diff --git a/js/node/aster-math-examples.tex b/js/node/aster-math-examples.tex new file mode 100644 index 0000000000..88701ce204 --- /dev/null +++ b/js/node/aster-math-examples.tex @@ -0,0 +1,447 @@ +% This file holds the original set of examples used to test and demo +% \aster{} +% in 1992. It is being copied here so we can evolve audio-formatted +% maths in emacspeak. + +\begin{document} +%%% {{{ Title + +\title{Mathematics for computer generated spoken documents.} +\author{T. V. Raman\\ +Department of Computer Science\\ +4116 Upson Hall\\ +Cornell University\\ +Ithaca NY 14853--7501\\ +\voicemail{(607)255-9202}\\ +\email{raman@cs.cornell.edu}} +\date{May 27, 1992} +\maketitle + +%%% }}} +%%% {{{ simple fractions and expressions + +\section{simple fractions and expressions. } + +%% +$$a+b+c+d$$ + + + +%% +$$a+\frac{b}{c} +d$$ + + +%% +$$\frac{a+b}{c+d}$$ + + +%% +$$\frac{a}{b}+c+d$$ + + +%% +$$\frac{a}{b+c+d}$$ + + +%% +$$a+\frac{b+c}{d+e}+x$$ + + +%% +$$a+bc+d$$ + + +%% +$$(a+b)(c+d)$$ + +%%% }}} +%%% {{{ superscripts and subscripts. + +\section{superscripts and subscripts. } + + +%% +$$x^k_1 +x^k_2 + x^k_3 + \cdots + x^k_n = 0$$ + +%% +$$x^{k_1} + x^{k_2} + x^{k_3} + \cdots + x^{k_n} = 0$$ + +%% +$$x_{k^1}+x_{k^2}+x_{k^3}+\cdots+x_{k^n}=0$$ + +%% +$$x^{k^1}+x^{k^2}+x^{k^3}+\cdots+x^{k^n}=0$$ + +%% +$$x_{k_1}+x_{k_2}+x_{k_3}+\cdots+x_{k_n}=0$$ + +%% +$$x +_n y +_n z$$ + +%%% }}} +%%% {{{ Knuth's examples of fractions and exponents + +\section{Knuth's examples of fractions and exponents. } + + +%% +$$x+y^2\over k+1$$ + +%% +$${x+y^2\over k}+1$$ + +%% +$$x+{y^2\over k+1}$$ + +%% +$$x+{y^2\over k}+1$$ + +%% +$$x+y^{2\over k+1}$$ + +%% +$$x^{2^y} \neq {x^2}^y$$ + +%% +$${x^2}^y = x^{2y}$$ + +%% + +%%% }}} +%%% {{{ Continued fraction + +\section{A continued fraction. } + +\[ +1+ {x \over + {\scriptstyle 1+ {\scriptstyle x \over + {\scriptstyle 1 + {\scriptstyle x \over + {\scriptstyle 1 + {\scriptstyle x \over + {\scriptstyle 1+ {\scriptstyle x \over +1+{\scriptstyle + \atop \ddots }}}}}}}}}} +\] + +%% + +%%% }}} +%%% {{{ Simple School algebra. + +\section{Simple School algebra. } + +$$(a+b)^3=a^3+3a^2b+3ab^2+b^3$$ + +%% +$$a^3+b^3=(a+b)(a^2-ab+b^2)$$ + +%% +Given $ax^2+bx+c=0$, we have +$$x= \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$ + +%% + +%%% }}} +%%% {{{ square roots. + +\section{square roots. } + +$$\frac{1+\sqrt{5}}{2}=\phi$$ + +%% +$$\frac{\sqrt{\pi}}{2} \neq \sqrt{\frac{\pi}{2}}$$ + +%% +$$\sqrt{1+\sqrt{2+\sqrt{2+\sqrt {2+\cdots }}}}$$ + +%% + +%%% }}} +%%% {{{ Trigonometric identities + +\section{Trigonometric identities. } + +$$\sin^2x+\cos^2x=1$$ + +%% +$$\sin x^2 + \cos x^2 \neq 1 $$ + +%% +$$\sin^{-1}x \neq \sin x^{-1}$$ + +%% +$$\sin (a+b) = \sin a \cos b + \cos a \sin b$$ + +%% +$$\cos (x+y)=\cos x \cos y - \sin x \sin y$$ + +%% +$$\sin 2x = 2 \sin