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Unit 5 
Logistic Regression 

 
 

 
 

“To all the ladies present and some of those absent” 
 

- Jerzy Neyman 
 

 

 

  
 

 

  
What behaviors influence the chances of developing a sexually transmitted 
disease?   Comparing demographics, health education, access to health care, 
which of these variables are significantly associated with failure to obtain an HIV 
test?  Among the several indicators of risk, including age, co-morbidities, severity 
of disease, which are significantly associated with surgical mortality among 
patients undergoing transplant surgery?  In all of these examples, the outcome 
observed for each individual can take on only one of two possible values:  
positive or negative test, alive or dead, remission or non-remission, and so on.   
Collectively, the data to be analyzed are proportions. 
 
Proportions have some important features that distinguish them from data 
measured on a continuum.  Proportions (1) are bounded from below by the value 
of zero (or zero percent) and bounded from above by one (or 100 percent);  (2) as 
the proportion gets close to either boundary, the variance of the proportion gets 
smaller and smaller; thus, we cannot assume a constant variance; and (3) 
proportions are not distributed normal.   Normal theory regression models are 
not appropriate for the analysis of proportions. 
 
In unit 4, Categorical Data Analysis, emphasis was placed on contingency table 
approaches for the analysis of such data and it was highlighted that these methods 
should always be performed for at least two reasons:  (1) they give a good feel for 
the data; and (2) they are free of the assumptions required for regression 
modeling.   
 
Unit 5 is an introduction to logistic regression approaches for the analysis of 
proportions where it is of interest to explore the roles of possibly several 
influences on the observed proportions. 
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Learning Objectives 

 
 
   
  

 
When you have finished this unit, you should be able to: 
 

§ Explain why a normal theory regression model is not appropriate for a regression analysis of 
proportions. 
 

§ State the expected value (the mean) of a Bernoulli random variable. 
 

§ Define the logit of the mean of a Bernoulli random variable. 
 

§ State the logistic regression model and, specifically, the logit link that relates the logit of the 
mean of a Bernoulli random variable to a linear model in the predictors. 

 
§ Explain how to estimate odds ratio measures of association from a fitted logistic regression 

model.   
 

§ Explain how to estimate probabilities of event from a fitted logistic regression model.  
 

§ Perform and interpret likelihood ratio test comparisons of hierarchical models. 
 

§ Explain and compare crude versus adjusted estimates of odds ratio measures of association. 
 

§ Assess confounding in logistic regression model analyses. 
 

§ Assess effect modification in logistic regression model analyses. 
 

§ Draft an analysis plan for multiple predictor logistic regression analyses of proportions. 
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1.  From Linear Regression To Logistic Regression 
An Organizational Framework 

 
In unit 2 (Regression and Correlation), we considered single and multiple predictor regression models for a 
single outcome random variable Y assumed continuous and distributed normal. 
 
In unit 5 (Logistic regression), we consider single and multiple regression models for a single outcome 
random variable Y assumed discrete, binary, and distributed bernoulli. 
 
 
                 Unit 2 

Normal Theory Regression 
           Unit 5 
     Logistic Regression 

 
 
Y 

-  univariate 
- continuous 
- Example:  Y = cholesterol 

-  univariate 
- discrete, binary 
- Example:  Y = dead/alive 

 
X1, X2, ….., Xp 

- one or multiple 
- discrete or continuous 
- treated as fixed 

- one or multiple 
- discrete or continuous 
- treated as fixed 

 
Y | X1=x1, .., Xp=xp 

 
- Normal (Gaussian) 

 
- Bernoulli (or binomial) 

 
E(Y| X1=x1, . Xp=xp) 

 

1 pY|X ...X 0 1 1 p pµ =β +β x +...+β x  
 

( )

1 p 1 pY|X ...X Y|X ...X

0 1 1 p p

µ =  π

1=
1+exp - β +β x +...+β x⎡ ⎤⎣ ⎦

 

 
Right hand side of 
model 

 

0 1 1 p pβ +β x +...+β x  
 

0 1 1 p pβ +β x +...+β x  

 
Link 

 

"natural" or "identity"
µY|X1...Xp

= β0 +β1x1+...+βpxp

 

( )

1 p

1 p

1 p 1 p

Y|X ...X

Y|X ...X

Y|X ...X Y|X ...X

0 1 1 p p

"logit"
logit[µ ]

logit[π ]

=ln π 1 π

=  β +β x +...+β x

=

⎡ ⎤−⎣ ⎦

 

Estimation Least squares (= maximum 
likelihood) 

Maximum Likelihood 

Tool  Residual sum of squares Deviance statistic 
Tool Partial F Test Likelihood Ratio Test 
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2.  Use of Video Display Terminals and Spontaneous Abortion 
 

Consider the following published example of logistic regression. 
 
Source:  Schnorr et al (1991) Video Display Terminals and the Risk of Spontaneous Abortion.  New England 
Journal of Medicine 324: 727-33. 
 
 
Background:   
 
Adverse pregnancy outcomes were correlated with use of video display terminals (VDT’s) beginning in 1980.  
 
Subsequent studies were inconsistent in their findings. 
 
Previous exposure assessments were self-report or derived from job title descriptions. 
 
Electromagnetic fields were not previously measured. 
 
Research Question: 
 

What is the nature and significance of the association, as measured by the odds ratio, between exposure to 
electromagnetic fields emitted by VDTs and occurrence of spontaneous abortion, after controlling for  
 

- History of prior spontaneous abortion 
- Cigarette Smoking  
- History of thyroid condition 

 
 
Design:   Retrospective cohort investigation of two groups of full-time female telephone operators. 
 
 
882 Pregnancies: 

 
N 

Spontaneous Abortion 
       n                %       

Exposed  366      54               14.8% 
Unexposed 516      82               15.9% 

 
  



BIOSTATS 640  - Spring 2018                                 5.  Logistic Regression                                                                  Page 6 of 66 
  

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

The Data: 
 
 
Variable 

 
Label 

 
Range/Codes 

 
AVGVDT 
 
NUMCIGS 
 
PRIORSAB 
 
SAB 
 
SMOKSTAT 
 
PRTHYR 
 
VDTEXPOS 

 
average hours vdt in 1st trimester 
 
# cigarettes/day 
 
prior spontaneous abortion  
 
spontaneous abortion  
 
smoker  
 
prior thyroid condition  
 
VDT exposure  

 
continuous 
 
continuous 
 
1=yes,  0=no 
 
1=yes,  0=no 
 
1=yes,  0=no 
 
1=yes,  0=no 
 
1=yes,  0=no 

 

 

 

 

AVGVDT  NUMCIGS PRIORSAB SAB SMOKSTAT PRTHYR VDTEXPOS 
 0.000   15        0      0    1        0     0 
 0.000   10        0      0    1        0     0 
 0.000   20        0      0    1        0     0 
         20        0      0    1        0     1 
27.764   20        0      1    1        0     1 
28.610    0        0      0    0        0     1 
 0.000    0        0      0    0        0     0 
          0        0      0    0        0     1 
19.717    0        0      0    0        0     1 
 0.000    0        0      0    0        0     0 
25.022    0        0      0    0        0     1 
   …      …        …      …    …        …     … 
 0.000    0        1      0    0        0     0 
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3.  Definition of the Logistic Regression Model 
 

 
We suspect that multiple factors, especially use of video display terminals, contribute to an individual’s odds 
of spontaneous abortion. 
 
The outcome or dependent variable is Y=sab.  Its value is y and  
 
                                           = 1 if spontaneous abortion occurred 
                                              0 otherwise 
 
The predictors that might influence the odds of SAB are several: 
 
                                      X1 = avgvdt 
                                      X2 = numcigs 
                                      X3 = priorsab 
                                      X4 = smokstat 
                                      X5 = prthyr, and 
                                      X6 = vdtexpos 
 
We are especially interested in 
 
                                       X6 = vdtexpos (coded = 1 for exposed and = 0 for NON exposed) and 
                                       X1 = avgvdt 
 
 
Among the N=882 in our sample, we have potentially N=882 unique probabilities of spontaneous abortion. 
 
                                                   π1, π2, …, πN.      
 
 
For the ith person 
                                     πi = Function ( X1i, X2i, X3i, X4i, X5i, X6i) 
 
                                    Pr [ Yi = 1] = πi 
                                    Pr [ Yi = 0] = (1 - πi) 
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How do we model the N=882 individual probabilities π i in relationship to the predictors?  
 
Recall.  Each profile of values, X = [ X1=x1 X2=x2, …. X6=x6 ], defines a sub-population with their own distribution of outcomes Y.   For example 
the women with X3=1 are the women with a history of prior spontaneous abortion, and are distinct from the women with X3=0 (who have no such 
prior history).  And so on; we can talk about distinct sub-populations based on the entire profile of values on X1, X2, … X6. 
 
Review of normal theory linear regression analysis: 
 
            Y |[X1, X2, X3, X4, X5, X6]  (read:  “Y given [X1, X2, X3, X4, X5, X6]” is assumed to be distributed  
            normal (Gaussian)  
            with mean = µ Y|x and variance= 2

|Y Xσ .   
 
            The mean of  Y at [X1, X2, X3, X4, X5, X6] is modeled linearly in x = [X1, X2, X3, X4, X5, X6] 
 
           Thus mean of Y  | [X1, X2, X3, X4, X5, X6]  = E [Y | (X1, X2, X3, X4, X5, X6) ] =  µ Y|x 
 
            In normal theory linear regression:       
         
               E[Y| x ] =  µ x        =  β0  +  β1X1 + β2X2 + β3X3 + β4X4+ β5X5 + β6X6 
        
            
 
         “natural link”            “right hand side is linear in the predictors” 
 
 
 In a logistic model regression analysis, the framework is a little different: 
 
            Y is assumed to be distributed Bernoulli  
            with mean=πx  and variance= πx (1-πx) 
 
            We do not model the mean of Y|X=x = πx linearly in x = [X1 … X6]. 
 
   Instead, we model the logit of the mean of Y|X=x = πx linearly in x = [X1 … X6]. 
 
 

 Logit [ E(Y|X) ] = logit[ πx]  = ln π x

1−π x

⎡

⎣
⎢

⎤

⎦
⎥  = β0  +  β1X1 + β2X2 + β3X3 +  ...+ β5X5 + β6X6 

 
 
     
             “logit link”                                         “right hand side is linear in the predictors”                      
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 Solution for Probability [Y=1| X1=x1, X2=x2, …, X6=x6] = E[Y | X1=x1, X2=x2, …, X6=x6 ] :  
 

The formula for Pr [ Y = 1| X1=x1, X2=x2, …, X6=x6 ] can be written in either of two ways: 
 

                                     

( )
( )

( )

0 1 1 2 2 6 6
x

0 1 1 2 2 6 6

0 1 1 2 2 6 6

exp β +β x +β x +...+β x
π    =   

1+exp β +β x +β x +...+β x
1         

1 exp β +β x +β x +...+β x
=

⎡ ⎤+ −⎣ ⎦

 

 
Pr [ Y = 0 | X1=x1, X2=x2, …, X6=x6 ] is   
 

                                 
( ) ( )x

0 1 1 2 2 6 6

11-π    =   
1+exp β +β x +β x +...+β x

 

 

 
Two other names for this model are “log-linear odds” and “exponential odds”  
 
The logistic regression model focuses on the odds of event (in this case event of spontaneous abortion, SAB).  
 

