
The Web Tuples Database:
A Large-scale Resource of hyponymy Relations

Master Thesis

presented by
Julian Felix Maria Seitner

Matriculation Number 1397080

submitted to the
Data and Web Science Group

Prof. Dr. Simone Paolo Ponzetto
University of Mannheim

October 2015

Contents

1 Introduction 1

2 Problem Statement and Contribution 3

3 Related Work 6
3.1 Open Information Extraction . 6

3.1.1 LSOE - A Lexical-Syntactic patterns based Open Extractor 7
3.1.2 TextRunner . 7
3.1.3 Snowball . 8

3.2 Extracting structured resources from the Web 9
3.2.1 Probase . 10
3.2.2 Biperpedia . 10
3.2.3 Knowledge Vault . 11

4 Methodology 12
4.1 Extraction Workflow . 12

4.1.1 Tuple Extraction . 14
4.1.2 Removal of Duplicates 34
4.1.3 Tuple Normalization . 35
4.1.4 Tuple Aggregation . 38
4.1.5 Data Storage . 39

4.2 Technical Infrastructure . 42
4.2.1 Infrastructure for Data Extraction 42
4.2.2 Infrastructure for Data Transformation 45
4.2.3 A DBMS for Tuple Storage 47

4.3 API for the WTDB . 48

5 Experimental Results 52
5.1 Statistics of the Extraction and Data Tranformation 52
5.2 Statistics of the WTDB . 54

i

CONTENTS ii

5.3 Narrative Evaluation . 58
5.3.1 Evaluation of Top25 Tuples by Frequency 59
5.3.2 Evaluation of Top25 Tuples by Pattern Spread 61
5.3.3 Evaluation of Top25 Tuples by PLD Spread 62

5.4 Discussion . 63

6 Conclusion 67

A Program Code / Resources 74

B Patterns 75

C Regex of Compact patterns 78

D Regex of Split Patterns 85

E Regex of Isolated Patterns 88

F Abbreviations for Sentence Splitter 90

G Empirically Determined Collective Nouns 91

H Evaluation of patterns 92

I Top Tuples Per Attribute 96
I.1 Top 25 - Pattern Spread . 97
I.2 Top 25 - Frequency . 98
I.3 Top 25 - Pay-Level-Domain Spread 99

J Query Sets 100

List of Algorithms

1 Algorithm to detect Noun Phrases after Patterns 27
2 Algorithm to detect Pre-Modifiers after Patterns 28
3 Algorithm to detect Post-Modifiers after Patterns 29
4 Algorithm to detect Noun Phrases in front of Patterns 30
5 Algorithm to detect Pre-Modifiers in front of Patterns 31
6 Algorithm to detect Post-Modifiers in front of Patterns 32

iii

List of Figures

4.1 Workflow for the WTDB Creation 13
4.2 Data Model for Tuple Storage 41
4.3 Web Data Commons - Extraction Framework 44

iv

List of Tables

4.1 Allowed Tags for the Head Noun 24
4.2 Allowed Tags for the Pre-Modifier 25
4.3 Allowed Tags for Post-Modifier 26
4.4 Extracted Data per Matched Pattern 33
4.5 System Specification for AWS EC2 Instances 43
4.6 System Specification for Data Transformation 46
4.7 API Parameters to Specify Classes and Instances 49
4.8 API Parameters to Specify Domains and Patterns 50
4.9 API Parameters to Specify Aggregated Attributes 51

5.1 Quantitative Results of the Tuple Extraction 53
5.2 Quantitative Results of the Duplicate Removal and Tuple Normal-

ization . 54
5.3 Quantitative Results of the WTDB 55
5.4 Statistics of Generated Attributes 56
5.5 Statistics about the Query Execution 57
5.6 System Specification used for Query Execution 58
5.7 Tuples excluded from the WTDB 66

H.1 Precision and Recall Measurement for Patterns (Part 1) 94
H.2 Precision and Recall Measurement for Patterns (Part 2) 95

I.1 Top 25 Tuples by Pattern Spread 97
I.2 Top 25 Tuples by Frequency. 98
I.3 Top 25 Tuples by Pay-Level-Domain Spread. 99

J.1 Query Set 1: Class and Instance Specified (Part 1) 101
J.2 Query Set 1: Class and Instance Specified (Part 2) 102
J.3 Query Set 2: Queries with Classes Specified (Part 1) 103
J.4 Query Set 2: Queries with Classes Specified (Part 2) 104

v

LIST OF TABLES vi

J.5 Query Set 2: Queries with Instances Specified (Part 1) 105
J.6 Query Set 2: Queries with Instances Specified (Part 2) 106

Chapter 1

Introduction

Since the era of Web 2.0 the amounts of publicly available information on the web
has increased exponentially. The web has become a place where people can easily
exchange information and opinions in natural texts on forums, social networks and
blogs. Therefore, to make this information available in structured forms becomes
an increasingly important task. For example, to improve the automatic understand-
ing of natural language texts [43] [45]. In [36] such process includes the recog-
nition of semantic classes for noun phrases occurring in the text of interest. The
relations between noun phrases and their semantic classes are named hyponymy
relations.

Hence, to contribute to this research area, this work has the goal to provide
a large scale and easy to integrate data source that contains vast amounts of hy-
ponymy relations extracted from the web. Such resource can be used in many field
of natural language processing (NLP) for example to induce taxonomies [33] [45]
[15].

The challenge is to create such a data source economically. This includes the
quality of the final data source in terms of precision and recall, the duration of the
processing pipeline, as well as the costs for infrastructure.

The contribution of this work is four-fold:

1. a system is created that executes the hyponymy extraction from a corpus
of 1.68 billion web pages. The extraction resulted in 1.1 billion hyponymy
relations. In order to enable a extensive analysis the extracted data has to be
transformed;

2. A system that aggregates the extracted tuples and generates features for fur-

1

CHAPTER 1. INTRODUCTION 2

ther data analysis. The aggregated data contains over 0.4 billion unique hy-
ponymy tuples and provides detailed provenance information about it.

3. a comprehensive storage system is provided, which enables a fast access a
large-scale resource of hyponymy relations;

4. An API is released for fast data exploration. Researchers and other interested
parties are then able to query the extracted relations with a simple specifica-
tion of search parameters.1

1The system specifications, descriptions of the functionality and the source code for all of these
systems are provided in this thesis.

Chapter 2

Problem Statement and
Contribution

The main motivation of this work is based on the fact that there are no publicly
available resources containing a domain-independent and large-scale dataset of
hyponymy relations. This is not surprising as there is a plethora of problems
to overcome creating such a web Tuple Database (WTDB). The purpose of the
WTDB is to enable researchers and other interested parties to use and evaluate in-
formation extracted from a large and heterogeneous corpus [9] [13]. Moreover, to
enable more interesting computational uses, for each tuple a set of additional at-
tributes is also extracted. These attributes are generated during the aggregation of
the tuples using their information about the provenance. Increasing the variety of
provenance information will in turn increase the value ranges for the generated at-
tributes, which allows a more fine grained analysis of extracted information. Thus
it is a guiding rule for the extraction to achieve a high recall, in order to increase
the variety of tuple provenance. Furthermore a high recall will increase the com-
prehensiveness of the WTDB.
The mere size of the web corpus of 168 terabytes (TB) cannot be process on a
single machine in a reasonable amount of time. This entails the usage of highly
scalable extraction techniques [13]. In this thesis the extraction is performed in
a distributed environment, which adds complexity to the infrastructure as well as
the algorithms. As this infrastructure is also expensive, the extraction has to be
performed fast in one single run. Thus, the extraction of tuples has to be fast an
robust. This is a difficult task, because the way the data is stored in corpus varies
drastically and can not be determined easily before the extraction is started. The
extraction of tuples requires the identification and evaluation of suitable patterns
to cover the hyponymy relational space. Researchers have extracted hyponymy

3

CHAPTER 2. PROBLEM STATEMENT AND CONTRIBUTION 4

relations using textual patterns. However, compared to previous experiments, this
work is far more extensive in terms of the analysed corpus, the number of applied
patterns and is not restricted to any domain.
The high recall of the extraction in combination with the noisy nature of the cor-
pus is a further problem for the WTDB development. On the one hand there is a
magnitude of duplicate information stored on the web, especially in forms of auto-
matically generated content. Such content is quite frequent and does not hold much
valuable information. This problem has to be considered in this work, because it
affects the attributes that are generated from the tuple provenance. On the other
hand, as people are free to express any opinion in any form, it is difficult to aggre-
gate tuples automatically. It is easy for the human eye to distinguish that the terms
THING and "thing" refer or not to the same concept in their respective contexts.
However, machines do not. Therefore, it is a challenge to aggregate tuples from
such a corpus. The expected high recall of the extraction adds an extra level of
complexity to this task. The more tuples are extracted, the more system memory is
required for the aggregation. With such a large-scale extraction the infrastructural
limitations have to be overcome, with scalable algorithms.

The actual aggregated data itself is a valuable contribution as well for tasks such
as taxonomy induction, benefits from the provenance information crystallized into
attributes for tuples.

This new data source enables the analysis of tuples in three statistical dimen-
sions. For each unique tuple it is measured:

• how often it occurred in the corpus;

• how many different patterns found the same tuple;

• how many differents pay level domains hosted the extracted relation.

The above mentioned attributes indicate the strength of a relation and can be
used by researchers to automatically extract portions of interests of the dataset. As
the aggregated data contains more then 0.4 billion tuples, to extract single pieces
of information is a time consuming task. To cope with the time costs in this work
the data is stored in a database.

On the one hand it is not surprising, that the aggregation of a large scale extrac-
tion leads to some really large data objects. On the other hand, the variety of data
stored in the corpus cause a tremendous amount of rather small objects. Neverthe-
less, each object has to be stored in a way that enables fast access, in terms of a fast
query execution. This can be achieved using a proper database management sys-
tem (DBMS). All DBMS have different technical limitations [24]. Thus, a DBMS

CHAPTER 2. PROBLEM STATEMENT AND CONTRIBUTION 5

has to be selected and implemented in a way that the vast amount of stored data,
does not exceed the technical limits. Furthermore the creation and implementa-
tion of a custom storage concept is required to enable a fast and memory efficient
query execution. Storing the aggregated tuples in a commonly used DBMS is an
important contribution. The choice of commonly used disk-storage DBMS enables
an user-friendly integration of the data into other systems. The widespread usage
and an active online community facilitate the ease of integration. Additionally a
nested data model is developed that enables the fast retrieval of hyponyms for a
given noun phrase, without using any joins.

The source code, a system specification and a description of the functionality are
provided in this thesis. This will enable researchers to extract hyponymy relations
from different English corpora covering different domains. The developed frame-
work can be of high interest also for companies. In fact a fast extraction of relations
from large textual resources can be source of a strategic advantage. Being able to
extract structured information within days or even hours is the key to seize such an
advantage first. The extracted data is a further asset. The extracted tuples can be
used by researchers to analyse the precision and recall of a magnitude of hyponymy
patterns on a large and noisy corpus. To improve such an analysis, the tuples are
cleaned, aggregated and structured.
Although the database can be set up quickly, a user first has to learn the underlying
data model and a query language to retrieve data efficiently. Even with an active
and helpful online community, it takes time to write efficient queries. These as-
pects may prevent a fast and user friendly exploration of the data. Furthermore,
an unrestricted query can cause the DBMS to fail and shut down, if a query can
not be executed on the given infrastructure. These problems are solved by provid-
ing an application programming interface (API). On the one hand the API has to
enable the user to specify search parameters to extract detailed information from
data-source. On the other hand, the API has to be tailored to the storage concept to
guarantee a robust query execution. These contradicting goals - free exploration of
data and the robust execution of queries - make the implementation a complex task.
The contribution of this API is practical. It is coded in a widely used programming
language and tailored to the data model of stored tuples. These characteristics of
the API enable practitioners a fast, robust and easy to learn access to the new data
source.
For each of the above mentioned problems experiments are carried out and dis-
cussed later in this thesis. The related work is discussed in the following chapter.

Chapter 3

Related Work

This research aims at creating a structured data resource containing hyponymy tu-
ples from a large scale web corpus. Since the web contains texts describing any
thinkable domain, this research is related to works in the area of Open Information
Extraction (Open IE):. “Open IE is an unsupervised strategy to draw out relations
from text without predefining these relations, regardless the domain” [5]. This
technology has important application like learning selectional preferences [35] or
acquiring common sense knowledge [26] [14]. The domain of Open IE is intro-
duced in section 3.1. It includes works that describe a custom developed extraction
system for open domain corpora.
Although such an extraction system is a valuable contribution itself, the ultimate
goal is to have useful data. This entails that the data has to be made available in way
that provides researchers with the usability they require. Therefore, other related
work in this area has the focus to provide a data resource created from large scale
Open IE extractions. The data resource structures the data in a meaningful way, to
target specific application areas. These works are introduced in section 3.2.

3.1 Open Information Extraction

The three selected works show techniques to extract open information, which dif-
fer in terms of the input corpus, the extracted data and in amounts of iterations
over the corpus. The input data is different in terms of heterogeneity and size.
A large scale input corpus requires highly scalable algorithms, whereas a small
corpus can be analysed using advanced natural language processing techniques.
Because a state-of-the-art Open IE uses natural language processing (NLP) tools
[28], the corpus heterogeneity plays an important role as well [46]. This is due
to the fact that most NLP tools are trained on well-formed input text and not on

6

CHAPTER 3. RELATED WORK 7

random chains of characters found on the web. In terms of extracted data there are
also differences in the literature. On the one hand researchers use a set of manu-
ally selected patterns to identify related pairs, so called tuples. On the other hand,
researchers developed systems, that extract relation independently. These systems
identify so called triples, that can identify previously unknown relations and its re-
lated entities. How these systems were implemented and evaluated is described in
the following subsections.

3.1.1 LSOE - A Lexical-Syntactic patterns based Open Extractor

In [5] the authors introduce a novel Open IE approach that extracts triples us-
ing lexical-syntactic patterns. The authors demonstrate with this work, "that an
approach that performs unsupervised extraction of triples applying a few lexical-
syntactic patterns in texts labelled only with POS tags, obtains results consistent
with state-of-the-art". Two relatively small corpora are selected to prove their hy-
pothesis. On the one hand a 217 sentences from documents related to the Philos-
ophy of Language and on the other hand 2, 701 articles from the Wikicorpus 1.
The input texts were POS tagged using a third party tool and then processed by
their custom developed extractor. This extractor, which is named LSOE, identifies
triples of three different relation spaces by applying between three and eight pat-
terns per relation. It is no surprise that the first corpus only led to 314 extractions
and the second to 2, 539. The relatively small of output is caused by the corpus
size as well as the selection of only a few patterns. However, the achieved preci-
sion of the extracted triples is considerably high with 54 percent for the domain
independent Wikicorpus input and 62 percent for the domain dependent corpus.
With a comparison with existing Open IE system the authors prove their initial hy-
pothesis. Although the accuracy is comparable to the state-of-the-art, it has to be
noted that the corpus is rather clean in terms of well-formed sentences and contains
well-defined concepts. This makes it comparatively easy to apply lexico-syntactic
patterns to the text, because the small input can be assessed beforehand and the
extraction does not have to deal with malformed input, such as foreign symbols or
sentences longer than 1 million characters. The related work introduced in the next
section, is an approach that copes with such a noisy input corpus.

3.1.2 TextRunner

According to Etzioni et al. [13] the problem with most IE work is, that it is focused
on a small number of relations in preselected domains, certain corpora, like news-
papers or emails, and only target a small amount of relations. Thus, the researchers

1available at http://www.cs.upc.edu/ nlp/wikicorpus/, accessed on 10.10.2015

CHAPTER 3. RELATED WORK 8

introduce a novel extraction paradigm "[...] that tackes an unbound number of re-
lations, eschews domain-specific training data, and scales linearily to handle web-
scale corpora [...]" [13]. To demonstrate the new domain- and relation-independent
extraction approach, a system called TextRunner was implemented. TextRunner
performs the domain independent extraction in two phases. First, build a model
of how relations are represented in a particular language. According to the re-
searchers an Open IE system cannot rely on a set of lexical patterns to detect re-
lations on the web corpus. Lexical patterns are relation specific and therefore not
suitable detect a previously unknown amount of relations. The authors suggest to
learn a model "based on unlexicalized features such as part-of-speech tags [...] and
domain-independent regular expressions [...]" The second step then extracts triples
of the form (subject, predicate, object) from a text corpus using the model of the
first phase. A test on a corpus of 120 million web pages was rather successful in
terms of recall, as it returned over 500 million triples. The researchers conducted
further tests in cooperation with Google and found out, that "the use of an order-of
magnitude larger corpus boosts both precision and recall" [13]. During their tests
the researchers observed a high heterogeneity on the web corpus. This aspect "[...]
makes tools like parsers and named-entity taggers less accurate, because the corpus
is different from the data used to train the tools [...]" [46]. After the extraction the
researchers develop a search engine that makes the extracted triples accessible. In
the work of Agichtein and Gravano [1], which introduced in the next section, the
two phases are bootstrapped to an iterative process, that refines extraction patterns
after each iteration.

3.1.3 Snowball

In this work [1] the researchers construct a system, which "introduces novel strate-
gies for generating patterns and extracting tuples from plain-text documents" [1].
The authors carry out an experiment that focusses on the relation located in, be-
tween a company and a location. As input for the extraction a rather clean and small
input corpus for the extraction. To be precise, the input consists of a 320, 000 news
paper articles from the North American News Text Corpus, which are split into a
training and a test set. In the first step of the strategy a number of seed tuples is
selected. With these seed tuples text passages are identified and stored, which con-
tain a tuple. These text passages are then used to generate patterns, that describe
a located in relation. Using the generated patterns the system proceeds to identify
new tuples. The newly extracted tuples can can then be used as seed tuples for a
further iteration of the entire system. Each consequent iteration refines the set of
patterns. For this purpose each pattern is assigned a confidence value. If the value
is beneath a certain threshold, the corresponding pattern will be deleted and the

CHAPTER 3. RELATED WORK 9

next iterations are performed without it. The strategy has the goal to improve pat-
terns and extracted tuples with each iteration. The experiment is evaluated using
precision and recall measures and compare them to existing information extraction
systems. According to the researchers this strategy is "flexible, so that [they] cap-
ture most of the tuples that are hidden in the text in our collection, and selective,
so that we do not generate invalid tuples" [1].
With such extraction systems valuable resources can be created as described in the
following section.

3.2 Extracting structured resources from the Web

The works described in this section performs an extraction of domain independent
data, and also provide useful meta-data in the form of generated attributes or prove-
nance information. The input corpus in these works include large amounts of web
documents. The following three selected works differ in terms of how the authors
created:

• knowledge bases [12];

• ontologies [20];

• taxonomies [45].

According to [7] a "knowledge base is a source of information that stores facts ex-
plicitly as declarative assertions". Among others, the purposes of a knowledge base
include the preservation of intellectual property or serve as repository for learning
resources [42]. A special form of such a valuable information source is a ontology
[19]. According to Uschold and Jasper [40] an ontology can be characterized the
following way: "An ontology may take a variety of forms, but necessarily it will
include a vocabulary of terms, and some specification of their meaning. This in-
cludes definitions and an indication of how concepts are inter-related which collec-
tively impose a structure on the domain and constrain the possible interpretations
of terms." In contrast to a taxonomy, an ontology contains multiple relations be-
tween concepts. A taxonomy focusses on a specific relation which is often referred
to as ISA or hyponymy relation. [11]. With this relation space a taxonomy can be
built, by structuring these directed relations into a hierarchy [11]. In the follow-
ing subsections the way how to create the above mentioned resources in automatic
fashion is described.

CHAPTER 3. RELATED WORK 10

3.2.1 Probase

Probase [45] is a data resource developed in 2012. It is a probabilistic taxonomy
for text understanding [45]. The researches extracted concepts from a web corpus
of 1.68 billion web pages for the purpose of creating a universal taxonomy. The
difference to previous approaches is the extent of the taxonomy, as it contains more
than 2.7 million concepts. This is achieved by allowing more vague concepts in
form of modified noun phrases. The researchers argue, that existing taxonomies
only provide well-defined concepts such as company, but do not include more real-
world concepts such as large company. An additional novelty of their experiment
is, that the extracted hyponymy tuples are given a certain probability, which de-
scribes the certainty that an extracted relation is true. Furthermore, this research
introduced a novel framework to construct the taxonomy. Using an iterative learn-
ing algorithm, hyponyms are extracted from the web corpus. The second part of
the framework is a taxonomy construction algorithm, that transforms the extracted
data in a hierarchical structure. At the time of its creation, Probase was largest
taxonomy regarding the amount of concepts and its probabilistic nature provides
benefits to applications that require text understanding.

3.2.2 Biperpedia

In Gupta, et al. [20] an ontology for web search applications is introduced, which is
called Biperpedia. It is an automatically created ontology, that contains 1.6 million
class-attribute pairs and 67, 000 distinct attribute names. In contrast to Probase,
the goal is not the creation of a taxonomy, but a new ontology tailored for search
applications.

