
01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 1 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

 / State Es!ma!on / Observa!on Simula!on

Observation Simulation

Having defined the Available Model Types, you can now simulate actual observa!ons
to use in your analysis, or load real data into your analysis. Below, we first describe
Defining observa!on simula!on se"ngs, and how to analyze the resul!ng data
structures. Finally, we provide a (preliminary) introduc!on to Loading external
observa!ons.

Defining observation simulation settings

In addi!on to the defini!on of the observa!on model, simula!ng the observa!ons
themselves requires a defini!on of the !me(s) at which the observa!on is to be
simulated, as well as a defini!on of which observa!on model these are to be
simulated from (in addi!on to op!onal addi!onal se"ngs, see below). Se"ngs for
simula!ng observa!ons are defined by the crea!on of a
ObservationSimulationSettings class (or derived class). The basic manner in which to

define an observa!on simula!on se"ngs object uses the tabulated_settings() ,
specifying the observa!on !mes explicitly as follows:

one_way_nno_mex_link_ends = dict();
one_way_nno_mex_link_ends[transmitter] =
estimation_setup.observation.body_reference_point_link_end_id("Earth", "NNO"
);
one_way_nno_mex_link_ends[receiver] =
estimation_setup.observation.body_origin_link_end_id("MeX");
one_way_nno_mex_link_definition =
estimation_setup.observation.link_definition(one_way_nno_mex_link_ends)

observation_times = list()
observation_times = [10.0, 20.0, 30.0]

observation_simulation_settings = observation_setup.tabulated_settings(
 one_way_range_type
 one_way_nno_mex_link_definition,
 observation_times)

https://docs.tudat.space/en/latest/index.html
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation.html
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_models.html#available-observation-models

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 2 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

where a list of !mes (s) is explicitly specified, and an observa!on
simula!on se"ngs object is created, which specifies that a one-way range
observa!on is to be simulated at these !mes, with the link ends specified by
one_way_nno_mex_link_definition .

By default, the reference !me for the one-way range observable is the receiver (see
get_default_reference_link_end). This means that, for the above, these se"ngs will

simulate observa!ons which are received by MeX at t=10, t=20, and t=30,
respec!vely. To override this behaviour, we can specify a reference link end
manually:

which will yield observa!ons transmi!ed at t=10, t=20, and t=30 by NNO.

As an extension of the above, you can also use tabulated_settings_list() :

Instead of crea!ng a single object to simulate observa!ons, it contains a list of
objects, for any number of observable types and link ends.

The tabulated_settings() is the simplest manner in which to define the !mes (and
other se"ngs) at which to simulate observa!ons. By adding observa!on constraints
(see below), this list of !mes may be filtered during the observa!on simula!on
process to only retain those !mes at which specific condi!ons are met (e.g. target
above the horizon). For many prac!cal cases, it is desirable to have con!nuous
tracking passes of a given length that are not interrupted by such constraints. The
continuous_arc_simulation_settings() can be used to achieve such behaviour.

Defining additional settings

t = 10, 20, 30

observation_simulation_settings = observation_setup.tabulated_settings(
 one_way_range_type
 one_way_nno_mex_link_ends,
 observation_times,
 reference_link_end = observation_setup.transmitter)

observation_simulation_settings_list =
observation_setup.tabulated_settings_list(
 link_definitions_per_observable,
 observation_times)

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 3 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

In addi!on to defining the observable type, link ends, observa!on !mes and
(op!onally) reference link ends for simula!ng an observa!on, you can define a
number of addi!onal se"ngs to be taken into account:

Ancilliary se!ngs: Some observables may or must get addi!onal quan!ta!ve
data that influences the ideal value of the observable. Examples are the
integra!on !me for averaged Doppler observables, and retransmission !mes for
n-way observables.
Constraints: You can define se"ngs such that an observa!on is only simulated if
certain condi!ons (eleva!on angle, no occulta!on, etc.) are (not) met
Noise levels: You can define a func!ons which adds (random) noise to the
simulated observa!ons. This noise is typically, but not necesarilly, Gaussian
Addi"onal output: Similarly to the state propaga!on framework, you can define a
wide range of dependent variables to be calcula!ng during the simula!on of
observa!ons. Note that the type of variables you can choose from is dis!nct from
those available during state proaga!on.

Typically, these se"ngs are defined and added to the observa!on simula!on se"ngs
a"er the nominal se"ngs have been defined (in the process outlined above).

To efficiently achieve this, there are several func!ons available in Tudat, which take a
list of ObservationSimulationSettings objects (such as those returned by the
tabulated_settings_list() func!on), and add specifics for on of the above op!ons to

any number of observa!on simula!on se"ngs. For each of the above three op!ons,
three separate func!ons are provided to modify the list of observa!on simula!on
se"ngs (see Ancilliary se"ngs, Defining noise levels and Defining addi!onal output
for API links, and examples):

One func!on modifying each ObservationSimulationSettings object in the list
(for instance: regardless of the type or link end of the observa!on, always save
the light-!me as dependent variable)
One func!on modifying each ObservationSimulationSettings object in the list
which contains se"ngs for a given ObservableType() (for instance: regardless of
link ends, use 1 mm/s random noise for all two-way Doppler observables)
One func!on modifying each ObservationSimulationSettings object in the list
which contains se"ngs for a given ObservableType() and a given set of link ends
(for instance: for all one-way range observables between New Norcia ground

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 4 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

sta!on and Mars Express, only simulate an observa!on if Mars Express is at last
15 degrees abov the horizon.

