 

ensure...loaded/l 

A directive ensure...loaded(P_text) specifies that the Prolog text being pre­
pared for execution will include the Prolog text denoted by P _text where 
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P _text is an implementation defined ground term designating a Prolog 
text unit. 

When multiple directives ensure~oaded(P_text) exist for the same Prolog 
text, that Prolog text is included only once in the Prolog text prepared for 
execution. The position where it is included is implementation defined. 

include/1 

If F is an implementation defined ground term designating a Prolog text 
unit, then Prolog text PI which contains a directive include (F) is identical 
to a Prolog text P2 obtained by replacing the directive include(F) in PI 
by the Prolog text denoted by F. 

initialization/1 

A directive initialization(T) includes a term T' resulting from the trans­
formation of the well-formed term T in a set of goals which will be executed 
immediately after Prolog texts have been prepared for execution. The order 
in which any such goals will be executed is implementation defined. 

The meaning of the directive is undefined if the term T is not a well-formed 
body-term. 

multifile/1 

A directive multifile (PI) where PI is a predicate indicator, a list of pred­
icate indicators or a predicate indicator sequence, specifies that the clauses 
for each user-defined procedure indicated by PI may have clauses in more 
than one Prolog text. 

More than one directive multifile (PI) may specify a user-defined procedure 
P to be multifile. Each Prolog text that contains clauses for the user-defined 
procedure P will contain a directive multifile (PI) indicating the procedure 
P. The first directive multifile (PI) indicating procedure P will precede all 
clauses for the procedure P (otherwise the effect of the directive is unde­
fined). 
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Programmers write Prolog texts or input terms from sources. This chapter 
describes the syntax of Prolog texts in Standard Prolog and the syntax 
of terms as they will be represented in sources or as they may be output on 
sinks. 

A Prolog text is a sequence of directives and clauses in an order which 
is specified by directives. Directives and clauses are represented by terms. 
Furthermore several I/O built-in predicates input and output terms. Such 
terms are also called read-terms. 

Read-terms are formed with functors and some of the functors are unary 
or binary predefined operators which may be written in a prefix, infix or post­
fix notation with or without parentheses. The syntax explains how to write 
expressions with operators. Its originality lies in the possibility to update 
dynamically the set of operators. 

9.1 Character sets and character conversion table 

The elementary unit of any text is the character. In the definition of Stan­
dard Prolog different character sets are used. These are described in the 
next section. 

9.1.1 The Prolog character set and other character sets 

Figure 9.1 illustrates the different character sets and their relationships. 
They are: 

- The Processor character set (peS) which denotes all possible characters 
and may include in particular national characters and characters which 
require several bytes to be represented. 

- The Extended character set (EeS), the set of characters allowed in text 
streams, which is an implementation defined subset of pes. It is par­
titioned into graphic, alphanumeric, solo, layout and meta characters. 

- The set of the one-char atoms. It is the subset of the atoms whose name 
is represented by a single character. It has a nonempty intersection with 
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The Proassor Cbarxter set (PCS) 

char COftvt'rsioft tahlt 

CJn..dw_ 

1 

,,; char-codi mapping 

, 

","'f 
cc ~ 

character codes ". ~ J 

Intqors 

Fig. 9.1. The charac­
ter sets and the character 
codes set in Standard 
Prolog. 

ECS. Both sets are uncomparable. For example it may happen that the 
one-char atom '.' is not in ECS, when the character 00 is in ECS but 
not a one-char atom. 

- The Prolog character set (char). It is the set of the characters used to 
represent read-terms in the syntax of Standard Prolog (as described in 
Section 9.5). It is a common subset of the one-char atoms and the ECS. 
The other characters in ECS are considered as an extension of the Prolog 
character set. The Prolog character set is, like the ECS, partitioned into 
graphic, alphanumeric, solo, layout and meta characters. 

The charaters which are in ECS but not in char are implementation 
defined. 

9.1.2 The character conversion table 

The characters of the Prolog character set (char) are the basic units used in 
the syntax of Prolog texts and terms. Therefore characters in the extended 
character set (ECS) which are not in the Prolog character set must be "con­
verted" in order to be parsed and understood by a processor. The character 
conversion table associates one single character in char to each character in 
ECS. 

This character conversion table mayor may not be used by the I/O predi­
cates. It is empty by default (no conversion, i.e. each character is "converted" 
to itself). 

The character conversion table is accessed by the built-in predicate 
current_char_conversion/2 and updated before inputting terms from stre­
ams during execution with char _conversion/2. 

It may be initialised during the preparation of a Prolog text, using direc­
tives chaLconversion/2 (8.2). It is implementation defined whether or 
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not the character conversion table is affected during execution by the direc­
tives executed during the preparation of a Prolog text. 

9.1.3 Character code 

To each character in ECS there corresponds a unique integer and recipro­
cally, by the char-code mapping. This integer is called character codel • The 
subset of the integers corresponding to a character code is denoted CC (see 
Figure 9.1) and is called the set of character code? 

The char-code mapping is implementation defined, but it satisfies sev­
eral constraints3 • 

- The character code of an unquoted character (non-quote-char 9.5.1) is sub­
ject to the following restrictions: 
- The character codes of each capital letter char from A to Z is mono­

tonically increasing. 
- The character codes of each small letter char from a to z is mono­

tonically increasing. 
- The character codes of each decimal digit char from 0 to 9 is mono­

tonically increasing and contiguous. 
- The character code of a quoted character (9.5.1) which is not a control, 

octal or hexadecimal escape sequence is the character code of the un­
quoted character that the quoted character denotes. 

- The character code of a quoted character which is an octal (hexadecimal) 
escape sequence is the value of the octal (hexadecimal) characters inter­
preted as an octal (hexadecimal) integer. 

The char-code mapping is accessed by the built-in predicate char-code/2. 

9.2 Expression and operator table 

In Standard Prolog terms are normally written as explained in Section 
2.1.1: in functional notation. In this case the structure of the term is com­
pletely specified without any ambiguity. It is also possible to simplify the 
presentation of some terms writing them as unbracketed expressions. Thus 
expressions are written using functors in operator notation. 

1 This integer is also called collating sequ.ence integer in the standard by reference 
to the term ordering that it serves to define. 

2 A character code may correspond to more than one byte in a stream. Thus, 
inputting a single character may consume several bytes from an input stream, 
and writing a single character may output several bytes to an output stream. 

3 These requirements on the char-code mapping are satisfied by both ASCII (11.3) 
and EBCDIC. 
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9.2.1 The operator table 

The operator table defines which atoms will be regarded as operators when 
a sequence of tokens is parsed as a read-term by the built-in predicate 
read_term/3, or a term is output by the built-in predicate wri te_term/3 
or similar built-in predicates, or a Prolog text is prepared for execution. 

Each operator is characterised by three parameters: name (an atom), 
specifier (one of the atoms: xf, yf, xfx, xfy, yfx, fx, fy), and priority (an 
integer between 1 and 1200). 

The specifier of an operator (defined in Table 9.1) is a mnemonic that 
defines the arity, the class (prefix, infix or postfix) and the associativity (Jeft­
, right- or non-associative) of the operator. 

Table 9.1. Specifiers for operators 

Specifier Class 

fx prefix 
fy prefix 

xfx infix 
xfy infix 
yfx infix 
xf postfix 
yf postfix 

Associativity 

non-associative 
right-associati ve 
non-associative 
right-associative 
left-associative 
non-associative 
left-associative 

The arity is equal to the number of x and y in the specifier, and x (y) 
defines which operand may be unbracketed and how implicit associativity 
works. The implicit associativity is particularly useful for writing subexpres­
sions with the same operator without parenthesis. For example the expression 
(1+2+3+4) is the term '+'('+'(>+'(1,2),3),4))) if the specifier of '+' 
is yfx. 

The priority of an operator is defined below (9.2.3). 

9.2.2 The predefined operator table 

In Standard Prolog the initial state of the operator table is fixed. It may 
be updated using the directive or built-in predicate op/3. The initial state 
(the predefined operators) is given in Table 9.2.24. 

4 Two operators «--»/2 and (?-)/1) are in the table, but their meaning is 
undefined in Standard Prolog. In many processors they are used in DCG 
rules for the first and as initial goal constructor for the second. 
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Table 9.2. The predefined operator table. 

Priority Specifier OperatOlis) 

1200 xfx --> 
1200 fx 1-
1100 xfy ; 
1050 xfy -> 
1000 xfy , , , 

900 fy \+ 
700 xfx = \= 
700 xfx == \== «1< «1=< «I> «1>= 
700 xfx = .. 
700 xfx is =:= =\= < =< > 
500 yfx + - 1\ 
400 yfx * I II 
200 xfx ** 
200 xfy . 
200 fy - \ 

9.2.3 Parsing an expression 

Parsing is influenced by the priorities. 

\I 
rem mod « 

>= 

» 

The priority of a term is normally 0, when it is written in functional, list 
or curly notation, or if it is a bracketed expression or an atomic term. But 
if the term is written as an unbracketed expression in operator notation, its 
priority is the priority of its principal functor. 

"U nbracketing" rule: 
If an unbracketed expression has priority p, one of its operands may be 

written without parenthesis if its priority is less than p. If the position of the 
operand corresponds to 'Y' in the specifier of the operator of the expression 
then the priority of the operand may also be equal5 . 

If an expression is written without parenthesis and formed according to 
the rule above, it is parsed as a term in which the operands are subterms, ac­
cording to the specified associativity, with decreasing priorities. For example 
the expression (1 * 2 + 3 * 4) is the term '+'('*'(1,2), '*'(3,4» 
as the priority of ' *' is less than the priority of ' +' , according to Table 9.2.2, 
and (1 + 2 * 3 + 4) is the term '+' ('+' (1, '*' (2, 3» ,4). 

If the rule above is violated, it is a syntax error. For example the expression 
(X = Y = Z) cannot be parsed, since = has specifier xfx and no subexpression 
can be built with a priority less than the priority of =. Hence, expected 
operands must be bracketed, like, for example, «X = Y) = Z) which can be 
parsed because the bracketed subexpression has priority o. 