x \cos x $$ + +%% +$$\cos 2x = \cos^2 x -\sin^2 x$$ + +%% + +%%% }}} +%%% {{{ logs + +\section{Logarithms. } + +$$\log^2x\neq2\log x$$ + +%% +$$\log x^2=2\log x$$ + +%% +$$\frac{\log x}{\log a} = \log_a x$$ + +%% +$$\log_{a^2} x = \frac{1}{\log_x a^2}= \frac{1}{2\log_x a} = +\frac{\log_a x}{2}$$ + +%% + +%%% }}} +%%% {{{ Series + +\section{Series. } + +$$1+x+x^2+x^3+x^4+\cdots+x^{n-1}+\cdots = \frac{1}{1-x}$$ + +%% +$$1+x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots +\frac{x^n}{n}+\cdots$$ + +%% +$$ x - \frac{x^2}{2} +\frac{x^3}{3} +-\frac{x^4}{4}+\frac{x^5}{5} \pm \cdots = \log(1+x)$$ + +%% +$$\gamma = 1+\frac{1}{2}+\frac{1}{3} +\frac{1}{4} +\cdots +\frac{1}{n} +-\log n $$ + +%% +$$\log (1+x) - \log (1-x) = \log \frac{1+x}{1-x} = \sum_{i=1}^\infty +\frac{x^{2i-1}}{2i -1}$$ + +%%% }}} +%%% {{{ Integrals + +\section{Integrals. } + + +%% +$$\int\frac{\dx}{x} =\log x$$ + +$$\int_1^a \int_1^b\int_1^c e^{x+y+z}\dx\dy\dz$$ + +%% +$$\int_1^\infty e^{x^2-x-1}\dx$$ + +%% +$$\int_1^\infty e^{x^{2-x}-1}\dx$$ + +%% +$$\int_0^1\int_0^{\sqrt{1 -y^2}}1\dx\dy= \int_0^{\pi/2}\int_0^1 +r\varint{r}\varint{\theta}$$ + +$$s=\int_a \int_b f \dx\dy+1$$ + +%% + +%%% }}} +%%% {{{ Summation + +\section{Summations. } + +$$\sum_{i=1}^n a_i =1$$ + +%% +$$\sum_{1\leq i\leq n}a_i =1$$ + +%% +$$\sum_{i=1}^n a_i + b_i = 1$$ + +%% + +%%% }}} +%%% {{{ Limits + +\section{Limits. } + +$$\lim_{x \to \infty}\int_0^x e^{-y^2}\dy = \frac{\sqrt{\pi}}{2}$$ + +%% +$$\lim_{x\to 0}\frac{\sin x}{x} =1$$ + +%% + +%%% }}} +%%% {{{ Cross referenced equations + +\section{Cross referenced equations. } + +\begin{equation} +\cosh x = \frac{e^x + e^{-x} }{2} \label{eq:cosh} +\end{equation} + +\begin{equation} +\sinh x = \frac{e^x-e^{-x}}{2} \label{eq:sinh} +\end{equation} + +Squaring~\ref{eq:cosh} and~\ref{eq:sinh} and computing their +difference gives +$$\cosh^2x -\sinh^2 x = 1$$ + +%% + +%%% }}} +%%% {{{ Distance formula + +\section{Distance formula. } + + +%% +Given $x=(x_1,x_2), y=(y_1,y_2)$ the distance between the two points +is given by: +$$d(x,y) = \sqrt{(x_1-y_1)^2 +(x_2-y_2)^2} $$ +This is the distance formula. + +%%% }}} +%%% {{{ Quantified expression + +\section{Quantified expression. } + + +%% +$$\forall x \in X: \exists y \in Y : x=y$$ + +%%% }}} +%%% {{{ Exponentiation + +\section{Exponentiation} +Consider the expression: +$$e^{e^{e^x}}$$ +Differentiating with respect to $x$ gives: +$$ e^{e^{e^x}} e^{e^x} e^x$$ +Simplifying this expression gives: +$$ e^{(e^{e^x} + e^x + x)}$$ + +%%% }}} +%%% {{{Matrix + +\section{A generic matrix} +Notice the use of vertical and diagonal dots in the generic matrix +shown below. +$$A=\pmatrix{a_{1 1}&a_{1 2}&\ldots&a_{1 n}\cr + a_{2 1}&a_{2 2}&\ldots&a_{2 n}\cr + \vdots&\vdots&\ddots&\vdots\cr + a_{m 1}&a_{m 2}&\ldots&a_{m n}\cr}$$ + +%%% }}} +%%% {{{ Faa de Bruno's formula + +\section{Faa de Bruno's formula } +\uselongsummation + +%% +Let $D^k_xu$ represent the $k$th derivative of a function $u$ with +respect to $x$. The chain rule states that $D^1_xw = D^1_uw +D^1_xu$. If we apply this to second derivatives, we find $D^2_xw = +D^2_uw (D^1_xu)^2+D^1_uw D^2_xu$. Show that the {\em general formula} +is + +%% +\begin{equation}\label{eq:faa-de-bruno} +D^n_xw = +\sum_{0\le j\le n} +\sum_{\scriptstyle k_1+k_2+\cdots+k_n=j +\atop {\scriptstyle k_1+2k_2+\cdots+nk_n=n +\atop {\scriptstyle k_1,k_2,\ldots,k_n\ge0 +}}} +D^j_u w \frac{n! +{(D^1_x u)}^{k_1} +\cdots {(D^n_x u)}^{k_n} +} +{k_1!{(1!)}^{k_1} \cdots k_n!{(n!)}^{k_n}} +\end{equation} +%% +\endlongsummation + +%%% }}} +%%% {{{ Variable substitution. + +\section{Using variable substitutions.} +\activatevariablesubstitution + +The following examples demonstrate the effectiveness of using the +{\em variable substitution\/} reading style. +Applying variable substitution to Faa de Bruno's formula shown in +equation~\ref{eq:faa-de-bruno} results in: + +\begin{equation} \label{eq:faa-de-bruno-subst} + D^n_xw = \sum_{0\le j\le n} \sum_{\underbrace{{\scriptstyle + k_1+k_2+\cdots+k_n=j \atop {\scriptstyle + k_1+2k_2+\cdots+nk_n=n \atop {\scriptstyle + k_1,k_2,\ldots,k_n\ge0 }}}}_{\mbox{\em lower constraint + 1\/}}} D^j_u w + \frac{\overbrace{n! {(D^1_x u)}^{k_1} \cdots + {(D^n_x u)}^{k_n}} ^{\mbox{\em numerator 1\/}}} + {\underbrace{k_1!{(1!)}^{k_1} + \cdots k_n!{(n!)}^{k_n}}_{\mbox{\em denominator 1\/}}} +\end{equation} + +Consider the expression: +\begin{equation} + e^{x+e^{x+e^{x+e^x}}} \label{eq:exponentsum} +\end{equation} +Differentiating expression~\ref{eq:exponentsum} with respect to $x$ +gives: +$$ e^{x + e^{x + e^{x + e^x}}} + (1 + e^{x + e^{x + e^x}} + (1 + e^{x + e^x} (1 + e^x)))$$ + + $$\int_{5u+t}^t + \frac{ \int_{5u+t}^x + \frac{e^{-x^2} + e^{x^3} } + {sx^2 + c^{2 }x } \dy} +{s x^2 + c^2 x} \dx$$ + + + $$ \int_1^\infty (a+b+c)(e^{-x^2} + e^{x^3})\dx$$ + + $$ \int \frac{\exp{-x^2} + \exp {x^3} }{\sin x^2 + \cos^2 x} + \dx$$ + + + +$$ \frac{x\sin(\log x)}{2} - \frac{x\cos(\log x)}{2}$$ + +$$ \frac{2x^5}{5} - \sqrt{\frac{2x^5 \log x}{5}} ++ \frac{x^5\log^2 x}{5}$$ + +Consider the expression: +\[ e^{\tan(e^{\arctan(e^x)})}\] +Differentiating with respect to $x$ gives: +\[ + {e^{\left( \tan(e^{\arctan(e^x)}) + \arctan(e^x) + x \right)} + \over (e^{(2 x)} + 1) \cos^2(e^{\arctan(e^x)})} + \] + + +\[ {3 x^2 \sin{x} + x^3 \cos{x} + e^{\sin{x}} \cos{x} + \over e^{\cos{x}} - \tan\left( {x \over 5} + 1 \right)} + + {\left( {0.2 \over \cos^2 \left( {x \over 5} + 1 \right)} + + e^{\cos{x}} \sin{x} \right) + \times \left( e^{\sin{x}} + x^3 \sin{x} \right) + \over \left( e^{\cos{x}} + - \tan\left( {x \over 5} + 1 \right) \right)^2} + \] + + + \deactivatevariablesubstitution + +%%% }}} + + + +\end{document}