
Galaxy Zoo Challenge with Convolutional Neural
Networks

Team 6789
Members: Tu Dinh Nguyen, Truyen Tran
{nguyendinhtu,tranthetruyen}@gmail.com

Abstract

Convolutional neural networks – ConvNets – have won recent visual recognition
challenges and beaten the state-of-the-arts on various vision datasets. We describe
an implementation which landed us the third position in the Galaxy Zoo chal-
lenge. The method includes a ConvNet in the feature extraction phase, followed
by a standard Neural Net. The final result was achieved using blending of several
variations of the Neural Net.

1 Introduction

Galaxy Zoo project recruits a number of volunteers to describe the morphology of galaxies by an-
alyzing their images. More specifically, the volunteers step-by-step answer several questions about
the galaxies. Their next questions are determined basing on their previous answers. All answers for
an image are then aggregated and mapped into a set of probabilities. Galaxy Zoo challenge aims to
predict such probabilities for new galaxy images. The predictive performance is evaluated by Root
Mean Squared Error (RMSE) metric.

Convolutional neural networks [3] (ConvNets) have recently been demonstrating their superior per-
formances in numerous image classification challenges and datasets. In this challenge, the input is
still image-based but the target is regression rather than classification. We, however, keep believing
that the ConvNets with excellent capabilities of automatic feature self-learning are the first priority
candidatures for this problem. Therefore we begin and end up with using ConvNets. In the following
sections, we describe our approaches, implementations and results.

2 Methods

2.1 Data preprocessing and data augmentation

Cropping and downsampling images The resolution of original images is 424×424 with 3 color
channels – RGB. Except several images consisting of more than one galaxies which are far apart,
all of the images contains galaxies at the center. Thus we crop all images at the center using 200×
200 windows. After that we resize the images to 128× 128 to fit the input size of our network
architecture.

Exploiting spatial invariances The multilayer ConvNets belongs to deep architecture family. The
more data they see in the training phase, the better performance they can achieve in the testing phase.
In this dataset, the galaxy images are rotation, scale and translation invariant. These are good points
to explore the data augmentation idea – creating more data by perturbing original ones. Besides,
augmenting more data avoids overfitting and increases the generalization of the network. We use
following data augmentation techniques:

• rotation: a random angle in the set of {±90◦;180◦};

1

• flipping: horizontal reflection;

• zooming: random zoom-in scale factor between 2.0 and 3.0;

• translation: random cropped patches.

Although we use max-pooling in subsampling layers which can obtain translation invariance, the
above translation helps to supplement more training data. We extract a random crop of size 120×120
for each image. Such cropped patch is then randomly kept unchanged or perturbed using the above
rotation, horizontal reflection or zoom-in. Then it is fed into the ConvNets.

2.2 Network architecture

We adopt the convolutional schema of OverFeat model [5] with half the numbers of channels and
several modifications. Table 1 describes our architecture with 9 layers. We apply dropout techniques
[1] to the fully connected layers 7 and 8. The network has about 19.5 million parameters. All layers
contains rectified linear units [4]. The output of the last layer is used as predicted values.

Layer 1 2 3 4 5 6 7 8 9

Stage conv+max conv+max conv conv conv conv+max full full full

channels 48 96 192 192 384 384 2048 2048 37

Filter size 5×5 5×5 3×3 3×3 3×3 3×3 - - -

Conv. stride 1×1 1×1 1×1 1×1 1×1 1×1 - - -

Pooling size 3×3 2×2 - - - 3×3 - - -

Pooling stride 3×3 2×2 - - - 3×3 - - -

Zero-padding size - - - - - - - - -

Spatial input size 120×120 39×39 18×18 16×16 14×14 12×12 4×4 1×1 1×1

Table 1: Network architecture in detail.