5 Hence the principal functor of the operand may be the same operator and the 
subexpression may be unbracketed. 
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Notice however that some expressions still remain ambiguous. For example 
assume there are two operators with the same priority and denoted xfy and 
yfx with the same corresponding specifier. Thus the expression 1 xfy 2 yfx 
3 may be parsed as the term xfyO, yfx(2, 3)) or yfx(xfyO, 2), 3). 

Therefore in Standard Prolog there is one additional rule to (arbitrar­
ily) disambiguate such cases (the only possible cases are expressions of the 
form 1 xfy 2 yfx 3 and fy 1 yf, where both operators have same prior­
ity): the expression is parsed considering the first operator to have higher 
priority. So these expressions are parsed like 1 xfy (2 yfx 3) and fy (1 
yf) respectively. 

9.2.4 Valid operator table 

There are still some problematic situations. If two operators have the same 
class and name (and different priorities), some expressions may be ambiguous. 

An operator table is a valid opemtor table if it fulfills the following con­
ditions: 

- There are no two operators with the same class and name. 
- There are no two operators with the same name, one infix and the other 

postfix6. 

Updating the operator table, using the built-in predicate op/3, must pre­
serve the validity of the table. 

9.3 Presentation of the syntax 

The syntax of Standard Prolog is presented using definite clause grammar 
style (DeG). 

A DeG is a grammar7 specifying terminal strings by rewriting rules, with 
additional restrictions specified by built-in predicates and some procedures 
specified in Section 9.5.2. 

DeG rules have the form: 

Nonterminal --) Sequence of nonterminals. terminals 
a nd procedure calls 

nonterminals are predications, terminals are sequences of characters 
quoted by " (double quote character) or by' (single quote character) and 
procedure calls are Prolog goals between braces. 'I' holds for alternative. 

6 This restriction, as the (arbitrary) disambiguation rule above, contribute to lim­
iting the lookahead during parsing and improve parsing efficiency. 

7 It is basically a context free grammar in which the nonterminals may have argu­
ments. A DCG is also a Prolog program (assuming a classical transformation). 
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A rule deriving the empty string has the form: 

N onterminal --) E 

Syntactic rules define the syntax of a term (also called the concrete syn­
tax). Each nonterminal has at least one argument which defines the corre­
sponding term. In the case of several arguments, the term corresponds to the 
first one. 

There are goals between braces. They represent the conditions which must 
be satisfied to apply the rule. 

The syntax presented here is ambiguous: the same expression may some­
times lead to different terms. The rules defined in Section 9.2.3 above must 
be applied to remove the ambiguities. The DCG rules may be read as a 
Standard Prolog programs. 

9.4 Syntax of Prolog text 

A Prolog text is a sequence of directive-terms and clause-terms. All are read­
terms. As specified below, a read-term has an "end" delimiter (a dot). A dot 
which is an end delimiter must be followed by a layout text if there may be 
any confusion with subsequent term9 

9.4.1 Syntax of directive 

The characters of a directive-term in Prolog text will satisfy the same con­
straints as those required to input a read-term during a successful execution 
of the built-in predicate read_term/3. The principal functor will be (: -) /1, 
and its argument will be a directive (one of the predications described in 
Sections 8.3 and 8.4). 

9.4.2 Syntax of clause 

The characters of a clause-term in Prolog text will satisfy the same constraints 
as those required to execute successfully the built-in predicate asserta/1. 
The principal functor will be (: -) /2, its first argument will be a callable 
term (an atom or a compound term) and the second a well-formed body­
term (2.2.3), or, if the principal functor is not (: -) /2, a callable term. 

S The executable version of the syntax (in the file referred to in Annex 11.2) 
includes these (transformed) DCG rules with small modifications to take into 
account the disambiguation rules. 

9 A dot may also by used as a graphic character (11.3). Therefore in the sequence 
£(1).1* the point is parsed as part of the atom ./* and not as the end delimiter 
of the compound term £(1). 
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9.5 Syntax of read-term 

9.5.1 Term definition 

read_term(T) --) term(T, 1200), end 

The non terminal term has two arguments. The first one is the correspond­
ing term, the second is an integer which is the precedence context of the term. 
The precedence context is an integer between 0 and 1200 which represents the 
highest priority that the term may have. 

So parsing "starts" with the highest possible priority (e.g. any term is 
acceptable) . 

A read-term may have two kinds of variables (9.5.1): named and anony­
mous variables. All variables in the resulting term are freshly renamed with 
an implementation dependent name. However the information, whether 
they were anonymous or not, is kept in the syntax, as their original name as 
well, in the case of named variables (this information is used in the built-in 
predicate read_term/3 and similar built-in predicates)1O. 

The titles of the next subsections correspond to the first subterm parsed 
by scanning a sequence of characters from left to right. 

N umber term. 

term(T, P) --) floaLnumber(F), resUerm(F, T, 0, P) 
integer(I), resLterm(I, T, 0, P) 
nameC-'), floaLnumber(F), 
resuerm(MF, T, 0, P), { MF is -F } 
nameC-'), integer(I), 
resUerm(MI, T, 0, P), { MI is -I } 

The nonterminal resLterm has 4 arguments: the first one is the subterm 
already parsed, the second the complete term, the third the priority of the 
subterm and the last one the precedence context of the term currently anal­
ysed (its maximal priority). 

Variable term. 

term(T, P) 

Atom term. 

term(T, P) 

term(Op, P) 

--) variable(V), resLterm(V, T, 0, P) 

--) atom(A), { notoperator(A) }, 
resLterm(A, T, 0, P) 

--) atom(Op), { current_op(_,_,Op) } 

10 This information is used by the built-in predicates read_term/3 and similar, but 
in order to keep the syntax presentation simple, this information is not explicitly 
coded here. 
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atom(A) --) name(A) 

atom('[ ]') --) open Jist, closeJist 

atom(, n') 

Compound term in functional notation. 

term(T, P) 

argJist([T I L]) 

argJist([ ]) 

--) atom(F), open_com pound_term, 
term(Arg, 999), 
argJist(L), { Term = .. [ F, Arg ILl }, 
resLterm(Term, T, 0, P) 

--) comma, term(T, 999), argJist(L) 

--) close 

Compound term in list notation. 

term(T, P) 

items(' . '(H, List)) 

items(Tail) 

items(' [ ]') 

--) openJist, term(Arg, 999), items(List), 
resLterm('. '(Arg, List), T, 0, P) 

--) comma, term(H, 999), items(List) 

--) head_tail.separator, term(Tail. 999), closeJist 

--) closeJist 

Compound term in curly notation. 

term(T, P) 

Bracketed term. 

term(T, P) 

term(T, P) 

Double quoted string term. 

--) open_curly, term(Term, 1200), close_curly, 
resUerm(, U'(Term), T, 0, P) 

--) open, term(Term, 1200), close, 
resLterm(Term, T, 0, P) 

--) open_compound_term, term(Term, 1200), close, 
resLterm(Term, T, 0, P) 

term(T, P) --) double_quotedJist(DQL), 
resUerm(DQL, T, 0, P) 
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Back quoted string term. 

term(T, P) --> bacLquoted...string(BQS), 
resUerm(BQS, T, 0, P) 

Back quoted strings are defined syntactically in Standard Prolog, but 
the corresponding term is undefined. 

back_q uoted...string(QL) --> layouLtext...sequence, 
bacLq uoted ...stri ng_token (QL) 
bacLq uoted ...stri ng_token (QL) 

Compound term in operator notation. 

term(T, P) --> atom(Op), term(Arg, ArgPrec), 
{ prefiLoperator(OpPrec, Op, ArgPrec), 
P >= OpPrec, Term = .. [Op, Arg], } 
resLterm(Term, T, OpPrec, P) 

resLterm(Term, T, LeftPrec, P) --> atom(Op), 
{ infix_operator(OpP, Op, LAP, RAP), 
P >= OpP, LeftPrec =< LAP,}, 
term(Arg2, RAP), 
{ NewTerm = .. [Op, Term, Arg2] }, 
resLterm(NewTerm, T, OpP, P) 

resLterm(Term, T, LeftPrec, P) --> atom(Op), 
{ postfix_operator(OpPrec, Op, LAP), 
P >= OpPrec, LeftPrec =< LAP, 
NewTerm = .. [Op, Term] }, 
resLterm(NewTerm, T, OpPrec, P) 

resLterm(Term, T, LeftPrec, P) --> comma, { P >= 1000, LeftPrec < 1000 }, 

resLterm(Term, Term, _, _) 

Name and delimiter. 

name(A) 

variable( var(V)) 

integer(N) 

term ( Right Term, 1000), 
resLtermC'.'(Term, RightTerm), T, 1000, P) 

--> E: 

--> layouLtext...sequence, name_token(X), 
{ atom_chars(A, X) } 
name_token(X), 
{ atom_chars(A, X) } 

--> layouLtext...sequence, variable_token(X), 
{ atom_chars(V, X) } 
varia ble_token(X), 
{ atom_chars(V, X) } 

--> layouLtext...sequence, integer _token(N) 
integer _token ( N ) 



floaLnumber(R) 

dou ble_q uotedJist(QL) 

open 

open _com pou n d _term 

close 

openJist 

closeJist 

head _ta i Lsepa rat~r 

comma 

end 
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--> layouLtext...sequence, 
floaLnumber _token(X), 
{ number_chars(R. X) } 
floaLnumber _token(X), 
{ number-chars(R, X) } 

--> layouLtext...sequence, 
double_quotedJisUoken(QL} 
double_quotedJisUoken(QL) 

--> layouLtext...sequence," (" I "(" 

--> "(" 

--> layouLtext...sequence,")" I ")" 

--> layouLtext...sequence," [" I " [" 

--> layouLtext...sequence,"]" I "]" 

--> layouLtext...sequence," {" I "{" 

--> layouLtext...sequence,"}" I "}" 

--> layouLtext...sequence," I" I "I" 

--> layouLtext...sequence,"." I " ." 