As the experiment to create Biperpedia was performed at Google Research, the
researchers are able to make use of the query stream of their search engine 2, to ex-
tract attributes for the ontology. Additionally, the researchers incorporate attributes
extracted from web text as well as Freebase. Freebase is "a collaboratively created
graph database for structuring human knowledge"[4], that contains "125,000,000
tuples, more than 4,000 types, and more than 7,000 properties" [4]. The extracted
attributes of these data sources of structured and unstructured nature, are merged
and then further enhanced. For example by attaching lists of common misspellings
and synonyms. To further specify the attributes an algorithm description is pro-
vided, that can classify attributes into certain categories. With the enhanced and
classified attributes a method is described to link the attributes with the most suit-
able classes. The experimentally measured precision of the attributes is over 0.5

2User Interface available at google.com, accessed on 25.10.15

CHAPTER 3. RELATED WORK 11

for the top 5, 000 entities. The attribute set can be regarded as valuable addition
to existing ontologies, like Freebase or DBPedia, as these only contain 1 percent
of the top 5, 000 attributes. DBPedia is a knowledge base that contains over 2.6
million entities. Each entity is provided with a "human-readable definitions [...],
relationships to other resources, classifications in four concept hierarchies, various
facts as well as data-level links to other web data sources describing the entity" [3].

3.2.3 Knowledge Vault

Both above mentioned approaches use web data as input, which can be rather noisy.
Therefore Murphy, et al. [12] carried out an experiment that does not only uses
web data as input, but "combines extractions (obtained via analysis of text, tabular
data, page structure, and human annotations) with prior knowledge derived from
knowledge repositories". The result is a knowledge base, which is named Knowl-
edge Vault: a web-scale probabilistic knowledge base. To create this knowledge
base the researchers extract data in form of triples from each source, e.g. tabular
data, and assign a confidence value to the extracted triples. In parallel, a graph-
based approach is taken to learn the probability of each possible triple, based on
triples stored in an existing knowledge base. Lastly, the extracted web triples and
learned probability of each possible triple from the knowledge bases, are combined
in a so called knowledge fusion. The knowledge fusion computes the probability
of a triple being true, based on agreement between triples of both sources. This
knowledge base is different from other ones, as it combines rather unclean web
extractions with prior knowledge of existing knowledge bases. Furthermore, it is
much bigger than other comparable knowledge bases according to the authors.

Unfortunately all these described resources and the exact algorithms are not
publicly available. Therefore, it is an important contribution to provide such a
structured resource publicly. As a first step this work sets out to create a large scale
hyponymy relation database, which then can be used to create a taxonomy similar
to Probase [45].

Chapter 4

Methodology

The methodology of this research is a set of experiments, that generates a large
scale data source of hyponymy tuples. The key concept used in this experiments is
a hyponymy tuple. The term hyponymy originates from the domain of linguistics
and is defined by Crystal [10] as the following:

Definition 1 "A term used in semantics as part of the study of the sense relations
which relate lexical items. Hyponymy is the relationship which obtains between
specific and general lexical items, such that the former is ’included’ in the latter
(i.e. ’is a hyponym of’ the latter)" [10].

An example for such a hypnyom is for example the tuple 〈apple, fruit〉. These hy-
ponymy relations consist of three components: One relation and two entities. The
hyponymy relation is identified by matching lexico-syntactic and lexico-grammatic
patterns with a given text. As one of the entities, the hyponym, is included in the
other one, this subordinate entity is referred to as instance in this experiment. In the
example the instance is the apple. The second entity, the hypernym, includes the
first one, and is therefore the superordinate and referred to as class in this thesis.
The class in the given example is fruit. The two entities together are referred to as
tuple. How such a hyponymy database is created from a heterogeneous and large
scale input corpus is depicted in figure 4.1 and will be described in the following
paragraphs.

4.1 Extraction Workflow

Figure 4.1 describes processing steps, which are depicted as arrows, as well as the
input and output data, which is depicted using cylinders. The direction of the ar-
rows represents the sequence of execution. Each processing step is provided with

12

CHAPTER 4. METHODOLOGY 13

Figure 4.1: Workflow for the WTDB Creation

a name and a reference to the section, in which the processing step is described.
The initial input data consists of archives from the Common Crawl. The Common
Crawl is "an open repository of web crawl data hat is universally accessible and
analysable" [16]. These archives contain the text of web pages and are used to
extract tuples in the step named Tuple Extraction. By using patterns that can detect
hyponymy relations, tuples are extracted from the archives. The result of the first
processing step are the tuples along with information about their extraction and
their provenance information. In the following processing step Removal of Dupli-
cates the provenance information is then used remove tuples, that were extracted
from the same sentence under the same pay-level-domain (PLD). This processing
step reduces the data volume, without losing any unique tuples and reduces the im-
pact of spam. After the duplicate removal the provenance information is split from
the tuples in step Removal of Duplicates as it is not further processed and would
slow down processing. Due to the heterogeneous nature of web data the tuple ex-
traction as well contains heterogeneous representations of entities. Heterogeneous
in this context means, that the same entity can be written in different ways. For the
single tuples to be aggregated however, the string representation of the tuples has to
be equal. Thus a normalization of the extracted entities is performed in step Tuple

CHAPTER 4. METHODOLOGY 14

Normalization. The goal is to reduce the amount different written forms of enti-
ties. The process Aggregate Tuples then identifies tuples with equal string values of
classes and instances and merges them. During the merge the frequency of a tuple,
the amount of distinct patterns and amount of distinct pay level domains for each
tuple is identified and stored. The output of this process are unique tuples. These
are inserted in a database management system in step Insert Tuples to enable the
access for researchers. Due to the size of the data it is split across over thousands
of tables to enable decent query execution.
During each of these steps the challenge is to find a trade-off between the run-
time and the complexity of the used algorithms, given the size of the dataset and
the restrictions of the technical infrastructure. To describe how this challenge was
overcome each processing step is documented in detail in the following subsec-
tions.

4.1.1 Tuple Extraction

This subsection describes how tuples are identified and extracted from a large cor-
pus, namely the Common Crawl archives 1.
The Common Crawl Foundation crawls the web multiple times a year, stores the
crawled data and makes these archives publicly available on the web 2. The data is
stored at Amazon’s S3. S3 is the abbreviation for Simple Storage Service, which
is a commodity-priced storage utility [31]. The S3 can be classified as Storage-as-
a-Service (STAAS), because it enables users to store and access data not on their
own, but on Amazon’s infrastructure [44]. It has to be noted, that these archives do
not contain every piece of information available on the web. The archives are built
from data available on the web using a so called web crawler. "A web crawler is a
program that downloads web pages" [8]. The crawler developed by the Common
Crawl Foundation respects crawling conventions, stored in robot.txt for example
and abides nofollow instructions of embedded hyper-links [32]. These archives
are available in three formats, which are briefly described in the following. "The
WARC format is the raw data from the crawl, providing a direct mapping to the
crawl process. Not only does the format store the HTTP response from the web-
sites it contacts [...], it also stores information about how that information was
requested [...] and meta data on the crawl process itself [...]." [17]. The data stored
in the WARC archives is split and then stored in WET and WAT archives. The
WAT archives contain meta data that includes the HTTP headers returned and the
links listed on a page [17]. WET archives on the other hand contain the extracted

1Archive links available at https://aws-publicdatasets.s3.amazonaws.com/common-crawl/crawl-
data/CC-MAIN-2015-18/wet.paths.gz, accessed on 25.10.15

2Overview of crawl data: https://commoncrawl.org/the-data/get-started/, accessed on 25.10.15

CHAPTER 4. METHODOLOGY 15

plain-text of a web page [17] and meta data including the URL of the web page.
For this experiment the WET archives are selected, because only the provenance
information as well as the extracted plain-text of a website are required. The latest
crawl of the Common Crawl was selected, which was performed in April 2015. It is
selected because it has the most up-to-date information compared to earlier crawls.
Furthermore it is assumed that the amount of crawled web pages is growing from
crawl to crawl, because of the exponential growth of information on the web. This
crawl contains more than 2.11 billion web pages and has a size of 168 terabytes
(TB). The textual data of these archives is analysed using a set of lexico-syntactic
patterns. How these patterns are selected and used in order to achieve a high recall,
is described in the following sections.

4.1.1.1 Pattern Collection

To acquire patterns that indicate a hyponymy relation between two noun phrases,
existing literature on hyponymy extraction is analysed. Each literature work and
their respective lexico-syntactic patterns are described in the following paragraphs.
Based on a rough evaluation, it was decided to adapt a pattern or not. Such an
pre-evaluation is necessary, because some of the patterns have been extracted auto-
matically in Open IE experiments. Thus, these patterns have not yet been applied
for hyponymy extractions. Moreover, some of the automatically generated patterns
occur rather rarely or only in specific domains. With these aspects in mind and the
guidelines of high recall and fast extraction, it is acceptable to remove these exotic
patterns. Since they don’t frequently occur, the recall will not be harmed signifi-
cantly. The runtime of the extraction benefits from each excluded pattern equally,
so removing low recall patterns is a performance increase.
Hearst [21] identifies "a set of lexico-syntactic patterns that are easily recognizable,
that occur frequently across text genre boundaries, and that indisputably indicate
the lexical relation of interest" [21]. These patterns are used to interpret unre-
stricted, domain-independent text and are therefore all deemed suitable for this
experiment.
Ponzetto and Strube [33] set out to induce a taxonomy using lexico-syntactic match-
ing and the categorization system of Wikipedia. The researchers present methods
to "automatically assigning isa and notisa labels to the relations between cate-
gories" [33]. For this task the researchers use two sets of patterns. On the one
hand patterns that indicate a notisa relation and on the other hand a set of patterns
that indicate an isa relation. A isa relation is identified using hyponymy patterns,
whereas a notisa relation is found using meronymy patterns. The latter set of notisa
tuples is used, to prevent a wrong labelling of isa relations. The refined isa rela-

CHAPTER 4. METHODOLOGY 16

tions can then be used to automatically create a taxonomy. The set of isa patterns
is selected for this experiment.
A study by Orna-Montesinos [30] set the goal to find "lexico-grammatical pat-
terns which signal the hyponymy relations of the term building." As corpus a set
of specialized textbooks in the field of construction engineering and construction
is selected. The study not only reveals new patterns that indicate a hyponymy rela-
tion, but also validated the existence of manually selected patterns, as for example
the ones of Hearst [21]. Overall, this study provides an extensive list of lexico-
grammatical patterns indicating a hyponymy relation. Although, these patterns
were acquired from a domain specific corpus, they do not contain any domain-
specific vocabulary and are therefore mostly rated as suitable patterns.
Furthermore, the research of Klaussner and Zhekova [25] provides useful patterns.
Their research describes "how ontologies can be built automatically from defini-
tions obtained by searching Wikipedia for lexico-syntactic patterns based on the
hyponym relation" [25]. For this purpose the researchers provide a set of lexico
syntactic patterns that have proven to be successful. The goal of their research is to
extract definitions from domain-independent, unrestricted text. The used patterns
are selected for this this project.
Further suitable patterns are identified in the study of Ando et al. [2], in which a
method is introduced, that automatically extracts hyponyms from Japanese news-
papers. Of course it seems odd to apply patterns used in Japanese newspapers, to
identify hyponyms in the English language. However, the English translations of
these are capable of finding hyponyms in English texts. Since an acceptable recall
and accuracy can be expected from these patterns, they selected for this research,
as well.
The above identified patterns are by no means unique. For example, the patterns
identified by Hearst [21] can also be found in the research of Ponzetto and Strube
[33], Orna-Montesinos [30], Klaussner and Zhekova [25] and Ando et al. [2].
Thus these overlaps are removed, because it does not make sense to match the
same pattern multiple times. The list of all selected patterns is provided in a table
in Appendix B. The patterns there are described in a custom notation, which is
used to highlight the position of the instance, the keywords of the pattern and the
position of the class. An instance position is indicated by the abbreviation NPI ,
which is short for noun phrase of the instance. The keywords of the hyponymy pat-
tern are written in lower case letters and the position of class term is indicated with
the abbreviation NPC . Each pattern is assigned a unique ID and a source, which
describes where each pattern can be found in literature. This pre-selection of pat-
terns is now translated into code and applied to a test corpus, to determine their
usability for a large scale hyponymy extraction. How these patterns are translated
into code is described in the following section.

CHAPTER 4. METHODOLOGY 17

4.1.1.2 Regular Expressions

Before a first test with identified patterns can be executed, these have to translated
into a language suitable to parse text. Regular expressions (regex) form such a
language, that is used to parse and manipulate text [38]. Usually regex are used to
carry out complex find-and-replace operations [38]. As this language suitable to
parse the provided text data and as it is integrated into the programming language
of the framework, the choice is made to detect patterns using regex. For this regex
translation the patterns are categorized into specific pattern types. These types are
different in terms of the position of pattern keywords. The position of keywords
then entails the position of the class term and the instance term. Four types of
patterns can be distinguished with the position of keywords:

• Compact Patterns

• Split Patterns

• Isolated Patterns

• Apposition Patterns

How these different pattern types are defined and translated is described in the
following paragraphs.

Example Compact Pattern: NPi or other NPc

The keywords of the compact pattern are positioned next to each other, without
any words in between. An example for such a pattern is provided above, in which
the keywords are or other. These pattern types are translated into regex using the
following schema. As we search for classes and instances indicators for such en-
tities are required. Such an indicator can either be a unicode letter or a number.
Numbers are allowed in order to detect entities like Windows 7 or 76ers. How-
ever certain symbols other than letters and numbers can occur in between words.
The selected symbols include all types of quotation marks, apostrophes and the
trademark symbols. The more symbols are allowed the more recall is expected.
However, the performance of the regex matching will be reduced, with an increas-
ing number of symbols. Therefore only symbols were selected per hand that are
expected to occur frequently in English sentences. Thus, after the first indicator of
an entity a list of optional symbols is allowed. Additionally, the regex for compact
patterns allows an optional comma. Even if some compact patterns have no place
for an optional comma it is still introduced for two reasons. First, the patterns are
easier maintainable if they follow a common structure. Second, it can be assumed

CHAPTER 4. METHODOLOGY 18

that a significant proportion of sentences on the web are not written in proper En-
glish grammar in terms of comma usage. Therefore, it was decided to include an
optional comma to increase the recall without a significant performance decrease.
The optional comma is followed by a space and the keywords of a pattern. If the
pattern contains multiple keywords these are separated by a space. The keywords
are then followed by a space. As previously stated, an entity in a sentence might
be surrounded by quotation marks. Therefore, an optional symbols are allowed in
front of the indicator for the latter entity, which again can start with a letter or a
number. A list of regular expressions for compact patterns is provided in Appendix
C.

Example Split Pattern: Such NPc as NPi

Second, the so called split pattern has the characteristic that either a class term or
an instance term is between the keywords of the pattern. An example for such a
pattern is provided above, in which the key words such and as are split by the words
of the class. With one entity being surrounded by keywords, a simple indicator that
consists of one single character is not suitable. Thus, an entire place holder for an
entity has to be integrated into the regex. The place holder for an entity contains at
least one word and a maximum four words. Single words are separated by spaces.
A word however does not only contain letters. Also hyphenated words, such as
well-known are detected, as optional hyphens are integrated into the regex describ-
ing a single word. As described for compact patterns, also split ones have to take
into account that words may start or end with optional symbols. The same optional
symbols used in the compact pattern are applied for these split patterns. A special
case for split patterns has to made in the case of patterns that start with an adjective
in the superlative. If an adjective contains more than two syllables the superlative
of the adjective usually contains two words: On the one hand most and on the other
hand the adjective itself. Therefore, split patterns that make use of the adjective in
superlative form, have to contain at least two words and up to five words, as one of
these words is reserved for the adjective after most. A list of regular expressions
for split patterns is provided in Appendix D

Example Isolated Pattern: NPc, NPi for example

The third type of patterns is named isolated pattern in this thesis. This name is
chosen, because neither do the keywords surround an entity, nor do the entities
surround a key word. One could say the entities and keywords are isolated from
one another. The keywords of these patterns are positioned behind the entities for

CHAPTER 4. METHODOLOGY 19

classes and instances. An example for such a pattern is provided above. For the
isolated patterns, the already developed place-holder from split patterns is used for
both, the class and the instance noun phrase. After an optional comma behind the
last entity place holder, the keywords are specified.

Example Apposition Pattern: NPc, NPi,

Lastly, the apposition pattern is described. In this case it is not keywords that
indicate a hyponymy relation, but punctuations. In this cases of an apposition
the instance term is followed by a class term, that is surrounded by punctuations.
An example is provided above, in which commas indicate the apposition pattern.
Therefore the regex for apposition patterns starts like a compact pattern. An in-
dicator for an entity is required in front of the punctuations of the apposition. As
before, this indicator can either be a number or a letter followed by optional sym-
bols. Next is the punctuation symbol of the apposition followed by a space. Equal
to split patterns a place-holder for an entity is required between the punctuations, as
described in the paragraph above. The place-holder is then followed by the punc-
tuation symbol of the apposition, which also signals the end of the regex. There
is no list of apposition patterns provided, because these were excluded from the
experiment. The symbols used for apposition patterns simply occur too frequently
in the corpus, which would prevent an efficient filtering of input data. The reasons
and used methods for filtering are described in section 4.1.1.3.

The regular expressions for the place-holder are further optimized to ensure a ro-
bust matching process and reduce its duration. The regex for the place-holder has
to contain quantifiers to represent multiple characters. The standard quantifiers of
regular expressions are greedy, which means they try to match as many times as
possible [38]. This is an adverse configuration for this experiment, because the
regex contain key words that occur after the place-holder. As a consequence, the
matcher will match as many letters as possible. In this case it matches the en-
tire input line, until a not allowed character is found. After that the matcher will
backtrack character by character and try to match the key words. This massive
runtime increase can not be justified and is prevented by the usage of capturing
groups and possessive quantifiers. These ensure, that if a place-holder is matched,
the key words are tried to be matched immediately afterwards. This way a pattern
can be found, with only one pass over the characters of a line. In case of a matched
pattern the entire line is processed again using more advanced NLP techniques, as
described in the following section.

CHAPTER 4. METHODOLOGY 20

4.1.1.3 Splitting and Filtering Input Data

Given the noisy nature of the Common Crawl data, it is not feasible to perform a
test run of these regex. As the corpus is read line by line, the length of line has an
impact on the performance of a regex. Lines longer than 100, 000 characters are
rather frequent in the corpus and therefore have to be split before a regex can be
matched. The best way for this experiment is to use a sentence splitter to split each
line into sentences and then analyse the single sentences using regex. This way tu-
ples can not be destroyed, because the identified patterns are within the confines of
one sentence. For this purpose a regex is used to split the line sentences. The first
indicator of the end of a sentence are the following punctuations: The full-stop ".",
the question mark "?" or the exclamation mark "!". If one of these punctuations is
followed by a space and a capital letter, then the line is split. Similarly to the regex
of the patterns, sentences can start or end with optional symbols such as the quota-
tion mark. These are considered for the sentence split regex, as well. Additionally,
the sentence splitter is implemented in a way that it does not split common abbre-
viations, that are using a full-stop. For example, the name Marti A. Hearst would
be split in two sentences after the A., if common abbreviations are disregarded. For
this purpose a list of common abbreviations from the European Parliament Pro-
ceedings Parallel Corpus (Europarl) 3 is used and extended manually. After the
first test runs of the extraction, it became evident that a few abbreviations, such as
fig., are used rather frequently in the input corpus. If an abbreviation is observed
more than once in a test extraction, it is added to the list, which is provided in Ap-
pendix F.
With the patterns being in the English language, a website filter can be imple-
mented, that filters out documents from websites, which are written in a foreign
language. Such a filter would decrease the amount of input data significantly and
therefore speed up the extraction. But due to the nature of the corpus, such a fil-
ter can not be implemented without risking the loss of valuable tuples. A single
web page can contain multiple languages. For example users comment on an En-
glish news article in their native language. Thus, the language detection tool has to
be applied to each section of a web document. Even if it is possible to detect each
section of a web document and apply a language detection algorithm, it would dras-
tically increase the runtime. With many colloquial terms and not natural language
text passages on the web, the language detection also would become susceptible
to errors. Such a runtime increase, with questionable results cannot be justified.
Hence, web pages are not filtered according to language criteria.
Even after the introduced sentence split, there still remain text passages, that are too
long for a robust regex execution. Thus, an additional text chunker is implemented,

3Available at http://www.statmt.org/europarl/, accessed on 25.10.2015

CHAPTER 4. METHODOLOGY 21

that splits a text passage after a fixed amount of characters. The more characters
are allowed in a text passage, the less splits are performed. With less splits the
probability is decreased, that a valid tuple is split in half and therefore would be-
come invalid. Consequently the amount of allowed characters should be as large
as possible. The character threshold is determined empirically. The threshold is
increased with each test run until, until one of the regex fails to match the line.
The resulting maximum length was set to 400 characters. Additionally a minimum
sentence length of ten characters is introduced, to reduce processing time. This is
due to that fact, that even the shortest pattern, requires at least 4 characters and two
spaces. Therefore, one can safely assume, that the remaining four characters will
not provide too much useful information.
With the lines chunked in processable chunks the first test runs still show poor per-
formance and are therefore not suitable to be run on the entire corpus. Especially
the regular expressions containing a place-holder for an entity performed poorly.
The solution to this problem is a pre-check method, which determines if a line
is worthy to analyse with the rather complex regex of the patterns. This method
takes a line chunk as input and checks, if one of the keywords, e.g. such as, of the
patterns is present in a line. The method turned out to be successful on web data,
because the web does not only contain well formed sentences. Timetables of bus
stations, lists of personnel or price lists are examples for lines, that contain thou-
sands of characters without any useful information for this experiment. However,
the pre-check method has a significant downfall: apposition patterns can not be
pre-checked reliably, because these punctuations occur not only in sentences, but
also in lists and timetables. To make it worse, these apposition patterns contain a
place-holder for an entity, which entails an increased matching time. Consequently
the decision is made to exclude all apposition patterns from this experiment, to en-
sure a robust tuple extraction.