Ancilliary settings

Some observa!on models depend on data in addi!on to that normally contained in
either the observa!on model of the observa!on simula!on se"ngs to fully determin
the value of the observable. In some cases, these data may be defined, in other cases
they must be defined. At present, the following ancilliary se"ngs are supported:

Integra!on !me. This is required for each averaged Doppler observable. A value
of 60 s is set by default. It is stored as a single floa!ng point value. The
integra!on !me defines the !me over which the averaged Doppler observable is
to be averaged (or, the so-called ‘count interval’).
Retransmission delays. This is op#onal for each N-way (including each two-way)
observable. It is undefined (no retransmission delay) by default. It is stored as a
list of floa!ng point values. The retransmission delays quan!fy how much !me
elapses between the recep!on and retransmission of a signal at one of the
retransmi$er link ends

To set a 5 s Doppler integra!on !me for every averaged Doppler observable (a%er
the simula!on se"ngs crea!on),

Defining observation constraints

In many cases, whether an observa!on at a given !me should be realized will depend
on a number of constraints that must be sa!sfied. We have termed such constraints
‘observa!on viability se"ngs’, and we have currently implemented the following
types:

integration_time = 5.0
doppler_ancilliary_settings = doppler_ancilliary_settings(integration_time)
observation.add_ancilliary_settings_to_observable(
 observation_simulation_settings_list,
 doppler_ancilliary_settings,
 observation.n_way_averaged_doppler_type)

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 5 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

Minimum_eleva"on_angle: Minimum eleva!on angle at a ground sta!on: target
must be at least a certain eleva!on above the horizon (see
elevation_angle_viability()).

Body avoidance angle: the line-of-sight vector from a link end to a given third
body must have an angle w.r.t. the line-of-sight between link end and any
other link ends that it obsereved that is sufficiently large. This constraint is
typically used to prevent the Sun from being too close to the field-of-view of the
telescope(s), (see body_avoidance_viability())
Body occulta"on: the link must not be obscured by a given third body. For
instance: the Moon occul!ng a link between Earth and Mars (see
body_occultation_viability())

For example, the observation_simulation_settings_list list created in the example
above can be modified such that only observa!ons above a 15 degree eleva!on
angle at New Norcia (for those observa!ons in which New Norcia is a ground sta!on)
are accepted:

In this case (the add_viability_check_to_all() func!on), the list of se"ngs in
viability_settings_list is applied to all observa!on simula!on se"ngs in
observation_simulation_settings_list . To only add the viability se"ngs to

observa!on simula!on se"ngs of a given type of observable, or only to those of a
given observable and a give link defini!on, use the
add_viability_check_to_observable() and
add_viability_check_to_observable_for_link_ends() func!ons, respec!vely.

To add viability se"ngs directy to a single ObservationSimulationSettings object,
use the viability_settings_list() a$ribute.

Defining noise levels

A

A

station_id = ["Earth", "NNO"];
viability_settings_list = list()
viability_settings_list.append(
estimation_setup.observation.elevation_angle_viability(
 station_id,
 np.deg2rad(15.0)))
observation.add_viability_check_to_all(
 observation_simulation_settings_list,
 viability_settings_list)

https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.elevation_angle_viability
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.body_avoidance_viability
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.body_occultation_viability
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.add_viability_check_to_all
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.add_viability_check_to_observable_for_link_ends

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 6 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

If no noise is defined, the observa!ons are simulated according to the determininis!c
model that has been defined in the Observa!on Model Setup. We stress that this
‘noise-free’ observa!on can contain a simulated bias, if such a bias is included in the
observa!on model se"ngs (see Defining observa!on se"ngs). By adding noise
se"ngs, a user can add (typically, but not necesarilly) random noise to the simula!on
of the observa!ons. We currently have two types of interfaces for adding noise to an
observa!on:

Gaussian noise: By specifying the standard devia!on, you can add uncorrelated,
zero-mean Gaussian noise to the observa!ons
Generic noise: By specifying an arbitrary func!on that generates noise (as a
func!on of !me), a user can add noise from any type of distribu!on to the
simulated observa!ons

Adding Gaussian noise to all observa!ons of a given type can be done by:

which will add 10 cm random noise to each one-way range observable in the
observation_simulation_settings_list list. In this case (the
add_gaussian_noise_to_observable() func!on), the noise is applied to all observa!ons

of a given type. To add the noise to observa!on simula!on se"ngs of all
observables, or only to those of a given observable and a give link defini!on, use the
add_gaussian_noise_to_all() and add_gaussian_noise_to_observable_for_link_ends()

func!ons, respec!vely.