1)                         ln [ odds (πx) ] = ln 
1

x

x

π
π

⎡ ⎤
⎢ ⎥−⎣ ⎦

 =  β0  + … + β6X6 is a log-linear odds model. 

 
 

2)                              
1

x

x

π
π

⎡ ⎤
⎢ ⎥−⎣ ⎦

 =  exp {  β0  + … + β6X6 } is an exponential  odds model. 

 
                              
 
We do not model E[Y | X ] =  πx=  β0  +  β1X1 + β2X2 + β3X3 + β4X4+ β5X5 + β6X6? 
 
             1)     β0  +  β1X1 + β2X2 + β3X3 + β4X4+ β5X5 + β6X6  
                     can range from -∞ to  +∞  but   πx ranges from 0 to 1. 
 

2) πx=  β0  +  β1X1 + β2X2 + β3X3 + β4X4+ β5X5 + β6X6 is often not a  good description of nature. 
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Assumptions: 
 
 
1)  Each Yi follows a distribution that is Bernoulli with parameter E[Y | X ] = π xi

. 

 
 
 
2)  The Y1, Y2, … , YN are independent. 
 
 
 
 
3)  The values of the predictors, Xi1=xi1  …  Xi6=xi6, are treated as fixed. 
 
 
 
 
4)  The model is correct (this is also referred to as “linearity in the logit”). 
 
                   logit[  E(Y)| X1=x1, X2=x2, …, X6=x6 ]  
                           
                                           = logit [ πx]  
 
                                          = β0  +  β1X1 + β2X2 + β3X3 + β4X4+ β5X5 +  β6X6  

 

 

 
5)    No multicollinearity 
 
 
6)  No outliers 
 
 
7)  Independence  
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3.  Estimating Odds Ratios 
 
 
For now, assume that we have a fitted model.   We’ll get to the details of estimation later. 
 
Once a logistic regression model has been fit, the prediction equation can be used to estimate odds ratio (OR) 
measures of association.    
 
Example 1:  What is the estimated crude relative odds (OR) of spontaneous abortion (SAB) associated with 
any exposure (1 = exposed, 0 = not exposed) to a video display terminal (VDTEXPOS)? 
 
Step 1:   
To obtain crude odds ratios, either a 2x2 table can be used or a one predictor logistic regression model can be 
fit.  Here, it is given by  
 
                   logit { probability [SAB=1] }  =  β0  +  β1 VDTEXPOS 
 
  Stata  
 
. * The following assumes you have downloaded and opened vdt.dta. 
.  logit sab vdtexpos   
                               
  
 
Logistic regression                               Number of obs   =        882 
                                                  LR chi2(1)      =       0.21 
                                                           = Likelihood Ratio Statistic 
                                                           for current model (“full”) v 
                                                       intercept only model (“reduced”) 
                                                                 Analogous to Overall F 
                                                  Prob > chi2     =     0.6443 
Log likelihood = -379.08045                       Pseudo R2       =     0.0003 
(-2) ln L = 758.1609 
                                                                                                                                Wald Z       Wald Z p-value (2 sided) using Normal(0,1) 
 
            
                                                                                                                  
------------------------------------------------------------------------------ 
   depressed |      Coef.      Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 

     vtexpos |  -.0876939 = β̂1   .1903232   -0.46   0.645    -.4607204    .2853327 

       _cons |  -1.666325 = β̂0   .1204129   -13.84  0.000    -1.90233    -1.43032 
------------------------------------------------------------------------------ 
                                                                                                z = Wald Z = [ Coef ] / [ Std. Err. ]  
                                                                                                  =  [ beta – 0 ] / [ SE(beta) ]  ~ Normal(0,1) when ß1 = 0 
     
Yielding the following prediction equation 
 
           Fitted logit { pr[sab=1] }  =  -1.66633  -  0.08769*vdtexpos 
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Step 2:   
Recognize a wonderful bit of algebra. 
     
For a single exposure variable (1=exposed, 0=not exposed) 
             
            OR 1 versus 0             =   exp{ β }  where β = regression parameter for the exposure variable 
 
                                           =   exp { logit (π1) – logit (π0) } 
              
                    
 
Proof (read if you are interested!): 
              OR = exp ln OR[ ]{ }   
     

                    = 1 1

0 0

/(1 )exp ln
/(1 )

π π
π π

⎧ ⎫⎡ ⎤−⎪ ⎪
⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

 

 

                    = 01

1 0

exp ln ln
1 1

ππ
π π

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪−⎨ ⎬⎢ ⎥⎢ ⎥− −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 

 
                    = ( ){ }1 0exp logit π -logit(π )  
 
 “1” is the comparison and is vdtexpos=1: 
Estimated logit { prob[SAB=1|vdtexpos=1] }  = 0 1

ˆ ˆβ β+    
= -1.66633  -  0.08769 
 
“0” is the reference and is vdtexpos=0:  
Estimated logit { prob[SAB=1| vdtexpos=0] }  = 0β̂  =  -1.66633 
 
Step 3:   Apply. 
The odds ratio measure of association comparing the exposed telephone operator (“1”) to the unexposed 
telephone operator (“0”) is 
 
                   =    exp { logit (π1) – logit (π0) } 
                   =   exp { [ β0 + β1 ]  - [ β0] } 
                   =   exp {  β1  } 
                   =   exp { -0.08769} 
                  =    0.9160 à  “Compared to the unexposed, the exposed have a relative odds of spontaneous abortion=.916” 
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Stata Illustration – Obtaining estimated odds ratios after logistic regression 
 
Method 1.  Command logit with option or  
 
. logit sab vdtexpos, or   
                               
 

 
  
 
Method 2.  Command logistic  
 
. logistic sab vdtexpos   
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The two profiles being compared can differ on several predictors!  Let’s try another one. 
 
Here is another bit of wonderful algebra. 
     
For two profiles of predictor variable values, “comparison” versus “reference”  
                  
            
 OR comparison  versus reference     =  exp { logit (πcomparison) – logit (πreference) } 
              
                    
 
 
Example 2 - What is the estimated relative odds (OR) of spontaneous abortion (SAB) for a person who is not 
exposed to a VDT, smokes 10 cigarettes per day, has no history of prior SAB, and no thyroid condition 
relative to a person who has an average of 20 hours exposure to a VDT, is a nonsmoker, has a history of prior 
SAB and does have a thyroid condition? 
 
Step 1:   
Here the model fit is the 4 predictor model: 
 
         logit { probability [sab=1] } 
             =  β0  +  β1 avgvdt + β2 numcigs + β3 priorsab + β4 prthyr  
 
Estimation now yields (output not shown). 
 
        fitted  logit { prob[sab=1] } 
            =  -1.95958  +  0.00508(avgvdt) + 0.04267(numcigs)  + 0.38500(priorsab) 
                + 1.27420(prthyr) 
 
 
 
Step 2: 
Calculate the two predicted logits and compute their difference. 
 

 Value of Predictor for Person 
 “comparison” “reference” 

avgvdt 0 20 
numcigs 10 0 
priorsab 0 1 

prthyr 0 1 
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 “comparison” 
logit [ πcomparison ]  =  -1.95958  +  0.00508(0) + 0.04267(10) + 0.38500(0) + 1.27420(0) 
                   =  -1.5329 
 
“reference”:  
logit [πreference]  =  -1.95958  +  0.00508(20) + 0.04267(0) + 0.38500(1) + 1.27420(1) 
                   =  -0.1988 
 
logit [πcomparison ] - logit [πreference ]  =  -1.5329 – [-0.1988] 
                                        =  -1.3341 
 
 
Step 3:   
Exponentiate. 
 
ORcomparison versus reference  = exp {   logit [πcomparison ] - logit [πreference]   } 
                                     = exp { -1.3341 } 
                                     = 0.2634 
 
 
 
 
 
Interpetation  - The estimated odds (OR) of spontaneous abortion (SAB) for a person who is not exposed to a VDT, 
smokes 10 cigarettes per day, has no history of prior SAB, and no thyroid condition is 0.2634 times that of the odds of 
spontaneous abortion (SAB) for a person who has an average of 20 hours exposure to a VDT, is a nonsmoker, has a 
history of prior SAB and does have a thyroid condition. 
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In General: 
 
 

                      The Odds Ratio estimate ( ˆOR ) of association with outcome 
                      accompanying a unit change in the predictor X is a  

                      function of the estimated regression parameter β̂  
 
                                         UNIT change in X

ˆOR  = exp { β̂  } 
 
Tip – OR10 unit change in X = exp [ 10*β ] 
 
 
 
 
 
                      A hypothesis test of OR=1  
         
                                             
                                   Is equivalent to  
 
 
                      A hypothesis test of β  = 0 
 
 
                       
 
                      For a rare outcome (typically disease), the relative risk ( ˆRR ) estimate of  
                      association with outcome accompanying a unit change in  
                      the predictor X is reasonably estimated as a function of the  
                      estimated regression parameter β   
 
                               UNIT change in X

ˆRR  = exp { β̂  }, approximately 
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5.  Estimating Probabilities 
Again, let’s assume that we have a fitted model.   We’ll get to the details of estimation later. 
 
Once a logistic regression model has been fit, the prediction equation can also be used to estimate probabilities 
of event occurrence.   The prediction equation can be used to estimate probabilities of event of disease if the 
study design is a cohort; it is used to estimate probabilities of history of exposure if the study design is case-
control.   
 
Reminder …– it is not possible to estimate probability of disease from analyses of case-control studies.      
 
Recall that for Y distributed Bernoulli  
 
                       E [ Y ] = π = Probability of event occurrence 
 
 
Example 1-  Under the assumption of a cohort study design, what is estimated probability of spontaneous 
abortion (sab) for a person with any exposure to a video display terminal?  Consider the single predictor 
model containing the predictor vdtexpos) 
 
Step 1:   
Recall that we obtained the following equation for the fitted logit for the one predictor model containing 
VDTEXPOS:  
 
   Predicted logit { prob[SAB=1| vdtexpos] } 0 1

ˆ ˆ= β  + β [vdtexpos] 
                                                                         =  -1.66633  -  0.08769*VDTEXPOS 
Step 2: 
Utilizing the algebra on page 9, we have: 

( )
( )

( )
( )

0 1 0 1
VDTEXPOS=1

0 1 0 1

ˆ ˆ ˆ ˆexp β +β [vdtexpos] exp β +β
ˆEstimated pr[SAB=1]  =  ˆ ˆ ˆ ˆ1+exp β +β [vdtexpos] 1+exp β +β
π = =  

 
Step 3: 
Set VDTEXPOS=1,   β0 = -1.66633,   β1 =-0.08769 and solve 
 

( )
( )

exp -1.66633  -  0.08769[1]
Estimated pr[SAB=1]=

1+exp -1.66633  -  0.08769[1]
 

 
 

0.1731 0.148
1.1731

= =  
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6.  The Deviance Statistic 
”G Statistic”, “Log likelihood Statistic”, “Scaled Deviance”, Residual Deviance”” 

 
Where are we now?  Recall the concept of “analysis of variance” introduced in Unit 2, Regression and 
Correlation.  Analysis of variance is about the total variability of the observed outcome, and its partitioning into 
portions that are explained by the fitted model (due model/due regression) versus what’s left over as unexplained 
(due residual/due error).  The deviance statistic in logistic regression is a measure of what remains left over as 
unexplained by the fitted model, analogous to the residual sum of squares in normal theory regression. 
 