The extraction of single entities requires more complex algorithms and there-
fore should only be executed if the tuple provides useful or novel information. To
determine if a tuple contains useful information a simple heuristic is used. If the
words directly in front of or behind the matched pattern are pronouns or interrog-
ative words, the match is ignored and the next sentence is read. A pronoun is a
substitute for a noun and usually can be resolved using its context. But such a re-
solver is computationally to costly for a fast extraction. Since unresolved pronouns
do not provide useful information for this experiment, these are filtered out. The
same applies to interrogative words, such as what. Furthermore, if a sentence is
found more than once under the same pay level domain, it will not be analysed
again, as we already have stored the information. This will reduce the influence
of automatically generated content on the frequency measurements of tuples on

CHAPTER 4. METHODOLOGY 22

archive level.

At this stage the regular expressions are defined, the input is split in reason-
able chunks and a pre-check method is implemented. Hence, a sample extraction
is performed on a subset of corpus to measure the recall and the precision of the
constructed regex. A random segment of the corpus is selected, that has approx-
imately the size of 1 percent of the entire corpus. If one of the regex matches
a sentence, the matched line is stored and analysed for valid hyponymy relations.
The guidelines used for this evaluation are taken from Ponzetto (2011) [33] and are
also provided in Appendix B. For the precision evaluation 100 matches per pattern
were analysed, or all matches of a pattern if it had less than 100. The results of this
evaluation are provided in Appendix B and are discussed in the following. Each
pattern had at least twelve correct matches, which indicates the validity of the iden-
tified patterns and their regex translation. Unfortunately three patterns that have an
precision below 20 percent, have an massively increased recall, compared to other
ones. These are the patterns NPc like NPi (p9), NPi NPc types (p35) and NPi as
NPc (p40). Such a high recall is not a surprise, if one considers the frequent usage
of the keywords in natural language texts. Using the the recall of the text crawl
and the precision of 100 analysed tuples an estimation is made, how many false
positives these patterns will return. The pattern with the ID p35 matches more than
3000 false positives per archive, the pattern with the ID p9 more than 16000 and
the pattern with the ID p40 more than 36000. Although a guideline of this exper-
iment is a high recall, it is decided to remove these patterns from the experiment.
This is due to the reason, that further processing steps get computationally more
expensive and therefore either require more processing time or better technical re-
sources. With both, time and resources strictly limited for this experiment, it is the
safest decision to disregard these patterns. The isolated patterns had to be excluded
due to bad matching performance. These are patterns, in which the instance and
the class terms are not separated by a pattern keyword, namely "NPC , NPI for
example" (p32), "NPC , NPI for instance" (p41) and "NPC , NPI and the like"
(p44). The explanation for this behaviour is simple. Since the first parts of the
regex are place-holders for noun phrases, these parts basically match any words in
a sentence. Then the matcher tries to match the keywords, which are more strict,
as they only allow a fixed set of characters in a exact order. The result is, that the
matcher spends a lot of time on matching the place-holders, and then fails most
of the time, when trying to match the key words. To ensure the robustness of the
system, the safest decision is to exclude these three patterns from the extraction
system.
If one of the patterns successfully matches a input text, the next step is to extract
single entities from it. This processing step is described in the following section.

CHAPTER 4. METHODOLOGY 23

4.1.1.4 Noun Phrase Extraction

At this stage, the extraction system is able to find sentences or line chunks, that
contain a potential hyponymy relations. However, it is not the goal to extract sen-
tences, but single tuples. So the next step is to extract single noun phrases in front
of, after or inside the matched pattern. A noun-phrase can be defined as follows:

Definition 2 "The constructions into which nouns most commonly enter, and of
which they are the head word, are generally called noun phrases (NP) or nominal
groups. The structure of a noun phrase consists minimally of the noun (or noun
substitute, such as a pronoun); the constructions preceding and following the noun
are often described under the headings of premodification and postmodification."
[10]

So the next challenge is the extraction of noun phrases. Each noun phrase must
contain a noun or a substitute. With noun substitutes excluded from this extraction,
it is the first step to find words, which are tagged as nouns. Approaches using dic-
tionaries of nouns are not suitable for this experiment, because the input corpus is
too large. The single words of the matched sentences would have to be compared
to the words in a dictionary. Such an approach does not scale as required. In previ-
ous research in the area of Open IE the input texts are part-of-speech (POS) tagged
using third party tools [5] [33] [14]. As these approaches have been successfully
tested on web documents [5] before, this research employs the same approach.
Therefore POS tagging is used, which is:

Definition 3 "POS tagging identifies the lexical category of each word in a sen-
tence on the basis of its context. An accurate definition of POS tagging (POST) is
a mapping from a sequence of words to a sequence of lexical categories." [34]

With such a mapping of words to lexical categories, nouns can be identified and
therefore a noun-phrase with its modifications can be extracted. This basically
entails a selection of allowed POS tags for the modifiers and the head noun. The
list of possible POS tags is dependent on the used POS-tagger. In this research the
POS tags of the PENN Tree Bank 4 are used. Unfortunately, the POS tags are not
completely suited for this purpose. The problem is, that some tags can either refer
to a verb or a participle. While the participle form can be a modification for a noun
phrase, the verb cannot. With many ambiguous tags the true confines of a noun
phrase are difficult to detect. As a result, an unrestricted detection of noun phrases

4List of POS Tags available at
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html, accessed on
25.10.2015

CHAPTER 4. METHODOLOGY 24

Name Tag Example
Noun singular or mass NN apple
Noun plural NNS apples
Proper noun singular NNP Spain
Proper noun plural NNPS Spaniards

Table 4.1: Allowed Tags for the Head Noun

only using POS tags, will result in invalid and rather long noun phrases. Thus a
maximum allowed length is empirically determined and set to four words per noun
phrase. The allowed head noun tags include every form of nouns or proper nouns
and are depicted along with descriptions and examples in table 4.1.

However, an additional constraint is implemented, which ensures that a noun
in genitive form is not categorized as head noun. These nouns are then manually
labelled as adjective, to ensure these are included in the noun phrase, but not as
its head. It is important to note, that the head noun is not always the first noun in
a noun phrase. This is the case for chains of nouns, in which the last noun is the
head noun. Take for example the noun phrases bus driver or bus driver union. In
both cases not the bus is the head, but the last nouns in each chain. The subsequent
nouns are stored in the post-modifier, although these are the actual head.
As no exhaustive lists of allowed POS tags for pre-modifiers could be found in
literature, the tags were manually selected. As the goal of this experiment is infor-
mation extraction, only POS tags are included the have the potential to enrich or
specialize the information about the noun phrase. Therefore, any kind of pronoun,
determiner or quantifier is excluded from the list of allowed POS tags for the pre-
modifier. Forms of participle verbs hold valuable information. For example the
present participle in the flying dutchman or the past participle as in the recovered
artefact. Unfortunately the used set of POS tags does not allow the differentiation
between verbs in the gerund form and the present participle form. To avoid the
integration of verbs into the pre-modifier, the present participle form is removed
from list of allowed POS tags for the pre-modifier. Additionally, adjectives are in-
cluded in the pre-modifier as they provide more specificity to the noun phrase. The
resulting list of pre-modifiers is provided in 4.2.

The tags of the post-modifier are listed in table 4.3. It includes all allowed
tags of the pre-modifier and the head noun. The first reason to include all kinds
of nouns is the presence of noun chains, for example bus driver. Additionally, a
noun phrase can be specified by a preposition in combination with a noun, as in
American declaration of independence. Consequently prepositions are categorized

CHAPTER 4. METHODOLOGY 25

Name Tag Example
Adjective JJ new
Adjective comparative JJR newer
Adjective superlative JJS the newest
Verb past participle VBN elected

Table 4.2: Allowed Tags for the Pre-Modifier

as valid post-modifier tags, although these do not hold any specific information.
Therefore prepositions can be regarded as indicator for more specific information
in the subsequent words of the sentence. The same applies to determiners. For
example, member of the senate provides more information, than member. Further-
more cardinal numbers as in iPhone 6 are added to the list. The present participle
form of verbs is also integrated in the post-modifier list, if it is followed by a noun.
The assumption is that the present participle is a specification of the following
noun.
After the post-modifiers have been detected they have to be corrected in particular
cases. This is the case if the post-modifier does not end with one of the noun types
or a cardinal number. The remaining possible POS tags would either hold no in-
formation about the noun-phrase, like the preposition of in best basketball player
of. Thus, each word of the post-modifier is removed, until the last noun or cardinal
number is found.

After the modifiers are identified, it may occur that the maximum length of four
words per noun-phrase is violated. In these cases the decision is made to remove
the pre-modifier. By no means does that mean, that the pre-modifier carries less in-
formation than the post-modifier. However, in case of nouns chains, the head noun
of the noun phrase is positioned in the post-modifier. As the head noun has the
highest priority of all NP constituents, this decision is the most reasonable. With
the tags defined, the next step is to detect the noun phrases in a matched sentence,
which form the hyponymy relation.

In order to determine, which noun phrases of a sentence are in a hyponymy
relation to each other requires a syntactic analysis of the sentences. Given the
magnitude of input data and the length of lines, the algorithm has to scale. Con-
sequently a full syntactic analysis of the sentence is not feasible. Furthermore, the
precision of such an analysis is questionable, if it is performed on unclean web data
which does not only contain well-formed sentences. Therefore a rather simple ap-
proach is taken, which extracts the closest noun phrases to the pattern. The concept

CHAPTER 4. METHODOLOGY 26

Name Tag Example
Adjective JJ new
Adjective, comparative JJR newer
Adjective, superlative JJS newest
Verb, past participle VBN elected
Verb, gerund or present participle VBG working
Noun, singular or mass NN apple
Noun, plural NNS apples
Proper noun, singular NNP Spain
Proper noun, plural NNPS Spaniards
Preposition or subordinating conjunction IN from
Cardinal number CD 1987
Determiner DT the

Table 4.3: Allowed Tags for Post-Modifier

of the closest noun phrase is similar to the one described in [45]. This approach is
based on the assumption, that first noun phrase in front of and the first one behind
the pattern are in a hyponymy relation. False extractions are therefore possible, but
due to the magnitude of data, these false extractions are expected to have a rather
low frequency and therefore can be filtered out at later stages.
Furthermore, one single pattern can identify multiple hyponymy tuples in case of
co-ordination, which is:

Definition 4 A co-ordination is a term in grammatical analysis to refer to the pro-
cess or result of linking linguistic units which are usually of equivalent syntactic
status, e.g. a series of clauses, or phrases, or words. [10]

The coordinating conjunctions used to detect multiple noun phrase are and, or,
&, as well as commas. Although some proper nouns may contain these words, e.g.
Smith & Wesson, there are no efforts taken to resolve these. It is not reasonable to
use dictionaries of proper nouns or even a syntactic analysis, because the perfor-
mance would suffer for a diminutive amount of proper nouns. The result of ignor-
ing these proper nouns is demonstrated in the following. If the company Smith &
Wesson is detected as instance, it will be extracted as two instances, namely Smith
and Wesson. Co-ordinations affect the class terms as well as the instance terms.
Thus, the decision is made to extract multiple noun phrases on each side of the
pattern, if a coordinating conjunction is found on that side.
There are two different sets of algorithms used to detect the noun phrases. One set

CHAPTER 4. METHODOLOGY 27

for the extraction in front of the pattern and another for the noun phrases located
after the pattern. Therefore, the sentence is split in two parts, which are used as
input for these algorithms. For compact patterns the split is performed at the posi-
tion of the pattern. In case of split patterns, the split is performed at the position of
the single keyword, which separates classes and instances.

In the next paragraph the algorithm to extract noun phrases after the pattern is
described.

Algorithm 1 Algorithm to detect Noun Phrases after Patterns
procedure GETNPAFTER(List<TaggedWords> TWS, Integer offset, Boolean
strict)

position← offset
while position < |TWS| do

TW ← TWS[position]
if TWTag /∈ HeadNounTags AND
TWTag /∈ PreModifierTags AND
strict = true then

break
end if
if TWTag ∈ HeadNounTags then

HeadNoun← TW
getPreAfter(TWS, position− 1)
status← getPostAfter(TWS, position+ 1)
Persist(PreModifier,HeadNoun, PostModifier)
Clear(PreModifier,HeadNoun, PostModifier)
if status > 0 then

getNPAfter(TWS, status, true)
end if
break

end if
position← position+ 1

end while
end procedure

Each algorithm consists of three functions. The algorithm to detect noun phrases
after the pattern is initialized with the procedure getNPAfter and is depicted as
pseudo-code in the algorithm 1. It detects the closest noun by comparing the tags
of the input line with the allowed tags of the head noun. The first input parameter is

CHAPTER 4. METHODOLOGY 28

a set of tagged words. A word in this case is a string, that is surrounded by spaces.
The second input parameter, the offset, describes which word tag is checked next
for valid head noun tags. The last input is a boolean value, that indicates if a noun
phrase has already been detected. If this is the case, the consequent noun phrase
detections have more strict termination criteria. When the procedure is called, each
word is checked in its original order. If a POS tag is one of allowed noun tags, this
noun is set as head noun. As soon as a allowed head noun tag is found the proce-
dure passes the position of the head noun to two further functions. One function
is used to detect the pre-modifier and one to detect the post-modifier. After a noun
phrase with its modifications has been detected it is persisted. The variables used
to temporarily store the modifiers and head noun are then cleared, which means all
their associated values are removed. In the case of co-ordinations, which are found
during the post-modifier detection, the procedure calls itself, with the parameter
strict set to true. If this parameter is true, the noun phrase detection is more strict
and terminates if the next word has neither a head noun tag nor a pre-modifier tag.
The detection of the pre-modifier is described in the following.

Algorithm 2 Algorithm to detect Pre-Modifiers after Patterns
function GETPREAFTER(List<TaggedWords> TWS, Integer offset)

position← offset
while position ≥ 0 do

TW ← TWS[position]
if TWTag ∈ PreModifierTags then

PreModifier
+← TW

else
return

end if
if |PreModifier| = 3 then

return
end if
position← position− 1

end while
return

end function

The pre-modifier identification for noun phrases after the pattern is depicted in
algorithm 2. This function is takes as input a set of tagged words and an integer
value called offset. This offset points to the word, which is positioned in front of
the head noun. Then in reverse order the words are checked for valid pre-modifier

CHAPTER 4. METHODOLOGY 29

tags. If a such a tagged word is found, it is added to the pre-modifier, otherwise the
function terminates. As soon as the pre-modifier has reached a length of three the
function terminates, because the maximal noun phrase length has been reached.
The detection of the post-modifier described below is more complex, because it
also handles the detection of co-ordinations.

Algorithm 3 Algorithm to detect Post-Modifiers after Patterns
function GETPOSTAFTER(List<TaggedWords> TWS, Integer offset)

position← offset
while position ≤ |TWS| do

TW ← TWS[position]
if TWTag ∈ PostModifierTags then

PostModifier
+← TW

else if TWTag ∈ Coordinations then
return position+ 1

end if
if |PostModifier| = 3 then

return −1
end if
position← position+ 1

end while
return −1

end function

The post-modifier detection takes as input a set of POS tagged words and
an integer value. The integer value is named offset and points to the word after
the detected head noun. The tagged words are checked in original order to iden-
tify allowed post-modifier POS tags. If such a tag is found, the tagged word is
added to the post-modifier. There are three termination criteria for this function.
The execution is terminated, as soon as the post-modifier has reached a length of
three. Because in combination with the head noun the maximum noun-phrase of
four is reached. Furthermore, the post-modifier detection terminates as soon as
a tagged word is found, that does not have a valid post-modifier tag. For both
previously mentioned termination criteria, the algorithm returns an negative inte-
ger value, which indicates that no co-ordinations were found. The detection of
a co-ordination is the last termination criteria and in this case an integer value is
returned, that points to the next word after the coordinating conjunction. As al-
ready described, if a coordination has been found, the procedure depicted in 1 is
started with more strict termination criteria. As soon as no further noun phrases

CHAPTER 4. METHODOLOGY 30

are found the entire algorithm to extract noun phrases after a pattern is finished.
The extraction system then proceeds to extract noun phrases in front of the pattern.
This algorithm is different, because the words are traversed in reverse order.
The decision to traverse words in reverse order for noun phrase detection before
the pattern is made for performance reasons. It is not reasonable to start analysing
tagged words starting with the first word of the sentence. The goal is to detect
the closest noun phrase before the pattern. Thus one can assume, that the noun
phrase is closer to the pattern, than to the start of the sentence. So if the algorithm
starts at the position of the pattern and then moves gradually backwards towards to
beginning of the sentence, less POS tag comparisons have to be performed.

Algorithm 4 Algorithm to detect Noun Phrases in front of Patterns
procedure GETNPBEFORE(List<TaggedWords> TWS, Integer offset, Boolean
strict)

position← offset
if strict = false then

TWS ← Collections.reverse(TWS)
end if
while position < |TWS| do

TW ← TWS[position]
if TWTag /∈ PostModifierTags AND
strict = true then

break
end if
if TWTag ∈ HeadNounTags then

HeadNoun← TW
status = getPreBefore(TWS, position+ 1)
getPostBefore(TWS, position− 1)
Persist(PreModifier,HeadNoun, PostModifier)
Clear(PreModifier,HeadNoun, PostModifier)
if status > 0 then

getNPBefore(TWS, status, true)
end if
break

end if
position← position+ 1

end while
end procedure

CHAPTER 4. METHODOLOGY 31

The algorithm for noun phrase detection before the pattern starts with the pro-
cedure named getNPBefore, which is depicted in 4. Among others this procedure
takes as input a set of tagged words, which are located in front of the pattern.
Additionally an offset is required as input, which points to the word that has to be
analysed first. The last required parameter is a boolean value. This boolean value is
used to modify the termination criteria of the procedure, in case of co-ordinations.
When the procedure is initialized the first time for a line the strict parameter is
set to false and the set of tagged words is reversed. The procedure then traverses
through the reversed tagged words and checks these for valid head noun tags. If a
such a tag is found, the tagged word is set as head noun and functions are called
to detect pre- and post-modifiers. After the modifiers have been set, the entire
noun phrase is persisted and the variables are reset. If traversed in reverse order,
the co-ordination detection takes place in the pre-modifier, to determine if there
are possible noun phrases in front of the closest one. If such a co-ordination is
found, the procedure starts itself again, using the position of the co-ordination as
new starting point.

Algorithm 5 Algorithm to detect Pre-Modifiers in front of Patterns
function GETPREBEFORE(List<TaggedWords> TWS, Integer offset)

position← offset
while position < |TWS| do

TW ← TWS[position]
if TWTag ∈ PreModifierTags then

PreModifier
+← TW

else if TWTag ∈ Coordinations then
return position+ 1

else
return −1

end if
if |PreModifier| = 3 then

return −1
end if
position← position+ 1

end while
return

end function

The pre-modifier detection is depicted in algorithm 5 and takes as input a list
of tagged words and a integer value, which points to the next word to be analysed.

CHAPTER 4. METHODOLOGY 32

The function checks the tagged words for valid pre-modifier tags and adds them
to the pre-modifier. If a word does not qualify as pre-modifier, but as coordinating
conjunction, the function returns an offset pointing to the next word behind the
conjunction. Otherwise the function returns a negative value. On the one hand this
is the case, when neither a valid pre-modifier tag nor a coordinating conjunction
is detected. On the other hand the function terminates, when the maximum pre-
modifier length of three words is reached. Regardless of the return value, after the
pre-modifier detection has finished, the post-modifier for the current noun phrase
is detected.

Algorithm 6 Algorithm to detect Post-Modifiers in front of Patterns
function GETPOSTBEFORE(List<TaggedWords> TWS, Integer offset)

position← offset
while position ≥ 0 do

TW ← TWS[position]
if TWTag ∈ PostModifierTags then

PostModifier
+← TW

else
return

end if
if |PostModifier| = 3 then

return
end if
position← position− 1

end while
return

end function

The algorithm for post-modifier detection for noun phrases located in front of
the pattern is summarized as pseudo-code in Algorithm 6. The function takes as
input a list of tagged words, as well as an integer value named offset, which points
to the first word to be analysed. Starting with the tagged word identified by the
offset, the words are checked in reverse order for valid post-modifier tags. If a
valid valid post-modifier tag is found, the corresponding tagged word is added the
post-modifier. The function terminates as soon the maximum post-modifier length
of three is reached or if a tagged word does not qualify as post-modifier.
The resulting entities are then persisted along with their provenance information.
All extracted pieces of information are depicted in table 4.4. With exception of the
duration of the extraction as well as the on- and offsets of the pattern, each piece

CHAPTER 4. METHODOLOGY 33

Name Example
Pattern ID p8a
Pay level domain (PLD) example.org
List of instances apple
List of instance tags NN
List of classes fruit
List of class tags NN
Sentence An apple is a fruit.
Onset of the pattern 8
Offset of the pattern 14
Duration of extraction process (ms) 1000

Table 4.4: Extracted Data per Matched Pattern

of information is required in the following processing steps. The duration of the
extraction is an artefact from the testing phase and was used to identify patterns
with bad performance. It is measured per pattern and starts with the matching
of the regular expression and ends as soon as the single entities of a tuple are
extracted and stored. The on- and offsets are used to highlight the matched parts in
a line. The information required for further processing steps starts with a unique
identifier for the matched pattern, the so called Pattern ID. It is used to generate
the attribute pattern spread, which describes how many different patterns found
a certain tuple. Similarly the attribute PLD spread is generated from the PLD
field. The core pieces of information are a list of classes and instances, which
were extracted in front of and behind the pattern. From the two entity sets the
cross product is built to generate pairs of classes and instances. For each word of
the entities the corresponding POS tag is stored, as it is required for normalizing
the single entities. Lastly, the entire sentence is stored as key component of the
provenance information of the tuple.