Similar interfaces exist to add a generic noise func!on to the observa!on:

noise_level = 0.1
observation.add_gaussian_noise_to_observable(
 observation_simulation_settings_list,
 noise_level,
 observation.one_way_range_type)

def custom_noise_function(current_time):
 return np.ndarray([np.random.lognormal(0.0,1.0)])

observation.add_noise_function_to_observable(
 observation_simulation_settings_list,
 custom_noise_function,
 observation.one_way_range_type)

https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html#observationmodelsetup
https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html#observationtypes
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.add_gaussian_noise_to_observable
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.add_gaussian_noise_to_all
https://py.api.tudat.space/en/latest/observation.html#tudatpy.numerical_simulation.estimation_setup.observation.add_gaussian_noise_to_observable_for_link_ends

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 7 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

where it is important to realize that the noise func!on must have a single float
represen!ng !me as input, and returns a vector (of the size of a single observa!on)
as output. For many observables (range, Doppler), this size will be 1. For angular
posi!on observables, for instance, the size will be 2. The
add_noise_function_to_all() , add_noise_function_to_observable() and
add_noise_function_to_observable_for_link_ends() func!ons can be used to add a

noise func!on to a subset of all observa!on simula!on se"ngs.

To add a generic noise func!on directy to a single ObservationSimulationSettings

object, use the noise_function() a$ribute.

Defining additional output

As is the case with the state propaga!on (see here), you can define any number of
dependent variable to be saved along with the observa!ons. These include distances
between link ends, angles between link ends, and a variety of other op!ons. Note
that this func!onality is rela!vely new, and the list of implemented dependent
variables is currently limited. A full list of op!ons can be found in TODO

Creating observations

Simulating the observations

Having fully defined the list of observa!on simula!on se"ngs
observation_simulation_settings , as well as the observation_simulators (see
create_observation_simulators()), the actual observa!ons can be simulated as

follows:

where the bodies is the usual SystemOfBodies object that defines the physical
environment (see Environment Setup for details on crea!on and usage). The
simulate_observations() func!on returns an object of ObservationCollection type,

which stores all observa!ons and dependent variables

simulated_observations = estimation.simulate_observations(
 observation_simulation_settings,
 estimator.observation_simulators,
 bodies)

https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/propagation_setup/dependent_variables.html#dependent-variables
https://py.api.tudat.space/en/latest/estimation_setup.html#tudatpy.numerical_simulation.estimation_setup.create_observation_simulators
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/environment_setup.html#environment-setup

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 8 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

Accessing and analyzing the observations

The full set of observa!ons is stored in an object of type ObservationCollection ,
both when they are simulated, or loaded from a real data source. From this object,
the full vector of observa!ons can be obtained, with length Internally, this
observa!on collec!on stores the observa!ons (and any associated data), as a nested
dic!onary sorted by:

Firstly, per observable type
Secondly, (for each observable type) per link defini!on
For each combina!on of observable type and link defini!on, a list of
SingleObservationSet objects is stored (see below)

Consequently, the vector provides the observa!ons stored in this manner. A
vector of observable types, link defini!ons and !mes (each with length) can be
extracted from the ObservationCollection using various proper!es. This allows a
user to keep track of which entry of represents what. For observable that have a
size (for instance, angular posi!on is size 2; Cartesian posi!on is size 3), the
associated entries in the vector of !mes (and link defin!on, etc.) are copied. For
instance, for an observable vector consis!ng of three angular posi!on observables,
we will have , and the associated vector
of !mes will be .

When simula!ng the observa!ons using a set of ObservationSimulationSettings

objects (see here, each of these will result in an object of type SingleObservationSet

(a set of which in turn cons!tutes the ObservationCollection ; see above). For a
given observable type and link defini!on, there will typically but not necesarilly be a
single one of these SingleObservationSet objects inside a ObservationCollection .
Observables, and their associated proper!es can be extracted from these objects
SingleObservationSet``s, instead of the ``ObservationCollection , for a more fine-

grained analysis of the results. A list of all SingleObservationSet objects for a given
observable type and link end can be extracted using the ObservationCollection

func!on.

Since the dependent variables that are saved in the ObservationCollection will
typically differ per cons!tuent SingleObservationSet , it is not possible to extract a
single list of these from the full collec!on. Instead, they can only be extracted from

h nobs

h
nobs

h
> 1

h
h = [α(t1); δ(t1); α(t2); δ(t2); α(t3); δ(t3)]

t = [t1; t1; t2; t2; t3; t3]

https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_model_setup.html#observationtypes

01-02-2023, 10:20Observation Simulation — tudat.space 0.3.1 documentation

Seite 9 von 9https://docs.tudat.space/en/latest/_src_user_guide/state_estimation/observation_simulation.html

the single observa!on set.

Loading external observations

Tudat contains a number of func!ons for loading typical tracking data types (TODO)
into a list of SingleObservationSet objects. A user may also load any external data
source into Tudat-compa!ble observa!ons. This can be done using the
create_single_observation_set() func!on, which allows a user to load all the

required raw data for an observab!on. A list of these observa!on sets can then be
put into an observa!on collec!on using the observation_collection func!on.