But first, a few words about likelihood, L.     
Lsaturated :    We get the largest likelihood of the data when we fit a model  that allows a separate  
                    predictor for every person.  This is called the likelihood of the saturated model. 
                                                        Lsaturated  is a large number. 
 
Lcurrent:        We get an estimated likelihood of the data when we fit the current model.   
                                                        Lcurrent is a smaller number. 
 
The deviance statistic in logistic regression is related to the two likelihoods, Lcurrent and Lsaturated in the 
following way.   
 

The current model explains a lot The current model does NOT explain a lot  
 
Lcurrent  ≈ Lsaturated 

 

 
Lcurrent  < <  Lsaturated 

L
L

current

saturated

  ≈  1 
L
L

current

saturated

 < <  1 

ln Lcurrent
Lsaturated

⎡

⎣
⎢

⎤

⎦
⎥  ≈  0 ln Lcurrent

Lsaturated

⎡

⎣
⎢

⎤

⎦
⎥ < < 0 

Deviance = (-2) ln Lcurrent
Lsaturated

⎡

⎣
⎢

⎤

⎦
⎥   ≈   0 Deviance = (-2) ln Lcurrent

Lsaturated

⎡

⎣
⎢

⎤

⎦
⎥  > > 0 

 
A number close to 0 

 
A large positive number 

 
Evidence that the current model explains a lot of the variability in outcome 
                                  
                                                       Deviance  ≈   small 
                                                          p-value  ≈   large 
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                           Deviance Statistic, D  =  -2 ln Lcurrent
Lsaturated

⎡

⎣
⎢

⎤

⎦
⎥  

 
                                                                 =  (-2) ln (Lcurrent) - (-2) ln (Lsaturated) 
           
                                     Deviance df = [Sample size] – [# fitted parameters] 
 
where  
 
                                       Lcurrent = likelihood of data using current model 
                                       Lsaturated = likelihood of data using the saturated model 

 
     
 
Notes -  
(1) By itself, the deviance statistic does not have a well defined distribution 
(2) However, differences of deviance statistics that compare hierarchical models do have well defined  
    distributions, namely chi square distributions. 
 
 
A Feel for the Deviance Statistic 
 
            (1)  Roughly, the deviance statistic D is a measure of what remains unexplained. 
                 Hint – The analogue in normal theory regression is the residual sum of squares (SSQ error) 
                     
 
            (2) A deviance statistic value close to zero says that a lot is explained and, importantly, 
                  that little remains unexplained. à The current model with its few predictors performs  
                 similarly to the saturated model that permits a separate predictor for each person. 
 
 
             (3) WARNING!  The deviance statistic D is NOT a measure of goodness-of-fit.  Recall 
                   that we said the same thing about the overall F-statistic in normal theory regression. 
 
               
             (4)  The deviance statistic D is the basis of the likelihood ratio test . 
 
 
             (5)  The likelihood ratio test is used for the comparison of hierarchical models. 
                    Recall – In normal theory regression, hierarchical models are compared using the Partial F-test.   
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                                                    a.  The Likelihood Ratio (LR) Test 
 

 
 

Likelihood Ratio (LR) Test  
 

Under the assumptions of a logistic regression model and the comparison of the hierarchical 
models: 
 

1 2 p 0

p+1 p+2 p+k p+1 p+1 p+k p+

1 1 p p

1 2 p 0 1 k1 p p

Reduced:  logit[π | X ,X ...,X ] = β +β X +...+β X

      Full:   logit[π | X ,X ...,X , ] = β +β X +...+β X + X ,X ,...,X β X +...+β X
 

 
For testing: 
 

                 O p+1 p+2 p+k

A

H :  β  = β  = ... = β = 0

H :  not
           

 
A Likelihood Ratio Test Statistic LR, defined 
 
          LR  =  DevianceREDUCED  -  DevianceFULL 
 
                =  [ (-2) ln (L) REDUCED – (-2) ln(L)SATURATED ]  -    [ (-2) ln (L) FULL – (-2) ln(L)SATURATED] 
 
                =  [ (-2) ln (L) REDUCED ]  -    [ (-2) ln (L) FULL ] 
 
has null hypothesis distribution that is Chi SquareDF=k  
 
Thus, rejection of the null hypothesis occurs for   
 
                                            Test statistic values, LR = large  
                                          and accompanying p-value= small 

 
     
Tip – In practice, we obtain LR using the 2nd formula; it says:  LR = [ (-2) ln (L) REDUCED ]  -    [ (-2) ln (L) FULL ] 
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Example:  Controlling for prior spontaneous abortion (PRIORSAB), is 0/1 exposure to VDT associated with 
spontaneous abortion? 
 
The idea here is similar to the idea of the partial F test in normal theory linear regression.  Two models that 
are hierarchical are compared: a “reduced/reference” versus a “full/comparison”. 
  
 
Step 1:  Fit the “reduced/reference” model, defined as containing the control variable(s) only.   
(Note – The available sample size here is 881) 
 
It estimates that logit {pr [sab=1]} = β0 + β1 PRIORSAB  
 
                                                 (-2) ln Lreduced  =  754.56 
                                         Deviance DFreduced  =  881 – 1 = 880 
 
Step 2:  Fit the “full/comparison” model, defined as containing the control variable(s) + predictor(s) of 
interest.  It estimates that logit {pr [sab=1]} = β0 + β1 PRIORSAB + β2 VDTEXPOS 
 
                                                 (-2) ln Lfull  =  753.81 
                                         Deviance DFfull  =  881 – 2 = 879 
 
 
Step 3:  Compute the change in deviance and the change in deviance df, remembering that in logistic 
regression the subtraction is of the form “reduced” -  “full”. 
 
     Likelihood Ratio Test LR  =  (-2) ln Lreduced  -   (-2) ln Lfull 
                                                   =  754.56  -  753.81 
                                                  =   0.75 
 
 
                    Δ  Deviance Df  =  Deviance DFreduced   -  Deviance DFfull 
                                              =  880  -  879 
                                              =  1 
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Example – continued. 
H0:   VDTEXPOS, controlling for PRIORSAB, is not associated with SAB   
         βVDTEXPOS  =  0  in the model that also contains PRIORSAB 
         
 
HA:  VDTEXPOS, controlling for PRIORSAB, is associated with SAB   
         βVDTEXPOS  ≠  0  in the model that also contains PRIORSAB 
 
 
Suppose we obtain:                                
 Likelihood Ratio Statistic χ2(df=1)  =  0.75 
                                               p-value = .39 
 
Interpretation.   Assumption of the null hypothesis βVDTEXPOS  =  0  and its application to the observed data 
yields a result that is reasonably plausible (p-value=.39).  The null hypothesis is NOT rejected.  Conclude that 
there is not statistically significant evidence that exposure to VDT, after controlling for prior spontaneous 
abortion, is associated with spontaneous abortion. 

 
Note - A little algebra (not shown) reveals that there are two, equivalent, formulae for the LR test: 

 
Solution #1 
LR Test  =  Δ  Deviance Statistic 
                    [ Deviance (reduced model) ]  -   [ Deviance (full model) ] 
 
Solution #2: this works because ln likelihood (saturated) drops out… see page 20 
LR Test  =  Δ  Deviance 
               =  Δ  { (-2) ln (likelihood)  ] 
               =  [ (-2) ln likelihood (reduced model) ]  -   [ (-2) ln likelihood (full model) ] 
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                                     b.  Model Development 
 
Recall from Unit 2, Regression and Correlation …. with apologies, the following is a duplication 
 
There are no rules nor a single best strategy.  Different study designs and research questions call for different 
approaches.  Tip – Before you begin model development, make a list of your study design, research aims, 
outcome variable, primary predictor variables, and covariates.   
 
As a general suggestion, the following approach has the advantages of providing a reasonably thorough 
exploration of the data and relatively little risk of missing something important.  
 
Preliminary – Be sure you have:  (1) checked, cleaned and described your data,  (2) screened the data for multivariate 
associations, and (3) thoroughly explored the bivariate relationships. 
 
Step 1 – Fit the “maximal” model. 
The maximal model is the large model that contains all the explanatory variables of interest as predictors.  This model also contains 
all the covariates that might be of interest.  It also contains all the interactions that might be of interest.   Note the amount of 
variation explained. 
 
Step 2 – Begin simplifying the model. 
Inspect each of the terms in the “maximal” model with the goal of removing the predictor that is the least significant.   Drop from 
the model the predictors that are the least significant, beginning with the higher order interactions (Tip -interactions are complicated 
and we are aiming for a simple model).  Fit the reduced model.  Compare the amount of variation explained by the reduced model 
with the amount of variation explained by the “maximal” model. 
 

If the deletion of a predictor has little effect on the variation explained …. 
      Then leave that predictor out of the model.| 
 
And inspect each of the terms in the model again. 
 
If the deletion of a predictor has a significant effect on the variation explained … 
     Then put that predictor back into the model. 

 
Step 3 – Keep simplifying the model. 
Repeat step 2, over and over, until the model remaining contains nothing but significant predictor variables.    
 
Beware of some important caveats 

§ Sometimes, you will want to keep a predictor in the model regardless of its statistical significance 
(an example is randomization assignment in a clinical trial) 

§ The order in which you delete terms from the model matters! 
§ You still need to be flexible to considerations of biology and what makes sense. 
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So what’s new here? 
 
              In logistic regression, this is done using the likelihood ratio test. 
 
             If the likelihood ratio statistic is statistically significant (small p-value), we say that the added  
            variables are statistically significant after adjustment for the control variables. 
 
 
Example – Depression Among Free-Living Adults.   
 

Among free-living adults of Los Angeles County, what is the prevalence of depression and what are its 
correlates?  In particular, in a given data set containing information on several candidate predictors, which 
predictors are the significant ones?  
 
A reasonable analysis approach for this particular example is the following: 
 

 
 Step 1.  Fit single predictor models.  Retain for further consideration: 
 
            •  Predictors with crude significance levels of association p<.25 
            •  Predictors of a priori interest  
 
 
Step 2. Evaluate candidate predictors for evidence of multicollinearity: 
 
 
Step 3.  Fit a multivariable model containing the “candidates” from step  
             1.  Retain for further consideration 
 
            •  Predictors with adjusted significance levels p < .10 
 
 
Step 4.  Fit the multivariable model containing the reduced set of  
             “candidates” from step 3. 
 
             •  Compare the step 3 and step 4 models using the likelihood ratio (LR) test. 
 