--> layouLtext...sequence,"." I " ." 
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Layout text. 

layout-text....seq uence 

layout-text 

comment 

singleJine_comment 

bracketed_comment 

comment-open 

comment-close 

comment-text 

Name token. 

name_token(A) 

letter_digiuoken([S I A)) 

graphic_token([C I L)) 

graphictoken([C]) 

--) layout-text, layout-text....sequence 
I layout-text 

--) comment 
I layout-char(_) 

--) singleJine_comment 
bracketed_comment 

--) "Yo", comment-text, newJine_char(_) 

--) comment-open, comment-text, 
comment-close 

--) "1*" 

--) "*1" 

--) char(_), comment-text 
E: 

--) letter_digiUoken(A) 
I graphiUoken(A) 
I quoted_token(A) 
I semicolon_token(A) 
I cuUoken(A) 

--) smaliJetter _char(S), 
alphaJlum....seq_char( A) 

--) alphaJlumericchar(A), 
alpha _nu m ....seq_char(L) 

--) E: 

--) graphic_token_char(C), graphic_token(L) 

--) graphictoken-<:har(C) 



graphictoken_char(' \') 

graphic_token_char( C) 

quoted_token(Qs) 

single..quotedjtem..seq([C I 51) 

si ngle_q uotedjtem..seq(5) 

conti n uation _esca pe..seq uen ce 

semicolon_token(['; 'I) 

cuuoken(['! 'I) 

Quoted character. 

si ngle_q uoted _cha racter( C) 

si ngle_q uoted_character( SC) 

dou ble_q uoted_character( C) 

dou ble_q uoted _cha racter( DC) 

bacLq uoted _ch a racter( C) 
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--> "\" 

--> graphicchar(C) 

--> "'''. single_quotedjtem..seq(Qs). ",,, 

--) single_quoted_character(C). 
si ngle_quotedjtem..seq(5) 

--) continuation_escape..sequence. 
single_q uotedjtem ..seq (5) 

--> € 

--) 

--> "!" 

--) "C" 
Where C is " or " or ' 
and SC is respectively' or " or ' 
The single quote character (,) is 
duplicated in a single quoted sequence 

--) "c" 
Where C is ' or 1111 or r 

and DC is respectively , or " or ' 
The double quote character (") is 
duplicated in a double quoted sequence 
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back_q uoted _cha racter( BC) 

non_quote..char(C) 

meta_esca pe-sequence( C) 

control_esca pe-seq uence( C) 

symbolic_controLchar( C) 

--) "C" 
Where C is ' or " or " 
and BC is respectively' or " or ' 
The back quote character (') is 
duplicated in a back quoted sequence 

--) graphic_char(C) 
I alpha-"umericchar(C) 
I solo_char(C) 
I space_char(C) 
I meta_escape-sequence(C) 
I controLescape-seq uence( C) 
I octaLescape-sequence(C) 
I hexadecimaLesca pe-seq uence( C) 

--) "''', metLchar(C) 

--) "''', symboliccontroLchar(C) 

--) "CHAR" 
Where CHAR is one of 
the following characters: 
a (alert), b (backspace), r (carriage return), 
f (form feed), t (horizontal tabulation), 
n (new line) and v (vertical tabulation) 
and C is a non printable character 
from the list (respectively): 
BEL, BS, CR, NP, HT, NL and VT 
(see for example the ASCII Table 11.4). 

octal_escape-sequence(C) --) "''', octaLdigit-Seq_char(Octal), "''', 
{ compute_char(Octal, 8, C) } 

octaLdigit-seq_char([D I LJ) --) octal_digiLchar(D), octal_digit-seq_char(L) 

hexadecimaLescape-sequence(C) --) "'x", hexadecimaLdigit-seq_char(Hexa), "'" 
{ compute_char(Hexa, 16, C) } 

hexadecimal_digit-Seq_char([D I L]) --) hexadecimaLdigiLchar(D), 
hexadeci ma I_d igit-seq _char( L) 



Variable token. 

varia ble_token(V) 

anonymouLvariable([' -'J) 

named_variable([' _', A I SJ) 

named_variable([C I SJ) 

Integer token. 

integer _token(N) 

integer _token(N) 

integer_constant([C I NJ) 

integer _constant([C) 

character _code_consta nt( Char) 

bi na ry _consta nt( Deci m a I) 

bi na ry _digit...seq _char( [C) 

octa Lconsta nt{Dec) 

hexadecimaLconsta nt(Dec) 
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--) anonymous_variable(V) I named_variable(V) 

--) underscore 

--) "_", alpha_numeric_char(A), 
alpha_n um...seq_char(S) 

--) capitalJetter_char(C), alpha_num...seq_char(S) 

--> integer_constant(Chars), 
{ number_chars(N, Chars) } 

--> character _code_constant{N) 
I binary_constant(N) 
I octaLconstant(N) 
I hexadecimaLconstant(N) 

--) decimal_digiLchar(C), integer _constant(N) 

--) decimal_digiLchar(C) 

--) "0''', single_quoted_character(Char) 

--) "Ob", binary_digit...seq_char(BinDigits), 
{ compute_integer(BinDigits, 2, Decimal) } 

--) binary_digiLchar(C), binary_digit...seq_char(L) 

--) binary_digiLchar(C) 

--) "00", octal_digit...seq_char(OcDigits), 
{ compute_integer(OcDigits, 8, Dec) } 

--) "Ox", hexadecimaLdigit...seq_char(HexaDigits), 
{ compute_integer{HexaDigits, 16, Dec) } 
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Floating point number token. 

floaLnumber _token(R) 

floaLnumber _token(R) 

fraction([' .' I N)) 

exponent(E) 

sign(5) 

exponenLchar(C) 

Double quoted list token. 

--) integer_constant(N), fraction(F), 
exponent(E), 
{ concat(N, F, E, R) } 

--) integer_constant(N), fraction(F), 
{ concat(N, F, R) } 

--) ".", integer_constant(N) 

--) exponenLchar(C), sign(5), 
integer _consta nt( N), 
{ concat([C I 5], N, E) } 

--) "-" I "+" I € 

Where 5 is ['-'J, [,+,] or [J 

--) "e" I "E" 
Where C is 'e' or 'E' 

double_quotedJisLtoken(T) --) '''', double_quotedJtem..seq(QL), '''', 
{ translate_double_quotes(QL, T) } 

double_quotedjtem..seq([C I 5]) --) double_quoted_character(C), 
dou ble_q uoted_item ..seq(5) 

dou ble_q uotedjtem..seq(5) --) conti n uation_esca pe..seq uence, 
double_q uoted_item ..seq (5 ) 

double_quotedjtem..seq([ ]) --) € 

Back quoted strings. 

ba ck_q uoted ..stri ng_token ( undefined_back_quoted_string_term) 

back_quotedjtem..seq([C I 5]) 

back_quotedjtem..seq([ ]) 

--) "', back_quotedjtem..seq(QL), '" 

--) bacLquoted_character(C), 
back_quoted_item..seq(5) 

--) conti n uation_esca pe..seq uence, 
bacLquoted_item..seq(5 ) 

--) E: 
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9.5.2 Procedures used in the neG 

The meaning of the non standard procedures used in the description of the 
syntax (in braces) is given herell . 

prefix_operator(Prec, Op, RightArgPrec) - : iff Op is a unary prefix op­
erator (specifier is fx or fy) with precedence Prec and RightArgPrec 
is an integer corresponding to a possible precedence of its operand. 
If Op has specifier fy then RightArgPrec ::; Prec else (specifier fx) 
RightArgPrec < Prec. 

postfix_operator(Prec, Op, LeftArgPrec) - : iff Op is a unary postfix op­
erator (specifier is xf or yf) with precedence Prec and LeftArgPrec 
is an integer corresponding to a possible precedence of its operand. 
If Op has specifier yf then LeftArgPrec ::; Prec else (specifier xf) 
LeftArgPrec < Pree. 

infix_operator(Prec, Op, LeftArgPrec, RightArgPrec) - : iff Op is a bi­
nary infix operator (specifier in {xfx, xfy, yfx}) with precedence Prec 
and LeftArgPrec and RightArgPrec are integers corresponding to pos­
sible precedences of the operands. If Op is right associative (specifier 
xfy) then LeftArgPrec < Prec and RightArgPree ::; Pree, else if 
Op is left associative (specifier yfx) then LeftArgPrec ::; Prec and 
RightArgPrec < Prec, else (specifier {xfx) LeftArgPrec < Prec and 
RightArgPrec < Prec. 

compute-1nteger(Digits, Base, Decimal) - : if Digits is a list of digits in 
base Base then Decimal is the decimal representation of the sequence 
of digits in Digits. 

compute_char(Code, Base, Char) - : if Code is a list of digits in base 
Base representing a character eo de then Char is the character whose 
code is represented by the sequence of digits in Code. 

translate_double_quotes(QL, T) - : ifQL is a list of characters then T is 
the corresponding term according to the value of the flag double_quotes: 

chars - T is the list of one-char atoms corresponding to the characters 
in QL. 

codes - T is the list of character codes of the characters in QL. 
atom - T is the atom whose name is the sequence of characters in QL. 

11 The definition of the procedures is non deterministic, in the sense that the 
same text may by parsed in different manners resulting in the same term. 
The executable version of the syntax (in the file referred to in Annex 11.2) 
is deterministic. 
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concat(Ll, L2 , ... , Ln, L) - : if LI, L2 , .•• , Ln are lists then L is their con­
catenation (in this order). 

notoperator(A) - : if A is an atom then A is not an operator in the 
current operator table. 

9.6 Syntax errors 

There is a syntax error when a sequence of characters which are being input 
as a read-term do not conform to the syntax. The error-term has the form 
syntax_error(imp..dep.1Ltam) where imp_dep_atam denotes an implemen­
tation dependent atom (see read_term/3). 



10. Writing Portable Programs 

The purpose of this chapter is to introduce some methodology to help write 
portable programs easily. 

In Standard Prolog many features are undefined or incompletely spec­
ified. Therefore it is difficult to guarantee the portability of a program even 
on standard conforming processors. 

