
A fast BDD algorithm for large coherent fault trees analysis

Woo Sik Jung*, Sang Hoon Han, Jaejoo Ha

Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600, South Korea

Received 4 June 2003; accepted 20 October 2003

Abstract

Although a binary decision diagram (BDD) algorithm has been tried to solve large fault trees until quite recently, they are not efficiently

solved in a short time since the size of a BDD structure exponentially increases according to the number of variables. Furthermore, the

truncation of If–Then–Else (ITE) connectives by the probability or size limit and the subsuming to delete subsets could not be directly

applied to the intermediate BDD structure under construction. This is the motivation for this work.

This paper presents an efficient BDD algorithm for large coherent systems (coherent BDD algorithm) by which the truncation and subsuming

could be performed in the progress of the construction of the BDD structure. A set of new formulae developed in this study for AND or OR

operation between two ITE connectives of a coherent system makes it possible to delete subsets and truncate ITE connectives with a probability

or size limit in the intermediate BDD structure under construction. By means of the truncation and subsuming in every step of the calculation,

large fault trees for coherent systems (coherent fault trees) are efficiently solved in a short time using less memory. Furthermore, the coherent

BDD algorithm from the aspect of the size of a BDD structure is much less sensitive to variable ordering than the conventional BDD algorithm.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Binary decision diagram; Coherent fault tree

1. Introduction

Lee [1] and Akers [2] introduced a binary decision

diagram (BDD) by representing Boolean functions as

decision graphs. Bryant [3] popularized the use of the BDD

by introducing a set of algorithms for the efficient construc-

tion and manipulation of the BDD structure. The BDD is used

in a wide range of areas [4] including digital system design

and reliability analysis. Coudert and Madre [5] and Rauzy [6]

initiated the BDD application to the reliability analysis.

Furthermore, the BDD has been investigated to solve large

fault trees [7,8]. Way and Hsia [9] developed a special

method to build a BDD encoding fault tree in a hybrid way.

The size of a BDD structure depends critically on variable

ordering and the determination of an appropriate variable

ordering has a highly heuristic nature [10,11]. Rauzy [12]

proposed an algebraic framework to perform approximate

computations of minimal cut sets (MCSs) of fault tree.

The Shannon decomposition is succinctly defined in

terms of the ternary If–Then–Else (ITE) connective

f ¼ iteðx; f1; f0Þ ¼ xf1 þ �xf0; ð1Þ

where x is one of decision variables. The functions f1 and

f0 are Boolean functions evaluated at x ¼ 1 and x ¼ 0;

respectively. The two resultant terms in the RHS of Eq.

(1) are mutually exclusive. The recursive use of ITE

connectives is the core of the BDD algorithm that

provides an important alternative way of representing

fault trees.

The Shannon decomposition in the form of the ITE

connective is applicable to coherent or non-coherent

systems. A system of components (a fault tree) is coherent

if (a) its structure function (Boolean function) is increasing

(non-decreasing) and (b) each component (basic event) is

relevant (f1 – f0 for some x) [13]. A system is non-coherent

if its Boolean function does not conform to the requirements

of the coherency.

For example, the Boolean function for coherent or non-

coherent systems can be represented as a linear function of

an arbitrary variable x

f ¼ a�x þ bx þ c; ð2Þ

where a; b; and c are Boolean functions of the other

variables and some of them could be empty Boolean

functions. If a is always an empty Boolean function

for an arbitrary variable x; the resulting Boolean function

0951-8320/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2003.10.009

Reliability Engineering and System Safety 83 (2004) 369–374

www.elsevier.com/locate/ress

* Corresponding author. Tel.: þ82-42-868-2764; fax: þ82-42-861-2574.

E-mail address: woosjung@kaeri.re.kr (W.S. Jung).

http://www.elsevier.com/locate/ress
yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight



f ¼ bx þ c is for coherent systems. The ITE connective in

Eq. (1) for the Boolean function in Eq. (2) becomes

iteðx; f1; f0Þ ¼ xðb þ cÞ þ �xða þ cÞ: ð3Þ

It could be easily proved that the decomposed Boolean

function in Eq. (3) is identical to the original one in Eq. (2).