Step 5.  Investigate confounding.  For each confounder 
 
          •  Begin with the step 4 model.     ---  reduced model --- 
          •  Fit an enhanced model that includes the suspected confounder. 
              Note the estimated β’s and deviance statistic values.  -- full model --  
          •  Assess the adjusted statistical significance of the suspected  confounder using a likelihood  
              ratio (LR) test. 
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          •  Compute relative change in the estimated β’s: 
 

             without confounder with confounder

with confounder

ˆ ˆ| β -β |ˆΔβ= x100
β̂

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 

 
                      Criteria for Retention of Suspected Confounder 
 
1. Likelihood ratio (LR) test of its adjusted association is significant; and 
2. Δβ    >   15% or so. 
 
 
Step 6.  Investigate effect modification 
 
          •  Begin with the “near final” model identified in step 5 
          •  Fit, one at a time, enhanced models that contain each pairwise interaction 
          •  Assess statistical significance of each interaction using the LR test  
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7.  Illustration 
Depression Among Free-Living Adults 

 
Source:  Frerich RR, Aneshensel CS and Clark VA (1981) Prevalence of depression in Los Angeles County.  
American Journal of Epidemiology 113: 691-99. 
 
Before you begin:  Download from the course website:  depress_small.dta  
 
Background   
 
The data for this illustration is a subset of n=294 observations from the original study of 1000 adult residents 
of Los Angeles County.  The purpose of the original study was to estimate the prevalence of depression and to 
identify the predictors of, and outcomes associated with, depression.  The study design was a longitudinal one 
that included four interviews 
 
In this illustration, only data from the first interview are used.  Thus, this example is a cross-sectional analysis 
to identify the correlates of prevalent depression.  Among these n=294, there are 50 events of prevalent 
depression.  
 
Codebook: 
 
 
Variable 

 
Label 

 
Range/Codes 

 
depressed 
 
age 
 
income 
 
female 
 
unemployed 
 
chronic 
 
alcohol 

 
Case of depression 
 
Age, years 
 
Income, thousands of dollars  
 
Female gender  
 
Unemployed  
 
Chronic illness in past year  
 
Current alcohol use  

 
1=yes,  0 =no 
 
continuous 
 
continuous 
 
1=female,  0=male 
 
1=unemployed,  0=other 
 
1=yes,  0=no 
 
1=yes,  0=no 
 

 

Goal   
Perform a multiple logistic regression analysis of these data to identify the correlates of prevalent depression. 
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Illustration for Stata Users. 
Before you begin:  Download from the course website:  depress_small.dta 
Launch Stata.  From the toolbar:  FILE > OPEN to read in the data set depress_small.dta 
 
Preliminary.  Describe the analysis sample. 
(Depression Data Small Version) 
 
. codebook, compact 
 
Variable    Obs Unique      Mean  Min  Max  Label 
----------------------------------------------------------------------------------------
age         294     66  44.41497   18   89  age in years at last birthday 
alcohol     294      2  .7959184    0    1   
chronic     294      2  .5068027    0    1   
depressed   294      2   .170068    0    1   
female      294      2   .622449    0    1   
income      294     30  20.57483    2   65  thousands of dollars per year 
unemployed  294      2   .047619    0    1   
---------------------------------------------------------------------------------------- 

Looks reasonable.  There are no missing data. 
All of the binary variables are coded 0/1. 
The 2 continuous variables have reasonable ranges. 
 

. * Continuous variable distributions:  by depression status 

. sort depressed 
 
 
. tabstat age, by(depressed) col(stat) stat(n mean sd min q max) format(%8.2f) longstub 
 
depressed     variable |         N      mean        sd       min       p25       p50       p75       max 
-----------------------+-------------------------------------------------------------------------------- 
normal             age |    244.00     45.24     18.15     18.00     29.00     43.50     59.00     89.00 
depressed          age |     50.00     40.38     17.40     18.00     26.00     34.50     51.00     79.00 
-----------------------+-------------------------------------------------------------------------------- 
Total              age |    294.00     44.41     18.09     18.00     28.00     42.50     59.00     89.00 
-------------------------------------------------------------------------------------------------------- 

Depressed persons tend to be younger.  Variability is comparable. 
 
 
 

. tabstat income, by(depressed) col(stat) stat(n mean sd min q max) format(%8.2f) 
longstub 
 
depressed     variable |         N      mean        sd       min       p25       p50       p75       max 
-----------------------+-------------------------------------------------------------------------------- 
normal          income |    244.00     21.68     15.98      2.00      9.00     17.00     28.00     65.00 
depressed       income |     50.00     15.20      9.84      2.00      7.00     13.00     23.00     45.00 
-----------------------+-------------------------------------------------------------------------------- 
Total           income |    294.00     20.57     15.29      2.00      9.00     15.00     28.00     65.00 
-------------------------------------------------------------------------------------------------------- 

Depressed persons tend to be lower income.  Also, the variability in 
income is less (sd=9.84 for depressed, sd=15.98 for non-depressed).  
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. * 
. * Discrete variable distributions:  by depression status 
 
. tab2 alcohol depressed, row exact 
            |       depressed 
    alcohol |    normal  depressed |     Total 
------------+----------------------+---------- 
non-drinker |        51          9 |        60  
            |     85.00      15.00 |    100.00           
------------+----------------------+---------- 
    drinker |       193         41 |       234  
            |     82.48      17.52 |    100.00             Depression is more prevalent among drinkers. 
------------+----------------------+----------             but this is not statistically significant. 
      Total |       244         50 |       294  
            |     82.99      17.01 |    100.00  
 
           Fisher's exact =                 0.705 
   1-sided Fisher's exact =                 0.402 
 
. tab2 chronic depressed, row exact 
 
                |       depressed 
        chronic |    normal  depressed |     Total 
----------------+----------------------+---------- 
          other |       126         19 |       145  
                |     86.90      13.10 |    100.00  
----------------+----------------------+---------- 
chronic illness |       118         31 |       149  
                |     79.19      20.81 |    100.00        Depression is slightly more prevalent among the ill. 
----------------+----------------------+---------- 
          Total |       244         50 |       294  
                |     82.99      17.01 |    100.00  
 
           Fisher's exact =                 0.089 
   1-sided Fisher's exact =                 0.054 
 
. tab2 female depressed, row exact 
 
           |       depressed 
    female |    normal  depressed |     Total 
-----------+----------------------+---------- 
      male |       101         10 |       111  
           |     90.99       9.01 |    100.00  
-----------+----------------------+---------- 
    female |       143         40 |       183  
           |     78.14      21.86 |    100.00             Depression is more prevalent among females. 
-----------+----------------------+---------- 
     Total |       244         50 |       294  
           |     82.99      17.01 |    100.00  
 
           Fisher's exact =                 0.004 
   1-sided Fisher's exact =                 0.003 
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. tab2 unemployed depressed, row exact 
 
           |       depressed 
unemployed |    normal  depressed |     Total 
-----------+----------------------+---------- 
     other |       236         44 |       280  
           |     84.29      15.71 |    100.00  
-----------+----------------------+---------- 
unemployed |         8          6 |        14  
           |     57.14      42.86 |    100.00         Depression is more prevalent among the unemployed. 
-----------+----------------------+---------- 
     Total |       244         50 |       294  
           |     82.99      17.01 |    100.00  
 
           Fisher's exact =                 0.018 
   1-sided Fisher's exact =                 0.018 

 
 
Step 1.  Fit single predictor models -   Using Wald Z-score, retain predictors with significance 
levels  < .25 or that are of a priori interest. 
 
. logit depressed age 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       3.10 
                                                           = Likelihood Ratio Statistic 
                                                           for current model (“full”) v 
                                                       intercept only model (“reduced”) 
                                                                 Analogous to Overall F 
                                                  Prob > chi2     =     0.0785 
Log likelihood = -132.51436                       Pseudo R2       =     0.0115 
(-2) ln L = 265.50287 
                                                                                                                                Wald Z       Wald Z p-value (2 sided) 
 
 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0156211   .0090668    -1.72   0.085    -.0333917    .0021495 
       _cons |  -.9171994   .4043128    -2.27   0.023    -1.709638   -.1247608 
------------------------------------------------------------------------------ 
 
 
. logit depressed alcohol 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       0.22 
                                                  Prob > chi2     =     0.6387 
Log likelihood = -133.95203                       Pseudo R2       =     0.0008 
(-2) ln L = 267.90406 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     alcohol |   .1854829    .400363     0.46   0.643    -.5992142      .97018 
       _cons |  -1.734601   .3615508    -4.80   0.000    -2.443228   -1.025975 
------------------------------------------------------------------------------ 
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. logit depressed chronic 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       3.12 
                                                  Prob > chi2     =     0.0775 
Log likelihood = -132.50414                       Pseudo R2       =     0.0116 
(-2) ln L = 265.00828 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     chronic |   .5551455   .3182777     1.74   0.081    -.0686675    1.178958 
       _cons |  -1.891843   .2461058    -7.69   0.000    -2.374201   -1.409484 
------------------------------------------------------------------------------ 
 
. logit depressed female 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       8.73 
                                                  Prob > chi2     =     0.0031 
Log likelihood = -129.69883                       Pseudo R2       =     0.0325 
(-2) ln L = 259.39766 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female |    1.03857   .3766882     2.76   0.006     .3002749    1.776866 
       _cons |  -2.312535   .3315132    -6.98   0.000    -2.962289   -1.662782 
------------------------------------------------------------------------------ 
 
. logit depressed income 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       8.72 
                                                  Prob > chi2     =     0.0031 
Log likelihood = -129.70102                       Pseudo R2       =     0.0325 
(-2) ln L = 259.40204 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      income |  -.0358267   .0134794    -2.66   0.008    -.0622458   -.0094076 
       _cons |  -.9375673   .2658415    -3.53   0.000    -1.458607   -.4165276 
------------------------------------------------------------------------------ 
 
. logit depressed unemployed 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(1)      =       5.46 
                                                  Prob > chi2     =     0.0195 
Log likelihood = -131.33315                       Pseudo R2       =     0.0204 
(-2) ln L = 262.6663 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  unemployed |    1.39196   .5644743     2.47   0.014     .2856108    2.498309 
       _cons |  -1.679642   .1642089   -10.23   0.000    -2.001486   -1.357799 
------------------------------------------------------------------------------ 
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Step 1 – Summary 
 

Predictor Significance of Wald Z Remark 
age .085 Consider further – pvalue is < .25  

alcohol .643 Drop 
chronic .081 Consider further.  pvalue is < .25 
female .006 Consider further. pvalue is < .25 
income .008 Consider further.  pvalue is < .25 

unemployed .014 Consider further.  pvalue is < .25. 
 