One could assume, that building a tuple database with these results is straight
forward. However, the aggregation requires large amounts of memory. In this ex-
periment, with more than 2.1 billion extracted tuples, either an infrastructure with
extensive memory is required or the aggregation is performed in multiple passes or
the amount of data is reduced beforehand. The following section describes, how
the amount of extracted data is transformed, without losing valuable information.

CHAPTER 4. METHODOLOGY 34

4.1.2 Removal of Duplicates

The removal of duplicates is the first step of the data transformation and is imple-
mented to reduce the impact of spam on the aggregated attributes and to reduce the
data volume for further processing steps. Spam in this context refers to frequently
re-occurring phrases under the same pay-level-domain. Such re-occurring phrases
are the result of standard templates, which are used to build up a web presence.
These templates are used as component of each single web page of the web pres-
ence. In this research it is assumed, that enough valuable information is gathered,
if the same sentence under the same pay-level-domain is analysed only once. The
problem is that the single web pages of same PLD are spread over a number of
archives. Thus spam cannot be detected completely on archive level, but has to
be done after the extraction has finished. However, the with more than 1.3 billion
extracted sentences with and average length of 179.6 characters it is not possible
to load these into memory for a fast comparison. The solution is to perform the
global duplicate removal using two passes over the extracted data. The first pass
maps sentences into buckets, using a hash function, that makes sure that similar
sentences, so called duplicate candidates, are grouped into the same bucket. The
second pass then loads each single bucket into memory and removes duplicates.
The decision for the proper hash function is not trivial. On the one hand it has to
ensure, that buckets are not to big, otherwise the limits of the technical infrastruc-
ture would be exceeded. On the other hand the buckets should not be too small,
otherwise file open and close operations of the second pass would increase the run-
time. Due to the size and variety of input data, an exact determination of the best
hash function is difficult. Therefore, multiple variations of the function are tested
until a working solution is found. The resulting hash function takes the first three
characters of a sentence as well as the length of the pay level domain. The concate-
nation of these two values is the result of the hash function. Although duplicates
had already been removed on archive level, this processing step removed a large
portion of the sentences and reduced the data volume significantly without losing
valuable information.
Even with such a size reduction, it is not possible merge equal tuples in memory
in one pass. A similar approach using buckets and a hash function is necessary.
Therefore, tuples have to be normalized first, before they are sorted into buckets.
Otherwise there would be no guarantee, that all equal tuples are in the same bucket.
These normalization steps are described in the following section.

CHAPTER 4. METHODOLOGY 35

4.1.3 Tuple Normalization

At this stage only tuples will be transformed and therefore the sentences are split
from the tuples, to reduce the duration of file reading and writing operations of
each further processing step. The connection between a tuple and its sentence is
kept using a unique ID. The unique ID is stored in both data sets, the sentences
and the tuples. The tuple normalization is necessary, because the same entities are
expressed in different ways in the corpus. The goal is to transform entities to a
common string representation, so that equal entities have an equal string value. In
this section the different causes for these malformed strings are presented along
with a description, how these entities are transformed.

The reason for the first transformation step are the regex translations of pat-
terns, as these allow optional symbols and commas and are not case sensitive. To
highlight the need of the first step three examples are listed: apple, ’apple’ and
Apple. All these extractions try to express the same term. However, they will not
be merged, because they are not equal in terms of characters. So the first step is
to transform all capital letters to lower case. Then all leading and trailing punctu-
ations of each single word of an entity are removed. Second, all optional symbols
such as apostrophes and quotation marks are removed. The apostrophes however,
might also be part of a noun in the genitive form. A simple heuristic is used to
identify genitive apostrophes, to prevent their removal. If a word contains an apos-
trophe followed the character s or if a word ends with s followed by an apostrophe.
If one of these conditions is met, the apostrophe is not removed.

The next cleaning step is the removal of punctuations, which are inside a word
of an entity. These are caused by the unclean nature of the corpus. Sentences on the
web are not always written in proper grammar and the space behind a punctuation
at the sentence end is simply left out. This has an adverse effect on the POS tagger
and consequently the noun phrase extraction as demonstrated with the following
example:

Example 1 i like fruits such as apples.cause bob and alice told me.

After the such as pattern was found, the noun phrase detection is started. The
POS tagger finds a punctuation inside the word apples.cause and therefore treats
it as proper noun. To make it worse, the noun phrase detection adds bob, which is
tagged as noun, to the existing noun phrase and then finds a co-ordination. This has
the effect, that also alice is extracted as entity. This sentence would cause an ex-
traction, in which apples.cause bob and alice are classified as fruits. Consequently
the correction does not only involve the falsely punctuated entity, but also all enti-
ties that were detected afterwards. Therefore, if a punctuated entity is found, that

CHAPTER 4. METHODOLOGY 36

is not in the list of common abbreviations in Appendix F it is corrected. The cor-
rection treats entities detected in front of the pattern different to ones located after
the pattern. For entities after the pattern all characters after the punctuation are
removed. If the punctuated entity is in front of the pattern all characters before the
punctuation are removed. If such an correction took place in a co-ordination, all
entities that were detected afterwards are removed entirely, for both: Entities that
are located in front or after the pattern. This might seem confusing for entities de-
tected in front of the pattern, but one has to keep in mind, that these were acquired
in reverse order. This punctuation removal might have the result that the new en-
tity is a pronoun, which provides no useful information. Therefore it is once again
necessary to remove tuples, in which one of the entities is a pronoun. The down-
fall of this approach is, that unknown abbreviations are split in half and terms, that
naturally contain dots are also split. This mainly affects web pages. This step is ac-
ceptable, because it is not the goal of this experiment to extract websites, but rather
domain independent noun phrases. And for most noun-phrases it can be assumed,
that there is no punctuation inside one of its words. Furthermore, this procedure
ensures, that POS tags for that entity are corrected as well, because entire words
can be removed in this step.
After the removal of punctuated entities a length check is performed on the entire
entity. If one entity of a tuple is longer than 50 characters, it is regarded as noise
and the tuple is removed from the processing pipeline. This maximum length is
the result of empirical evaluations. The initial allowed length in this step is set to
100 characters per entity. Entities longer than that are checked using the evaluation
scheme of Ponzetto and Strube [33] and the result was 100 percent false extrac-
tions. The maximal length was then set to 50 characters. A check of 100 tuples
with entities longer than that, shows that only 8 percent of these were correct. The
correct ones are mostly technical or chemical terms, such as:
〈N−methyl4−(2−(2−(2−acetylaminopyridin−5−yl)−2−(R)−hydroxyethyl−
N−tert−butyloxycarbonylamino)−ethoxy)−phenylacetamide, invention〉 Even-
tually the maximum length was to 50 characters, as further tests with decreased
length resulted in too much information loss.
The next data transformation step is concerned with the removal of inflected words.
Such a transformation step is not uncommon before the matching or aggregation
tuples or relations extracted from natural language texts [18] [33]. Thus lemma-
tization is applied on each word of a noun phrase. The result is the lemma of the
word, which is defined in 5. The lemmatization is the main reason, why the POS
tags of the entities have been stored. The used tool takes a word and its correspond-
ing POS tag as input and returns the so called lemma of the word. The lemma is
defined as:

CHAPTER 4. METHODOLOGY 37

Definition 5 "[...] the item which occurs at the beginning of a dictionary entry;
more generally referred to as a headword. It is essentially an abstract representa-
tion, subsuming all the formal lexical variations which may apply: the verb walk,
for example, subsumes walking, walks and walked." [10]

With the lemmatized entities a further re-factoring step is taken, which targets
noun phrases that contain multiple nouns. To be more specific, this regards noun
phrases, which are located in front of the pattern and contain nouns separated by a
preposition. The issue regarding these entities is, that it is not easy to determine,
which of these nouns is in a hyponymy relation with the entity behind the pattern.
To demonstrate this problem three examples are provided below.

Example 1 Works of artists such as Vivaldi.

Example 2 Works of artists such as "The Four Seasons".

Example 3 A variety of works such as "The Four Seasons".

In the first example the last noun is in hyponymy relation with the entity behind
the pattern. Consequently, it would be wrong to take the first noun as head noun.
The second example depicts the opposite, as it is the first noun that is correct. In
this case the noun in the post-modifier is - as intended - a specialization of the first
noun. The third example appears to be similar to the first one, because the last
noun is in a hyponymy relation. However, the leading noun is a so called collective
noun, as it refers to a group of entities [10]. The solution to resolve this ambiguity
was determined empirically. Out of 100 tuples with multiple nouns, there are 21
starting with a collective noun. In all of these 21 instances the latter noun is the
correct one. Hence, the decision is made to remove collective nouns and the subse-
quent preposition from the tuple. Although extensive lists of collective nouns are
widely available 5, these are not used for performance reasons. In this research the
list of collective nouns is determined empirically. A test set is used that consists
of 1000 extractions, which contain two nouns separated by a preposition. Each oc-
curring collective noun in that set is added to the list of excluded collective nouns,
which is listed in Appendix G. With collective nouns removed, a further check of
100 entities is performed with a clear result. Either the first noun is correct or the

5Lists of collective nouns available at:
http://www.englishleap.com/grammar/collective-nouns
https://en.wiktionary.org/wiki/Appendix:Glossary_of_collective_nouns_by_collective_term
http://www.ojohaven.com/collectives/
http://speakspeak.com/resources/vocabulary-general-english/common-collective-nouns, accessed on
25.10.2015

CHAPTER 4. METHODOLOGY 38

tuple is wrong as a whole. Hence, if a noun phrase contains two nouns separated
by a preposition the first noun can safely be set as head noun.
Using the normalization process, tuples that describe the same term are now mapped
to the same string value. These string values are used in the following steps in order
to aggregate tuples. This aggregation is performed in two steps. In the first step it
is assured, that tuples have the same head noun combination. In the second aggre-
gation step the modifications of the class and instance are checked and - if equal
- aggregated. This cascading aggregation is described in detail in the following
section, starting with the head noun extraction.

4.1.4 Tuple Aggregation

The tuple aggregation is the last processing step before tuples are stored. The
aggregation not only reduces the data volume, but also generates three useful at-
tributes. First, the occurrences of a tuple in the web corpus are measured, which is
called the frequency. Second, the amount of distinct patterns, which identified the
class instance pair are determined. This measurement is named the pattern spread.
Eventually, the PLD spread is stored, which describes the amount of distinct PLDs
that contained the hyponymy relation.
As stated before, the aggregation process takes the head noun as first aggregation
criteria, which is at this stage determined using following heuristic. The head noun
is the last noun in the first noun chain, or simply the first noun if no noun chains
are present. One could argue, that nouns in the genitive form are an exception to
this heuristic. However, these were already labelled as adjective in earlier stages.
Thus nouns in genitive form do not interfere with the head noun detection.
To make the large amount of tuples unique, the same problems are faced as in the
duplicate removal. Again two passes over the data are necessary to avoid long run
times as well as too much memory consumption. The first pass uses a hash function
to map potential merge candidates into buckets. In this case the hash function takes
the length of the class and instance head nouns as input, to perform this mapping.
In the second pass each bucket is read into memory and the tuples of each bucket
are checked for parity. The parity check is performed in two steps. First, the head
nouns of one tuple are compared to the head nouns of a second one. In case of
identical head nouns, the tuples are merged regardless of their modifications in the
first step. In case of a merge, the attributes for the tuple head are updated. Then the
modifications are compared. If the modifications do not match, both modifications
are stored. Both modifications are stored in a collection, which is associated with
its tuple head. If these modifications do match, these are merged and during this
process, the three attributes are updated. For this purpose the merged modification
is then also stored in the collection, which is associated to the tuple head. This cas-

CHAPTER 4. METHODOLOGY 39

cading merge serves two purposes. On the one hand, the data volume is reduced,
because the strings of the head nouns are only stored once for each unique class
instance pair. On the other hand, this step not only generates attributes for modified
entities, but also for the head nouns of a tuple.
During the aggregation a peculiar phenomenon becomes present. Although tuples,
that originated from the same sentence under same pay-level-domain were removed
during the duplicate removal, there were still occurrences in which a tuple occurred
more than once under the same pay-level-domain and in the same sentence. This
might seem impossible, however the explanation for this phenomenon is simple.
This exception occurs, if a co-ordination contains the same entity more than once.
As duplicate removal is performed on sentence level, these duplicates within the
same sentences have so far gone unnoticed. This phenomenon is often observed
for lists of ingredients, in which sugar or salt occurred more than once. If such a
double entry in a coordination is detected, the tuple is ignored and the modification
measurements are not updated.
After the aggregation of a bucket, the results are written onto disk and the next
bucket is processed. After this step the tuples are in their final state and can now
be stored in a database management system (DBMS). With more than 0.4 billion
unique tuples, a special storage concept is required to enable a reasonable query
duration. This concept is described in the following section.

4.1.5 Data Storage

The main use case of the WTDB is to determine the most likely class and instance
relations for a given entity. For this purpose it is necessary to acquire a large
amount of related entities and evaluate, which of these relations are most likely
to be correct. This use cases is enabled by a custom storage concept. The goal
of this concept is to enable fast queries for a given class or instance term. Thus,
the underlying data model has to be capable of returning large amounts of class or
instance pairs for a given search term in a short amount of time. To achieve this
an approach is taken, which groups and sorts pieces of data that are likely to be
returned together in one single query.
The data model contains three types of tables. One for table for the provenance
information, one for tuples sorted by classes and one for tuples sorted by instances.
The sentence table contains sentences, the pay level domain of the sentence, as
well as the ID that connects tuples with sentences.
The tuples are sorted into a number of tables using the head nouns of classes and
instances using a hash function. This sorting increases query performance, because
with a given head noun in the query, the table which contains all its related entities
can be identified quickly. The same hash function that was used to sort and insert

CHAPTER 4. METHODOLOGY 40

the tuples is applied to the query term and returns the name of the table, which
contains all the relations of an entity. The result is that the data is spread over a
magnitude of comparatively small tables, instead of one very large table for all tu-
ples. Due to the small size of the tables, the query can be executed faster. How this
sorting is achieved is described in the following.
The entity table for a tuple is determined using the first two letters of a class head
noun for class tables and the first two letters of the instance head noun for instances.
If an entity contains less than two characters, the missing letters are replaced with
zeros. As tables of classes and instances must not be mixed, the IDs of these tables
start with the letter i for instances and the letter c for classes. The remainder of the
ID are the two first letters of the inserted class or instance. To demonstrate the first
insertion step the following example tuple is inserted: (apple,fruit). As apple is the
instance and starts with ap it is inserted in the table with the ID iap. The class fruit
is inserted in the table cfr. With the corresponding tables identified the head nouns
are stored as data field, along with its pattern spread, PLD-spread and frequency
values. To enable a fast access to modifications of a head noun tuple without joins,
all these are stored together together with their corresponding head tuple. Thus,
these modifications are nested inside the data-object of the head tuple in form of a
list.
As relationships are replaced with nested structures, it is not suitable to express the
data model in the form of an entity relationship model. A custom model type is
used to describe the nested structure, which is depicted in figure 4.2. The boxes
in this figure are used to depict the hierarchical relations between the nested struc-
tures. If box A contains box A, then B is the super structure of B. The names of
the boxes are depicted in bold letters. A super structure does not only contain sub
structures, but also data fields, which are symbolized using a leading dot. Each
data field consists of a unique name and a data type.

Besides the unique ID a head tuple contains a string value for class and in-
stance heads, as well as aggregated attributes. As already stated the head tuple
also contains a sub-structure in form of a list, which contains the modifications of
its head nouns. A modification is stored with an unique ID and the string values
of the instance pre-modifier I-Pre-Modifier, the instance post-modifier I-Post-Mod,
the class pre-modifier C-Post-Mod and the class post-modifier C-Post-Mod. Be-
sides the generated measurements for frequency, PLD-spread and pattern spread,
there are three more data fields to enable more fine grained queries. All PLDs,
all patterns and all provenance IDs ProvIDs are stored as string. These strings are
the concatenations of the single PLDs, patterns and provenance IDs separated by
semicolons.

With the storage of tuples and sentences in a DBMS the extraction work-flow is

CHAPTER 4. METHODOLOGY 41

Figure 4.2: Data Model for Hyponymy Tuples

CHAPTER 4. METHODOLOGY 42

finished. The extraction started with a magnitude of archives that were constructed
from a web crawl. The data in these archives is split and filtered before it is checked
for possible hyponymy relations. If such a relation is detected, the single entities
are extracted using natural language processing (NLP) techniques. Before these
single entities are inserted into a database, they are normalized and aggregated.
The single tuples along with the generated attributes are then stored in nested data
structures. This processing pipeline requires different technical infrastructures and
involves the selection and usage of a number of tools. These are described in the
following section.

4.2 Technical Infrastructure

In this section the used infrastructure as well as the tools for the entire work-flow
are described. The selection of the tools and technical equipment follows a basic
principle. The larger the data volume, the more extensive is the technical equip-
ment. In accordance to the work-flow the technical infrastructure is described start-
ing with extraction of tuples from the Common Crawl.

4.2.1 Infrastructure for Data Extraction

It is not surprising, that the initial input data, the Common Crawl, is largest with
over 168 TB in size. This input data is distributed over a magnitude of archives.
The processing steps take an average of 18 minutes to extract tuples from one
archive. With 38, 609 archives, the processing time alone with a single processor
would take more than one year. Additionally, the mere download of the data is a
problem as well, because the data volume exceeds the storage capacity of common
hard drives. With these two problems in mind, an infrastructure is required, that
on the one hand can store large amounts of data and also provides the processing
power to perform the extraction. Such an infrastructure is provided by Amazon.
Among others Amazon provides cloud computing services, which are called Ama-
zon web Services (AWS) 6. AWS can be classified as an infrastructure as a service
(IaaS), which is defined below.

Definition 6 IaaS provides "processing, storage, networks, and other fundamen-
tal computing resources where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applications" [27].

The selection of the Amazon infrastructure has a major advantage. The Common
Crawl data is hosted by the AWS publicly. Although the data must still be down-

6An overview of AWS is available at https://aws.amazon.com/de/, accessed on 25.10.2015

CHAPTER 4. METHODOLOGY 43

Instance ID c1.xlarge
Operating System Ubuntu 14.04
Processor Architecture 64 Bit
Virtual CPU Cores 8
Memory 7 GB
Storage 1.68 TB

Table 4.5: System Specification for AWS EC2 Instances

loaded to the single machines, it is assumed that this download is faster, because
the server hosting the data and the machines used to process it are provided by
the same vendor. According to the IaaS model, AWS offers the rental of virtual
machines, which can be used for the processing of data. Amazon offers a variety
of different virtual machine configurations, so called instance types, with different
usage fees and specifications. The machine selection has to be economic. Hence,
it is paramount to select a machine that is able to accomplish the task at the lowest
cost level. The bottleneck of the tuple extraction are the processor cores and not
memory capacity. Thus an instance type is selected, that offers as much processing
power as possible. With this decision criteria in mind, the instance type c1.xlarge
7 is chosen, because it has eight processing cores and a relatively low memory ca-
pacity. An overview of the system specification of one instance is provided in table
4.5. With 100 of these machines the processing time is reduced to 22 hours.

The archives of the Common Crawl as well as the extraction program, now
have to be distributed to these 100 instances in order to extract tuples. The extracted
data along with meta data about the extraction process has to be stored at a central
location. This complex routing process regarding the input and output data of the
tuple extraction is completely handled by a framework developed by Meusel et al.8.
The so called Web Data Commons Extraction Framework is specifically designed
to operate on the AWS infrastructure. Its functionality is depicted in figure 4.3 and
described in the following paragraph.

