An open source ML system for the end-to-end data science lifecycle
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
conf
docs
scripts
src
.gitattributes
.gitignore
.travis.yml
LICENSE
NOTICE
README.md
pom.xml

README.md

SystemDS

Overview: SystemDS is a versatile system for the end-to-end data science lifecycle from data integration, cleaning, and feature engineering, over efficient, local and distributed ML model training, to deployment and serving. To this end, we aim to provide a stack of declarative languages with R-like syntax for (1) the different tasks of the data-science lifecycle, and (2) users with different expertise. These high-level scripts are compiled into hybrid execution plans of local, in-memory CPU and GPU operations, as well as distributed operations on Apache Spark. In contrast to existing systems - that either provide homogeneous tensors or 2D Datasets - and in order to serve the entire data science lifecycle, the underlying data model are DataTensors, i.e., tensors (multi-dimensional arrays) whose first dimension may have a heterogeneous and nested schema.

Documentation: SystemDS Documentation

Status and Build: SystemDS is still in pre-alpha status. The original code base was forked from Apache SystemML 1.2 in September 2018. We will continue to support linear algebra programs over matrices, while replacing the underlying data model and compiler, as well as substantially extending the supported functionalities. Until the first release, you can build your own snapshot via Apache Maven: mvn -DskipTests clean package.