In this respect it suffers the same limitations as any standardized language 
and the same methodology applies. We focus here on some very specific fea­
tures of Standard Prolog, namely the unification and the logical database 
update view. 

The unification is partly undefined and its portability is related to complex 
properties (NSTO/STO). We show here how simple rules may be applied to 
write portable programs. 

The logical database update view is implemented now on most commer­
cial Prolog processors. Therefore most Prolog programmers are now familiar 
with it. Although this view induces some "logical" flavour to a feature which 
is obviously "non logical", programmers may still feel uncomfortable when 
using it, due to its complexity (interferences with the control in the execu­
tion model). Therefore we provide here some simple rules which are safe in 
the sense that the behaviour of programs is clear without deep understand­
ing of the database update view. Furthermore they make clauses updating 
independent from other views and thus increase the portability of programs. 

10.1 Unification 

10.1.1 A first solution 

According to the definition of unification in Standard Prolog, portable 
programs must be NSTO. 

Here are two very simple rules characterising NSTO programs: 

Rule 1: If in a program and goals only atoms, numbers and variables are 
used in the arguments of the predications (no compound term), the program 
is NSTO. 
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Rule 2: If in a program all the heads of the clauses have no duplicated 
variable, the program is NSTO with any goal. 

The first rule corresponds to Datalog programs, a language for querying 
deductive database. The second is more general (there is no limitation to the 
functors used) but also more difficult to satisfy in practice. 

In fact most of the clauses of a database will fulfill this condition. Unfor­
tunately in most cases some clauses will not satisfy the condition and this 
will be sufficient to inhibit the portability. This is true in particular as soon 
as equality is used 1. 

One may try to find more general rules. For example, a variable occurs 
twice in the head of a clause, but if during execution of a goal every call to 
the corresponding predication is such that one of the variables is instantiated 
by a ground term, then the execution of this goal is NSTO. Such conditions 
and more complex ones may be found in [5]. Although some of the conditions 
are automatizable and may be verified by compilers, programmers cannot use 
them easily and moreover many interesting programs will remain STO. 

Another approach must be found. 

10.1.2 Introduction of unification with occurs-check 

The second rule above gives us a way to identify the "risky" places where an 
"occur-check problem" may arise: they correspond to clauses with duplicated 
variables in the head. Therefore in these clauses and only for these ones, a 
small transformation may be performed and unify _wi th_occurs_check/2 
introduced. 

We illustrate this using a simple example. 

Let us specify palindromes. By definition a palindrome is a list which is 
the reverse of itself. For example, [a, n, n, a] is a palindrom. 

The (recursive) direct definition results from the following observations: 
an empty list is a palindrom, as is a list with one element. If a list has more 
than two elements, it is a palindrom if the first and last elements are identical 
and the sublist obtained by removing the first and the last elements is a 
palindrom. This is written formally in the following axioms, using difference 
lists. 

L1 - L2 denotes a list formed by the elements of L1 from which the 
last elements L2 have been removed. For example [a, n, n, a, b, e, I] - [b, e, I] 
denotes the list [a, n, n, a] and [a, n, n, a] - 0 or [a, n, n, alX] - X denote the 
list [a, n, n, a] too. The most general empty list 0 is denoted L - L. 

Here is the program: 

1 It is the case of using "Prolog unify" (=/2), but also of equality defined with the 
single fact equal(X, X). 



palindrome(L- L). 
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palindrome([AIL]- M) :- palindrome(L- [AIM]). 

Notice that with goals like palindrom(l-m). where 1 is a list and m 
any term the program terminates and analyses or generates palindroms (i.e. 
palindrom(l-m) succeeds if and only if l-m denotes a list which is a palin­
drom), otherwise fails. If 1 is a variable or a partial list the program does not 
terminate, although it has some interesting behaviour. 

However the two first clauses correspond to "risky" situations. If the goal 
is a ground term it is easy to observe that, according to the Prolog compu­
tation rule and because all the variables of the body (third clause) occur in 
the head too, the execution is NSTO with this goal. But if one uses vari­
ables in the goal, this program may be STO, for example with the goal 
palindrom([aIX]-X). On the other hand, one would like to be able to use 
such goal or goal like palindrome [X, Y I Z] -Z) soundly (i.e. it should succeed 
once only, unifying X and Y together). 

If one does not know in advance all the possible goals, it may be useful 
to write this program in such a way that it is standard conforming for any 
goal. This is possible using the following transformation: 

When some variable has more than one occurrence in the head of a clause, 
rename the occurrences in such a way that the head has no duplicated variables 
and add the corresponding equalities as first predications in the body of the 
clause (hence the meaning is not modified). But instead of using equality 
('=' /2), use unify_with_occurs_check/2. 

Here is the result with our example: 

palindrom(L- M) :- unify_with_occurs_check(L, M). 
palindrom([AIL]- M) :- unify_with_occurs_check(L, M). 
palindrom([AIL]- M) :- palindrom(L- [AIM]). 

This transformation is general and may be used on every program. 

10.1.3 What to do with the built-in predicates 

Most of the built-in predicates in Standard Prolog do not need occurs­
checks. But the following ones may do: 

arg/3, bagof/3, clause/2, copy_term/2,findall/3,read_term/2, 
read_term/3, retract/!, \=/2, setof/3, =/2 and = .. /2. 

With the built-in predicates, the transformation can be applied if one 
suspects a possibility of positive occurs-check. One way to perform it sim­
ply is to put a different new variable at the place of one of the risky argu­
ment (for example with copy_term/2 it is the second argument) and execute 
unify _wi th_occurs_check/2 with this variable and the corresponding origi­
nal term as arguments. 
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For example, instead of writing 
findall(X, p(X), [f(U, g(U»]) 

one may prefer to write 
findall(X, p(X), S), unify_with_occurs_check(S, [f(U, g(U»]) 

to have a unique behaviour if the procedure p/l has a fact like 
p(f (Y, Y». 

10.2 The database update view 

Standard Prolog contains four built-in predicates which may modify the 
database: abolish/l, asserta/l, assertz/l, retract/1. In Standard 
Prolog the so called logical database update view is used. First we give a 
comprehensive introduction to this view, then we deduce some recomenda­
tions. 

10.2.1 The database update view in the execution model 
for a subset of Standard Prolog 

Let us assume first that there is no built-in predicate except those for clause 
creation and destruction and let us consider a node of the search-tree where 
no built-in predicate is executed. 

As the search-tree is constructed the database may be modified. In order 
to understand better what happens, let us attach to each node an additional 
label corresponding to the current database used to build the children of this 
node. Assume first that all the current clauses (the clauses of the current 
database) are used to build these children. Each child (say 1,2, ... , n) is now 
labelled by a new database (say NewP1 , NewP2 , ..• , NewPn). This situation 
is depicted in Figure 10.1 (the Ci'S correspond to the clauses chosen to build 
the child). The first child has the label P, like the parent node, because its 
children will be built with the same database. But the other children may 
have different databases (denoted NewPi), because during the construction 
of the sub-search-trees of the other children some modification of the database 
may have taken place. 

If there is no modification of the database during the development of the 
sub search-trees, like in definite Prolog, all the NewPi's and P are the same 
and all the children are visited and expanded using the same database. 

Now consider a child i different from the first (i > 1) and assume that 
the clause to which it corresponds has been removed during the construction 
of an older sibling (i.e. NewPi no longer contains the clause Ci). Is it normal 
to choose and to try to execute it or not? 

Assume now that the youngest child n has been reached and executed, 
and the current database, say NewP obtained after the "fail" visit of n, 
contains new clauses appended to the clauses of P. Should these new clauses 
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Fig. 10.1. The log­
ical database update 
view. 

be considered to create dynamically new children or not? Notice that such a 
situation occurs with assertz/l only. With asserta/l no young child can 
be created (although subsequent uses will consider the modified database)2. 

10.2.2 The logical database update view 

The database update view depends on the way the previous questions are 
answered. The standard adopts the following view: the retracted clauses are 
selected but not the appended ones. It is called the logical view. In other 
words, the children are fixed at the first visit of the parent node and remain 
unchanged whatever the modifications of the database may be. 

10.2.3 The database update view in Standard Prolog 

The (logical) database update view in Standard Prolog is the generalisation 
of this principle to all re-executable built-in predicates too. 

Namely, the number of children is fixed at the first visit (when the children 
are built) and not modified by the visit-construction of the sub-search-trees. 

10.2.4 A simple view 

Although the logical view has been adopted, some programmers are used to 
the so-called "immediate view". There is a "minimal" way of thinking about 
the views, in a such manner that does not depend on the view (it is of course 
undecidable whether a given database satisfies the requirements of the logical 
view). Here are some possible rules: 

2 In fact one may consider that new children are added in that case to the left of 
the first node. Because the Prolog computation rule visits the search-tree in a 
left to right manner, these new (oldest) children will not be visited. 



244 10. Writing Portable Programs 

1. asserta/l may be used without restriction. 
2. Never use retract/lor assertz/l on a predicate which is active except 

to retract already used clauses. 
3. Never use abolish/l on a predicate which is active. 

These restrictions comply with a prudent use of database updates. 



11. Annexes 

11.1 Compliance 

Here is an (adapted) extract of the standard explaining the requirements a 
standard conforming processor which uses extensions will satisfy. 

11.1.1 Prolog processor 

A conforming Prolog processor will: 

1. Correctly prepare for execution Prolog text which conforms to: 
a) the specification of Prolog texts in Standard Prolog, and 
b) the implementation defined and implementation specific fea­

tures of the Prolog processor, 
2. Correctly execute Prolog goals which have been prepared for execution 

and which conform to: 
a) the specification of Prolog goals in Standard Prolog, and 
b) the implementation defined and implementation specific fea­

tures of the Prolog processor, 
3. Reject any Prolog text or read-term whose syntax fails to conform to: 

a) the specification of Prolog text or read-term in Standard Prolog, 
and 

b) the implementation defined and implementation specific fea­
tures of the Prolog processor, 

4. Specify all permitted variations in the manner described in Standard 
Prolog, and 

5. Offer a strictly conforming mode which will reject the use of an imple­
mentation specific feature in Prolog text or while executing a goal. 