Let us explain the operation between two ITE connec-

tives. If x and y are two variables with a variable ordering

x , y; then the following equalities hold (conventional

BDD algorithm in Ref. [6])

iteðx;G1;G2Þiteðx;H1;H2Þ ¼ iteðx;G1H1;G2H2Þ ð4Þ

iteðx;G1;G2Þþ iteðx;H1;H2Þ ¼ iteðx; ðG1 þH1Þ; ðG2 þH2ÞÞ

ð5Þ

iteðx;G1;G2Þiteðy;H1;H2Þ ¼ iteðx;G1h;G2hÞ ð6Þ

iteðx;G1;G2Þ þ iteðy;H1;H2Þ ¼ iteðx; ðG1 þ hÞ; ðG2 þ hÞÞ

ð7Þ

where h ¼ iteðy;H1;H2Þ:

A BDD structure can be constructed using recursive ITE

connectives for any fault tree, once a total ordering of

variables such as basic events is selected (see the examples in

Sections 2 and 3). The evaluation of the top event probability

of a BDD structure does not require the preliminary search

for MCSs. However, since MCSs provide valuable qualitat-

ive and quantitative information to the reliability analyst,

they should be extracted from the BDD structure. Rauzy [6]

proposed an efficient subsuming method to transform or

minimize the original BDD structure into a new BDD

structure representing MCSs (see Appendix A).

The size of a BDD structure exponentially increases with

respect to the number of variables. This is due to the

intrinsic nature of the Boolean function being represented.

Another problem is that the size of the final BDD structure is

drastically dependent on the choice of variable ordering for

the BDD construction. Furthermore, the truncation of ITE

connectives by the probability or size limit and the

subsuming to delete subsets could not be directly applied

to the intermediate BDD structure under construction. The

truncation and subsuming should be performed on the final

BDD structure. It inherently makes the BDD algorithm very

slow and results in a huge memory usage.

The objective of this paper is to develop an efficient BDD

algorithm for large coherent systems (coherent BDD

algorithm) by which the truncation and subsuming could

be performed in the progress of the construction of the BDD

structure. The coherent BDD algorithm developed in this

study is explained in Section 2. The conventional BDD and

coherent BDD algorithms are compared in Section 3.

Benchmark tests were performed to show the efficiency of

the coherent BDD algorithm for large coherent fault trees

and the results are described in Section 4. Conclusions of

this study are provided in Section 5.

2. BDD algorithm for coherent systems

The general Shannon decomposition defined in terms of

the ITE connective in Eq. (1) could be simplified for the

coherent systems as follows:

f ¼ iteðx; f1; f0Þ ¼ xf1 þ f0: ð8Þ

It could be proved that the simplified decomposition holds

for the coherent system that has a Boolean function f ¼

bx þ c as follows

iteðx; f1; f0Þ ¼ xðb þ cÞ þ c ¼ bx þ cx þ c ) bx þ c ¼ f

where ) is an equality operator for the subsuming

operation. The term cx is deleted since it is a subset of c

(subsuming).

A set of new formulae was developed in this study for

the operation between two ITE connectives of a coherent

fault tree using the simplified Shannon decomposition in

Eq. (8). If x and y are two variables with a variable

ordering x , y; then the following equalities hold for

coherent systems

iteðx;G1;G2Þiteðx;H1;H2Þ ¼ ðxG1 þ G2ÞðxH1 þ H2Þ

¼ xðG1H1 þ G1H2 þ G2H1Þ þ G2H2

¼ iteðx; ðG1H1 þ G1H2 þ G2H1Þ;G2H2Þ ð9Þ

iteðx;G1;G2Þ þ iteðx;H1;H2Þ

¼ ðxG1 þ G2Þ þ ðxH1 þ H2Þ

¼ xðG1 þ H1Þ þ ðG2 þ H2Þ

¼ iteðx; ðG1 þ H1Þ; ðG2 þ H2ÞÞ ð10Þ

iteðx;G1;G2Þiteðy;H1;H2Þ ¼ ðxG1 þ G2Þh

¼ xG1h þ G2h ¼ iteðx;G1h;G2hÞ ð11Þ

iteðx;G1;G2Þ þ iteðy;H1;H2Þ ¼ ðxG1 þ G2Þ þ h

¼ xG1 þ ðG2 þ hÞ ¼ iteðx;G1; ðG2 þ hÞÞ ð12Þ

where h ¼ iteðy;H1;H2Þ: Here, please note that Eqs. (9)

and (12) differ from Eqs. (4) and (7), respectively.