 
Step 2 – Assess candidate predictors for evidence of multicollinearity 
Note – This assumes you have downloaded and installed collin.ado  
 
. collin age alcohol chronic female income unemployed   
                               
 

 
  

Collinearity occurs when the predictors are themselves inter-related 
If extreme, this is a problem for at least 2 reasons: 
1.  Model is unstable     2. Model is uninterpretable  
Multicollinearity problem is suggested if VIF > 10 or Tolerance < .10 
Here, things look reasonable. 
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Step 3.  Fit multiple predictor model using step 1 predictors having crude significance <  .25 
  
. logit depressed age chronic female income unemployed 
 
 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(5)      =      26.04 
                                                  Prob > chi2     =     0.0001 
Log likelihood = -121.04134                       Pseudo R2       =     0.0971 
(-2) ln L = 242.08268  Deviance df = 294-(5) = 289 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0219383    .009494    -2.31   0.021    -.0405462   -.0033305 
     chronic |    .594859   .3508664     1.70   0.090    -.0928265    1.282545 
      female |   .8121316   .3968805     2.05   0.041     .0342602    1.590003 
      income |  -.0320672   .0141399    -2.27   0.023    -.0597809   -.0043534 
  unemployed |   1.069739   .5989254     1.79   0.074    -.1041334    2.243611 
       _cons |  -1.031844   .6121359    -1.69   0.092    -2.231608    .1679207 
------------------------------------------------------------------------------ 

 
Step 3 – Summary 

Predictor Adjusted Significance 
(Wald) 

Remark 

age .021 Retain – pvalue is < .10  
chronic .090 For illustration purposes, let’s consider 

dropping this variable,  
 despite pvalue < .10 (it’s close!) 

female .041 Retain – pvalue is < .10 
income .023 Retain – pvalue is < .10 

unemployed .074 Retain – pvalue is < .10. 
 
Step 4.  Fit the multivariable model containing predictors with adjusted significance levels < .10 
from step 3.   We will then compare the step 3 model with the step 4 model using a likelihood ratio test. 
 
. logit depressed age female income unemployed 
 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(4)      =      23.09 
                                                  Prob > chi2     =     0.0001 
Log likelihood = -122.51896                       Pseudo R2       =     0.0861 
(-2) ln L = 245.03792  Deviance df = 294-(4) = 290 
 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   -.018802   .0091785    -2.05   0.041    -.0367917   -.0008124 
      female |    .938952   .3887469     2.42   0.016      .177022    1.700882 
      income |  -.0334314   .0141518    -2.36   0.018    -.0611684   -.0056944 
  unemployed |   .9634566   .5921991     1.63   0.104    -.1972324    2.124146 
       _cons |  -.8968284   .5978889    -1.50   0.134    -2.068669    .2750123 
------------------------------------------------------------------------------ 
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By Hand:  Likelihood ratio test comparing step 3 and step 4 models                       
      
                                      LR Test      =  [ (-2) ln (L) REDUCED ] -  [ (-2) ln (L) FULL ]           
                                                          =   [ 245.04 ] – [ 242.08 ] 
                                                          =  2.96 
 
                                      LR Test df = Δ  Deviance df   =   Δ  # predictors in model   = 290-289  =  1 
             
                                           p-value =   Pr { Chi square with 1 degree of freedom > 2.96 } = .0853  
 
This is not significant.  Possibly, we can drop chronic 
 
Stata:  Likelihood ratio test comparing step 2 and step 3 models. 
 
. * REDUCED model using command quietly: to suppress output. Don’t forget the colon. 
. quietly: logit depressed age female income unemployed 
. * Save results using stata command estimates store NAME  
. estimates store reduced 
 
. * FULL model using command quietly: to suppress output. Don’t forget the colon. 
. quietly: logit depressed age chronic female income unemployed 
. * Save results using stata command estimates store NAME  
. estimates store full 
 
. * Obtain LR test using stata command lrtest 
. lrtest reduced full 
 
Likelihood-ratio test                                 LR chi2(1)  =      2.96 
(Assumption: reduced nested in full)                  Prob > chi2 =    0.0856  match! 
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Step 5.  Investigate confounding. 
Tentatively, a “good” final model is the four predictor model with predictors: age, female, income, and 
unemployed.  Here, we explore possible confounding of the four predictor model by the omitted variable 
chronic.   Specifically, we assess chronic as a potential confounder using 2 criteria: 
 
                     __1.  Likelihood Ratio test < .10 ( or .05 or threshold of choice). 
                    __2.   Relative Change in estimated betas > 15% (or threshold of  
                              choice) using the following formula: 
 

                                                  without confounder with confounder

with confounder

ˆ ˆ| β -β |ˆΔβ= x100
β̂

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 

 
Fit of tentative “good” final model (shown again…) 
 
. logit depressed age female income unemployed 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   -.018802   .0091785    -2.05   0.041    -.0367917   -.0008124 
      female |    .938952   .3887469     2.42   0.016      .177022    1.700882 
      income |  -.0334314   .0141518    -2.36   0.018    -.0611684   -.0056944 
  unemployed |   .9634566   .5921991     1.63   0.104    -.1972324    2.124146 
       _cons |  -.8968284   .5978889    -1.50   0.134    -2.068669    .2750123 
------------------------------------------------------------------------------ 
 

 
Fit of enhanced model with chronic 
 
. logit depressed age chronic female income unemployed 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0219383    .009494    -2.31   0.021    -.0405462   -.0033305 
     chronic |    .594859   .3508664     1.70   0.090    -.0928265    1.282545 
      female |   .8121316   .3968805     2.05   0.041     .0342602    1.590003 
      income |  -.0320672   .0141399    -2.27   0.023    -.0597809   -.0043534 
  unemployed |   1.069739   .5989254     1.79   0.074    -.1041334    2.243611 
       _cons |  -1.031844   .6121359    -1.69   0.092    -2.231608    .1679207 
------------------------------------------------------------------------------ 
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Looking for  > 15% Change in Betas for Predictors in Model 
 
Potential confounding of age, female, income, unemployed 
By:   chronic 
 

age age

female female

income

ˆ ˆβ (w/o chronic) = -.018802;   β (w chronic) = -.0219383;  Change = 
ˆ ˆβ (w/o chronic) = .938952;   β (w chronic) = .8121316;  Change = 
ˆ ˆβ (w/o chronic) = -.03

14.30%

34314;

15.6 %

   

2

income

unemployed age

β (w chronic) = -.0320672;  Change = 
ˆ ˆβ (w/o chronic) = .9634566;   β (w chronic) = 1.069739;  Change = 

2.32%

9.94%

 

 
 

The relative change in the beta for female is borderline at 15.6%.  For parsimony, let’s drop chronic.   
 
Step 6.  Investigate effect modification. 
Are individuals who are both unemployed and with low income more likely to be depressed?  For this 
illustration, we will create a new variable called low to capture individuals whose income is less than $10,000.  
Then we will create an interaction of low and unemployed.    Tip – When assessing interaction, it is 
necessary to include the main effects of both of the variables contributing to the interaction.  Thus, this model 
includes the main effects low and unemployed in addition to the interaction low_unemployed. 
 
. *  Create new variable low 
. generate low=income 
. recode low (min/10=1) (10/max=0) 
. label define lowf 0 "other" 1 "low (<$10K)" 
. label values low lowf 
. fre low 
low 
------------------------------------------------------------------- 
                      |      Freq.    Percent      Valid       Cum. 
----------------------+-------------------------------------------- 
Valid   0 other       |        203      69.05      69.05      69.05 
        1 low (<$10K) |         91      30.95      30.95     100.00 
        Total         |        294     100.00     100.00            
------------------------------------------------------------------- 
 
. *  Create interaction of the two variables:  low and unemployed 
. generate low_unemployed=low*unemployed 
. label define lowunemployedf 0 "other" 1 "unemployed and low" 
. label values low_unemployed lowunemployedf 
. fre low_unemployed 
low_unemployed 
-------------------------------------------------------------------------- 
                             |      Freq.    Percent      Valid       Cum. 
-----------------------------+-------------------------------------------- 
Valid   0 other              |        287      97.62      97.62      97.62 
        1 unemployed and low |          7       2.38       2.38     100.00 
        Total                |        294     100.00     100.00            
-------------------------------------------------------------------------- 
Hmmmm …. We have only 7 individuals who are both UNEMPLOYED and with income < $10,000 
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. * fit of near final model + low  + interaction 

. logit depressed age female income unemployed low low_unemployed 
 
Logistic regression                               Number of obs   =        294 
                                                  LR chi2(6)      =      27.74 
                                                  Prob > chi2     =     0.0001 
Log likelihood = -120.19036                       Pseudo R2       =     0.1035 
 
-------------------------------------------------------------------------------- 
     depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
           age |  -.0147588    .009597    -1.54   0.124    -.0335685    .0040509 
        female |   1.036787   .3984331     2.60   0.009     .2558726    1.817702 
        income |  -.0543487   .0201008    -2.70   0.007    -.0937456   -.0149517 
    unemployed |   .2545214   .8759089     0.29   0.771    -1.462229    1.971271 
           low |  -.9450088   .4722731    -2.00   0.045    -1.870647   -.0193705 
low_unemployed |   1.544647   1.247604     1.24   0.216    -.9006125    3.989906 
         _cons |  -.4746871   .6837299    -0.69   0.488    -1.814773    .8653989 
-------------------------------------------------------------------------------- 
 
. *  LR test of interaction 
. * reduced model 
. quietly: logit depressed age female income unemployed low  
. estimates store reduced 
 
. * full model 
. quietly: logit depressed age female income unemployed low low_unemployed 
. estimates store full 
 
. lrtest reduced full 
 
Likelihood-ratio test                                 LR chi2(1)  =      1.60 
(Assumption: reduced nested in full)                  Prob > chi2 =    0.2055 

 
Note – The lack of statistical significance is not surprising given the small number, 7, who are both 
UNEMPLOYED and with income < $10,000.  Again for parsimony, let’s drop low.   
 
  



BIOSTATS 640  - Spring 2018                                 5.  Logistic Regression                                                                  Page 37 of 66 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

 
Conclusion: 
A reasonable multiple predictor model of depression in this sample contains the following predictors:  age, 
female, income, and unemployed.  Let’s fit the final model one more time, in two ways:  (1) using the 
command logit to obtain the prediction equation and (2) using the command logistic to obtain odds ratios 
instead of betas. 
 
. logit depressed age female income unemployed 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   -.018802   .0091785    -2.05   0.041    -.0367917   -.0008124 
      female |    .938952   .3887469     2.42   0.016      .177022    1.700882 
      income |  -.0334314   .0141518    -2.36   0.018    -.0611684   -.0056944 
  unemployed |   .9634566   .5921991     1.63   0.104    -.1972324    2.124146 
       _cons |  -.8968284   .5978889    -1.50   0.134    -2.068669    .2750123 
------------------------------------------------------------------------------ 

à 
Logit { pr[depressed=1] }  =  -0.90 - 0.02*age + 0.94*female – 0.03*income +0.97*unemployed 
 
 
. logistic depressed age female income unemployed 
 
------------------------------------------------------------------------------ 
   depressed | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .9813736   .0090076    -2.05   0.041     .9638769    .9991879 
      female |     2.5573   .9941424     2.42   0.016     1.193657    5.478777 
      income |   .9671213   .0136865    -2.36   0.018     .9406648    .9943218 
  unemployed |    2.62074      1.552     1.63   0.104     .8209998    8.365746 
       _cons |   .4078612   .2438557    -1.50   0.134     .1263538    1.316547 
------------------------------------------------------------------------------ 
 
Examination of this model fit suggests that, in adjusted analysis: 
 

(1) Older age is marginally associated with lower prevalence of depression. 
      Relative odds (OR) of depression associated with 1 year increase = .98 (p=.04) 
 
(2) Females, compared to males are more likely to be depressed. 
      Relative Odds (Odds ratio), OR = 2.6 (p=.016) 
 
(3) Higher income is associated with lower prevalence of depression. 
      Relative odds (OR) of depression associated with $1K increase = .97 (p=.018) 

 
             (4) Unemployed persons, are marginally significantly more likely to be depressed. 
                   Relative Odds,  OR = 2.6 (p=.010) 
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8.  Regression Diagnostics  
 
 
With a fitted model come two applications, prediction and hypothesis tests. 
 