11.1.2 Prolog text 

Conforming Prolog text will use only the constructs specified in Standard 
Prolog, and the implementation defined and implementation specific 
features supported by the processor. 
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Strictly conforming Prolog text will use only the constructs specified in 
Standard Prolog, and the implementation defined features supported 
by the processor. 

11.1.3 Prolog goal 

A conforming Prolog goal is one whose execution is defined by the constructs 
specified in Standard Prolog, and the implementation defined and im­
plementation specific features supported by the processor. 

A strictly conforming Prolog goal is one whose execution is defined by 
the constructs specified in Standard Prolog, and the implementation 
defined features supported by the processor. 

11.1.4 Documentation 

A conforming Prolog processor will be accompanied by documentation that 
completes the definition of every implementation defined and implemen­
tation specific feature specified in Standard Prolog. 

11.1.5 Extensions 

A processor may support, as an implementation specific feature, any con­
struct that is implicitly or explicitly undefined in Standard Prolog. 

Syntax. A processor may support one or more additional characters in ECS 
(9.1.1) and additional syntax rules as an implementation specific feature 
if and only if: 

1. any sequence of tokens that conforms to the syntax of Prolog text and 
read-terms defined in Chapter 9 will correspond to the term defined there, 

2. any sequence of tokens that conforms to the syntax of a term defined in 
Section 9.5 will have the abstract syntax defined in that clause, 

3. any sequence of characters that conforms to the syntax of Prolog tokens 
defined in Section 9.5.1 will be parsed to those Prolog tokens. 

Back quoted "strings" could be defined as an extension. 

Predefined operator table. A processor may support one or more addi­
tional predefined operators (Table 9.2.2) as an implementation specific 
feature. 

Character conversion table. A processor may support some other initial 
value in Table (9.1.2), as an implementation specific feature. 
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Objects. A processor may support one or more additional objects, called 
type in this section only!, as an implementation specific feature if and 
only if, for every additional type T supported by a processor: 

1. No term with type T will also have a type T' where T and T' are different. 
2. For every two terms t and t' with types T and T' respectively, 

t term_precedes t' (2.1.2) will depend only on T and T' unless T = T'. 
3. The processor will define in its accompanying documentation terms corre­

sponding to additional types and well-formed clauses, bodies and goals2 • 

4. The processor will define in its accompanying documentation, the token 
syntax and the corresponding term of every term of type T. 

5. The processor will define in its accompanying documentation, the effect 
of evaluating as an expression a term of type T (6.2). 

6. The processor will define in its accompanying documentation, the effect 
of writing a term of type T (7.4.3). 

Flags. A processor may support one or more additional flags as an imple­
mentation specific feature. 

Directives. A processor may support one or more additional directive indi­
cators (8) as an implementation specific feature. 

Built-in Predicates. A processor may support one or more additional 
built-in predicates and/or side effects as an implementation specific fea­
ture. 

When a processor supports additional built-in predicates as an imple­
mentation specific feature, it may also support as an implementation 
specific feature one or more additional forms of error-term. 

Arithmetic functors. A processor may support one or more additional 
arithmetic functors (6.1.1) as an implementation specific feature. 

Sources and sinks. A processor may support additional I/O modes (7.3.1), 
such as a mode for both inputting and outputting, as implementation spe­
cific features. 

A processor may support one or more additional open- and close-options 
(7.3.2, 7.3.3) as an implementation specific feature. 

A processor may support one or more additional stream properties (7.3.4) 
as an implementation specific feature. 

A processor may support one or more additional read- or write-options 
(7.4.1, 7.4.2) as an implementation specific feature. 

1 "Type" denotes here subsets of basic objects like variables, atoms, numbers, etc., 
used to build terms. Additional types could be "string" or "complex number". 
This notion of "type" should not be confused with the other notion used to 
describe the templates (5.2.2). We do not use this notion of "type" in the de­
scription of Standard Prolog to denote categories of objects, in order to avoid 
any confusion. Standard Prolog is indeed a typeless language. 

2 It is denoted in the standard as "the effect of converting a term of type T to a 
clause and vice versa" . 
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11.2 The ftp package 

The ftp package contains an executable specification of Standard Prolog3 

written in Standard Prolog and examples. 

11.2.1 The package 

All the needed files and directories are in a single directory called SdProlog. 
This directory contains the following files: 

read. me - An abstract on this annex. 

manual. txt - A full manual (in ASCII text form). 

exe-spec.pl l-pred.pl syntax.pl interf.pl ex-test.pl util.pl 
The code of the executable specification which is a Prolog text. 

make - A Prolog text which may be consulted to load the executable spec­
ification. 

examples - A directory containing sample programs written in Standard 
Prolog. They are self documented and may be run on any standard 
conforming processor. These programs may not be runnable with the ex­
ecutable specification due to lack of resources4 . 

bips-ex - A directory containing as many files as there are built-in predi­
cates. Each file consists of the collection of examples listed in this book, 
the examples used in the standard together with some other examples. 

The file corresponding to a built-in predicate has the same name, except 
for some cases where another mnemonic name is used (e.g. ari th -eq 
instead of (=:=)/2, or not-prov instead of (\+)/1). 

11.2.2 How to run the executable specification 

The executable specification is a specific implementation of Standard Pro­
log. So, all concepts which are implementation defined, implementation 
dependent or undefined have received some interpretation. For example 
there may be an explicit warning when the unification is undefined. 

3 It includes an implementation of the formal specification published in the infor­
mative annex of the standard [2]. 

4 The executable specification is close to the formal specification published in the 
standard and therefore is not efficient at all. It serves only to test small programs 
and goals. 



11.2 The ftp package 249 

The executable specification must be run on a standard conforming pro­
cessor. However the way it has been designed makes it runnable on most 
existing Prolog processors. 

To run the executable specification on a Prolog processor, load the file 
make. In most existing Prolog processors this is achieved by executing the 
goal: 

?- consult(make). 
A short help can be obtained thus by executing the goal help..l11e. 
The following goals can then be executed. 

run_subs (prog) - where prog is an atom whose name is the path-name of 
a Prolog text file whose contents is a program to be tested. Only very 
small programs can be run without resource errors. Goals can then be 
entered and tested with the program denoted in the argument. The out­
come of each goal is an answer substitution. 

run..forest (prog) - Same as run-Bubs (prog) but the outcome is a full 
search-tree. 

run_subs - Same as run_subs/1 but without program. 

run..forest - Same as run..forest/1 but without program. 

run_bip(examplesBipFile) - where examplesBipFile is an atom whose 
name is the path-name of a file with examples to be tested. The exam­
ples must be written in a form described in Section 11.2.3. An "expected 
result" is indicated and the execution compares the results given by the 
executable specification and the expected result. The result of the com­
parison is given. 

The complete documentation is in the file manual. txt. 

11.2.3 Examples of uses 

We show here how to use the executable specification to test examples in 
Standard Prolog. 

Testing programs. Assume that add is a file whose contents are: 

plus(O,A,A). 
plus(s(A),B,s(C)) plus(A,B,C). 

5 The executable specification is close to the formal specification published in the 
standard and therefore is not efficient at all. It serves only to test small programs 
and goals. 
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Then one executes: 
run-flubs (add) . 
[add] goal ?- plus(A,B,s(O)). 
([add] goal ?- is the executable specification prompt which is now dis­

played.) 

The goal is displayed again followed by all the answer substitutions ob­
tained by running the executable specification with this goal and the given 
environment: 

plus(A,B,s(O)) 

A <-- ° 
B <-- s(O) 

success --------­
A <-- s(O) 

B <-- ° 
success 

end 

[add] goal ?- plus(O,O,s(O)). 

plus(O,O,s(O)) 
failure 

search tree form. 

Testing built-in predicates. To test a sample of examples for a given 
built-in predicate, a file must be firstly prepared (say bip_examples) whose 
contents are the examples to be tested written in the format described above, 
and the following goal: 

run_bip(bip_examples). 
The format of the examples is the following: a list whose elements are (in 

this order): 

1. A goal, 

2. (optional) A program, entered as a list of clauses or by its file name. 
Example: 

[(plus(O,A,A) true), (plus(s(A),B,s(C» plns(A,B,C»] 

or 
program(add) 

where 'add' is the file containing the definition of the predicate 'plus'. 

3. An expected answer: 
- A list of answer substitutions in the order in which they are expected. 

The operator substitution is: <--. Example: 
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[[Varl <-- Termu, 

or 
- success if a success with an empty answer substitution is expected, 

or 
- failure if a finitely failed search tree is expected (a finite search-tree 

with no success branch), 
or 

- error-term which is a term identifing the expected error. Examples: 
instantiation..error, type_error (atom, 1), 
permission..error(modify, static-procedure, foo/2), ... , 
or 

- impLdep or imp Ldef ined or undefined if the expected behaviour is 
implementation dependent or defined or undefined. 

Examples: 

[ (X=l; X=2),[ [X <-- 1], [X <-- 2] ] ]. 

1 =.= 1.0, success]. 

2 < 1, failure]. 

functor(T, F, 3), instantiation..error ]. 

[ f(X,l) = f(a(X),2), undefined]. 

[ f(X,l) ~< f(Y,2), impl_dep]. 

The execution of run_bip/l compares, for each element of the sample file, 
the expected result with the executable specification computed result for the 
goal, and displays (1) the expected result (as in the file), and (2) the results 
obtained with the executable specification if there is a discrepancy, or the 
message INTENDED RESULT otherwise. 

Example: assume there is a sample file 'functor' with examples as follows: 
(Note that some erroneous expected answers are given just to illustrate the 
behaviour of the 'run_bip' predicate.) 

[functor(foo(a,b,c),foo,3), 
success]. 

[functor(foo(a,b,c),X,Y), 

7. The goal. 
7. The expected behaviour. 
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[[X (-- foo. Y (-- 2]]]. 

[functor(foo(a).foo.2). success]. 