The figure contains rectangles, which symbolise a machine in the Amazon in-
frastructure. These machines are connected with arrows, which depict the flow of
data or messages. One of the machines is the master node. The user can access the

7Overview of instance types available at https://aws.amazon.com/ec2/instance-types/, accessed
on 25.10.2015

8Download and implementation instructions available at
http://webdatacommons.org/framework/, accessed on 25.10.2015

CHAPTER 4. METHODOLOGY 44

Figure 4.3: Web Data Commons Extraction Framework. Adapted from [29]

master node using a command line interface to steer and configure the extraction
process. Using its command line interface, a job queue is filled with archives of
the Common Crawl. This job queue managed using the Amazon Simple Queue
Service (SQS), which is a message passing mechanism that distributes the work-
load to the single instances [41]. After the instances are started using the command
line interface of the master node, each instance contacts the SQS to request a file-
reference, which points to one of the archives of the Common Crawl. After such
an instance successfully requested a file-reference, it downloads the correspond-
ing Common Crawl archive from the Amazon Simple Storage Service (S3) and
starts to extract hyponymy relations. After an archive has been processed, the ex-
tracted data as well as meta data about the extraction is stored using the S3 service.
Among other the meta data provides information about errors and exceptions dur-
ing the extraction as well as statistics of the extraction of each single archive. The
meta data was used during the testing phase to measure the effect of the algorithms
on the amount of errors and the extraction duration. After each queued archive is
processed, the extracted data and meta data can be manually downloaded from the
S3 using the command line interface.
Overall, this framework takes care of the acquisition and distribution of input data,
as well as the storage of the extracted output. The framework also deploys the ex-
traction algorithm on each of the instances. The advantage of this framework is,

CHAPTER 4. METHODOLOGY 45

that only the extraction algorithm has to be implemented as one Java class. The
disadvantage is, that this Java class - including all its imported third party tools -
has to compatible with the framework, which is written in Java version 7. Thus not
only the code of the extraction, but also integrated third party tools for the extrac-
tion algorithm have to be compatible with the framework.
The first third party tool is named Stanford CoreNLP in version 3.4.1 9, which con-
tains an entire set of natural language analysis tools and is the latest version com-
patible with Java version of the framework. These tools are used for POS tagging
and later on for tuple normalization. The first reason to select this tool is its compli-
ance with the programming language of the framework. Second, the tool is avail-
able under general public license, which allows its use for this research. Lastly, the
POS tagging functionality of this external tool is state-of-the-art in terms of accu-
racy 10. The POS tagging uses an external model to determine the part-of-speech
tags. Each language requires its own model. For the English language, there are
two different models available, which differ in terms of accuracy and runtime. The
model with lower runtime and accuracy - named english-left3words-distsim.tagger
- is chosen for this experiment. Although the second model has a slightly higher
accuracy, the runtime increase can not be justified. Even if a word in a sentence is
falsely tagged, this should not effect the aggregated results dramatically. With the
high recall one can expect, that in most of the sentences the entity is been tagged
correctly.
The second external tool used for tuple extraction is required to identify the PLD
of a web page. Such a functionality is provided by Guava in version 13.0.1 11,
which is maintained by Google. This library contains a list of top-level-domains,
which can be used to detect the pay-level-domains of an URL. The described in-
frastructure extracts tuples from 38, 609 archives in about 22 hours. The extracted
data has a compressed size of 115 GB and is only a fraction of the initial input data.
This size reduction enables the usage of a less extensive infrastructure for further
processing steps.

4.2.2 Infrastructure for Data Transformation

Beginning with the removal of duplicates, a new and less extensive infrastructure
is used. The removal of duplicates requires the temporary storage of sentences and

9Available at http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip, accessed on
25.10.2015

10Evaluation of POS tagging tools available at
http://aclweb.org/aclwiki/index.php?title=POS_Tagging_%28State_of_the_art%29, accessed on
25.10.2015

11Available at http://search.maven.org/remotecontent?filepath=com/google/guava/guava/13.0.1/guava-
13.0.1.jar, accessed on 25.10.2015

CHAPTER 4. METHODOLOGY 46

Property Value
Operating System Ubuntu 14.04
Processor Architecture 64 Bit
Virtual CPU Cores 1
Memory 50 GB
Storage 500 GB

Table 4.6: System Specification for Data Transformation

PLDs. Even with the approach described in section 4.1.2, a considerable amount
of data has to be stored in memory. Such an increased memory capacity is also
required during the tuple aggregation process. Consequently, the machine config-
uration with the highest possible memory capacity is chosen, which is 50 GB. The
output of a data transformation task serves as input for the next task. Although
input data can be deleted after it has been processed, the decision is made to keep
the data of each step. On the one hand, it is useful to have to ability to look into the
results of each processing step. On the other hand, it is not necessary to restart the
entire processing pipeline again, if one of the later processing steps fails. With the
data of each step stored, the transformation process can be resumed at any point.
Thus the required storage capacity has to be estimated. The input data from the
tuple extraction has a compressed size of 115 GB. In the worst case the extraction
contains zero duplicates, which would result in another 115 GB of data. Since
the data is re-arranged into buckets during this step, these buckets store a copy of
the input data. The removal of duplicates alone, requires a capacity of 345 GB in
the worst case. In the next steps only tuples are stored and transformed, therefore
only a fraction of the size is expected as output of the following tasks. In this ex-
periment it is estimated that the sentence of a tuple takes four times more storage
capacity, than only the tuple. As a result, the output data of the following task - the
tuple normalization - is estimated to be around 30 GB. Since the tuple aggregation
requires a pre-selection of aggregation candidates, the 30 GB input data has to be
copied and sorted into buckets, before tuple aggregation. In the worst case there
are no tuples to be aggregated and the input is equal to the output, which in turn
results in another 30 GB output data. Thus the tuple data is replicated three times
in the worst case, which sums up to 90 GB of required storage capacity. Overall,
it is estimated that in the worst case 435 GB storage capacity are necessary for the
data transformation. With these estimations the decision is made to select a 500
GB hard drive as storage medium for these tasks. These hardware specifications
are sufficient for the data transformation tasks and are summarized in table 4.6.

CHAPTER 4. METHODOLOGY 47

In terms of software, the only requirements are an operating system with Java
Version 7 installed. The code which executes the data transformation uses one
already known external library: The Stanford CoreNLP in version 3.4.1, which is
used to lemmatize words during the normalization of tuples. The reason to use
the same NLP library in the data normalization step is simple. The set of POS
tags used during the extraction must be equal to the one used for lemmatization. If
another tool would be used for lemmatization, all sentences would have to be POS
tagged again. With this infrastructure it is possible to transform the data within two
days. After this processing the data is inserted into a DBMS. The infrastructure for
inserting and hosting the data in a DBMS is described in the next section.

4.2.3 A DBMS for Tuple Storage

In this section the infrastructure for the tuple storage is described. The goal of this
infrastructure is to enable fast queries for classes and/or instances. The extracted
tuples have a compressed size of about 15 GB and the provenance information
requires 46 GB. The mere size of the extracted data does not allow an in-memory
storage. Even if only the tuples are loaded into memory, they would at least occupy
15 GB permanently. Using approaches like dictionary encoding to reduce redun-
dancy of string values are expected to be of little help in this case. As there are
more than 200 million unique entities, each of them would require an entry in the
dictionary. A dictionary of such a size will also require large amounts of memory.
Furthermore, besides the actual tuple data, there are two dictionaries necessary.
One to translate the query terms into numbers and one to translate query results
back into words. For these reasons, an in-memory approach was not tested in this
work.
The aspects stated before entail the usage of a DBMS, that stores data on disk. To
select the proper system, a further classification of DBMS is used. A DBMS can
classified into relational and non-relational DBMS. In this work one has to model
N:M relations, which is best modelled using a relational approach [37]. This is due
to that fact that an instance can be related to multiple classes. For example an apple
can be the instance of fruit, as well as company. On the other hand a class, such
as company, contains multiple instances, for example Apple and Google. In the re-
lational approach a N:M relation is usually modelled using three tables. One table
for each entity type, which store attributes of the entities. The third table is used
to store the unique IDs of the entity tables to model the relation. If two entities are
in a relation, their corresponding unique IDs are stored in one row of the relation
table. If a query involves attributes from both of the entity tables, the relation table
is used to join these two data sets. However, such a join is rather costly with more
than 400 million unique class-instance combinations. The goal of the database is

CHAPTER 4. METHODOLOGY 48

to enable the fast search for all classes given an instance name, and vice versa.
Consequently each query requires the join of class and instance tables, which in
turn requires the processing of a table containing more than 400 million relations.
Since this would lead to highly increased durations, a non relational database is
chosen.
Non-relational DBMS, also called NoSQL DBMS, have two important advantages
compared to relational ones. First they are able to read and write data quickly [23].
As this experiment handles large amounts of data, this is a significant advantage
during the insertion of data. Also the fast reading is important for the fast query
execution, if one considers the result of queries for general concepts like thing will
require reading operations for a large number for instances. The second advantage
is, that this type of DBMS is specifically designed for mass storage [23]. With these
advantages in mind, the decision is made for a non relational DBMS. For the proper
selection of the non-relational DBMS a closer look at the data is necessary. As de-
picted in 4.2, a single tuple contains more than a class and instance value, with
its modifications. There are also generated measures, such as frequency, as well
as lists with information about the tuple provenance. One type of non-relational
DBMS are document databases. The focus of these is on fast query performance
and big data storage [23]. In this context an entry in such a database is called docu-
ment. These documents are persisted using the Binary JavaScript Object Notation
(BSON) format and are capable of holding complex data structures such as lists
[47]. Since these document databases allow the storage of big objects and focus
on fast query performance, they fulfil all requirements for this experiment. There
is a magnitude of document database implementations available [6]. For this ex-
periment MongoDB in version 3.0 12 is chosen, since its license is free of charge
and has a Java application programming interface (API). Although other document
databases like OrientDB or OpenLink Virtuoso have similar characteristics, the de-
cision is made for MongoDB due to its popularity. With its widespread usage there
is a magnitude of support for developers available online, which was the decisive
criteria for the selection. The support facilitated the development of both the insert
and the query operations. The query operations can executed using an API, which
is described in the following section.

4.3 API for the WTDB

So far, the extracted data is stored in a document database and single entries can be
retrieved using queries in the MongoDB specific query syntax. However, it is a time

12Available at https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-amazon-3.0.7.tgz, ac-
cessed on 25.10.2015

CHAPTER 4. METHODOLOGY 49

Name Type Example Description
instanceHead String "apple" The head noun of the instance
clazzHead String "fruit" The head noun of the class
iPreModifier String "red" The pre-modifier of the instance
iPostModifier String "in Spain" The post-modifier of the in-

stance
cPreModifier String "healthy" The pre-modifier of the class
cPostModifier String "for people" The post-modifier of the class

Table 4.7: API Parameters to Specify Classes and Instances

consuming task to learn a new query language. Additionally, if any possible query
is allowed, there can be no guarantee, that the infrastructure is able to process the
query. For these reasons, an application programming interface (API) is provided.
The API is developed in Java, because this programming language is platform
independent. Another reason to use Java is its wide-spread usage. This decision
ensures, that the API can easily be used by many people on all platforms, that are
able to run a MongoDB server.
The API provides the users with methods to query the provenance information
and hyponymy tuples. If one of these methods is called, the API establishes a
connection to the database, translates the user specified parameters into a query
and executes it. The API is implemented in a way that ensures, that it does not
consume a lot of memory. This is achieved by returning the single results of a
query directly after their detection. With a maximum size of 16 MB for a stored
tuple [22], the memory consumption of the API is diminutive.
The main use case of the API is to detect all class or instance relations of an entity.
The words of an entity can be specified by head noun or by its modifiers. Since the
tuples in the database are grouped by their head nouns, the specification of the head
noun parameter increases query performance drastically. Since all tuples with the
same head noun for that entity are grouped in the same table, only one table has to
be queried for results. If the user does not want to specify a head noun, a wildcard
can be used as input parameter. For the head noun and all other parameters of
the type string, the common asterisk symbol can be used as wildcard. The API
parameters to specify the words of an entity are summarized in table 4.7.

For a more fine grained analysis, the API allows the user to restrict the re-
sults depending on their provenance information. This includes the specification
of patterns and PLDs, as depicted in table 4.8. The patterns differ in precision and
recall. Thus the API enables the user to select the patterns according to his pref-

CHAPTER 4. METHODOLOGY 50

Name Type Example Description
pids String[] ["p1", "p2"] The pattern IDs of a tuple.
plds String[] ["google.com"] The pay-level-domains of a tu-

ple
strict Boolean true Specifies, how the lists of plds

or pids are handled 13

Table 4.8: API Parameters to Specify Domains and Patterns

erence. Similarly the API has to allow a filtering of PLDs. The different PLDs
cover different domains and contain unstructured data of different quality. These
API parameters can be specified using arrays of string values. The user is given
the additional option to specify, if a tuple has to cover each single specified pattern
and PLD or just one of them. For this purpose the boolean parameter strict is
provided. If this parameter is set to true, then each single pattern or PLD in the list
has to be present in the provenance information of a tuple. On the other hand, if set
to false, only one single pattern or PLD of the lists has to be present for a tuple. If
a user does not want to specify any PLDs or patterns for the query, the parameters
can be set as an empty array.

Lastly, a user is able to set value ranges for each of the aggregated attributes.
The API allows the specification of minimum and maximum values for the fre-
quency, the pattern spread and the PLD spread of a tuple. Similar to all the other
query parameters, the user is able to use wildcards for the aggregated attributes. As
per definition the values of the attributes can not be smaller than 1, the wildcard
for these attributes is the value 0. It is important to note, that the API does not
perform a validity check of these attributes. For example, the user is able to spec-
ify a minimum and maximum frequency, where the minimum value is greater than
the maximum. The API will simply execute the query and return zero results. An
overview of the API parameters, to specify the aggregated attributes is provided in
table 4.9.

While the API executes the query, the single results are returned one after an-
other. If each single parameter is initialized as wildcard, every single tuple stored
in the database will be returned. The result contains all data fields of a tuple, as de-
scribed in figure 4.2. Often times the user wants to find out, where a certain result
was extracted. For this purpose the API allows the user to query the provenance
information of an extracted tuple. For this purpose the API provides a method, in
which the user can specify a provenance ID to acquire the sentence and the PLD
of an extracted tuple. If the method is called without any provenance ID specified,

CHAPTER 4. METHODOLOGY 51

Name Type Example Description
minFrequency Double 1 Specifies the minimum fre-

quency of a tuple
maxFrequency Double 205556 Specifies the maximum fre-

quency of a tuple
minPidSpread Integer 1 Specifies the minimum pattern

spread of a tuple
maxPidspread Integer 47 Specifies the maximum pattern

spread of a tuple
minPldSpread Integer 1 Specifies the minimum pay-

level-domain spread of a tuple
maxPldSpread Integer 15658 Specifies the maximum pay-

level-domain spread of a tuple

Table 4.9: API Parameters to Specify Aggregated Attributes

each single piece of provenance information is returned.
Overall, this API serves two use cases. First the export of data. If a user executes
both methods with only wildcards as parameters, the entire content of the database
can be returned. Second, the API enables the user to execute parametrized queries
to find information about the class or instance relationships of an entity. As this
tuple information was acquired in an unsupervised fashion, it is now interesting to
see how much information is gathered and to which degree the extracted informa-
tion is correct. These quality criteria are discussed in following chapter.

Chapter 5

Experimental Results

For each step of the presented work, this chapter provides an analysis of the results.
The following sections describe the statistics about the tuples, about the created
database and finally a critic analysis about the tuple attribute values. The former
also includes the error analysis and provides solutions for all these errors.

5.1 Statistics of the Extraction and Data Tranformation

The initial input of the extraction process is the Common Crawl corpus. This
input data has a size of 168 TB, which are distributed over 38, 609 archives. As
imposed by the Amazon infrastructure and required by the framework developed
by Meusel et al. [29] , each archive has to be processed within a user defined
time frame. If this time frame is exceeded, the process which crawls the single
archive is terminated. This mechanism ensures that instances do not spend too
much time on a single archive with ill-formed data, which in turn would increase
the costs and the duration of the extraction. This time limit was exceeded for 626
archives, which is approximately 1.62 percent of the input data. This failure rate
highlights the issues of such a large and heterogeneous input corpus. Even with
a number of successful pre-tests without a single error one cannot be sure, that
the the algorithms can handle the entire data without errors. However, a closer
look at the meta data of of the extraction reveals, that the errors occurred within
certain time frames. In one time frame of less then 90 minutes 245 out of the 626
errors occurred. This heterogeneous distribution of errors over the time frame of
22 hours might indicate, that these errors are not caused by the code, but rather
by the used services of Amazon. However, since the number of failed archives
is in a acceptable frame, the decision is made to not further research the single
error causes. The entire extraction was performed in 22 hours and the compressed

52

CHAPTER 5. EXPERIMENTAL RESULTS 53

Input Size 168 TB
Input Archives 38609
Processed Archives 37.983
Failed Archives 626
Size of Extraction 115 GB
Duration of Extraction 22h
Extracted Tuples 2,121,495,294
Extracted Sentences 1,336,115,725
Used Patterns 58

Table 5.1: Quantitative Results of the Tuple Extraction

output has a size of 115 GB. The results of the extraction, which applied a total
of 58 patters on the corpus, are summarized in table 5.1. The extraction resulted
in over 2.1 billion extracted hyponymy tuples. These tuples originate from only
1.3 billion sentences. These two values show, that there is a significant amount of
sentences in the corpus, which contain more than one tuple. Multiple extractions
per sentence are either caused by co-ordinations or multiple pattern matches per
sentence.

The large amounts of extracted sentences and the contained tuples are reduced
during the duplicate removal. As described in section 4.1.2, a sentence must only
be extracted once per PLD. The quantitative results of the duplicate removal are de-
picted in table 5.2. From the extracted 1.3 billion sentences almost 0.9 billion are
duplicates. The results show, that the textual information on single PLDs is often
duplicated. A natural cause of such a duplication is the usage of templates for web-
site design. If such a template is used on every web page under the the same PLD
and contains a pattern, it is extracted for each single website. The results highlight
the need of a better duplicate removal during the extraction phase, because almost
70 percent of the extracted data contains duplicate information. This data overhead
increases costs and duration of the extraction because the matching of patterns and
the extraction of single noun phrases is performed multiple times for the same sen-
tence. Thus removing all duplicates globally for all archives, decreases the runtime
and the costs of the extraction. Additionally, the duration for downloading the data
is reduced, which should not be underestimated for such a large scale extraction.
After the duplicates are removed, the tuple normalization is executed. During this
process tuples are transformed and become invalid in certain cases, as described
in section 4.1.3. There are more than 55 million invalid extractions. There are
two causes for the removal of tuples. On the one hand, extracted entities longer

CHAPTER 5. EXPERIMENTAL RESULTS 54

Duplicate Sentences 879,418,399
Duplicate Tuples 1,414,136,985
Invalid Tuples 55,547,285

Remaining Tuples 651,811,024

Table 5.2: Quantitative Results of the Duplicate Removal and Tuple Normalization

than 50 characters are removed. On the other hand, if an entity was punctuated
and not identified as abbreviation, further removals are performed. The remaining
0.6 billion tuples are now used in the aggregation process to generate attributes for
the tuples using the frequency and diversity of their provenance information. The
results of the aggregation process are unique tuples, which are stored in a DBMS.
The statistics describing the WTDB are described in the following section.

5.2 Statistics of the WTDB

The final resource is a MongoDB database and has a physical size of 645 GB.
Its physical size is larger than the extracted data, not only because it is uncom-
pressed. Also the highly redundant data model attributes to such an increase in
size. Since the tuple objects have sizes of up to 16 MB it is no surprise that 0.4
billion tuple objects require such an amount of physical storage. There are more
sentences stored in the WTDB than unique tuples, because the sentences are nei-
ther normalized or aggregated. The sentences are stored as they are directly after
the removal of duplicate sentences per PLD. The decision was made to keep these
results for further analysis. This magnitude of tuples consists of almost 107 mil-
lion unique instances and about 121 million unique classes. Overall, the WTDB
contains more than 200 million unique entities. Compared to other large scale web
extractions, the results are far more comprehensive. As stated by Wu et al. [45]
Probase, was in 2012 the most comprehensive taxonomy. To evaluate the success
of the high recall guideline, it is suitable to compare the extraction of Wu et al.
[45] as benchmark. Probase contains 2, 653, 872 distinct entities and 20, 757, 545
unique tuples in total. Compared to this work, the results of Probase appear to be
diminutive. The amount of unique tuples stored in the WTDB is approximately 10
times larger and the amount of unique tuples of the WTDB beats Probase by a fac-
tor of approximately 20. However, the quality of the extracted tuples in the WTDB
has not been evaluated thoroughly. To create such a taxonomy as Probase, further
cleaning steps are likely, which in turn will decrease the amount of entities and tu-

CHAPTER 5. EXPERIMENTAL RESULTS 55

Physical Size of Database 645 GB
Amount of Sentences 456,697,326
Amount of Unique Tuples 401,150,041
Amount of Unique Entities 212,155,722
Unique Instances 107,691,822
Unique Classes 120,992,248
Intersection of Classes and Instances 16,499,109

Table 5.3: Quantitative Results of the WTDB

ples. Nevertheless these statistics indicate, that the WTDB is a decent foundation
to create a more comprehensive taxonomy as Probase. To create such a taxonomy,
the intersection of classes and instances must not be an empty set. Otherwise, the
hierarchy of the created taxonomy has a depth of 1. The intersection of classes and
instances has a size of 16.5 million. For this measure tuples were excluded, that
have an equal class and instance, because these would result in an intersection per
definition. Such a result indicates, that the extracted data can be used to create a
taxonomy. The statistics of the WTDB are summarized in table 5.3.

