
26-01-2023, 12:36Observation Model Setup — tudat.space 0.3.1 documentation

Seite 1 von 4https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html

 / State Es!ma!on / Observa!on Model Setup

Observation Model Setup

Having defined the link ends, you can now define and create the observa!on models.
Below the general workflow for this is discussed.

Defining observation settings

Tudat supports a diverse set of observa!on types, (see Observa!on models for a
comprehensive list). The crea!on of an observa!on model is done in a similar manner
as models used for the numerical propaga!on: an object defining the se"ngs of each
observa!on model is created, which is then processed to create the actual
observa!on model.

A basic observa!on is defined by a combina!on of its type, and a link defini!on.
Most observa!on types may (or must) have addi!onal se"ngs, such as light-!me
correc!ons, biases, etc.

Below is a basic example of crea!ng se"ngs for two observa!on models.s

Define link ends
one_way_nno_mex_link_ends = dict();
one_way_nno_mex_link_ends[transmitter] =
estimation_setup.observation.body_reference_point_link_end_id("Earth", "NNO"
);
one_way_nno_mex_link_ends[receiver] =
estimation_setup.observation.body_origin_link_end_id("MeX");
one_way_nno_mex_link_definition = estimation_setup.link_definition(
one_way_nno_mex_link_ends)

Create list of observation settings
observation_settings_list = list()
observation_settings_list.append(observation_setup.one_way_range(
one_way_nno_mex_link_ends))
observation_settings_list.append(observation_setup.one_way_open_loop_doppler(
one_way_nno_mex_link_ends))

https://docs.tudat.space/en/latest/index.html
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation.html
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/link_ends_setup.html#linkendsetup
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_models.html#observation-model-overview

26-01-2023, 12:36Observation Model Setup — tudat.space 0.3.1 documentation

Seite 2 von 4https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html

This defines a one-way range and one-way Doppler (open-loop) observable, each
with the New Norcia ESTRACK sta!on/Mars Express as transmi#er/receiver (see
Link ends setup). These se"ngs are put into the observation_settings_list list.
Note that this list of observa!on model se"ngs can be extended with any number of
entries, with any number of link ends. The only limita!on is that you may not have
duplicate entries of link ends and observable type (as this would essen!ally define an
iden!cal type of observa!on).

When defining observa!on models, you can for most types of models define se"ngs
for:

Biases: A bias in TudatPy is applied to the observable a$er its ‘ideal’ value
computed from the environment is computed. You can find a list of se"ngs for
observa!on biases in our API documenta!on
Light-!me correc!ons: When using an observable that involves the observa!on
of one point/body in space by another (including any observable that involves the
exchange of elecromagne!c signals), it is automa!cally assumed that the signal
travels at the speed of light, and the associated light-!me is determined when
calcial!ng the observable. Devia!ons from the signal’s ideal trajectory (straight
line at speed of light) may be defind by adding light-!me correc!on se"ngs, as
listed in our API documenta!on
Light-!me convergence se"ngs: Calcula!ng the light !me between two link
ends requires the itera!ve solu!on of the light-!me equa!on. Default se"ngs for
convergence criteria for this solu!on are implemented, but a user may modify
these se"ngs if so desired. The associated se"ngs object can be created using
the light_time_convergence_settings() func!on.

The above op!ons are added to the calls of the observa!on model se"ngs factory
func!ons. Below is an example

https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/link_ends_setup.html#linkendsetup
https://py.api.tudat.space/en/latest/observation.html
https://py.api.tudat.space/en/latest/observation.html
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.light_time_convergence_settings

26-01-2023, 12:36Observation Model Setup — tudat.space 0.3.1 documentation

Seite 3 von 4https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html

where we have defined that, for both observa!on models for which se"ngs are
created, the light-!me calcula!on will take into account the first-order rela!vis!c
correc!on of the Sun, by using the first_order_relativistic_correction() func!on.
For the range observable, we have defined an absolute bias of 1 cm (0.01 m) using
the absolute_bias() , while leaving the Doppler observable unbiased.

Creating the models

Depending on the type of simula!on you are using, you can use one of two manners
in which to create the observa!on simulators from the observa!on se"ngs:

Create a set of observa!on simulators directly, using the
create_observation_simulators() func!on:

Define link ends
one_way_nno_mex_link_ends = dict();
one_way_nno_mex_link_ends[transmitter] =
estimation_setup.observation.body_reference_point_link_end_id("Earth", "NNO"
);
one_way_nno_mex_link_ends[receiver] =
estimation_setup.observation.body_origin_link_end_id("MeX");
one_way_nno_mex_link_definition = estimation_setup.link_definition(
one_way_nno_mex_link_ends)

Define settings for light-time calculations
light_time_correction_settings = [
observation_setup.first_order_relativistic_correction(['Sun'])]

Define settings for range bias
range_bias_settings = observation_setup.absolute_bias(0.01)

Create list of observation settings
observation_settings_list = list()
observation_settings_list.append(observation_setup.one_way_range(
 one_way_nno_mex_link_ends
 light_time_correction_settings = light_time_correction_settings,
 bias_settings = range_bias_settings))
observation_settings_list.append(observation_setup.one_way_open_loop_doppler(
 one_way_nno_mex_link_ends,
 light_time_correction_settings = light_time_correction_settings))

https://py.api.tudat.space/en/latest/estimation_setup.html#tudatpy.numerical_simulation.estimation_setup.create_observation_simulators

26-01-2023, 12:36Observation Model Setup — tudat.space 0.3.1 documentation

Seite 4 von 4https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html

Create an : Estimator object (discussed further here), which creates the
observa!on simulators automa!cally

In either case, the observation_simulators variable is a list of objects derived from
ObservationSimulator , with a single object responsible for the simula!on of a single
type of observable (e.g. one-way range, one-way Doppler, etc.). The
observation_simulators list of simulators can then be used for Observa!on

Simula!on.

For ‘manual’ simula!on of observa!ons, you can extract an ObservationModel object
from the ObservationSimulator (TODO example). Whereas the
ObservationSimulator is responsible for all observa!ons of a given kind, the
ObservationModel simulates observa!ons of a single kind, for a single set of link ends

(e.g. one-way range observa!ons between a given ground sta!on and a single
spacecra$). Details on the associated op!ons can be found in the API
documenta!on.

Create physical environment (as set of physical bodies)
bodies = ...

Create settings for observation models
observation_settings_list = list()
...

Create observation simulators
observation_simulators = create_observation_simulators(
observation_settings_list, bodies)

Create physical environment (as set of physical bodies)
estimator = Estimator(...)

Exract observation simulators
observation_simulators = estimator.observation_simulators

https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/performing_estimation.html#perform-estimation
https://py.api.tudat.space/en/latest/estimation.html#tudatpy.numerical_simulation.estimation.ObservationSimulator
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html#observationsimulation