[functor(foo(a).fo.1). failure]. 

[functor(X.1.1.0). [[I (-- 1.1]]]. 

[functor([_I_] .·.·.2). failure]. 

[functor(I. foo. a). failure]. 

[(current_prolog_flag(max_arity.A). 
XisA+1. 
functor(T. foo. X». 
representation_error(max_arity)] . 

The test will give: 

I 1- run_bip(·functor·). 

Goal : functor(foo(a.b.c).foo.3) 
Intended result 

success 

Specif result : INTENDED RESULT 

Goal : functor(foo(a.b.c).A.B) 
Intended result 

A (-- foo 
B (-- 2 

Spec if result : 
The substitution found is 

A (-- foo 
B (-- 3 

success ---------

Goal : functor(foo(a),foo,2) 
Intended result 

success 

Specif result : Must fail 

7. Should instantiate Y by 3. 

7. Should fail. 

7. Should succeed. 

7. type_error(integer.a) 
7. expected instead. 

7. complex goal. 

=======-==================================== 
Goal : functor(foo(a).fo.1) 
Intended result 

failure 

Specif result : INTENDED RESULT 

Goal : functor(A.l.1.0) 



Intended result 
A (-- 1.1 

Specif result : INTENDED RESULT 

Goal : functor([A!B],. ,2) 
Intended result 

failure 

Specif result : Must succeed 

Goal : functor(A,foo,a) 
Intended result 

failure 
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Specif result: system_error_action: type_error(integer,a) 
Goal in error : type_error(integer,a) 

Goal : current_prolog_flag(max_arity,A),B is A+1,functor(C,foo,B) 
Intended result 

representation_error(max_arity) 

Specif result : 
system_error_action: representation_error(max_arity) 

INTENDED RESULT 

A software package containing the executable specification of Standard Prolog 
and program examples can be downloaded via World-Wide Web from 
http://www.springer.de (following the link to samples and supplements). 
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11.3 Elements of lexical analysis 

This annex defines the syntax (in DCG form) of the Prolog character set 
(defined in 9.1.1) used in the syntax of term (9.5). 
Prolog character set. 

char(C} --) graphicchar(C} 

Graphics characters. 

graphic_char( GG} 

Alphanumeric characters. 

a Ipha..nu mericchar( C} 

alpha_char( , _') 

alphLchar(C) 

letter _chart C} 

smaIUetter_char( Lower) 

ca pitalJetter _char(U pper) 

decimal_digiLchar(DD} 

binary_digiLchar(BD) 

octaLdigit..char( aD) 

hexadecimal_digiLchar(X D) 

alpha_n u mericchar( C) 
solo_char(C) 
layouLchar( C} 
meta_char(C) 

--) "GG" 
Where GC is one of these characters: 
~'t', '*', '+', '-', '.', 'J', ':', 
'<', '=', '>', '?', '«I', "', '-' 

--) alphLchar(C) 
decimal_digiLchar( C) 

--) underscore 

--) letter_char(C) 

--) capitalJetter_char(C) 
smaliJetter _char(C) 

--) "Lower" 
Where Lower is one of alphabetical lower 
case characters (characters from a to z) 

--) "Upper" 
Where Upper is one of alphabetical upper 
case characters (characters from A to z) 

--) "DD" 
Where DD is one of digits between 0 and 9 

--) "BD" 
Where B D is one of the two digits 0 or 1 

--) "aD" 
Where aD is one of digits between 0 and 7 

--) "XD" 
Where X D is one of digits between 0 and 9 
and letters between A or a and F or f 



Solo characters. 

solo_char( C) 

Layout characters. 

layouLchar(C) 

space_char(' ,) 

newJine_char( C) 

horizontaLta b_char( C) 

Meta characters. 

meta_chart C) 
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--> "C" 
Where C is one of these characters: 
~')', ' .. , ';', '[', 'J', '{', '}', '1', 'It' 

--> space_char(C) 
I horizontaLtab_char(C) 
I newJine_char(C) 

--> 

--> "C" 
Where C is implementation dependent 
New Line character (in ASCII this 
character is NL of decimal code 10) 

--> "C" 
Where C is implementation dependent 
Horizontal Tabulation character (in ASCII 
t his character is HT of decimal code 9) 

--> "C" 
Where C is one of these characters: 
'\', 'Jf, 'll', I( I 



256 11. Annexes 

11.4 ASCII table 

Table 11.4 represents for each character in char, as defined in 9.1.1, its ASCII 
code in octal, hexadecimal and decimal notation. It also gives the codes of 
characters represented by a symbolic control character which are quoted char-
acters (defined by symboliccontroLchar nonterminal in 9.5.1). 

-----------------------------------------------------------------
10ct Hex Dec ChrlOct Hex Dec ChrlOct Hex Dec ChrlOct Hex Dec Chrl 
-----------------------------------------------------------------
1000 00 o NULIOOl 01 1 SOHI002 02 2 STXI003 03 3 ETXI 
1004 04 4 EOTI005 05 5 ENQI006 06 6 ACKI007 07 7 BELl 
1010 08 8 BS 1011 09 9 HT 1012 OA 10 NL 1013 OB 11 VT I 
1014 OC 12 NP 1015 00 13 CR 1016 OE 14 SO 1017 OF 15 SI I 
1020 10 16 DLEI021 11 17 DC11022 12 18 DC21023 13 19 DC31 
1024 14 20 DC41025 15 21 NAKI026 16 22 SYNI027 17 23 ETBI 
1030 18 24 CANI031 19 25 EM 1032 1A 26 SUBI033 lB 27 ESC 
1034 lC 28 FS 1035 10 29 GS 1036 lE 30 RS 1037 IF 31 US 
1040 20 32 SP 1041 21 33 1042 22 34 " 1043 23 35 # 
1044 24 36 $ 1045 25 37 'I. 1046 26 38 l 1047 27 39 
1050 28 40 ( 1051 29 41 ) 1052 2A 42 * 1053 2B 43 + 
1054 2C 44 1055 2D 45 - 1056 2E 46 1057 2F 47 / 
1060 30 48 0 1061 31 49 1 1062 32 50 2 1063 33 51 3 
1064 34 52 4 1065 35 53 5 1066 36 54 6 1067 37 55 7 
1070 38 56 8 1071 39 57 9 1072 3A 58 1073 3B 59 
074 3C 60 < 1075 3D 61 076 3E 62 > 1077 3F 63 ? 
100 40 64 «I 1101 41 65 A 102 42 66 B 1103 43 67 C 
104 44 68 D 1105 45 69 E 106 46 70 F 1107 47 71 G 
110 48 72 H 1111 49 73 I 112 4A 74 J 1113 4B 75 K 
114 4C 76 L 1115 4D 77 M 116 4E 78 N 1117 4F 79 0 
120 50 80 P 1121 51 81 Q 122 52 82 R 1123 53 83 S I 
124 54 84 T 1125 55 85 U 126 56 86 V 1127 57 87 W I 
130 58 88 X 1131 59 89 Y 132 5A 90 Z 1133 5B 91 [ I 
134 5C 92 \ 1135 50 93 ] 136 5E 94 - 1137 5F 95 I 
140 60 96 , 1141 61 97 a 142 62 98 b 1143 63 99 c I 
144 64 100 d 1145 65 101 e 146 66 102 f 1147 67 103 g I 
150 68 104 h 1151 69 105 i 152 6A 106 j 1153 6B 107 k I 
154 6C 108 1 1155 6D 109 m 156 6E 110 n 1157 6F 111 o I 
160 70 112 P 1161 71 113 q 162 72 114 r 1163 73 115 5 I 
164 74 116 t 1165 75 117 u 166 76 118 v 1167 77 119 v I 
170 78 120 x 1171 79 121 Y 172 7A 122 z 1173 7B 123 { I 
174 7C 124 1175 7D 125 } 176 7E 126 - 1177 7F 127 DELI 

-----------------------------------------------------------------
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11.5 Glossary of auxiliary concepts 

This glossary contains the definitions of some concepts used in the description 
of Standard Prolog but defined nowhere else. Some of them have been used 
by the standardizers to describe Standard Prolog and are used in this book 
with a slightly different meaning which is explained here. Words in itallic are 
defined in this glossary. 

Anonymous variable 

Bagof-goal 

Bagof-subgoal 

Byte 

Caret 

An anonymous variable is a variable repre­
sented in a Prolog text or in a read-term by 
_ (underscore character). It denotes a fresh 
variable (i.e. one which differs from all other 
variables) for which the user does not want 
to provide a name. 

A term whose principal functor is not caret 
or a compound term whose principal func­
tor is caret, the first argument a term and 
the second argument a bagof-goal. With a 
bagof-goal two notions are associated: the 
free variables and the bagoJ-subgoal. 

The bagof-subgoal of a bagoJ-goal is the 
greatest subterm whose principal functor 
is not caret and which is the second ar­
gument of a caret functor. Example: X 
A Y A f(X,Y,Z A X), the bagof-subgoal is 
f(I,Y,Z A X). 

A byte is an integer in the range [0 .. 255]. 

A predefined operator denoted A of arity 2. 
Its precedence is 200 and it is right associa­
tive (xfy). So, if the operator has not been 
redefined, 1 A Y A Z A t is the term A (I, 
A(y, A(Z, t»). 
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Constant 

End-of-stream 

Free variables (bagof-goal) 

Partial list 

Past-end-of-stream 

Predicate indicator pattern 

A constant is either an atom, an integer or 
a floating-point number. 

When all of a stream 5 has been input (for 
example by get_byte/2 or read_term/3) 5 
has a stream position end-of-stream. It thus 
has the property end_oLstream(at). 

The free variables of a bagof-goal are the 
variables of the bagof-subgoal which do not 
occur in any first argument of a caret opera­
tor for which the bagof-subgoal is a subterm 
of its second argument. Example: X - Y -
f(X, Y ,Z - X), the set of the free variables 
is {Z}. 