As second contribution of this thesis, the aggregation of tuples provided three
attributes: Frequency, pattern spread and PLD spread. These attributes are gathered
after extractions from the same sentence under the same PLD were removed as
duplicates. The minimum observed frequency is 1. This frequency value entails,
that the minimum values for pattern spread and PLD spread must also be 1. For
this reason the minimum values are not included in table 5.4, which summarizes
statistics about the generated attribute values. The highest observed frequency is
about 205, 556, which means that this unique class instance combination was found
in more than 200, 000 different sentences. On average a tuple has a frequency of
1.5142. This average value shows, that there must be a very large amounts of tuples
with a frequency of 1. To be exact, the WTDB contains 341, 306, 245 tuples with
lowest possible frequency.

The patterns themselves are not evaluated in terms of precision and recall for
two reasons. On the one hand, such an evaluation requires a sample of tuples for
each pattern. As already mentioned it is difficult to select a subset for each pattern
that represents the different attribute values. On the other hand, a similar evalua-
tion was already conducted before the extraction was started to select the patterns.

For this magnitude of tuples a custom storage concept was developed and imple-
mented in a so called document database. An API tailored to the storage concept

CHAPTER 5. EXPERIMENTAL RESULTS 56

Average Pattern Spread 1.0576
Average Pay-Level-Domain spread 1.3291
Average Frequency 1.5142
Maximum Pattern Spread 52
Maximum Pay-Level-Domain Spread 10,096
Maximum Frequency 205,556

Table 5.4: Statistics of Generated Attributes

is implemented to provide fast queries for classes and instances. The access speed
is now estimated by gathering statistics about the query execution. The decision
is made not to execute random queries, not only because of the diversity in tuple
size. The intended purpose of the WTDB is to enable users to search for all related
entities of an instance or a class. Hence, the duration of the query execution is often
influenced be the amount of related entities. This leads once again to the question,
how to choose queries for an representative test of the database. As there is an infi-
nite amount of possible queries, a strategy is required to select suited ones. For this
purpose queries are created, which not only return large objects, but also a large
amount of query results. This can be seen as a stress-test, which tries to provoke
the largest possible query durations. The queries are generated from the top-1000
tuples according to PLD spread. These are per nature rather large, because each
single PLD is stored within this database object. As the narrative evaluation of this
attribute in section 5.3.3 shows, the most spread tuples are expected to have large
amounts of related entities. The reason for the large amount of relations is the pop-
ularity of the entities. Based on this information, the assumption is made that this
list of tuples, will translate into queries that return large amounts of results. With
classes such as thing or people this assumption this appears to be a reasonable.
The list of 1000 tuples was translated into three sets of queries, each containing
100 queries. The first set of queries has class and instance terms specified, includ-
ing their modifications. The goal is to test the performance of queries which return
one single and comparatively large object. In the next query sets either only the
class terms are specified and the instance terms wildcarded or vice versa. During
the query generation it is assured that queries are unique, because some entities
occur more than once in that list. The results are summarized in table 5.5.

In this test the duration is measured per query set. The duration measurement
starts with the first entry in the set and stops, when the last entry has been returned.
Then the total duration per set and the amount of returned tuples are measured.
The results show that queries, in which classes and instances are both specified are

CHAPTER 5. EXPERIMENTAL RESULTS 57

Specified Attributes Duration (ms) Returned Results
Class and Instance 1,072,281 100
Class 1,935,572 8,462,925
Instance 1,405,475 8,147,608

Table 5.5: Statistics about the Query Execution

faster than the ones in which only one of the entities is specified. The query du-
ration is lower, because the DBMS has to read only one single entry. The reason,
why the remaining two query sets are only slightly slower, is no surprise. The data
model was specifically created to return large amounts of tuples the share either
the same class or the same instance.
The average duration of 10.7 seconds for queries, which return only one single tu-
ple is by no means a good result. Such a query duration harms the usability of the
WTDB. However, this query type is not the intended use case of the WTDB.
The query performance of the wildcarded queries appears to be unacceptable at
first glance. An average of about 19.36 seconds per query with only class terms
specified harms the usability of the WTDB. However, it is important to note that
each single query returns an average of 84.629, 25 related entities. Due to the
API implementation the results are returned one after another. Thus each of these
queries returns on average 4.371 objects per second to the output of choice. For
the purpose of extracting a large amount of related entities in a short time, in order
to evaluate the most correct relations, such an output is absolutely sufficient. The
queries, in which only the instance terms are specified are even faster. The average
execution time is 14.05 seconds and has an output of approximately 81, 476.08
results. Thus, these queries return 5.799 tuples per second. There are two explana-
tions why the queries using a specified class are slower. On the one hand, there are
more classes than instances stored in the WTDB. Thus it can be assumed, that the
DBMS requires more time to locate the entry in the slightly larger class tables. On
the other hand, the query duration is dependent on the position of the entity in the
modification list. This list is iterated until the exact combination of modifications
is found, which is specified in the query. Thus queries are faster for modified enti-
ties, if these are located at the beginning of this list. The used queries are depicted
in Appendix J. As the query duration is dependent on the used system, which
hosts the MongoDB server, the system specification used for the query execution
is provided below.

CHAPTER 5. EXPERIMENTAL RESULTS 58

Operating System Windows 7
CPU Architecture 64 Bit
CPU cores 4
Memory 16 GB
Physical Storage 3 TB

Table 5.6: System Specification used for Query Execution

5.3 Narrative Evaluation

The mere size and the content of the WTDB makes a evaluation difficult. Due to
the variety of concepts present in the web corpus, a researcher can not tag the rela-
tions of such a concept as true and false in a matter of seconds. Often times the re-
searcher himself, has to look for definitions, classifications or sub-concepts to make
a justified true or false decision. With many statements on the web being highly
opinionated and colloquial, the evaluation becomes even more time consuming. An
example is the tuple 〈Obama, commie terrorist〉. First, the researcher has to find
out the meaning of colloquial terms. On the other hand the researcher might not
share the opinion of the creator(s) of the hyponymy relation and therefore requires
more time to find a sense, in which the tuple is correct. Thus an evaluation of large
amounts of samples is not feasible. A strategy has to be found to acquire a small
sample of the data, that still represents the content of the database. A completely
random sample will not represent the WTDB, because it will be biased. 85 percent
of tuples have a frequency of 1 and therefore it is likely that most of the entries
in a random subset, have the same attribute values. On the other hand it is not to
select a subset that represents any attribute value. As intended from the beginning
the value ranges are large. The attributes have value range between 52 for pattern
spread and 205556 for frequency. Consequently such a sample would have a size,
that is too large to evaluate in a reasonable time frame. Another way to extract
a sample is to specify a certain domain, e.g. religion, and collect a list concepts
used in this domain from literature. Although this approach sounds promising it
has a number of downfalls. Due to the nature of the corpus, the selection of a
single domain is biased. Some domains on the web are broadly discussed, such
as pop-culture, whereas some others, for example philately, are merely mentioned.
Additionally, with the abundance of different domains in the corpus it is difficult
to make a justified decision.

The conclusion is, that there is no suitable strategy to select a meaningful sub-

CHAPTER 5. EXPERIMENTAL RESULTS 59

set from the corpus, that represents the data stored in the database and at the same
time can be evaluated within a acceptable duration. For this reason, an analysis is
conducted, which aims to find errors of and improvements for the data extraction
and transformation process. For this purpose the characteristics of tuples are anal-
ysed, which have the largest values for each generated attribute. These attributes
are generated with the assumption, that large attribute values indicate tuple cor-
rectness. The goal is to find common characteristics of wrong extractions in these
top-k lists, to infer improvements for the extraction and transformation process. It
is important to note, that the extracted top-k lists do not include tuples, which have
an equal value for class and instance.

5.3.1 Evaluation of Top25 Tuples by Frequency

A high frequency of a tuple is caused, if the same class instance pair occurs in
a lot of different sentences under different PLDs. It is peculiar, that all tuples in
the top-frequency tuples are spread only over a handful of PLDs. This means,
that these tuples are used by only a few websites, in a vast amount of different
sentences. It is hard to believe, that one website has over 200, 000 different hand
written sentences, which contain the same tuple. A more plausible explanation
for these attribute combinations is that these sentences have been automatically
generated or belong to a standard template used for each web page of a PLD. An
evidence for the presence of generated content or templates is, that all these tu-
ples were found with one single pattern. Although not all of these extractions are
wrong, they should not be extracted that frequently. The goal of this research is
to extract hyponymy relations from natural language texts and not from automati-
cally generated content. The heavy increase of extracted data cannot be justified,
by such a low information gain from automatically generated content. Thus, a so-
lution has to be found to filter these tuples before they are aggregated. Since these
tuples have not been removed during the duplicate removal, there must be parts in-
cluded in the sentences, which make it different from others. This part is a unique
identifier, which is included in these sentences. The websites hosting these tuples
are mostly large resources for content, in which each single item is displayed on a
single web page. The problem is, that each single item has a unique ID followed
by an automatically generated sentence. A possible solution to reduce the impact
of automatically generated content can be implemented in the duplicate removal.
Instead of checking for exactly the same sentences, the method should rather use
similarity measures to compare sentences. If this measure is above a certain thresh-
old, the sentence has to be tagged as generated content and should be removed.
Furthermore, this top-k list reveals downfalls of the Common Crawl archive selec-
tion. The archives of type WET were selected, because these contained only the

CHAPTER 5. EXPERIMENTAL RESULTS 60

textual representation of web pages with html tags removed. However, some html
tags are often used for text formatting, such as < >. If a creator of a web-
site uses these tags, instead of white- spaces, the structure of the extracted sentence
is not represented correctly in the WET archives. If these tags are removed, the re-
sult is, that previously separated words are concatenated. Thus the POS tagging is
not able to extract the original noun phrases. This phenomenon is visible in the in
instances conditionscontact usbuilt by orange or rights reservedabout. Since
these errors are present in the WET archives, the solution for this problem would
be to choose the WAT archive type. This archive type contains the html tags and the
textual data of a web page. Instead of removing all tags from the website to acquire
its textual representation, certain html tags used for text formatting can be replaced
by their corresponding characters. If such a solution is economically feasible is
another question. The size of the input data and the complexity of algorithms will
both increase with the presented solution.
Moreover, some of the most frequent tuples contain invalid noun phrases. For ex-
ample the tuples 〈below,map〉 and 〈send there, error〉 do not contain a noun in
the instance. This is caused by the rather heterogeneous corpus in combination
with the POS tagger. Many words are tagged wrong, because the web data is dif-
ferent from the corpus, which was used to train the POS-tagger. Furthermore, the
POS-Tagging tool was configured for a fast executions and not for high precision.
To reduce the amount these errors, the POS tagging has to be more accurate, which
either requires more sophisticated tools or a configuration that focusses on pre-
cision. However, the performance of the extraction will suffer, because the POS
tagging will require more time to finish.
A further error of the extracted data becomes visible when looking at the tuples
〈worldcat, linked data resources〉 and 〈worldcat, linked data resource〉.
Although lemmatization was performed during the tuple normalization, the noun
resources is still in plural form. The only explanation of this error is, that the word
resource is POS tagged differently in both cases. The word resource can either
be used as a verb or as a noun. Thus the lemmatization will result in two different
outputs. The solution for this problem the same as above. A more sophisticated
POS tagger or a POS tagger configuration that focusses on precision.
Lastly, an expected error is present in the most frequent tuples. During the nor-
malization of tuples, entities are corrected, that contain a punctuation inside one
of the words. As every website contains a full-stop surrounded by characters,
every single website is affected by this cleaning step. In the case of the tuple
〈year of archive content, com〉 all the characters in front of the full-stop have
been removed. To solve this problem, websites and other entities, which naturally
contain a punctuation, require special treatment during the cleaning phase.
Overall, only 6 of the 25 tuples can be classified as correct. This is an indication,

CHAPTER 5. EXPERIMENTAL RESULTS 61

that a high frequency value alone is not suitable to determine tuple correctness.

5.3.2 Evaluation of Top25 Tuples by Pattern Spread

The tuples with largest pattern spread are depicted in table I.1. A large pattern
spread is caused, if a large amount of patterns identified the same class-instance
pair. The tuples with the largest pattern spread show the disadvantages of extracting
only the closest noun phrases. The top-k tuples according to pattern spread mostly
contain nouns, which are used frequently. This is determined by comparing the
nouns with the highest pattern spread to the 25 most frequently used nouns in the
English language [39]. The result of this comparison shows, that 20 out of the 25
tuples contain one of these frequent nouns either as class or as instance term. This
also becomes visible in the extracted tuples 〈man,woman〉 and 〈woman,man〉.
In no thinkable sense, such a classification is correct. The fact the these examples
contain the same nouns - once classified as instance and once classified as class -
can be seen as evidence, that words which are frequently used have a high pattern
spread. It is very likely that if words are used very often in the same sentence, that
these are closer to the pattern than the actual entity.
A possible solution for this problem can be, to remove tuples from the database, in
which both, the class term and the instance term are among the most used nouns.
However, this would only partially resolve the problem and would also remove
correct extractions such as 〈point, thing〉. Additionally, most of the false extrac-
tions would still be present, because in many cases only one of the entities is listed
among the most frequently used nouns. On top of that there are wrong tuples, in
which neither the class term nor the instance term is amongst the list of the most fre-
quent nouns. For example the extracted tuples 〈game, team〉 or 〈game, player〉
are both wrong and do not contain a frequently used noun. Thus it becomes clear,
that using lists of most frequent nouns to improve the selection will not work. The
problem can only be solved, if the noun phrase extraction does not extract the clos-
est noun phrase. A more extensive analysis on the sentence structure is required,
to find out, which nouns in the sentence are actually connected by the pattern. For
such a solution it is necessary to find out the dependencies of phrases in a sentence.
However, such a solution will increase the computational costs of the extraction
process [18].
Consequently, a large pattern spread alone does not entail tuple correctness. On
the one hand it is heavily influenced by frequently used nouns. On the other hand,
it is influenced by noun pairs, that are often mentioned in the same sentence. With
most of these extractions being wrong, it is not suitable to take the pattern spread
alone a indicator for tuple correctness.

CHAPTER 5. EXPERIMENTAL RESULTS 62

5.3.3 Evaluation of Top25 Tuples by PLD Spread

A high PLD spread is caused, if a tuple was found on a large amount of different
PLDs. The top-25 extractions for this attribute are depicted in table I.3. The extrac-
tions in this list are in 19 cases correct, making the PLD spread the most promising
indicator for tuple correctness.
Two of the false extractions are caused by the lemmatization during the tuple nor-
malization. The tuples 〈parallel, worldwideleader in virtualization〉 and
〈parallel, automation software〉 are both incorrect, because both, the software
and the company, are named Parallels. The cause for this is not the extraction, but
the normalization process. The company name is tagged as noun and the plural
form was transformed to its lemma, in this case the singular form. These errors are
difficult to solve, if the proper noun is equal to a word in a dictionary. Thus the
POS tagging would need to make use of dictionaries of named entities to prevent
such a result. However, such a solution cannot be recommended for a large scale
extraction. For each potential named entity, a large list of names, would have to
be scanned. Such a runtime increase is hardly acceptable. Another solution is to
remove the lemmatization process entirely.
Another pair of false extractions are the tuples 〈below, link〉 and 〈following, list〉.
These false extractions are caused by the nature of the instance terms, as both can
be classified either as noun or as adverb. With a more precise POS tagging it can
be expected, that the amount of falsely tagged words will decrease and in turn the
attribute values of false extractions will be reduced.
Lastly, there are two false extractions in which the PLD spread has almost or ex-
actly the same frequency. These are the tuples 〈service, delivery〉 and
〈whoisguard privacy protection service, whous privacy protection service〉.
The attribute values entail, that these tuples are commonly used on a large amount
of web pages with the same pattern. A plausible explanation can be found for this
large pattern spread. WhoisGuard 1 is a company, that offers services for owners
of a pay-level-domain, that hides personal information of of website owners. Such
a re-occurring notification can be identified by a rather low pattern spread. The tu-
ple 〈service, delivery〉 is caused by a standard phrase used by shopping websites.
The reason why this tuple is found with more than one pattern is, that the class and
instance terms occur frequently in the corpus. Therefore it is likely that these are
also extracted with other patterns, because these frequently used terms are closest
noun phrase in a handful of sentences. A solution would be to adjust the duplicate
removal. If the duplicate removal would not include the PLD as uniqueness crite-
ria of an extraction, these tuples would have significantly reduced attribute values.
Such a duplicate removal would also decrease the data volume significantly, be-

1Company Website available at http://www.whoisguard.com/, accessed on 25.10.2015

CHAPTER 5. EXPERIMENTAL RESULTS 63

cause large amounts of duplicate sentences can be removed.
Overall, this evaluation highlights three major improvement areas for the WTDB
creation. First, the duplicate extraction has to be configured in a way, that it detects
standard phrases, which are slightly altered by unique identifiers under the same
PLD. Furthermore the duplicate removal has to be able to detect service notifica-
tions, which are used on a wide range of different websites. The second area of
improvement is the POS tagger selection and configuration. There is a magnitude
of wrongly tagged nouns present in the top-k lists, which not only causes wrong
extractions. It also causes correct extractions to be destroyed during the normaliza-
tion phase, because the input contained wrongly tagged words. Lastly, the concept
of the closest noun phrase caused a significant amount of wrong extractions, as
visible in the list of tuples, which have the largest pattern spread. As already de-
scribed a more extensive analysis on the sentence structure is required to identify
noun phrases that are connected by a pattern. With exception to the first improve-
ment area, the latter ones will increase computational costs drastically during the
extraction.
Furthermore, this evaluation shows that using single attribute values as indicator
for tuple correctness is not sufficient. Rather a combination of values for each
attribute will lead to better classifications. How to combine attribute values in a
formula, that returns a probability for tuple correctness is not provided in this the-
sis and therefore an important part of the future work.

5.4 Discussion

The resulting attribute values make it obvious, that one single attribute value alone
does not suffice for an automatic detection of tuple correctness. As future work
a formula has to be developed for ranking tuples according to their probability to
be correct. With the data present in the final resource, such a formula has to take
into the account the influences on high attribute values. This includes the effects
of frequently used words on the pattern spread and the influence of re-occurring
standard phrases under the same PLD.
Such a ranking formula benefits from additionally generated attributes. For exam-
ple frequently used words can be detected, by accumulating the frequencies or the
count of each single entity. If these generated attributes are rather large for one of
the entities, this can be seen as indicator that the tuple is not correct, but rather the
cause often used expressions. Additionally, such a ranking formula benefits from
a weighting of patterns. As the pre evaluation of patterns in Appendix B shows,
that patterns differ significantly in terms of precision. These precision differences
can be used to assign tuples with a better ranking, if these were detected with high

CHAPTER 5. EXPERIMENTAL RESULTS 64

precision patterns.
Another area for further improvements is the API. At this stage it has a very basic
functionality that has to be extended in the future. One requirement is the im-
plementation of a sorting function that is not only able to sort tuples using one
attribute value, but rather a combination of attribute values in form of a ranking
formula. With such a feature users are able to adjust their the ranking of tuples to
their preference with each single query. Additionally, the query duration can be
reduced, if the API is adjusted. At this stage the API requests and returns each
single piece of information stored with a tuple. However, for most use cases only
a few of the attributes are required and the remaining attributes do not have to be
extracted. Furthermore, there are three potentially large string values, stored for
each tuple, that contain a list of patterns, PLDs and provenance IDs. Since these
strings can contain up to 205.556 entries it will increase the query duration if such a
large string has to be read from the database. The solution would be to to adjust the
data model of the stored tuples and introduce small samples for this strings, which
only contain a small subset of the stored provenance data. During the analysis of
the top-k rated tuples a further necessary feature became obvious. As some ex-
tractions, such as 〈ability, site〉, have rather high attribute values but do not make
any sense for the reader, it would be nice to have a feature that returns sample
sentences for each tuple. Thus the API has to introduce a new parameter for tuple
queries, which indicates that samples for each query result have to be returned as
well. Otherwise the user has to copy the provenance IDs of the returned tuples and
start a new query to gather sentences.
As described in section 5.3.1 the duplicate sentence detection has to be improved.
As already stated, these slightly modified and re-occurring sentences can be fil-
tered using similarity measures for sentences. If the similarity is above a certain
threshold, the sentence will be removed, because it is likely a re-occurring standard
phrase on a web page.
The storage of sentences itself is the next point of improvement. As already men-
tioned each sentence is only extracted once per PLD. Therefore the stored sen-
tences are not unique and can be aggregated without losing any information. For
example the sentence that contains the tuple 〈 “parallel”, “worldwide leader in vir-
tualization” 〉 is stored 9375 times. Such a duplicate removal will reduce the size
of the database and in turn increase the execution speed for sentence queries.
Although the tuple extraction from the Common Crawl corpus achieved the goal of
a high recall, the extraction system itself can be improved in multiple ways. First
and foremost, the extracted data is written in an encoding, that does not cover the
full range of characters used on the web corpus. Although the data is read in the
correct encoding, some characters are replaced with question marks, when they are
extracted. This error destroyed valuable information, especially for named entities

CHAPTER 5. EXPERIMENTAL RESULTS 65

that contain characters, which are not part of the English alphabet.
The extraction itself also requires an improvement of patterns and their regex trans-
lation. During the empirical evaluation of these, a number of patterns were ex-
cluded because no robust and fast regular expression was found for these. Further
work has to be done to improve the regex of the isolated and the apposition pat-
terns. This will increase the recall even further.
Moreover, the regex for the noun phrase place-holder has to be improved, which
is used for split patterns. The problem is that the place-holder will not identify
abbreviations. Hence, this regex element has to include the possibility of full stops
within and at the end of an entity.
Also the used patterns for extraction have to be improved in future works. Some
of the used patterns have an overlap, which means that the same text passage is
extracted by multiple patterns. Take for example pattern p21a and p8a and apply
these to the following sentence: "The best fruit is an apple". This pattern overlap
leads to two extracted tuples:

• 〈apple, fruit〉

• 〈fruit, apple〉

This has to be solved, for example by implementing a set of rules during the ex-
traction phase. If a pattern overlap is detected in a line, the tuple should only be
extracted once, especially if one of these patterns results in a wrong extraction.
As the careful reader might have noticed, the attribute types of the aggregated tu-
ples have to be adjusted. At the moment the frequency is stored as double. The
reason to select a double data type for the frequency was the issue regarding noun
phrases, which contain multiple nouns separated by a preposition as described in
section 4.1.3. The idea was split such a tuple into two tuples. Therefore the entity
that contains two noun phrases is split at the preposition that separates them. Each
resulting noun then becomes a tuple. However, as in most cases one of these new
tuples must be wrong, the idea was to assign these tuples a frequency of 0.5. Due
to time restrictions the implementation of that idea was labelled as future work.
But not only the data types require re-factoring but also the data insertion.
The data stored in the database is missing exactly five head tuples with all their
modifications. The reason for that is the size limit per entry in the database. These
five tuples occur so often and in so many different modifications, that the maxi-
mum allowed size of the database entry is violated. A simple way to solve this
issue would be to split each tuple into multiple tuples and then insert them. This
easy workaround would not harm the consistency of the WTDB, because a unique
key was generated for each tuple and class and instance name combinations must
not necessarily be unique. The five excluded tuple sets are displayed in table 5.7,

CHAPTER 5. EXPERIMENTAL RESULTS 66

using their head nouns.