When x ¼ y; the subsuming in Appendix A could be

simplified to iteðx;G1\H1;G2\H2Þ in the conventional BDD

algorithm [6]. However, the simplification could not be

applied to the coherent BDD algorithm, since the ITE

operation in Eq. (9) produces more ITE connectives G1H2 þ

G2H1 than the ITE operation in Eq. (4).

Let us solve a simple example fault tree in Fig. 1 by the

coherent BDD algorithm in Eqs. (9) – (12) with an

alphabetical variable ordering a , b , c , d as

TOP ¼ ða þ bÞða þ cÞ þ d

¼ iteða; 1; iteðb; iteðc; 1; 0Þ; iteðd; 1; 0ÞÞÞ: ð13Þ

W.S. Jung et al. / Reliability Engineering and System Safety 83 (2004) 369–374370

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight

yuemeng
Highlight



As shown in Fig. 2(b), the BDD structure in Eq. (13) has

three paths (cut sets) from the root to leaf 1 {a; bc; d} that

are MCSs of the fault tree in Fig. 1. The conventional BDD

algorithm in Eqs. (4)–(7) in Section 1 generates the same

MCSs as follows

TOP ¼ ða þ bÞða þ cÞ þ d

¼ iteða; 1; iteðb; iteðc; 1; iteðd; 1; 0ÞÞ; iteðd; 1; 0ÞÞÞ

) iteða; 1; iteðb; iteðc; 1; 0Þ; iteðd; 1; 0ÞÞÞ ð14Þ

where ) is the equality operator for the subsuming. As

shown in Fig. 2(a), there are four paths from the root to leaf

1 {a; bc; bd; d}: After deleting the subset {bd} of {a}; the

BDD structure is reduced to the one in Fig. 2(b).

As shown in Eqs. (13) and (14), the conventional BDD

and coherent BDD algorithms generate the same MCSs

when the subsuming is performed on the final BDD

structure.

3. Comparison of two BDD algorithms

In this section, it is illustrated that the coherent BDD

algorithm in Eqs. (9)–(12) makes it possible to delete subset

in the intermediate BDD structure under construction.

However, the conventional BDD algorithm generates

inappropriate MCSs if the subsuming is applied to the

intermediate BDD structure under construction.

3.1. Conventional BDD algorithm

Let us solve the fault tree in Fig. 3 by using the

conventional BDD algorithm in Eqs. (4)–(7) with an

alphabetical variable ordering a , b , c , d , e: The

BDD structure is constructed in a bottom-up way as follows

G4 ¼ d þ e ¼ iteðd; 1; iteðe; 1; 0ÞÞ

G3 ¼ aG4 ¼ iteða; iteðd; 1; iteðe; 1; 0ÞÞ; 0Þ

G2 ¼ a þ b ¼ iteða; 1; iteðb; 1; 0ÞÞ

G1 ¼ b þ c þ d þ G3

¼ iteða; iteðb; 1; iteðc; 1; iteðd; 1; iteðe; 1; 0ÞÞÞÞ;

iteðb; 1; iteðc; 1; iteðd; 1; 0ÞÞÞÞ

TOP¼G1G2

¼ iteða; iteðb;1; iteðc;1; iteðd;1; iteðe;1;0ÞÞÞÞ;

iteðb;1;0ÞÞ

) iteða; iteðc;1; iteðd;1; iteðe;1;0ÞÞÞ; iteðb;1;0ÞÞ

ð15Þ

Fig. 1. Example 1.

Fig. 2. BDD structure of example 1.

W.S. Jung et al. / Reliability Engineering and System Safety 83 (2004) 369–374 371

yuemeng
Highlight

yuemeng
Highlight



where cut sets {ab; ac; ad; ae; b} are reduced to the final

MCSs {ac; ad; ae; b} since ab is a subset of b: The final

BDD structure is depicted in Fig. 4.