A partial list is a list-term whose tail is 
a variable. So a partial list of N elements 
and tail X is written [al, a2, ... , aN I Xl 
and is the term . (al, . (a2, ... , . (aN, 
X) ... ». There is no empty partial list. 

If 
one tries to input, more data from a stream 
which has the property end_oLstream(at) 
(end-ol-stream) , the stream has a stream 
position past-end-of-stream and property 
end_of _stream(past). 

A predicate indicator pattern is a predicate 
indicator or a compound term whose princi­
pal functor is '1'12 and the arguments are 
either a variable, or an atom for the first, or 
a positive integer for the second. For exam­
ple: 'I' (reverse,X). 
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Predicate indicator sequence A predicate indicator sequence is a com­
pound term ',' (PL1, PI..n) where PLl is 
a predicate indicator, and PI..n is a predicate 
indicator or a predicate indicator sequence. 
A predicate indicator sequence ',' (Pl/ Al, 
, , '(P2/ A2, P3/ A3» is normally written as 
P1/Al, P2/A2, P3/A3. There is no term 
corresponding to an empty predicate indi­
cator sequence. 

Sequence of terms A sequence of terms is a compound term 
',' (T_l, T..n) where Ll is a term, and T..n 
is a term or a sequence of terms. A sequence 
of terms' , '(n, ',' (T2, T3» is normally 
written as n, T2, T3. There is no term cor­
responding to an empty sequence of terms. 

Subexpression A subexpression of an expression is this ex­
pression or, if the expression is a compound 
term, a subexpression of one of its argu­
ments. 

Subterm A subterm of a term is this term or, if the 
term is a compound term, a sub term of one 
of its arguments. 

Top level process, goal A process whereby a Prolog processor re­
peatedly inputs from the standard input and 
executes queries. Each query is called top 
level goal (this concept is undefined in the 
standard). The answer substitutions of a top 
level goal may be displayed on the standard 
output in a manner which is implementa­
tion defined. 
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Valid read-option 

Valid write-option 

Valid stream property 

Witness 

A valid read-option is a term whose princi­
pal functor is the same as the one used in the 
read-option terms supported in Standard 
Prolog (or in some extension) as described 
in Section 7.4.1 (an element of { variables. 
variable-Ilame. singletons}) and whose 
arguments are variables or have the same 
form as the one expected in their descrip­
tion (e.g. the option singletons must have 
one variable as argument, or a list whose el­
ements are variables or terms A = V where 
A and V are variables or atoms). 

A valid write-option is a term whose princi­
pal functor is the same as the one used in the 
write-option terms supported in Standard 
Prolog or in some extension as described in 
Section 7.4.2 and whose arguments (if any) 
are variables or atoms denoting one of the 
allowed values. 

A valid stream property is a term whose 
principal functor is the same as the one used 
in the stream property terms supported in 
Standard Prolog or in some extension as 
described in Sections 7.3.2, 7.3.3 or 7.3.4 and 
whose arguments (if any) are variables or 
atoms denoting one of the allowed values. 

A witness of a term term! is another term 
term2 in which every variable of term! oc­
curs exactly once. If term! has no variable, 
its witness is an atom. 



Thematic classification of the built-in 
predicates 

The order in each category corresponds to the alphabetical order used in 
Chapter 5 (predicate indicator and arity, or speakable name). Except for the 
first and last categories, the category name used in the standard has been 
retained. 

All solutions 

'bagof'/3 
'findall'/3 
'setof'/3 

Arithmetic comparison 

'=:='/2 (arithmetic equal) 
'=\ \=' 12 (arithmetic not equal) 
, > '/2 (arithmetic greater than) 
'>=' 12 (arithmetic greater than or equal) 
'<' 12 (arithmetic less than) 
'=<' 12 (arithmetic less than or equal) 

Arithmetic evaluation 

, is '12 (evaluate expression) 

Atomic term processing 

'atom_chars '/2 
'atom_codes '/2 
'atom_concat'/3 
'atom_length'/2 
'char_code '/2 
'number_chars '/2 
'number_codes '/2 
'sub_atom' 15 

Byte input/output 

'get_byte '/1 
'get_byte '/2 
'peek_byte' /1 
'peek_byte '/2 
'put_byte '/1 
'put_byte '/2 

Character input/output 

'get_char'/1 
, get_char' /2 
'get_code '/1 
'get_code '/2 
'peek_char '/1 
'peek_char' 12 
'peek_code '/1 
'peek_code '/2 
'put_char'/1 
'put_char'/2 
'put_code '/1 
'put_code'/2 
'nl'/O 
'nl'/1 

Clause retrieval and information 

'clause'/2 
'current_predicate '/1 
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Clause creation and destruction 

'abolish'/l 
'asserta'/l 
'assertz'/l 
'retract'/l 

Flag updates 

'current_prologJlag' /2 
'set_prologJlag'/ 

Logic and control 

'call'/l 
'catch' /3 
, , '/2 (conjunction) 
'!'/O (cut) 
, ; '/2 (disjunction) 
'fail'/O 
'halt '/0 
'halt' /1 
'-)' /2 (if-then) 
, ; '/2 (if-then-else) 
'\\+' /1 (not provable) 
'once'/l 
'repeat'/O 
'throw'/l 
'true' /0 

Stream selection and control 

'at_end_of_stream'/O 
'at_end_of_stream' /1 
'close'/l 
'close'/2 
'current_input '/1 
'current_output '/1 
'flush_output' /0 
'flush_output' /1 
'open'/3 
'open'/4 
'set_input '/1 
'set_output '/1 
'set_stream_position'/2 
'stream_property'/2 

Term comparison 

'~>'/2 (term greater than) 
'~>='/2 (term greater than or equal) 
'==' /2 (term identical) 
'G<' /2 (term less than) 
,~=<' /2 (term less than or equal) 
'\\==' /2 (term not identical) 

Term creation and decomposi­
tion 

'arg'/3 
'copy_term'/2 
'functor'/3 
'= .. '/2 (univ) 

Term unification 

, \\ = '/2 (not Prolog unifiable) 
'=' /2 (Prolog unify) 
'unify _wi th_occurs_check' /2 (unify) 

Type testing 

'atom'/l 
'atomic'/l 
'compound'/l 
'float'/l 
'integer'/l 
'nonvar'/l 
'number'/l 
'var'/l 

Term input/output 

'char_conversion'/2 
'current_char_conversion'/2 
'current_op'/3 
'op'3/ 
'read'/l 
'read'/2 
'read_term' /2 
'read_term' /3 
'write'/l 
'write'/2 
'write_canonical '/1 
'write_canonical '/2 
'write_term' /2 
'vrite_term'/3 
'writeq'/l 
'writeq'/2 
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cut, 85 
cuUoken(_) , 233 

database 
- complete -, 20 
- logical - updateview, 243 
Datalog, 240 
DCG 
- nonterminal, 226 
- rule, 226 
- terminal, 226 
debug, 216 
dcg: decimal..digit-char(_), 254 
definite clause, 22 
directive, 215 
- char _conversion/2, 218 
- discontiguous/l, 218 
- dynamic/I, 218 
- ensure.loaded/l, 218 
- include/I, 219 
- initialization/I, 219 
- multifile/I, 219 
- op/3, 217 
- set_prolog_flag/2, 217 
disagreement, 14 
discontiguous/l, 218 
disjunction, 86 
documentation, 246 
domain 
- of a substitution, 11 
double quoted list token syntax, 236 
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double quoted string term syntax, 229 
dcg: double-CIuoted_character(_), 233 
dcg: double-CIuotedJtem...seq(_), 236 
dcg: double_quotedJist(_), 231 
dcg: double-CIuotedJisLtoken(_), 236 
double_quotes, 217 
dynamic procedure, 20 
dynamic/I, 218 

E_charllcter, 35 
ECS, see extended character set 
empty 
- list, 8 
- substitution, 11 
dcg: end, 231 
end-of-stream, 206 
END-OF-STREAM, 258 

ensure.loaded/l, 218 
error, 30, 34 
- raised by a system procedure, 31 
- resource -, 31 
- syntax -, 238 
- system -, 31 
evaluable, 35 
evaluate expression, 111 
ftp:ex-test.pl, 248 
ftp:examples, 248 
ftp:exe-spec.pl, 248 
execution 
- of a definite Prolog program, 26 
- of a goal, 26 
- of a goal (Prolog), 29 
exp/I,203 
dcg: exponent(_), 236 
dcg: exponent-char( _), 236 
expression 
- arithmetic -, 195 
- value of an -, 197 
extended character set, 221 
extensions, 246 

fact, 9 
fail/O,87 
failed branch, 24 
failure node, 24 
flndall/3, 88 
flag, 215 
- bounded, 215 
- char_conversion, 216 
- debug, 216 
- double_quotes, 217 
- integer-rounding-iunction, 216 
- max_arity, 215 
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- max_integer, 216 
- min_integer, 216 
- unknown, 217 
Flag updates built-in predicates, 262 
flag_value, 35 
float, 6 
float/I, 90 
deg: floaLnumber(_), 231 
deg: floaLnumber _token( _), 236 
floating point number token syntax, 

236 
floating-point number, 196 
flush_output/D, 91 
flush_output/I, 92 
dcg: fraction(_), 236 
FREE VARIABLES (bagof-goal), 258 
freshly renamed clause, 23 
functional notation, 212 
functor, 6 
- arity,8 
- name, 8 
- principal, 6 
functor/3,93 

geLbyte/1,95 
geLbyte/2, 96 
geLchar /1, 98 
geLchar/2,99 
geLcode/1, 101 
geLcode/2, 102 
goal 
- compliance, 246 
- initial -, 19 
- preparing for execution a -, 19 
goal-term, 9 
- well-formed -, 9 
dcg: graphic_char(_), 254 
dcg: graphictoken(_), 232 
dcg: graphictoken_char(_), 233 
graphics characters syntax, 254 
ground, 6 
- substitution, 11 
- term, 6 

halt/D, 104 
halt/I, 105 
handle, 21 
dcg: head_tail-.Separator, 231 
Herbrand algorithm, 14 
dcg: hexadecimal_constant(_), 235 
dcg: hexadecimaL.digiLchar(_), 254 
dcg: hexadecimal_digit-.Seq_char(_), 234 
dcg: hexadecimal_escape-.Sequence{_), 