 
           •  We’ve seen that a prediction is a guess of the expected outcome for a person with a  
               particular profile of values of the explanatory variables (eg – value of vdtexpos) using 
               the values of the estimated betas is obtained using the estimated betas: 
 

                     
( )
( )

0 1

vdtexpos

0 1

ˆ ˆexp β +β [vdtexpos]
ˆPredicted probability  = π  =  

ˆ ˆ1+exp β +β [vdtexpos]
 

 
 
        •   An example of an hypothesis test is the hypothesis test of the significance of VDTEXPOS. 
             The likelihood ratio test that the β for VDTEXPOS is equal to zero compares 
 
                        1)  the odds of SAB for exposed persons (“comparison”),  versus 

2) the odds of SAB for Unexposed (“reference”) persons. 
 
 

 
Neither prediction nor hypothesis tests have meaning when the model is a poor fit to the data.   
 
 
Reasons for a poor fit include the following: 
 
               (1)    The wrong relationship was fit. 
               (2)     The data include extreme values which influence too greatly the fitted line. 
               (3)     Important explanatory variables have not been included. 
  



BIOSTATS 640  - Spring 2018                                 5.  Logistic Regression                                                                  Page 39 of 66 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

We need regression diagnostics for the detection of a poor fit: 
 

 
                                                    
 
Example - The fit is poor here because the true relationship is quadratic, not linear.   
 
 
                We notice that the discrepancies between the observed and the fitted values are not of  
                consistent size. 
 
                Some are large and some are small. 
 
                Goodness-of-fit assessments are formal techniques for identifying such inconsistencies. 
 
                These techniques become especially important when a picture is not possible, as when the 
                number of predictors is greater than one. 
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Assessing regression model adequacy was introduced previously (Unit 2, Regression and Correlation).  
Regression diagnostics are of two types: 
 

• Systematic component  
 

o Is the assumption of linearity on the ln(odds) scale correct? 
o Is the logistic model formulation a reasonably good fit? 
o Should we have fit a different model? 
o Does the fitted model predict well? 

 
• Case analysis 

 
o Is the fitted model excessively influenced by one or a small 

number of individuals? 
 
There exist methods to address each of these regression diagnostic questions. 
Question Method of Assessment 
 
Is the assumption of linearity on the 
ln(odds) scale correct? 

 
a.  Assessment of linearity 

 
Is the logistic model formulation a 
reasonably good fit? 
 

 
b.  Hosmer-Lemeshow test for overall 
goodness of fit. 

 
Should we have fit a different model? 
 

 
c.  Linktest 

 
Does the fitted model predict well? 
 

 
d.  Classification table 
e.   The ROC Curve 
 

 
Is the fitted model excessively influenced 
by one or a small number of individuals or  
covariate patterns? 
 
Note – Here we might look at covariate 
patterns instead of individuals. 

 
f.  Pregibon Delta beta statistic 
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    a.  Assessment of Linearity 
 

A logistic regression model assumes that the logit of the probability (π) of event occurrence (eg – 
spontaneous abortion) is linear in the predictors X1, X2, … etc. 
  

         logit[ πx] =  Logit [ E(Y) ] = ln π x

1−π x

⎡

⎣
⎢

⎤

⎦
⎥  = β0  +  β1X1 + β2X2 + β3X3 +  ...+ β5X5 + β6X6 

 
Violation of the assumption of linearity of the logit in a continuous predictor can lead to incorrect 
estimates and incorrect conclusions.  A variety of approaches are available for assessing the assumption of 
linearity in logistic regression but are beyond the scope of these notes.   
 
A graphical assessment of linearity of Y = logit with changes in X=predictor can be performed in Stata 
(we’ll do this in lab).   It involves five steps 
 

1.     Collapse the predictor values of X into groups (eg; quartiles) 
2.     In each group, obtain the median value of the predictor variable X. 
3.     In each group, obtain the observed proportion experiencing the event Y. 
4.     In each group, obtain the observed logit [proportion experiencing event ] 
        Tip – Obtain 95% CI limits as well. 
5.     Produce a two-way plot of X=midpoint versus Y=logit, perhaps with some  
         overlays. 
 

  Example – continued. 

 
Not bad!  The plot looks reasonable enough that it is okay to model the logit linearly in age. 
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b.  The Hosmer-Lemeshow Test of Goodness-of-Fit 
 
 
The Hosmer-Lemeshow Goodness of Fit Test compares observed versus predicted counts of outcome events 
in each of several “meaningful” subgroups of the data, in a manner similar to the Chi Square Goodness of Fit 
Test introduced in Unit 4, Categorical Data.  If the fit is good (null hypothesis is true), the observed and 
(model based) expected counts will be close and their differences will be small.  The actual test statistic is a 
sum of (observed – expected)/expected2 and is distributed chi square under the null hypothesis. 
 
                      Null Hypothesis:  “Good fit” is indicated by similar counts of observed and predicted  
                      counts in all the  subgroups. 
 
                      The difference between the two counts is then close to zero. 
 
                      The sum, taken over the subgroups, is also small. 
 
 
The Groups Used in a Hosmer-Lemeshow Test are defined by the predicted probabilities 
 
                        Within each group, members have similar predicted probabilities of outcome event. 
 
                        The most commonly used groups are 10 subgroups defined by deciles of predicted. 
 
                         1st subgroup:  This is the 1/10th of sample of persons who have the  
                                                 lowest predicted probabilities of outcome event. 
 
                         2nd subgroup:  This is the next 1/10 of sample of persons.  These persons have  
                                                  the next lowest predicted probabilities of outcome event. 
 
                                                             And so on …. 
  
                          10th subgroup:  This is the last 1/10 of sample of persons.  These persons have   
                                                    the highest predicted probabilities of outcome event. 
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Hosmer-Lemeshow Goodness of Fit Test 

 
   HO:  The current model is a “good” fit to the data. 
   HA:  not. 
 

[ ]2
2
Hosmer-Lemeshow; DF=# groups-2 decile of risk

Observed count - Predicted count
χ =

Predicted count

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

 
Rejection occurs for large values of the chi square statistic with associated small p-values 
 
 
  
 
Calculation of observed and (model fit) predicted counts:   
 
 

Observed count = Actual number of events in decile  
 
Predicted count = (# in group) (Average predicted probability)  
 
 

When the null hypothesis of a “good” fit is true, 
 

                             χ
Hosmer Lemeshow−

2
 is distributed Chi Square, approximately. With df= (# groups) – (2) 

 
                               For example, with 8 groups, the degrees of freedom = 6 
 
                               Large values of this statistic suggest a poor fit. 
 
 
 
 
Statistically significant values of the Hosmer-Lemeshow statistic evidence ONLY that the fit is poor.  
We do not learn why.   Further assessments are necessary to understand their nature. 
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Stata Illustration  
Example: Depression Among Free-Living Adults – continued. 
 
. *-- must have fit the “final” model before doing test --* 
. logit depressed age female income unemployed 
 
           -- some output omitted – 
 
. *-- Use command estat gof to obtain Hosmer Lemeshow Test --* 
. estat gof, group(8) table 
 
Logistic model for depressed, goodness-of-fit test 
  (Table collapsed on quantiles of estimated probabilities) 
  +--------------------------------------------------------+ 
  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     1 | 0.0598 |     2 |   1.5 |    35 |  35.5 |    37 | 
  |     2 | 0.0804 |     2 |   2.6 |    35 |  34.4 |    37 | 
  |     3 | 0.1180 |     4 |   3.7 |    33 |  33.3 |    37 | 
  |     4 | 0.1575 |     5 |   5.1 |    31 |  30.9 |    36 | 
  |     5 | 0.1800 |     5 |   6.3 |    32 |  30.7 |    37 | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     6 | 0.2232 |     8 |   7.5 |    29 |  29.5 |    37 | 
  |     7 | 0.3034 |    11 |   9.7 |    26 |  27.3 |    37 | 
  |     8 | 0.6457 |    13 |  13.6 |    23 |  22.4 |    36 | 
  +--------------------------------------------------------+ 
 
       number of observations =       294 
             number of groups =         8 
      Hosmer-Lemeshow chi2(6) =         0.97 
                  Prob > chi2 =         0.9867 

KEY -  
• Column “TOTAL” – These are the stratum specific sample sizes. 

 
• Column “PROB” – The groups are defined by the predicted probabilities.  Individuals in 

group 1 have the “lowest” predicted probabilities and range from a 0% probability to a 
5.98% probability.  Individuals in group 2 have the “next lowest” predicted probabilities. 
These range from 5.98% to 8.04%.  And so on.   
 

• Columns “OBS_1 and EXP_1” – These are the observed and expected counts of depressed= 
yes in each group.  For example, in group 4, there were 5 observed events of depressed=yes 
compared to a logistic model expected number of events of depressed=yes equal to 5.1. 
 

• Columns “OBS_0 and EXP_0” –. These are the observed and expected counts of depressed= 
no in each group.  For example, in group 4, there were 31 observed events of depressed=no 
compared to a logistic model expected number of events of depressed=no equal to 30.9 
 

• The Hosmer_Lemeshow test (p=.9867) suggests no statistically significant departure from a  
good fit.  The null hypothesis of “good fit” is NOT rejected.  Good news! 
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c.  The Linktest   
 

The Link Test is an example of a specification test.   
 
Like the Hosmer-Lemeshow statistic, the Link Test is a simple check of the fitted model.  It assesses whether 
or not the fitted model is adequate fit (null hypothesis) to the data or, if not, if there is still some additional 
modeling that needs to be done (alternative hypothesis).   The crudeness of the Link Test is that what we learn 
is limited.  If the null hypothesis is rejected, we know only that some alternative modeling is needed, but we 
don’t know what alternative modeling is needed. 
 

 
Link Test 

 
   HO:  The current model is an adequate fit to the data. 
   HA:   Alternative modeling is needed. 
 
 
A Likelihood Ratio (LR) Test is performed and compares a “null hypothesis” adequate model (reduced) 
with an “alternative hypothesis enhanced (full) model: 
 

0 1 mod

2
2 mod

el

0 1 mod eel l

ˆReduced:  logit[π] = β  + β [π ]
ˆ      Full:   logit[π]  = β  + β [π ] ˆ+ β [π ]

 

 
Thus,  

                 2O

A

β  = H :  
H :

0
  not

           

Key - 

model

2
model

π̂ : This is the predicted probability from our model; we hope this is significant.

: If the null is true (the model is adequate),this shouldπ̂ non-signific be ant.
    