Let us show that the subsuming could not be applied to

the intermediate BDD structure under construction when

using the conventional BDD algorithm. If the subsuming is

performed on the BDD structure of gate G1; the BDD

expression becomes

G1 ) iteða; iteðe; 1; 0Þ; iteðb; 1; iteðc; 1; iteðd; 1; 0ÞÞÞÞ

where cut sets {ab; ac; ad; ae; b; c; d} are reduced to

{ae; b; c; d}: Then, the BDD structure for the top event is

TOP ¼ iteða; iteðe; 1; 0Þ; iteðb; 1; 0ÞÞ: ð16Þ

It generates a solution {ae; b} where the two MCSs

{ac; ad} are lost compared with the exact MCSs {ac; ad;

ae; b} in Eq. (15).

3.2. Coherent BDD algorithm

Let us develop the BDD structure for the same fault tree

in Section 3.1 by using the coherent BDD algorithm in Eqs.

(9)–(12) with an alphabetical variable ordering a , b ,

c , d , e: When the coherent BDD algorithm is applied to

the sub-trees of gates G2; G3; and G4; the resultant BDD

structures for each gate are identical to those in Section 3.1.

The BDD structure for gate G1 is further reduced as follows:

G1 ¼ iteða; iteðd; 1; iteðe; 1; 0ÞÞ; iteðb; 1; iteðc; 1; iteðd; 1; 0ÞÞÞÞ

) iteða; iteðe; 1; 0Þ; iteðb; 1; iteðc; 1; iteðd; 1; 0ÞÞÞÞ:

Here, cut sets {ad; ae; b; c; d} are reduced to {ae; b; c; d}:

The BDD structure for the top event becomes

TOP ¼ iteða; iteðb; 1; iteðc; 1; iteðd; 1; iteðe; 1; 0ÞÞÞÞ;

iteðb; 1; 0ÞÞ

)iteða; iteðc; 1; iteðd; 1; iteðe; 1; 0ÞÞÞ; iteðb; 1; 0ÞÞ: ð17Þ

In Eq. (17), cut sets {ab; ac; ad; ae; b} are reduced to the

same correct MCSs {ac; ad; ae; b} as those in Eq. (15). As

shown in this example, the subsuming can be directly

applied to the intermediate BDD structure under construc-

tion when using the coherent BDD algorithm. This results in

the fast computation of MCSs without consuming a huge

memory.

As illustrated in this section, the subsuming could be

performed on the intermediate BDD structure under

construction. Furthermore, it is easily shown in a similar

way that the intermediate BDD structure could be truncated

with a probability or MCS size limit.

4. Application to large fault trees

Since the least size of the BDD structure is maintained

during the calculation by the subsuming and truncation, the

coherent BDD algorithm does not employ any hash function

[6] that is for reusing the repeated ITE connectives to save

memory.

The coherent BDD algorithm is tested with a fault tree

restructuring method [14,15] and a module identification

method [16,17]. An adapted pre-processing algorithm for

the restructuring and the identification of modules was

programmed, which is similar to those in Refs. [14–17]. A

typical quantification procedure is as follows

1. Restructure a fault tree and identify modules,

2. Solve each module and assign the maximum MCS

probability to the module,

Fig. 3. Example 2.

Fig. 4. BDD structure of example 2.

W.S. Jung et al. / Reliability Engineering and System Safety 83 (2004) 369–374372

yuemeng
Highlight



3. Solve the fault tree where modules are treated as basic

event,

4. Substitute modules in the final MCSs with their MCSs,

and

5. Calculate the top event probability using MCSs.

Here, the term ‘solve’ in Steps 2 and 3 denotes ‘build a

BDD structure in a bottom-up way, subsume subsets, and

extract MCSs’.

Before building a BDD structure, a fault tree is

restructured to get the largest independent sub-trees that

could be treated as basic events in the process of

quantification of a fault tree. Due to the pre-processing of

a fault tree, the quantification of fault trees could be

accelerated.