Instance Head Class Head
fig diagram
fig view
system system
school school
below list

Table 5.7: Tuples excluded from the WTDB

Chapter 6

Conclusion

The first contribution of this thesis is the development of a hyponymy relation ex-
traction system and the resulting data in form of compressed archives (see Chapter
2 for an extensive problem introduction). The extraction system (see Chapter 4)
was successful in detecting a large amount of tuples and showed that each used
pattern returns correct relations. Even with filters and the removal of duplicates
on archive level, the recall of the selected patterns is remarkable. The system per-
formed well in terms of speed and robustness, because it successfully processed
98, 38 percent of a large and heterogeneous input corpus within 22 hours (see
Chapter 6). Additionally the output data contains provenance information, which
also allows the generation of valuable attributes.
The extracted data is then transformed to enable the aggregation of equal tuples.
A system is developed that normalizes, cleans and aggregates the tuples. On the
one hand, the system was successful in aggregating large amounts of data using
a restricted infrastructure. On the other hand however, the normalization led to
mediocre results, because it used badly POS tagged input data. The reason for
badly tagged data is the combination of ill-formed input data and a extraction that
prioritizes fast execution and high recall over precision. But then it is the recall,
that makes it possible to generate three attributes, with remarkable value ranges.
These value ranges allow a better automatic detection of tuple correctness. Espe-
cially the generated attribute PLD spread is promising as the evaluation has shown.
The automatic detection requires a certain access speed to the data, which is pro-
vided with the third contribution of this thesis.
For this purpose a NoSql DBMS with inserted data is provided that stores data on
disk. The selection of an on-disk database reduces the memory consumption and
enables the usage of the data on a regular personal computer. The system employs
a publicly available and well-known DBMS, which enables any researcher to ex-

67

CHAPTER 6. CONCLUSION 68

plore the data free of charge. To enable a fast query execution using class and
instance terms a redundant and nested data model is implemented, that is capable
of large data output within a short duration. The main use case is to return a large
amount of relations for an entity and then use the generated attributes, to determine
a set of likely correct hyponymy relations. For this use case the data was duplicated
and sorted according to class and instance heads. The redundant and nested data
model makes it possible to execute queries without the usage of joins. The result
is remarkable, as it successfully serves the main use case with up to 5.799 returned
results per second.
The API is written in one of the most popular and domain independent program-
ming languages and therefore allows a large amount of developers to access the
data with ease. First and foremost the API provides functionality to query to tuples
and allows the user the specify almost every single data field stored in the WTDB.
It also provides the user with a wildcard functionality for each query parameter, for
a faster exploration of the resource. The API is capable of returning large amounts
of data without significant memory consumption, and thus enables researchers to
explore and use the data without major or probably without any investments in the
existing IT infrastructure.
Overall, this work shows that it is possible to perform large scale extractions eco-
nomically, in terms of duration and costs. The data is stored in a form that gives
researchers the opportunity to explore one of the largest public data source for do-
main independent hyponymy relations without extensive investments in hardware.
Furthermore the used tools and applications from third parties are licensed as GPL
(General Public License) software, which enables the free usage of these tools for
researchers or private users. As determined by the descriptive results in section 5.3,
the extracted data is suitable to create one of the most comprehensive taxonomies
to this date.

Bibliography

[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large
plain-text collections. In Proceedings of the fifth ACM conference on Dig-
ital libraries, pages 85–94, 2000.

[2] M. Ando, S. Sekine, and S. Ishizaki. Automatic extraction of hyponyms
from japanese newspapers. using lexico-syntactic patterns. In Proceedings of
the Fourth International Conference on Language Resources and Evaluation
(LREC-2004), Lisbon, Portugal, May 2004. European Language Resources
Association (ELRA).

[3] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia-a crystalliza-
tion point for the web of data. Web Semantics: science, services and agents
on the world wide web, 7(3):154–165, 2009.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pages 1247–1250. ACM, 2008.

[5] C. Castella Xavier, V.L. Strube de Lima, and M. Souza. Open information ex-
traction based on lexical-syntactic patterns. In Intelligent Systems (BRACIS),
2013 Brazilian Conference on, pages 189–194, Oct 2013.

[6] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27,
May 2011.

[7] Marion G Ceruti. An expanded review of information-system terminology.
Technical report, DTIC Document, 1999.

[8] J. Cho. Crawling the Web: Discovery and maintenance of large-scale Web
data. PhD thesis, Stanford University, 2001.

69

BIBLIOGRAPHY 70

[9] J. Christensen, S. Soderland, and O. Etzioni. An Analysis of Open Infor-
mation Extraction Based on Semantic Role Labeling Categories and Subject
Descriptors. Proceeding of K-CAP ’11 Proceedings of the sixth international
conference on Knowledge capture, pages 113–119, 2011.

[10] D. Crystal. A Dictionary of Linguistics and Phonetics. Blackwell, Malden,
6. edition, 2008.

[11] Klaas Dellschaft and Steffen Staab. Measuring the similarity of concept hi-
erarchies and its influence on the evaluation of learning procedures. Master’s
Thesis (Diplomarbeit), University of Koblenz-Landau, 2005.

[12] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’14, pages 601–610, New York, NY, USA, 2014. ACM.

[13] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information ex-
traction from the web. Communications of the ACM, 51(12):68–74, 2008.

[14] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open infor-
mation extraction. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1535–1545. Association for Compu-
tational Linguistics, 2011.

[15] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[16] Common Crawl Foundation. Common crawl - about. Accessed on
25.10.2015.

[17] Common Crawl Foundation. Common crawl - so you’re ready to get started.
Accessed on 25.10.2015.

[18] P. Gamallo, M. Garcia, and S. Fernández-Lanza. Dependency-based open
information extraction. EACL 2012, page 10, 2012.

[19] Pierdaniele Giaretta. Ontologies and knowledge bases towards a terminolog-
ical clarification. Towards very large knowledge bases: knowledge building
& knowledge sharing, 25:32, 1995.

[20] R. Gupta, A. Halevy, X. Wang, S. Whang, and F. Wu. Biperpedia: An on-
tology for search applications. Proc. VLDB Endow., 7(7):505–516, March
2014.

BIBLIOGRAPHY 71

[21] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th Conference on Computational Linguistics - Volume
2, COLING ’92, pages 539–545, Stroudsburg, PA, USA, 1992. Association
for Computational Linguistics.

[22] MongoDB Inc. Mongodb limits and thresholds. Accessed on 25.10.2015.

[23] H. Jing, E. Haihong, L. Guan, and D. Jian. Survey on nosql database. In Per-
vasive Computing and Applications (ICPCA), 2011 6th International Confer-
ence on, pages 363–366, Oct 2011.

[24] P. D. Karp. What database management system (s) should be employed
in bioinformatics applications? OMICS A Journal of Integrative Biology,
7(1):35–36, 2003.

[25] C. Klaussner and D. Zhekova. Pattern-based ontology construction from se-
lected wikipedia pages. In Proceedings of the Student Research Workshop
associated with RANLP 2011, pages 103–108, 2011.

[26] T. Lin, Mausam, and O. Etzioni. Identifying functional relations in web text.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’10, pages 1266–1276, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[27] P. Mell and T. Grance. The nist definition of cloud computing. 2011.

[28] Y. Merhav. A weighting scheme for open information extraction. NAACL-
HLT 2012, page 60, 2012.

[29] Robert Meusel, Hannes Mühleisen, Oliver Lehmberg, Petar Petrovski, and
Christian Bizer. Web data commons - extraction framework. Accessed on
25.10.2015.

[30] C. Orna-Montesinos. Words and patterns: lexico-grammatical patterns and
semantic relations in domain-specific discourses. 2011.

[31] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon s3 for
science grids: a viable solution? In Proceedings of the 2008 international
workshop on Data-aware distributed computing, pages 55–64. ACM, 2008.

[32] D. C. Pastoors. Web-scale knowledge harvesting: Populating the webisa tax-
onomy using the web, 2014.

BIBLIOGRAPHY 72

[33] S. P. Ponzetto and M. Strube. Taxonomy induction based on a collabora-
tively built knowledge repository. Artificial Intelligence, 175(9-10):1737–
1756, 2011.

[34] P.R. Ray, V. Harish, S. Sarkar, and A. Basu. Part of speech tagging and
local word grouping techniques for natural language parsing in hindi. In
Proceedings of ICON 2003, 2003.

[35] A. Ritter and O. Etzioni. A latent dirichlet allocation method for selectional
preferences. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 424–434. Association for Computational
Linguistics, 2010.

[36] A. Ritter, S. Soderland, and O. Etzioni. What is this, anyway: Automatic
hypernym discovery. 2009.

[37] B. N. Rossiter. Introduction to data base management systems. Computer
Physics Communications, 33:5 – 12, 1984.

[38] T. Stubblebine. Regular expression pocket reference : "Regular expressions
for Perl, Ruby, PHP, Python, C, Java, and .NET". Safari Books Online.
O’Reilly, Sebastopol, Calif., 2nd edition, 2007.

[39] Oxford university press. The oec: Facts about the language. Accessed on
25.10.2015.

[40] M. Ushold and R. Jasper. A framework for understanding and classifying
ontology application. In Proc IJCAI99 Workshop on Ontologies and Problem-
Solving Methods. Stockholm, volume 282, 1999.

[41] J. Varia. Cloud architectures. page 16, 2008.

[42] Feng-Kwei Wang. Designing a case-based e-learning system: what, how and
why. Journal of Workplace Learning, 14(1):30–43, 2002.

[43] D. S. Weld, R. Hoffmann, and F. Wu. Using wikipedia to bootstrap open
information extraction. ACM SIGMOD Record, 37(4):62, 2009.

[44] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu. Cloud storage as the infrastruc-
ture of cloud computing. In Intelligent Computing and Cognitive Informatics
(ICICCI), 2010, pages 380–383. IEEE, 2010.

BIBLIOGRAPHY 73

[45] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy
for text understanding. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’12, pages 481–492,
New York, USA, 2012. ACM.

[46] A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and S. Soder-
land. Textrunner: Open information extraction on the web. In Proceed-
ings of Human Language Technologies: The Annual Conference of the North
American Chapter of the Association for Computational Linguistics: Demon-
strations, NAACL-Demonstrations ’07, pages 25–26, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics.

[47] T. Yigit, M.A. Cakar, and A.S. Yuksel. The experience of nosql database in
telecommunication enterprise. In Application of Information and Commu-
nication Technologies (AICT), 2013 7th International Conference on, pages
1–4, Oct 2013.

Appendix A

Program Code / Resources

The documented source code, an API description, third party software, a PDF ver-
sion of this thesis is contained on a CD attached to this thesis. The Files are listed
in the following table:

Name Description
cleaning-app Contains source code and an executable jar-file for

Duplicate Removal, Data Normalization and Data
Aggregation

insert-app Contains source code and an executable jar-file for
inserting unique tuples into a MongoDB database

query-app Contains source code and an executable jar-file for
the API to query the final resource

Description_API.pdf Contains a descriptions for inserting the data and
querying the data using

Patterns.pdf Contains a list of used patterns for hyponymy ex-
traction

extraction-framework Contains the source code for the hyponymy extrac-
tion from the Common Crawl corpus.

Third-Party-Tools Third Party Tools used in this work.
thesis-jseitner.pdf This master thesis in .pdf format.

74

75

APPENDIX B. PATTERNS 76

Appendix B

Patterns

ID Description Tuples found Type Reference
p1 NPI and other NPC 45900092 compact [21]
p2 NPC especially NPI 20872227 compact [21]
p3a NPC including NPI 80640885 compact [21]
p4 NPI or other NPC 13392348 compact [21]
p5 NPC such as NPI 70337543 compact [21]
p6 NPI and any other NPC 975735 compact [32]
p7 NPI and some other NPC 296524 compact [32]
p8 NPI is a NPC 187644160 compact [33]
p8b NPI was a NPC 39585428 compact [33]
p8c NPI are a NPC 15141131 compact [33]
p8d NPI were a NPC 3206238 compact [33]
p9 NPC like NPI n.a. compact [33]
p10 Such NPC as NPI 5755389 split [21]
p11 NPI like other NPC 402388 compact [33]
p12a NPI , one of the NPC 4200376 compact [33]
p12b NPI , one of these NPC 53235 compact [33]
p12c NPI , one of those NPC 99241 compact [33]
p13 Examples of NPC is NPI 267021 split [30]
p14 Examples of NPC are NPI 267764 split [30]
p15a NPI are examples of NPC 2205089 compact [30]
p15b NPI is example of NPC 292706 compact [30]
p16 NPC for example NPI 2356522 compact [30]
p20a NPI is adj. sup. NPC 6150245 compact [30]
p20b NPI are adj. sup. NPC 1393484 compact [30]
p20c NPI is adj. sup. most NPC 2286478 compact [30]
p20d NPI are adj. sup. most NPC 860770 compact [30]

APPENDIX B. PATTERNS 77

ID Description Tuples found Type Source
p21a Adj. sup. NPC is NPI 10360953 split [30]
p21b Adj. sup. NPC are NPI 3755893 split [30]
p21c Adj. sup. NPC is NPI 2999877 split [30]
p21d Adj. sup. most NPC are NPI 2357968 split [30]
p22a NPI which is called NPC 119317 compact [2]
p22b NPI which is named NPC 19122 compact [2]
p23a NPC mainly NPI 4792792 compact [2]
p23b NPC mostly NPI 8383063 compact [2]
p23c NPC notably NPI 1154745 compact [2]
p23d NPC particularly NPI 11656254 compact [2]
p23e NPC principally NPI 455578 compact [2]
p24 NPC in particular NPI 2354596 compact [25]
p25 NPC except NPI 9648662 compact [25]
p26 NPC other than NPI 7175087 compact [25]
p27a NPC e.g. NPI 1973022 compact [25]
p27b NPC i.e. NPI 2114793 compact [25]
p28a NPI , a kind of NPC 1452822 compact [25]
p28b NPI , kinds of NPC 4618873 compact [25]
p28c NPI , a form of NPC 1127173 compact [25]
p28d NPI , forms of NPC 3326957 compact [25]
p29a NPI which look like NPC 68945 compact [2]
p29c NPI which sound like NPC 32730 compact [2]
p30a NPC which are similar to NPI 17304 compact [25]
p30b NPC which is similar to NPI 63713 compact [25]
p31a NPC example of this is NPI 14237 compact [30]
p31b NPC examples of this are NPI 1515 compact [30]
p32 NPC , NPI for example n.a. isolated [30]
p34 NPC types NPI 11080276 compact [30]
p35 NPI , NPC types n.a. isolated [30]
p36 NPC whether NPI or 2800349 split [30]
p37 Compare NPI with NPC 340636 split [30]
p38 NPC compared to NPI 346525 compact [30]
p39 NPC among them NPI 524784 compact [30]
p40 NPC as NPI n.a. compact [30]
p42 NPI or the many NPC 15192 compact [30]
p43 NPI sort of NPC 7884398 compact [30]

Appendix C

Regex of Compact patterns

p1: NPI and other NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sand \sother \s [\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]? (\p{L}| \d)

p2: NPC especially NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sespecially \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p3a: NPC including NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sincluding \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p4: NPI or other NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sor \sother \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p5: NPC such as NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \ssuch \sas \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

78

APPENDIX C. REGEX OF COMPACT PATTERNS 79

p6: NPI and any other NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sand \sany \sother \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p7: NPI and some other NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sand \ssome \sother \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p8a: NPI is a NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sis \sa \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p8b: NPI was a NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swas \sa \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p8c: NPI are a NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sare \sa \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p8d: NPI were a NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swere \sa \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p9: NPC like NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \slike \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p11: NPI like other NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \slike \sother \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX C. REGEX OF COMPACT PATTERNS 80

p12a: NPI , one of the NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sone \sof \sthe \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p12b: NPI , one of these NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sone \sof \sthese \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p12c: NPI , one of those NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sone \sof \sthose \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p15a: NPI are examples of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sexamples \sof \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p15b: NPI is example of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sis \san \sexample \sof \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p16: NPC for example NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sfor \sexample \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p20a: NPI is adj. sup. NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sis \sthe \s \w+est \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p20b: NPI are adj. sup. NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sare \sthe \s \w+est \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX C. REGEX OF COMPACT PATTERNS 81

p20c: NPI is adj. sup. most NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sis \sthe \smost \s \w+ \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p20d: NPI are adj. sup. most NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sare \sthe \smost \s \w+ \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p22a: NPI which is called NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \sis \scalled \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p22b: NPI which is named NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \sis \snamed \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p23a: NPC mainly NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \smainly \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p23b: NPC mostly NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \smostly \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p23c: NPC notably NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \snotably \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p23d: NPC particularly NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sparticularly \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX C. REGEX OF COMPACT PATTERNS 82

p23e: NPC principally NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sprincipally \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p24: NPC in particular NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sin \sparticular \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p25: NPC except NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sexcept \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p26: NPC other than NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sother \sthan \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p27a: NPC e.g. NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \se \.g \. \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p27b: NPC i.e. NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \si \.e \. \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p28a: NPI , a kind of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sa \skind \sof \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p28b: NPI , kinds of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \skinds \sof \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX C. REGEX OF COMPACT PATTERNS 83

p28c: NPI , a form of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sa \sform \sof \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p28d: NPI , forms of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \, \sforms \sof \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p29a: NPI which look like NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \slooks? \slike \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p29c: NPI which sound like NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \ssounds? \slike \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p30a: NPC which are similar to NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \sare \ssimilar \sto \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p30b: NPC which is similar to NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhich \sis \ssimilar \sto \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p31a: NPC example of this is NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sexample \sof \sthis \sis \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p31b: NPC examples of this are NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sexamples \sof \sthis \sare \s[\u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX C. REGEX OF COMPACT PATTERNS 84

p34: NPC types NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \stypes \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p38: NPC compared to NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \scompared \sto \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p39: NPC among them NPI

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \samong \sthem \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p40: NPC as NPI

(\p \L \| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \sas \s[\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p \L \| \d)

p42: NPI or the many NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \sor \sthe \smany \s[\u0027 \u2018 \u2019
\u201A \u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

p43: NPI sort of NPC

(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \ssort \sof \s[\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

Appendix D

Regex of Split Patterns

p10: Such NPC as NPI

(?>(S|s)uch \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011 \u2012
\u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}as \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

p13: Examples of NPC is NPI

(?>(E|e)xample \sof \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011
\u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027
\u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}is \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

p14: Examples of NPC are NPI

(?>(E|e)xamples \sof \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011
\u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027
\u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}are \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

85

APPENDIX D. REGEX OF SPLIT PATTERNS 86

p21a: Adj. sup. NPC is NPI

(?> \p{L}+est \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011 \u2012
\u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}is \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

p21b: Adj. sup. NPC are NPI

(?> \p{L}+est \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011 \u2012
\u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}are \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

Adj. sup. most NPC is NPI

(?>(M|m)ost \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011 \u2012
\u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){2,5}is \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

Adj. sup. most NPC are NPI

(?>(M|m)ost \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011 \u2012
\u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027 \u2018
\u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){2,5}are \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

p36: NPC whether NPI or
(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u00A9 \u00AE]? \,? \swhether \s([\u0027 \u2018 \u2019 \u201A
\u201B \u201C \u201D \u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([
\u002D \u2010 \u2011 \u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[
\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u00A9 \u00AE]? \s){1,4}or \s[\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p{L}| \d)

APPENDIX D. REGEX OF SPLIT PATTERNS 87

p37: Compare NPI with NPC

(?>(C|c)ompare \s([\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D
\u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D \u2010 \u2011
\u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022 \u0026 \u0027
\u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F \u00A9 \u00AE]?
\s){1,4}with \s[\u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E
\u201F \u0022]?(\p{L}| \d))

Appendix E

Regex of Isolated Patterns

p32: NPC , NPI for example
(?>(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C
\u201D \u201E \u201F \u00A9 \u00AE]?([\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D
\u2010 \u2011 \u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022
\u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F
\u00A9 \u00AE]? \,? \s){1,4}for \sexample(\s| \.| \?| \!| \,))

p35: NPI , NPC types
(?>(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C
\u201D \u201E \u201F \u00A9 \u00AE]?([\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D
\u2010 \u2011 \u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022
\u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F
\u00A9 \u00AE]? \s){1,4}types?(\s| \.| \?| \!| \,))

88

APPENDIX E. REGEX OF ISOLATED PATTERNS 89

p41: NPC , NPI for instance
(?>(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C
\u201D \u201E \u201F \u00A9 \u00AE]?([\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D
\u2010 \u2011 \u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022
\u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F
\u00A9 \u00AE]? \,? \s){1,4}for \sinstance(\s| \.| \?| \!| \,))

p44: NPC , NPI and the like
(?>(\p{L}| \d)[\u0022 \u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C
\u201D \u201E \u201F \u00A9 \u00AE]?([\u0027 \u2018 \u2019 \u201A \u201B
\u201C \u201D \u201E \u201F \u0022]?(\p{L}++| \d++ \p{L}++)([\u002D
\u2010 \u2011 \u2012 \u2013 \u2014 \u2015 \u2043]?(\p{L}++| \d++))?[\u0022
\u0026 \u0027 \u2018 \u2019 \u201A \u201B \u201C \u201D \u201E \u201F
\u00A9 \u00AE]? \s){1,4}and \sthe \slike(\s| \.| \?| \!| \,))

Appendix F

Abbreviations for Sentence
Splitter

The following abbreviations are provided by the European Parliament Proceedings
Parallel Corpus 1996-2011 1, with exception to the ones, which are denoted with
an asterisk *. These are added by the author due to their observed frequency in the
web corpus.