 
Rejection of the null occurs for large values of the LR Test and associated small p-values. 
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Stata Illustration  
Example: Depression Among Free-Living Adults – continued. 
 
 
. *-- Here, too - must have fit the “final” model before doing test --* 
. logit depressed age female income unemployed 
 
           -- some output omitted – 
 
. * --  Linktest --* 
. linktest 
 
           -- some output omitted – 
 
 
------------------------------------------------------------------------------ 
   depressed |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        _hat |   1.075812   .6569617     1.64   0.102    -.2118091    2.363434 
      _hatsq |   .0251889   .2041306     0.12   0.902    -.3748998    .4252775 
       _cons |   .0438939   .5070363     0.09   0.931     -.949879    1.037667 
------------------------------------------------------------------------------ 

 

model

2
model

ˆ    _hat = π :  This is marginally significant (p=.10); perhaps we'd hoped for better. But okay.

:   This iˆ_hatsq = π non-significant (p=.90)s Good.  news.
 

 
 
The Link Test (p=.902) suggests no statistically significant departure from model adequacy.  The null 
hypothesis of “model adequacy” is NOT rejected.  Good news! 
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d.  The Classification Table 
 
Rationale 
 

• Just because the fitted model is a good fit overall doesn’t mean that individual predictions are 
correct most of the time. 
 

• The classification table, and associated plots, are useful in a selected analysis setting: 
 
The investigator wishes to use the fitted equation to make predictions as to which group (event 
or non-event) a person belongs, based on his/her covariate profile.  
 

 
 

Method 
 

• For each individual, there are two quantities to work with 
o Actual outcome:  Yes/No indicator of event occurrence 
o Estimated probability of event:  Between 0 and 1 

 
• Choose a threshold probability for event declaration by model. 

o Default is usually 0.5 
o This can be reset. 
o Consideration of several permits construction of ROC curve. 

 
 
A separate classification table is produced for each cut-off you select 
 

  Observed (True)  
  Event Non-Event  
Predicted Event    
 Non-Event    
     

 
Example: 
Suppose that for subject id=103         observed event = YES           predicted probability = .68 
 
When cut-off=.60        observed event is still = YES        Now, predicted event = YES   Because .68 > .60 
When cut-off=.70        observed event is still = YES        But,  predicted event = NO     Because .68 < .70
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Stata Illustration  
Example: Depression Among Free-Living Adults – continued. 
 
. *-- Check. Must have fit the “final” model first --* 
. logit depressed age female income unemployed 
 
. *--- default cutoff = .5 So no need to specify the cutoff value -- 
. estat classification 
 
Logistic model for depressed 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |         2             1  |          3 
     -     |        48           243  |        291 
-----------+--------------------------+----------- 
   Total   |        50           244  |        294 
 
Classified + if predicted Pr(D) >= .5 
True D defined as depressed != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)    4.00% 
Specificity                     Pr( -|~D)   99.59% 
Positive predictive value       Pr( D| +)   66.67% 
Negative predictive value       Pr(~D| -)   83.51% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    0.41% 
False - rate for true D         Pr( -| D)   96.00% 
False + rate for classified +   Pr(~D| +)   33.33% 
False - rate for classified -   Pr( D| -)   16.49% 
-------------------------------------------------- 
Correctly classified                        83.33%   = (2+243)/294 = .8333 
-------------------------------------------------- 

 
Key and some checks:   
 

• Concordance is (2+243)/294 = .8333, or  83.33% This matches the  “correctly classified – 84.33%” 
 

• Different software packages produce different amounts of detail.  STATA happens to provide lots of detail. 
 

• Check:  Sensitivity = % of true event that is predicted to be event = 2/50 = 0.50, or 4% 
 

• Check:  Predictive value positive = % of predicted positive that are actual events  = 2/3 = .667, or 66.67% 
 

• Check:  Predictive value negative = % of predicted negative that are actual NON events  = 243/291, 83.51% 
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Example - Stata allows different cut-offs 
 
. *--- cutoff=0.6 -- 
. estat classification, cutoff(.6) 
Logistic model for depressed 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |         1             1  |          2 
     -     |        49           243  |        292 
-----------+--------------------------+----------- 
   Total   |        50           244  |        294 
 
Classified + if predicted Pr(D) >= .6 
True D defined as depressed != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)    2.00% 
Specificity                     Pr( -|~D)   99.59% 
Positive predictive value       Pr( D| +)   50.00% 
Negative predictive value       Pr(~D| -)   83.22% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    0.41% 
False - rate for true D         Pr( -| D)   98.00% 
False + rate for classified +   Pr(~D| +)   50.00% 
False - rate for classified -   Pr( D| -)   16.78% 
-------------------------------------------------- 
Correctly classified                        82.99% 
-------------------------------------------------- 
 
. *--- cutoff=0.1 -- 
. estat classification, cutoff(.1) 
Logistic model for depressed 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |        43           160  |        203 
     -     |         7            84  |         91 
-----------+--------------------------+----------- 
   Total   |        50           244  |        294 
 
Classified + if predicted Pr(D) >= .1 
True D defined as depressed != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   86.00% 
Specificity                     Pr( -|~D)   34.43% 
Positive predictive value       Pr( D| +)   21.18% 
Negative predictive value       Pr(~D| -)   92.31% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)   65.57% 
False - rate for true D         Pr( -| D)   14.00% 
False + rate for classified +   Pr(~D| +)   78.82% 
False - rate for classified -   Pr( D| -)    7.69% 
-------------------------------------------------- 
Correctly classified                        43.20% 
-------------------------------------------------- 
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             e.  The ROC Curve 
 

One of the uses of a fitted logistic model is to make predictions for new individuals; eg – is this new 
person predicted to experience the event or not? 
 
An ROC curve (“Receiver-Operating Characteristic) is a visual display of the overall performance of a 
fitted logistic model and its associated equation for predicted probabilities.  It takes into consideration that 
there are two kinds of errors of prediction:  (1) a true event is predicted to be a non-event (false 
negative) and (2) a true non-event is predicted to be an event (false positive, which is the same as 1 -
specificity). 
 
For various choices of “cut-off” (recall - this is the value above which a predicted probability is 
classified as a predicted event) an ROC curve is plot of X=false positive against Y = true positive values 
for various choices of “cutoff”: 
 
“Cutoff” .10 .20 etc .80 .90 
X = false positive = 1 - specificity       
Y = correct positive = sensitivity      

 
Key 
 

• In a real world application, the choice of “cutoff” has real world 
implications as when a predicted event=yes prompts the initiation 
of treatment. 
 

• A diagonal line with slope=1 is a reference line. It represents the ROC 
curve for test that performs no better than the flip of a coin. 
 

• The area under the ROC curve is often denoted c-statistic.  It has a defined meaning: 
 
                 

 
ROC Curve  

 
c-statistic  = Overall % correctly classified 
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Stata Illustration  
Example: Depression Among Free-Living Adults – continued. 
 
. *-- Again, be sure to have fit the “final” model first --* 
. logit depressed age female income unemployed 
 
. *-- obtain predicted logits 
. predict xb, xb 
 
. *-- obtain ROC Plot 
. lroc 
 

 

 
 

 
Key - 

• Recall - The straight line with slope =1 is a reference line; it corresponds 
to the ROC curve where chance alone is operating (coin toss with probability heads = .50) 
 

• ROC c-statistic = .7080 says that the overall % who are correctly classified is 70.8%. 
This is not very impressive, actually.  We typically hope to do better.    
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f.  The Pregibon Delta Beta Statistic 
 

 
Recall the Cook’s Distance Statistic introduced in unit 2, Regression and Correlation.  This statistic 
provides a measure of the extent to which inclusion or non-inclusion of an individual changes the 
estimated betas. 
 
                  The plot is of  X=Subject ID  versus Y=Cook’s Distance 
                  Spikes in the plot identify individuals whose inclusion are influential on the fit. 
 
The analogue in logistic regression is the Pregibon Delta Beta Statistic, dbeta.  The formula is beyond 
the scope of this course.  However, a feel for it is the following: 
 
                dbeta  =  function of { standardized difference in betas w deletion of individual  
                                                    or deletion of covariate pattern } 
 
The Pregibon Delta Beta Statistic can be computed for study individuals or for covariate patterns 
instead of study id. 
 

• A covariate pattern is a unique profile (or combination) of values on the variables. 
 

• The maximum number of covariate patterns in a data set occurs when every individual is unique 
in his/her pattern of values of the predictors.   In this extreme case, the number of covariate 
patterns = sample size = n. 
 

• Often, however, the same covariate pattern is shared by more than one individual (eg – 4 subjects 
have age=50, sex=male, exposure=yes).  Thus, often, the number of covariate patterns < n. 
 

 
The plot is of X=predicted probability versus Y=dbeta  
 

• Small values of dbeta:   individual or covariate pattern is not influential 
                        Small: dbeta values less than 1 or so, approx 
 

• Large values of dbeta:   individual or covariate pattern is influential 
                                   Large: dbeta values > 1 
 
Tip – Regardless of the magnitudes of the dbeta, be on the look out for spikes 
                                     Spikes are suggestive of comparative influence 
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Stata Illustration  
Example: Depression Among Free-Living Adults – continued. 
. *-- Again, be sure to have fit the “final” model first --* 
. logit depressed age female income unemployed 
 
. *-- Pregibon Delta Beta Plot 
 
. * -- Xaxis = predicted probabilities using variable named phat 
. *-- use command predict NAME, p 
. predict phat, p 
. label variable phat "Predicted Probability" 
 
 
. * -- Yaxis = Pregibon delta beta values using variable named dbeta 
. *-- use command predict NAME, dbeta 
. predict dbeta, dbeta 
. label variable dbeta "Pregibon Delta Beta" 
 
. *-- Plot --* 
. graph twoway (scatter dbeta phat, msymbol(d)), title("Depression Among Free-Living 
Adults") subtitle("Influence Analysis") ytitle("dbeta") caption("dbeta.png", 
size(vsmall)) 

 

 
 
 

• The dbeta values are all less than .25, suggesting the absence of influential points.  Good news! 
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9.  Example - Disabling Knee Injuries in the US Army 
 
Source:  Sulsky SI, et al .  Risk Factors for Disability Discharge from the US Army Related to 
Occupational Knee Injury (2000). 
 
 
 
Background: 
 
The strongest correlate of lost time from work, lost productivity, and lost working years of life is occupational 
injuries. 
 
Occupational activities have been found to be associated with knee disorders. 
 
Poorly understood, however, are the differences in risk of knee disorders associated with socio-demographic 
versus occupational task characteristics. 
 
Better understanding of the socio-demographic variations in risk of occupational knee injury is important to 
future studies of occupational risks. 
 
Therefore, Sulsky et al conducted a case-control study to investigate selected socio-demographic risk factors 
for occupational knee injury in the US Army. 
 
 
 
Research Question: 
 
What are the separate and joint effects of gender, age, and race/ethnicity in the odds of disabling knee injury 
among enlisted Army personnel on active duty between 1980 and 1994? 
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Design:  Nested case-control investigation of knee related disability within the occupational cohort of 
enlisted US Army personnel on active duty between 1980 and 1994.  
 