A depth-first traversal ordering of basic events is

employed for the benchmark tests. A typical recursive

depth-first BDD algorithm is illustrated in Table 1. Starting

at the top event and navigating the fault tree in a depth-first

manner where basic events of a given gate are visited before

traversing any sub-gates, the gates and basic events are

visited in the order shown in Table 1. The variable orderings

for the two examples in Figs. 1 and 3 are d , a , b , c and

b , c , d , a , e; respectively.

The coherent BDD algorithm is applied to the large

coherent fault trees in Table 2 that could not be solved by

the conventional BDD algorithm in a reasonable time and

memory usage. As shown in Table 2, the coherent BDD

algorithm showed a desirable performance. The coherent

BDD algorithm and KIRAP [18] generate the same MCSs.

However, the coherent BDD algorithm is much faster than

KIRAP. The truncation and subsuming in the progress of the

construction of the BDD structure resulted in the fast

computation of MCSs and the least memory usage such

as the fast fault tree quantifier FORTE [19] that is based on

Boolean algebra.

5. Conclusions

Although it is easy to implement the BDD algorithm to

solve fault trees, there have been some limitations. The size

of a BDD structure exponentially increases according to the

number of variables since the truncation of ITE connectives

by the probability or size limit and the subsuming could not

be directly applied to the intermediate BDD structure under

construction. Furthermore, the size of a BDD structure

depends critically on variable ordering and the determi-

nation of an appropriate variable ordering has a highly

heuristic nature.

This paper presents an efficient BDD algorithm for large

coherent systems that overcomes the limitations. A set of

new formulae for the operation between two ITE connec-

tives of a coherent fault tree makes it possible to subsume

subset and truncate ITE connectives with a probability or

size limit in the intermediate BDD structure under

construction. The truncation and subsuming in the progress

of the construction of the BDD structure is the key to the fast

quantification of large coherent fault trees using less

memory. Since the truncation and subsuming is performed

on the intermediate BDD structure, the least size of the BDD

structure is maintained during the calculation. Thus, the

coherent BDD algorithm is much less sensitive to variable

ordering than the conventional BDD algorithm.

Table 1

Depth-first traversal ordering

Example 1a Example 2b

Nodesc Order Nodes Order

TOP 1 TOP 1

d 2 G1 2

G1 3 b 3

G2 4 c 4

a 5 d 5

b 6 G3 6

G3 7 a 7

a NAd G4 8

c 4 d NA

e 9

G2 10

a NA

b NA

a Example 1 in Fig. 1.
b Example 2 in Fig. 3.
c Visited gates or basic events.
d Not applicable since the order is already assigned.

Table 2

Benchmark tests of large fault trees

Fault

trees

Number

of gates

Number

of basic

events

Truncation

limit

Number

of MCSs

Run time (s)a

Coherent

BDDb

KIRAPc

FT1 813 667 1.0 £ 10213 26,632 1 2

1.0 £ 10214 55,708 2 5

1.0 £ 10215 119,277 4 14

FT2 1037 705 1.0 £ 10213 32,217 1 9

1.0 £ 10214 64,724 1 23

1.0 £ 10215 134,950 2 71

FT3 1587 1761 1.0 £ 10210 5292 2 10

1.0 £ 10211 18,671 5 33

1.0 £ 10212 58,543 12 114

FT4 4762 2825 1.0 £ 1029 24,332 1 35

1.0 £ 10210 69,323 2 83

1.0 £ 10211 179,618 4 237

FT5 5148 2558 1.0 £ 1029 5,611 3 18

1.0 £ 10210 34,107 7 43

1.0 £ 10211 188,854 21 151

a Pentium IV 2.56 GHz CPU, 512 MB RAM, Windows XP.
b Coherent BDD algorithm presented in this paper.
c Fault tree quantifier in Ref. [18].