2.3 Training

Objective function The competition uses Root Mean Squared Error (RMSE) as the evaluation
metric:

RMSE =

√
1
N

N

∑
n=1

(pn−an)
2

where N is the number of galaxies times the total number of responses, pn is the predicted value
and an is the actual value. Minimizing this metric is equivalent to minimizing the following Mean
Squared Error (MSE):

MSE =
1
N

N

∑
n=1

K

∑
k=1

(pnk−ank)
2

in which N now is the number of galaxies and K is the number of responses. Note that K = 37. We
optimize MSE during training and report RMSE for the final results.

Hyperparameters setting We randomly shuffle the training data and take the first 98% for train-
ing and the rest for validation. The 2% validation data seem small yet adequate to match the public
and private scores. We use validation data to test network architecture, data preprocessing, augmen-
tation techniques and to specify hyperparameters including learning rates, weight initializations,
weight decays, number of epochs and learning rate decays schedule. We end up with the following
hyperparameters setting for all layers:

• The number of epochs is 182.

2

• The weights are randomly initialized from small normally distributed numbers, i.e. Gaus-
sian N (0;0.01).

• The biases are set to zeros. Setting to a small nonzero value (e.g., 0.1) can accelerate the
early stages of few learning steps.

• The momentums are fixed to 0.9.

• The weight decays – `2-norm regularization – are 0.0005.

• Dropout rates are 0.5.

• The learning rates of weights and biases are initialized at 0.01 and then reduced by a factor
of 0.1 after (140,166,174) epochs.

2.4 Testing

For each image at testing phase, we extract five 120× 120 patches, i.e., four corners patches and
center patch, as well as their horizontal reflections, 90◦, 180◦ and 270◦ rotations. Thus there are 25
patches in total. We then average the predictions computed by the last layer on the 25 patches to
take the final result. Interestingly, the final result satisfies all the constraints of decision tree. Given
sufficient data and parameters, the ConvNets indeed are powerful enough to encode all constraints
and information. Therefore we only crop the predictions into [0,1] range, an obvious constraint.

2.5 ConvNets as Feature Extractor

Once the ConvNet had been trained, we used its last feature layer as the input for a standard neural
net. The reason is that the last layer of the ConvNet is linear, and thus can benefit from a more flex-
ible classifier. The strategy worked well and we found it consistently improved over the ConvNet.

The neural net has one hidden layer and an output layer of 37 elements. We normalized the training
outcomes to have zeros mean and unit standard deviation, and this was to create the uniform scale
among all outcomes. The net is regularized by using three methods: the `1-norm, the `2-norm (or
weight decay), and the norm constraint to weights of connection between inputs and each hidden
unit. In particular, the norm constraint is regularized using the following barrier function:

B(W) = β ∑
k
I

[
∑

i
W 2

ik > τ

](
∑

i
W 2

ik− τ

)2

where Wik is the mapping weight from input to hidden units, τ > 0 is adjustable threshold, and β > 0
is the regularizing factor. A small τ in the range (0,1) allows a large number of hidden units without
overfitting. Typically we set β = 1 to keep it simple, but it can be adjusted by the training algorithm,
as described below.

2.5.1 NNet training

The nets are trained with conjugate gradients and a simple continuation method to reach better local
minima. The continuation method works as follows:

1. The NNet is trained until a local minimum is reached.

2. For c = 1,2, ..C

(a) The `2-norm regularizing factor and the norm constraint regularizing factor β are
randomly scaled up by a number in the range (0,200). This is to create a slightly
different model so that a new local minimum can be found.

(b) Reduce the regularizing factors to original settings, and find a new local minimum.
(c) Break the loop if convergence has been reached.

Not all training data was used. We picked the first 2,000 training data, and 500 validation data to
train the NNet, the rest of the validation data is used to tune hyperparameters and decide which
models to retain.

3

2.5.2 Models blending

As the NNet is flexible, it could overfit easily. Second, it is very hard to search for the best model.
Third, features learnt by ConvNet are highly redundant. These suggest models blending. We learn
multiple NNets:

1. `1-norm factor: 10−4, `1-norm factor: 10−7, hidden size: 30, C = 5, τ = 1, β = 1.