234 

dcg: horizontaLtab_char(_), 255 

I/O mode, 207 
- io~ode, 36 
idempotent, see substitution 
identity removal, 14 
identity substitution, 11 
if-then, 106 
if-then-else, 108 
implementation defined, 3 
implementation dependent, 4 
implementation specific, 4 
in_byte, 35 
in_character, 35 
in_character _code, 35 
in...E_charact er, 35 
include/I, 219 
infinite branch, 24 
dcg: infix_operator(_,_._._), 237 
initial goal, 19 
initialization/I, 219 
instance 
- of a term, 11 
integer, 6, 195 
integer token syntax, 235 
dcg: integer{_), 230 
integer/I, 110 
deg: integer_constant(_), 235 
integer-rounding_function, 216 
deg: integer_token(_), 235 
ftp:interf.pl, 248 
is/2, 111 
deg: items(_), 229 

ftp:I-pred.pl, 248 
layout characters syntax, 255 
lavout text syntax, 232 
d~g: layouLchar( _), 255 
deg: layouLtext, 232 
deg: layouLtext-.Sequence, 232 
deg: letter_char(_), 254 
list, 8 
- acceptable -, 179 
- empty list, 8 
- list-term, 8 
- partial list, 8 
local substitution, 23 
log/I, 203 
logic 
- first order, 10 
Logic and control built-in predicates, 

262 
logical assertion, 10 



logical database updateview, 243 

ftp:make, 248 
ftp:manual. txt, 248 
max_arity, 215 
max-integer, 216 
meta characters syntax, 255 
dcg: meta_char(_), 255 
dcg: meta_escape..sequence(_), 234 
MGU, see most general unifier 
min_integer, 216 
mode 
- declaration, 34 
- of an argument, 35 
most general unifier, 13 
- unique -, 13 
multifile/I, 219 

name and delimiter syntax, 230 
name token syntax, 232 
dcg: name(_), 230 
dcg: name_token(_), 232 
dcg: named_variable(_), 235 
negative occurs-check, 14 
dcg: newJine_char(_), 255 
nl/O, 112 
nl/I, 113 
node 
- choice point, 26 
- completely visited -, 26 
- failure -, 24 
- non-deterministic, 26 
- success -, 24 
non-determinism 
- of the solutions, 23 
dcg: non_quote_char(_), 234 
nonvar,36 
nonvar/I,114 
not Prolog unifiable, 176 
not provable, 115 
not subject to occurs-check, 16 
dcg: notoperator(_), 238 
NSTO, see not subject to occurs-check 
null atom, 6 
number, 6 
- float, 6 
- floating-point -, 6, 196 
number term syntax, 228 
number/I,117 
numbeLchars/2, 118 
number _codes/2, 120 

occurs-check 
- negative -, 14 
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- not subject to -, 16 
- positive -, 14 
- subject to -, 16 
- test, 14 
dcg: octaLconstant(_), 235 
dcg: octaLdigiLchar(_), 254 
dcg: octaLdigit..seq_char(_), 234 
dcg: octal_escape..sequence(_), 234 
once/I, 122 
one-char atom, 222 
op/3, 123, 217 
opaque, 60 
dcg: open, 231 
tt open, 213 
open/3,125 
open/4, 127 
dcg: open_compound_term, 231 
dcg: open_curly, 231 
dcg: open Jist, 231 
open_options, 36 
operator, 7 
- class of associativity, 7 
- name, 7 
- priority, 7 
- priority of an -, 224 
- specifier, 224 
- table, 224 
- valid - table, 226 
operator notation, 213 
option 
- read -, 210 
- write -, 211 

palindrome, 240 
partial list, 8 
PARTIAL LIST, 258 
past-end-of-stream, 206 
PAST-END-OF-STREAM, 258 
pes, see processor character set 
peek_byte/I, 129 
peeLbyte/2, 130 
peek_char/I, 132 
peek_char/2, 133 
peek_code/I, 135 
peek_code/2, 136 
positive occurs-check, 14 
dcg: postfix_operator(_._._), 237 
precedence context, 228 
predicate 
- arity,8 
- name, 8 
predicate indicator, 8 
PREDICATE INDICATOR PATTERN, 258 
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PREDICATE INDICATOR SEQUENCE, 259 
predication, 9 
dcg: prefix_operator(_._._), 237 
preparing for execution 
- a goal, 19 
- a Prolog text, 19 
principal functor, 6 
priority, 7 
private procedure. 20 
procedure 
- dynamic, 20 
- private, 20 
- public, 20 
- static, 20 
processor character set, 221 
Prolog character set, 222 
- syntax, 254 
Prolog execution model, 29 
Prolog processor 
- conforming, 245 
- strictly conforming mode, 245 
Prolog text 
- compliance, 245 
- preparing for execution a -, 19 
- syntax, 221 
Prolog unify, 177 
public procedure, 20 
puLbyte/I, 138 
puLbyte/2, 139 
puLchar/I,140 
puLchar /2, 141 
puLcode/l, 142 
puLcode/2, 143 

quoted character syntax, 233 
deg: quoted_token(_), 233 

range 
- of a substitution, 11 
re-execution, see backtracking 
read-option, 210 
read-term 
- syntax, 221 
read-term syntax, 228 
ftp:read.me, 248 
read/I, 144 
read/2,146 
read_options-.list, 36 
deg: read_term(_), 228 
read_term/2, 148 
read_term/3, 150 
renaming, 13 
repeat/O, 153 

resolution 
- general - algorithm, 22 
- step, 23 
resource error, 31 
deg: resLterm(_._._._), 230 
retract/I, 154 
rule, 9 
run_bipC), 249 
run...forest, 249 
run...forest(_>,249 
run_subs, 249 
run_subs C), 249 

search-tree 
- finite -, 24 
- Prolog -, 24 
deg: semicolon_token(_), 233 
SEQUENCE OF TERMS, 259 
seUnput/l, 156 
seLoutput/l, 157 
seLprolog_ftag/2, 158, 217 
seLstream_position/2, 159 
setof/3, 160 
side-effects, 20 
dcg: sign(_), 236 
sin/I, 204 
deg: si ngleJi ne_com ment, 232 
deg: single_quoted_character(_), 233 
deg: single_quotedjtemseq(_), 233 
sink, 205 
deg: smaliJetter _char(_), 254 
solo characters syntax, 255 
deg: solo_char( _), 255 
solution 
- of an equation, 13 
source, 205 
source/sink 
- source_sink, 36 
- term, 205 
deg: space_char(_), 255 
splitting, 14 
sqrt/I, 204 
standard conventions, 3 
- implementation defined, 3 
- implementation dependent, 4 
- specific, 4 
- undefined, 4 
static procedure, 20 
STO, see subject to occurs-check 
stream, 205 
- binary -, 207 
- position, 206 
- position term, 206 



- property, 207 
- stream, 36 
- term, 205 
- text -, 206 
Stream selection and control built-in 

predicates, 262 
stream_or_alias, 36 
stream_position, 36 
stream_property, 36 
stream_property /2, 163 
sub-Rtom/5, 165 
SUBEXPRESSION, 259 
subject to occurs-check, 16 
substitution, 11 
- answer -, 23 
- composition of -, 12 
- domain of a -, 11 
- empty -,11 
- ground -, 11 
- idempotent -, 12 
- identity -, 11 
- instance of a -, 12 
- local -, 23 
- range of a -, 11 
- renaming -, 13 
- variant, 12 
SUBTERM, 259 
success 
- branch, 24 
- node, 24 
swapping, 14 
dcg: symboliccontroLchar(_), 234 
syntax 
- compliance, 246 
- concrete -, 227 
- error, 238 
- of a clause-term, 227 
- of a directive term, 227 
ftp:syntax.pl, 248 
system error, 31 

table 
- character conversion -, 222 
template, 34 
term, 5 

atom, 6 
- atomic -, 6 
- compound term, 6 
- cyclic -, 17 
- functional notation, 212 
- ground -, 6 
- number, 6 

operator notation, 213 
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- predicate indicator of a -, 8 
- priority of a -, 225 
- unifiable -, 13 
- variable, 5 
- variables of a -, 6 
Term comparison built-in predicates, 

262 
Term creation and decomposition 

built-in predicates, 262 
term greater than, 167 
term greater than or equal, 168 
term identical, 169 
Term input/output built-in predicates, 

262 
term less than, 170 
term less than or equal, 171 
term not identical, 172 
Term unification built-in predicates, 

262 
dcg: term(_. _), 228, 229 
term_precedes, 6 
text stream, 206 
throw/I, 173 
TOP LEVEL PROCESS, GOAL, 259 
transformed 
- clause, 20 
- goal, 20 
dcg: translate_double_quotes(_._), 237 
transparent, 60 
true/O, 175 
type information, 35 

undefined, 4 
unifiable, 13 
unification 
- normal - in standard Prolog, 16 
unifier, 13 
- most general -, 13 
- of an equation, 13 
unify 
- (built-in predicate), 178 
unify _with_occurs_check/2, 178 
univ,179 
unknollll, 217 
ftp:util.pl, 248 

VALID READ-OPTION, 260 
VALID STREAM PROPERTY, 260 
VALID WRITE-OPTION, 260 
var/I, 181 
variable, 5 
- anonymous-, 228 
- bound to, 11 
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~ elimination, 14 
~ instantiated -, 11 
~ named -, 228 
variable term syntax, 228 
variable token syntax, 235 
deg: variable{_), 230 
deg: variable_token{_) , 235 
variant, 12 

well-formed, 9 
WITNESS, 260 

write-option, 211 
write/I, 182 
write/2, 183 
write_canonical/I, 185 
write_canonical/2, 186 
write_opt ions_list, 36 
write_term/2, 188 
write_term/3, 190 
writeq/!, 192 
writeq/2, 193 