W.S. Jung et al. / Reliability Engineering and System Safety 83 (2004) 369–374 373



Appendix A. Subsuming of BDD algorithm

In order to get minimal solutions of a BDD structure, the

subsuming is recursively performed from the root ITE to the

child ITE connectives by comparing left and right ITE

connectives. Let us consider recursive ITE connectives F ¼

iteðt;G;HÞ; G ¼ iteðx;G1;G2Þ; and H ¼ iteðy;H1;H2Þ: In

order to get MCSs of F; each cut set in G is tested and

deleted if it is a subset of a cut set in H (subsuming operation

G\H). Rauzy [6] proposed an efficient subsuming operation:

G\H ¼

iteðx;G1\H;G2\HÞ; x , y

G\H2; x . y

iteðx;G1\ðH1 or H2Þ;G2\H2Þ; x ¼ y

8>><
>>:

:

The term G1\ðH1 or H2Þ in the last case denotes that each cut

set in G1 is tested and deleted if it is a subset of a cut set in

H1 or H2:

References

[1] Lee CY. Representation of switching circuits by binary-decision

programs. Bell Syst Tech J 1959;38:985–99.

[2] Akers B. Binary decision diagrams. IEEE Trans Comput 1978;

C-27(6):509–16.

[3] Bryant R. Graph based algorithms for Boolean function manipulation.

IEEE Trans Comput 1986;C-35(8):677–91.

[4] Bryant R. Symbolic Boolean manipulation with ordered binary

decision diagrams. ACM Comput Surv 1992;24:293–318.

[5] Coudert O, Madre JC. Implicit and incremental computation of

primes and essential primes of Boolean functions. Proceedings of

the 29th ACM/IEEE Design Automation Conference, DAC’92,

June. 1992.

[6] Rauzy A. New algorithms for fault trees analysis. Reliab Engng Syst

Saf 1993;40:203–11.

[7] Coudert O, Madre JC. Fault tree analysis: 1020 prime implicants and

beyond. Proceedings of the Annual Reliability and Maintainability

Symposium, Atlanta, NC, USA, January. 1993.

[8] Rauzy A, Dutuit Y. Exact and truncated computations of prime

implicants of coherent and non-coherent fault trees within aralia.

Reliab Engng Syst Saf 1997;58:127–44.

[9] Way YS, Hsia DY. A simple component-connection method for

building binary decision diagrams encoding a fault tree. Reliab Engng

Syst Saf 2000;70:59–70.

[10] Sinnamon RM, Andrews JD. New approaches to evaluating fault

trees. Reliab Engng Syst Saf 1997;58:89–96.

[11] Bartlett LM, Andrews JD. An ordering heuristic to develop the binary

decision diagram based on structural importance. Reliab Engng Syst

Saf 2001;72:31–8.

[12] Rauzy A. Mathematical foundations of minimal cutsets. IEEE Trans

Reliab 2001;50(4):389–96.

[13] Barlow RE, Proschan F. Statistical theory of reliability and life

testing. Holt: Rinehart and Winston, Inc.; 1975.

[14] Niemelä I. On simplification of large fault trees. Reliab Engng Syst

Saf 1994;44:135–8.

[15] Reay KA, Andrews JD. A fault tree analysis strategy using binary

decision diagrams. Reliab Engng Syst Saf 2002;78:45–56.

[16] Han SH, Kim TW, Yoo KJ, Development of an integrated fault tree

analysis computer code MODULE by modularization technique.

Reliab Engng Syst Saf 1988;21:145–54.

[17] Dutuit Y, Rauzy A. A linear-time algorithm to find modules of fault

trees. IEEE Trans Reliab 1996;45:422–5.

[18] Han SH. PC-Workstation Based Level 1 PRA Code Package-KIRAP.

Reliab Engng Syst Saf 1990;30:313–22.

[19] Jung WS, Kim DK. FORTE: a fast new algorithm for risk monitors

and PSA. Proceedings of the Fourth International Conference on

Probabilistic Safety Assessment and Management, September, New

York, USA. 1998. p. 1221.

W.S. Jung et al. / Reliability Engineering and System Safety 83 (2004) 369–374374


	A fast BDD algorithm for large coherent fault trees analysis
	Introduction
	BDD algorithm for coherent systems
	Comparison of two BDD algorithms
	Conventional BDD algorithm
	Coherent BDD algorithm

	Application to large fault trees
	Conclusions
	Subsuming of BDD algorithm
	References