2. `1-norm factor: 0, `1-norm factor: 10−7, hidden size: 50, C = 20, τ = 1, β = 1.

3. Same as (2), but use only the positive indicators of features

4. Same as (2), use
√

data;

5. Same as (2), use (data)2

6. Same as (2), add 10% noise to data.

7. Same as (2), use first 50% features.

8. Same as (2), use first 50% data.

The outputs are then blended using 37 NNets, one per outcome. We found that many outcomes are
very easy to learn (outcome no. 1, 2, 4, 5, 6, 8, 14-19, 24, 26, 28, and 33), and thus we did not train
them but performed simple averaging. Again, for NNets, the norm constraint is important to combat
overfitting.

2.6 Final blending

Our final submission is generated by averaging four results. The results are produced by four models:
ConvNet, NNet and two of models blending.

3 Implementation

We use python, numpy and matlab to materialize our solution. To implement convolutional net-
works, we utilize the cuda-convnet1 package [2], a fast GPU-based convolutional network library.
Many thanks to Alex Krizhevsky, it would be much harder to meet the challenge’s timeline without
your package. We use PIL-image2 and scipy3 to perform preprocessing and data augmentation. Our
source codes are free under BSD-3 license and can be found here.

Workstations with one NVIDIA Tesla M2070 GPU card each are employed to train and test our
networks. The training and testing phases take about 31.5 hours and 2.26 hours respectively.

4 Results

Our approach allows us to land the third position. Our private score (0.07869) is close to the vali-
dation score and worse only 0.0001 than public score (0.07859). It is funny that our team’s name is
6789 and our final result ends with “7869”. Top 10 on the leaderboard are shown on Table 2.

Sander Dieleman, the winner, won with a large margin. His convolutional architecture is smaller yet
similar to ours. His preprocessing and data augmentation tricks are almost the same. The second
place, Maxim Milakov, is an experienced master of ConvNets. He have been achieving high rankings
in a number of challenges using ConvNets. In this competition, his architecture is simple yet rather
very efficient. Not all top 10 participants have shown their approaches. However, so far we have
known that at least the half have used ConvNets.

1https://code.google.com/p/cuda-convnet/
2http://www.pythonware.com/products/pil/
3http://www.scipy.org/

4

http://www.cs.toronto.edu/~kriz/
http://

Team Name Method Score
1 sedielem (Sander Dieleman) convnet 0.07492
2 Maxim Milakov convnet 0.07753
3 6789 (tund, Truyen Tran) convnet 0.07869
4 simon - 0.07951
5 Julian de Wit convnet 0.07953
6 2numbers 2many - 0.07964
7 Ryan Keisler - 0.08072
8 Voyager - 0.08083
9 SuperDeep (Soumith Chintala, Pierre Sermanet) convnet 0.08246

10 Owen - 0.08304

Table 2: The final standings of Galaxy Zoo challenge. The “blank” methods means they have not
been exposed so far. Our team, named as 6789, landed the third place.

5 Things have been tested

Here are several things that we have tried but are not used in the end because they did not improve
the results:

• Preprocessing data: several cropping windows such as 256×256 and 150×150; perform-
ing a pipeline of techniques – adjusting intensity, auto-rotating and auto-cropping.

• Network architecture: other designs for various image resolutions, i.e., 32× 32, 48× 48,
64× 64 and 256× 256 as well as the model of Krizhevsky et al [2]; network with several
softmax layers to incorporate the decision tree.

• Training: using full training data without validation.
• Data augmentation: zoom-out; rotations with {±45◦;90◦};

6 Conclusion

Convolutional Neural Networks – ConvNets – once again have demonstrated their outstanding per-
formances on not only classification but also regression tasks in practice. Top 3 prized winners have
used ConvNets and lots of ConvNets are in top 10. From now on, ConvNets indeed have to be
considered as the first candidate in any visual recognition tasks.

References

[1] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS),
pages 1106–1114, 2012.

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[4] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on Machine Learning (ICML),
pages 807–814, 2010.

[5] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

5