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
Adj, Adm, Adv, Art*, Asst, Bart, Bldg, Brig, Bros, Capt, Cmdr, Col, Comdr, Con,
Corp, Cpl, DR, Dr, Drs, Ens, Fig*, Gen, Gov, Hon, Hr, Hosp, Insp, Lt, MM, MR,
MRS, MS, Maj, Messrs, Mlle, Mme, Mr, Mrs, Ms, Msgr, No*, Nos*, Nr*, Op,
Ord, Pat, Pfc, Ph, pp*, Prof, Pvt, Rep, Reps, Res, Rev, Rt, Sen, Sens, Sfc, Sgt, Sr,
St, Supt, Surg, v, vs, U.S*, U.K*, i.e, rev, e.g,

1Downloaded from http://www.statmt.org/europarl/v7/tools.tgz on 7.10.2015

90

Appendix G

Empirically Determined
Collective Nouns

• array

• couple

• collection

• group

• number

• range

• selection

• series

• set

• variety

91

Appendix H

Evaluation of patterns

The following instructions to evaluate the correctness of an extracted hyponymy
tuple are copied from Ponzetto and Strube [33]:

Below is a list of pairs of words. For each pair (a, b), please assign one of the
following relations: IOF a is an INSTANCE-OF b corresponds to set membership.
a must refer to a (unique) individual and b must refer to a set such that a is a
member of b. Examples:

North Korea IOF country
Errol Morris IOF film director

ISA a ISA b corresponds to set inclusion. a and b must refer sets such that a is a
(proper) subset of b. Examples:

physicists ISA scientists
football ISA sport

NOT If none of the above apply.

When annotating the pairs, please follow these guidelines:
1. Annotate the pairs (a, b) while answering the question: is a a (kind of/form of)
b?
2. Reify the concepts, that is, consider abstract concepts as made up of material
objects. E.g. disciplines are made up of things like publications, concrete theories,
therefore:

psychology ISA social science
natural language processing ISA artificial intelligence

3. Disregard the number of the phrases (i.e. singular or plural), e.g. theoretical
physicists ISA scientist, although scientist is singular and would denote a single
individual rather than a set;

92

APPENDIX H. EVALUATION OF PATTERNS 93

4. If a phrase has multiple senses, consider all senses of the phrase, e.g. school
can refer to both the building and the institution so these pairs would be tagged as
follows:

school ISA building
school ISA institution

In other words, tag with a relation if there is *at least one* pair of senses of the two
phrases which is in the relation. Note therefore that the same phrase can be in an
ISA relation with two distinct sets (i.e. sets whose intersection is empty, as in the
example above).

APPENDIX H. EVALUATION OF PATTERNS 94

ID Description Hits ISA IOF NOT Checked Ratio
p1 NPI and other NPC 2469 60 10 30 100 0,7
p2 NPC especially NPI 1655 15 4 81 100 0,19
p3a NPC including NPI 3936 32 12 56 100 0,44
p4 NPI or other NPC 888 69 1 30 100 0,7
p5 NPC such as NPI 2862 52 6 42 100 0,58
p6 NPI and any other NPC 70 74 2 24 100 0,76
p7 NPI and some other NPC 17 48 6 46 100 0,54
p8a NPI is a NPC 15365 29 15 56 100 0,44
p8b NPI was a NPC 4214 18 21 61 100 0,39
p8c NPI are a NPC 1002 52 5 43 100 0,57
p8d NPI were a NPC 171 36 6 58 100 0,42
p9 NPC like NPI 20240 14 3 83 100 0,17
p10 Such NPC as NPI 380 54 4 42 100 0,58
p11 NPI like other NPC 31 20 11 69 100 0,31
p12a NPI , one of the NPC 240 17 21 62 100 0,38
p12b NPI , one of these NPC 4 12 1 87 100 0,13
p12c NPI , one of those NPC 8 10 5 85 100 0,15
p13 Examples of NPC is NPI 32 33 0 67 100 0,33
p14 Examples of NPC are NPI 15 41 4 55 100 0,45
p15a NPI are examples of NPC 192 16 4 80 100 0,2
p15b NPI is example of NPC 34 30 6 64 100 0,36
p16 NPC for example NPI 128 30 1 69 100 0,31
p20a NPI is adj. sup. NPC 793 49 14 37 100 0,63
p20b NPI are adj. sup. NPC 176 39 2 59 100 0,41
p20c NPI is adj. sup. most NPC 254 52 11 37 100 0,63
p20c NPI is adj. sup. most NPC 87 46 3 51 100 0,49
p21a Adj. sup. NPC is NPI 960 24 1 75 100 0,25
p21b Adj. sup. NPC are NPI 334 18 1 81 100 0,19
p21c Adj. sup. NPC is NPI 402 28 3 69 100 0,31
p21d Adj. sup. most NPC are NPI 369 19 2 79 100 0,21

Table H.1: Precision and Recall Measurement for Patterns (Part 1)

APPENDIX H. EVALUATION OF PATTERNS 95

Desc. ID Hits ISA IOF NOT Checked Ratio
p22a NPI which is called NPC 8 39 11 50 100 0,5
p22b NPI which is named NPC 1 21 5 74 100 0,26
p23a NPC mainly NPI 285 22 0 78 100 0,22
p23b NPC mostly NPI 643 16 0 84 100 0,16
p23c NPC notably NPI 55 20 8 72 100 0,28
p23d NPC particularly NPI 764 18 1 81 100 0,19
p23e NPC principally NPI 23 24 2 74 100 0,26
p24 NPC in particular NPI 118 24 1 75 100 0,25
p25 NPC except NPI 872 20 2 78 100 0,22
p26 NPC other than NPI 541 39 5 56 100 0,44
p27a NPC e.g. NPI 127 32 1 67 100 0,33
p27b NPC i.e. NPI 123 28 1 71 100 0,29
p28a NPI , a kind of NPC 6 23 1 76 100 0,24
p28b NPI , kinds of NPC 0 16 1 79 96 0,18
p28c NPI , a form of NPC 4 45 0 55 100 0,45
p28d NPI , forms of NPC 1 18 0 82 100 0,18
p29a NPI which look like NPC 6 33 0 67 100 0,33
p29c NPI which sound like NPC 2 13 0 87 100 0,13
p30a NPC which are similar to NPI 2 18 0 82 100 0,18
p30b NPC which is similar to NPI 4 28 0 72 100 0,28
p31a NPC example of this is NPI 6 28 1 71 100 0,29
p31b NPC examples of this are NPI 0 4 0 12 16 0,25
p32 NPC NPI for example 567 17 1 82 100 0,18
p34 NPC types NPI 944 17 0 83 100 0,17
p35 NPI NPC types 3416 11 1 88 100 0,12
p36 NPC whether NPI or 297 12 1 87 100 0,13
p37 Compare NPI with NPC 41 16 0 84 100 0,16
p38 NPC compared to NPI 450 13 4 83 100 0,17
p39 NPC among them NPI 26 11 12 77 100 0,23
p40 NPI as NPC 44015 16 1 83 100 0,17
p41 NPC NPI for instance 128 13 0 87 100 0,13
p42 NPI or the many NPC 1 26 5 69 100 0,31
p43 NPI sort of NPC 770 16 2 82 100 0,18
p44 NPC NPI and the like 47 14 0 86 100 0,14

Table H.2: Precision and Recall Measurement for Patterns (Part 2)

96

APPENDIX I. TOP TUPLES PER ATTRIBUTE 97

Appendix I

Top Tuples Per Attribute

I.1 Top 25 - Pattern Spread

No. Instance Class Freq. Patterns PLDs
1 woman man 3797 47 1924
2 time thing 5655 47 2900
3 man woman 3925 46 1999
4 man thing 2409 46 1245
5 book thing 3806 46 1894
6 parent child 2059 46 1329
7 china country 25726 46 7877
8 people thing 7881 45 3830
9 something thing 2723 45 1540
10 time people 2161 45 1396
11 child family 6488 45 3524
12 child people 28541 45 7706
13 country people 1039 45 696
14 english language 22551 45 8801
15 time game 947 44 564
16 player game 1041 44 611
17 life thing 5481 44 2023
18 idea thing 1542 44 1006
19 point thing 1190 44 768
20 school child 1377 44 915
21 game player 1130 44 638
22 person people 1257 44 849
23 game team 1050 43 567
24 god thing 4597 43 1645
25 mind thing 1722 43 966

Table I.1: Top 25 Tuples by Pattern Spread

APPENDIX I. TOP TUPLES PER ATTRIBUTE 98

I.2 Top 25 - Frequency

No. Instance Class Freq. Patterns PLDs
1 worldcat linked data resources 205556 1 2
2 viaf linked data resources 204505 1 2
3 active member of questia rest 143633 1 1
4 march 12 employment for pay period 106354 1 3
5 below map 105701 9 795
6 conditionscontact usbuilt by

orange
cooperative of great diver-
sity

81370 1 1

7 rights reservedabout mag-
numterm

cooperative of great diver-
sity

81329 1 1

8 href= target=’_top’>more
database select

datum collection 81180 1 1

9 lowest load time highest load time 76567 1 3
10 conditionscontact usbuilt by

orange
distinction 69010 1 1

11 rights reservedabout mag-
numterm

distinction 68969 1 1

12 share page website by copying 63884 1 1
13 worldcat linked data resource 63874 1 1
14 share page pasting link http 63769 1 1
15 viaf linked data resource 63563 1 1
16 post website by copying 60872 1 1
17 post pasting link http 60774 1 1
18 ability site 53184 16 166
19 send there error 51610 1 2
20 year of archive content com 47978 1 4
21 member learn hal leonard digital item 47391 1 1
22 address basic information 43129 6 151
23 title basic information 42999 4 33
24 telephone number basic information 42979 3 21
25 executive name basic information 42959 1 1

Table I.2: Top 25 Tuples by Frequency.

APPENDIX I. TOP TUPLES PER ATTRIBUTE 99

I.3 Top 25 - Pay-Level-Domain Spread

No. Instance Class Freq. Patterns PLDs
1 name information 16186 30 10096
2 parallel worldwide leader in

virtualization
9377 1 9375

3 parallel automation software 9371 1 9366
4 service delivery 9352 11 9348
5 english language 22551 45 8801
6 united states country 24850 42 8596
7 name personal information 10112 18 8213
8 following list 16229 13 8043
9 china country 25726 46 7877
10 whoisguard privacy

protection service
whous privacy pro-
tection service

7743 1 7743

11 child people 28541 45 7706
12 year long time 19043 22 7313
13 google search engine 14437 39 6853
14 patience virtue 13917 18 6173
15 canada country 12357 43 6140
16 india country 15989 43 6127
17 today day 15013 38 6044
18 free lunch thing 13963 5 5905
19 cancer disease 16295 39 5888
20 facebook social media 11318 39 5821
21 below link 12574 11 5658
22 imitation form of flattery 11803 6 5519
23 twitter social media 10303 36 5138
24 today good day 12906 7 4963
25 japan country 10641 38 4912

Table I.3: Top 25 Tuples by Pay-Level-Domain Spread.

Appendix J

Query Sets

The following pages depict the queries used to test the duration of queries are pre-
sented.
First, the queries which have both, class and instance term specified, are presented.
These tables contain the exact class and instance terms, as well as the query dura-
tion. The amount of returned results are not depicted in these tables, because the
class instance pairs are per definition unique and only return one result.
Second, the queries are presented, in which only the class term is specified.
Lastly, the queries for tuples are depicted, in which only the instance terms are
specified. For these query sets, also the amount of returned results is listed.

100

APPENDIX J. QUERY SETS 101

Instance Class Duration(ms)
name information 580
below list 10828
name information 24980
parallel worldwide leader in virtualization 7780
parallel automation software 11489
service delivery 19430
english language 6926
united states country 49483
name personal information 1304
following list 853
china country 2622
whoisguard privacy protection service whous privacy protection service 30605
child people 12537
year long time 6985
google search engine 7941
patience virtue 7160
canada country 2660
india country 2327
today day 8340
free lunch thing 17283
cancer disease 20475
facebook social media 27144
below link 20233
imitation form of flattery 15490
twitter social media 785
today good day 2478
japan country 2826
us country 2508
answer resounding yes 3065
germany country 2585
alcohol drug 4943
below example 14556
address information 27709
australia country 2896
facebook social network 7525
trademark proprietary rights 5015
parent family member 1867
laughter medicine 874
dog animal 28016
information material 30674
virus harmful component 3012
reasonable attorney fee expense 8407
com website 7109
bank financial institution 30284
people thing 3160
there time 7215
life journey 4591
product material 8697
honesty policy 21030
woman people 17384

Table J.1: Query Set 1: Class and Instance Specified (Part 1)

APPENDIX J. QUERY SETS 102

Instance Class Duration(ms)
copyright proprietary notice 11442
trademark law 17164
france country 3028
com site 14805
software material 1154
email address contact information 5532
diabetes chronic disease 26540
child family 16687
cat animal 17214
facebook social networking site 673
age factor 901
diabetes disease 865
computer device 39255
facebook site 545
name identifiable information 1550
content material 1246
email address information 1171
copyright notice 10937
new york city 7372
facebook social media site 489
book material 1089
brazil country 13365
loss of principal invested investment risk 8980
human animal 8082
tablet mobile device 1157
fact amusement account 11790
world better place 18733
video material 1251
potential for loss risk 255
illinois member fdic 110
state farm bank member fdic 7
illinois equal housing lender 8382
state farm bank equal housing lender 410
cookie text file 12976
uk country 2831
cookie technology 19735
friend people 23362
pain symptom 8564
usa country 2602
breakfast meal of the day 27022
advertising use 5937
twitter social network 9589
bird animal 5914
saturday day 8323
football sport 12090
mexico country 2922
there of people 648
tablet device 17927
website resource 55047
time thing 26568
child family member 13914

Table J.2: Query Set 1: Class and Instance Specified (Part 2)

APPENDIX J. QUERY SETS 103

Class Results Duration(ms)
list 95130 21903
information 248593 42434
worldwide leader in virtualization 17 16200
automation software 119 20959
delivery 8119 29924
language 57107 15968
country 192758 92091
personal information 10327 6297
whous privacy protection service 2 31016
people 364940 22513
long time 38906 18399
search engine 15920 13255
virtue 15344 8537
day 153446 14192
thing 901381 35671
disease 75205 23689
social media 17470 34606
link 133828 16068
form of flattery 3483 19834
good day 12980 3169
resounding yes 3008 4413
drug 55696 9574
example 337762 29552
social network 10703 12172
proprietary rights 1481 10076
family member 27003 18246
medicine 22183 2106
animal 78780 12985
material 182169 35797
harmful component 315 65491
expense 37179 9016
website 80727 8213
financial institution 13206 41463
time 367420 12865
journey 23112 5611
policy 47050 19831
proprietary notice 284 12522
law 57998 16433
site 151157 20716
contact information 4744 12820
chronic disease 5919 28387
family 156067 24870
social networking site 4286 3433
factor 270784 11952
device 173534 35371
identifiable information 1940 6368
notice 11168 537
city 109967 9117
social media site 3576 3591
investment risk 292 9658
mobile device 14232 4983

Table J.3: Query Set 2: Queries with Classes Specified (Part 1)

APPENDIX J. QUERY SETS 104

Class Results Duration(ms)
amusement account 81 17422
better place 8298 28306
risk 68108 1654
member fdic 148 136
equal housing lender 438 12535
text file 3267 19151
technology 105429 20088
symptom 44743 12212
meal of the day 1699 33697
use 77464 14231
sport 45476 15887
of people 59398 23324
resource 126238 52093
state 125429 49497
everyone 114830 9838
success 88684 20466
summary 17761 4046
island 30455 7844
condition 118453 89673
item 189407 6512
resounding no 2161 10775
adult 23871 13876
content 46389 12212
company 257685 21066
different story 42138 13276
cost 63056 6886
continent 8547 3286
place 394954 23434
issue 308618 9371
best defense 6327 33502
institution 70148 50975
business 147709 15265
gift 80810 5091
site feature 416 12455
event 233663 13481
necessity 54308 6874
tablet 15183 7354
listing 16084 15036
sin 24708 10680
pet 18886 14737
mineral 18446 10821
organization 180798 16727
wildlife 19155 8283
picture 67778 12322
problem 352855 68306
great day 7676 16058
video 66955 12935
religion 35908 61732
purpose 73070 5219

Table J.4: Query Set 2: Queries with Classes Specified (Part 2)

APPENDIX J. QUERY SETS 105

Instance Results Duration(ms)
below 204768 18000
name 119504 9623
parallel 5674 18826
service 108763 34343
english 52519 8907
united states 91964 33223
following 163662 13549
china 104798 21417
whoisguard privacy protection service 1 3754
child 231710 5993
year 302503 8725
google 60656 5764
patience 11851 19099
canada 55846 27175
india 63972 28880
today 175462 12407
free lunch 762 2074
cancer 71717 4876
facebook 75198 11540
imitation 3984 5472
twitter 56617 2233
japan 55946 4065
us 119242 4889
answer 53785 13318
germany 50467 8042
alcohol 43177 8628
address 28743 6851
australia 41257 6970
trademark 11231 21269
parent 78279 33389
laughter 8307 17806
dog 65839 13146
information 121325 34903
virus 21441 11938
reasonable attorney fee 1169 8507
com 203624 63273
bank 51109 19144
people 310950 17940
there 364838 22788
life 166566 20251
product 110939 42135
honesty 9487 20217
woman 183856 12789
copyright 15212 3824
france 41136 10017
software 43094 17325
email address 8950 9912
diabetes 40084 23840
cat 43241 28185
age 53572 4911
computer 78688 5846

Table J.5: Query Set 2: Queries with Instances Specified (Part 1)

APPENDIX J. QUERY SETS 106

Instance Results Duration(ms)
content 43175 7262
new york 63468 2463
book 280512 14495
brazil 29497 10585
loss of principal invested 13 14919
human 36649 4994
tablet 32280 10455
fact 260976 15117
world 116841 5892
video 159122 12581
potential for loss 40 21210
illinois 10731 1834
state farm bank 13 16447
cookie 22865 21265
uk 52707 1420
friend 118090 8798
pain 43436 31729
usa 36601 7812
breakfast 32295 1975
advertising 23179 10380
bird 38763 10857
saturday 32816 18004
football 30845 15751
mexico 28515 20389
website 72562 21903
time 358950 23381
russia 29578 5119
california 34005 22801
me 128249 1931
event 130307 7183
sunday 39310 13342
man 180514 33510
other party for marketing 39 7820
smartphone 23269 2753
owner of website 107 6081
photograph 33297 7815
image 93232 9143
however 368911 18831
italy 30027 2572
family 131283 19317
summer 51577 2426
america 57483 8372
antarctica 4977 13296
home 151067 6263
money 91467 23825
spain 25862 18411
here 109876 16537
good offense 323 2793
school 120422 11394

Table J.6: Query Set 2: Queries with Instances Specified (Part 2)

Ehrenwörtliche Erklärung

Ich versichere, dass ich die beiliegende Masterrarbeit ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt und
die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe. Diese Arbeit hat in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegen. Ich bin mir bewusst, dass eine falsche Erk-
lärung rechtliche Folgen haben wird.

Mannheim, den 30.10.2014 Unterschrift