Total Army Injury and Health Outcomes Data Base (TAIHOD) 
 

2.1 million men 
283,000 women 

                                                                    ≈ 2.4 million 
 

↓  
 

Data Library 
Cases Controls 

First record of any of 11 eligible codes 
 
                            7868 men 
                              860 women 
                            8728 total 
 
 

Density sampling* of TAIHOD by year, separately for each 
gender 
 

          11,758 men    (control:case = 1.5:1) 
           5,109 women (control:case = 6:1) 
         16,867 Total    (control:case = 2:1) 

 
↓  
 

Analysis Sample 
 Cases Controls Control:Case 
 
Women 

 
860:  all cases 

 
2580:  density 
sampling by year 

 
3:1 

 
 
Men 

 
1005:  equal random 
sampling by year 
over 15  years 
(67/year) 

 
3009:  equal random 
sampling by year 
over 15 years 
(201/year) 

 
3:1 

 
Total 

 
1865 

 
5589 

 
7454 

 
 
 
*  For the unfamiliar - Density Sampling by Year:  For each year, controls were drawn in proportion 
to the number of cases for that year.  (E.g. – A year with 2 cases and 3:1 sampling of controls yields 6 
controls for that year.) 
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Estimated Distribution of Risk Factors: 
Age and Race/Ethnicity, by Gender 

 
Our estimates will have to take into account the method of sampling employed.  How does this work? 
 
Let’s look at a simple illustration.  Suppose …. 
 

Men Women 
Source Population, N=2000 
Size of random sample, n=100 
 

Probability[inclusion] = 100/2000 = .05 
Weight per person included = 1/.05 = 20 
 
Each man in the sample represents 20 men 
in the source population. 

Source Population, N=1000 
Size of random sample, n=100 
 

Probability[inclusion] = 100/1000 = .10 
Weight per person included = 1/.10 = 10 
 
Each woman in the sample represents 10 
women in the source population.  
 

 
The number of  men <21  years of age in 
the sample is  # = 50. 
 

 

Therefore, estimated number of 
men <21 years of age in the source 
population is 50 x (weight=20) = 1000 
 

 
The number of women <21 years of 
age in the sample is  # = 25 
 
Therefore, estimated number of  
women <21 years of age in the source 
population is 25 x (weight=10) = 250 

 
 

What is the overall relative frequency of age < 21 years? 
 

   Unweighted estimate describes the sample:  (50+25)/200 = 37.5%.   
Weighted estimate describes the population: = (1000+250)/3000 = 41.7% 
 

 
REMINDER 

When a study calls for stratified sampling with disproportionate 
sampling of selected groups, estimates of population characteristics 

must take sample weights and stratified sampling into account. 
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Estimated Distribution of Risk Factors: 
Age and Race/Ethnicity, by Gender 

   Relative Frequency* Among 
   Cases Controls 

     
MEN Age <21 15 20 
  21-23 19 19 
  23-26 26 20 
  26-30.36 20 18 
  30.36-54 19 23 
     
 Race/Ethnicity Unknown 0 0 
  White 71 62 
  Black 22 29 
  Other 7 9 
     
     
WOMEN Age <21 19 19 
  21-23 18 20 
  23-26 19 22 
  26-30.36 24 23 
  30.36-54 20 16 
     
 Race/Ethnicity Unknown 0.2 0 
  White 68 47 
  Black 26 45 
  Other 6 8 
     
• Estimated relative frequencies take sample weights and stratified sampling into account. 
 
 
We’ll use quintiles of age. 
 
Race/Ethnicity will be categorized as White/Non-White. 
 
         
        A multivariable logistic regression model analysis will explore the separate and joint 
       associations with disabling knee injury  of age, gender, and race/ethnicity. 
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Recall the Research Question: 
 
What are the separate and joint effects of gender, age, and race/ethnicity in the odds of disabling knee injury 
among enlisted Army personnel on active duty between 1980 and 1994? 
 
 
We are especially interested in identifying possible interactions. 
   
                   •   This analysis is to guide future analyses of occupational risk factors. 
 
                   •   A “traditional” analysis of occupational risk factors might simply control for age, gender, and  
                        race/ethnicity. 
 
                   •  If interactions exist among age, gender, and race/ethnicity, inclusion of only main effects might  
                       lead to incorrect inferences. 
 
 
Therefore, the analysis plan seeks to estimate 
 
                   •   The separate effects of gender on risk of disabling knee injury among groups defined by age |           
                        and race/ethnicity. 
 
                        e.g. – Is the effect of gender different among young  workers compared to the effect of  
                        gender among older  workers? 
 
                  •   The separate effects of increasing age on risk of disabling knee injury among groups defined by  
                        gender and  race/ethnicity. 
 
                        e.g. – Is the effect of increasing age different among men and women? 
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•   Among Whites: 
 
                  Women are at higher risk of disabling knee injury than men at all ages 
                   except among persons aged 23-27. 
 
                   The gender effect is greatest among the youngest (17-21 years) and oldest (30-54) persons. 
                    (“U” shape) 
 
 
•   Among non-Whites: 
 
                  Women are at lower risk of disabling knee injury than men at all ages 
                   except among persons aged 30-54. 
 
                  The gender effect is greatest among persons in the middle age group (23-27 years).   
                  (“U” shape) 
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Figure 1:  Relative odds of discharge for disabling knee injury among enlisted 
women compared to men, stratified by age (quintiles) and race. 
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note:  The reference age group is age 23-27 years. 
 
 
•   Among Men: 
 
                  With increasing age, the change in risk of disabling knee  
                  injury exhibits a   “∩” pattern. 
 
                                  The “∩” pattern among Whites is stronger than  
                                   the “∩” pattern among non-Whites. 
 
 
•   Among Women: 
 
                  With increasing age, the change in risk of disabling knee  
                  injury exhibits a   “⎭” pattern. 
 
                                  The “⌡” pattern among Whites is more precise than  
                                   the “⌡” pattern among non-Whites. 
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Figure 2:  Relative odds of discharge for disabling knee injury with 
increasing age, stratified by sex and race. 
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This example is a nice illustration of the distinction between confounding and effect modification 
 

 
CAUTION!! 

 
Confounding and effect modification are not simply about sampling and 
variations in nature.  Their identification in statistical analysis is also a  

function of the choice of scale of measurement. 
 

 
In the analysis of the relative odds of disabling knee injury, we are actually speaking of 
 
                                      Odds ratio confounding 
                                      Odds ratio modification 
 
 
 
A (odds ratio) relationship between “E” and “D” that is confounded by X means: 
 
               1)  X is related to both “E” and “D” 
 
               2) The unadjusted association between “E” and “D” is spuriously large or small 
                    because of the confounding effects of X 
 
               3)  However, at each level of X, the association between “E” and “D” is the same. 
 
               4)  A logistic regression analysis of the “E”-“D” relationship should include the 
                    predictor variable X. 
 
 
A (odds ratio) relationship between “E” and “D” that is modified by X means: 
 
               1)  X is related to both “E” and “D” 
 
               2)  With changes in the level of X, the association between “E” and “D” changes also. 
 
              3)  A logistic regression analysis of the “E”-“D” relationship should reveal these changes  
                   with X through the inclusion of “E”-“X” interactions. 
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Appendix 
Overview of Maximum Likelihood Estimation 

 
The method of maximum likelihood estimation is used to obtain “good” guesses of the values of 
the regression coefficients,  β0  …   β6. 
 
 
What do we mean by “good”? 
 

 
1)  Recall that, in linear model regression, “good” was conceptualized as obtaining guesses of β0  …   β6 that 
make as small as possible the total of the vertical distances between the observed data Y and the fitted values 
!Y .   We use the method of least squares and choose guesses, represented as ! ... !β β0 6 , which minimize the 

residual sum of squares: 
 

            Residual sum of squares = Yi − Ŷi( )
i=1

N

∑
2

= Yi − β̂0 + ...+ β̂6x6⎡
⎣

⎤
⎦( )

i=1

N

∑
2

 

 
 
When the distribution of the errors is normal, we have a very nice result: 
 
                  Method of least squares  =   Method of maximum likelihood; where 
 
               “maximum likelihood estimation” is described below. 
 
 
2) In logistic model regression, “good” is conceptualized as obtaining guesses of β0  …   β6 which make as 

large as possible the likelihood of obtaining the observed data.  This is the method of maximum 
likelihood. 
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A Feel for Maximum Likelihood Estimation 
 
A box contains two coins, A and B.   One is selected. 
 
“A” is fair and lands “heads” with probability π =.50.   
 
“B” is not fair.  It lands “heads” with probability π =.67. 
 
 
 
                         Game:  Toss the coin n=20 times.  Note how many times the coin lands “heads”.  Call this X. 
                                       Suppose X=15. 
 
                     Question:  Which choice of π , .50 or .67, maximizes the chances that the coin lands “heads” 
                                       15 times? 
  
 
 

15 20-1520
  (1- )

15
π π⎛ ⎞

⎜ ⎟
⎝ ⎠

 
 

π =.50 
 

π =.67 

 Likelihood, L 
L = Prob [ X=15]   

 
=.10 

 
=.45 

 

Review:  The expression 
20
15
⎛
⎝⎜

⎞
⎠⎟

is a binomial coefficient and represents the number of ways to choose 15 items 

from 20. It is equal to 20!/[ 15! 5!]. 
 
 
There is a 10% chance of 15 “heads” when π =.50.  There is a 45% chance of 15 “heads” when π =.67.   
 
Even though scenarios of low probability do occur, the maximum likelihood estimate of the unknown 
probability of heads is chosen to be the one that makes as large as possible, the likelihood of the actual data.   
 

⇒  The maximum likelihood guess of π =.67. 
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Overview of Maximum Likelihood Estimation in Logistic Regression 
 

Preliminaries 
 
(1) It is assumed that the n outcomes Y1, …., Yn are independent 
 
(2) It is also assumed that each Yi is the outcome of a Bernoulli (πi) trial 
 
(3) We’ll use the notation Li to represent each individual “likelihood”,  
      also called the probability density: 
 

( )

( )

ii

i

i i i
1-yy

i i

y
1i

i
i

L   =  Probability[Y =y ]

     =  π  1-π

π    =  1-π
1-π
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
(4)  We’ll use the notation L to represent the likelihood of all n observations in the data.   
        This is also called the “probability density of the data” 
 
L = likelihood of the data 
 

1 1 2 2 p p

1 1 2 2 p p

n

i i
i=1
n

i
i=1

L  = Probability[Y =y , Y =y , ..., Y =y ]

   =  Probability[Y =y ] Probability[ Y =y ] ... Probability[ Y =y ] by independence

   =  Probability[Y =y ]

   =  L     

∏

∏

 

 
(4)  The logistic model with predictors β0, β1, …., βp is defined 
 

              i
0 1 1i 2 2i p pi

i

πln   =  β  + β x  + β x  + ... + β x
1-π
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 
 
                             x1i =  value of the variable x1 for the “ith” person, etc. 
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(5) The logistic model with predictors β0, β1, …., βp also means that  
 

( ) ( )
( )

( )

x
0 1 1 p p

0 1 1 p p

0 1 1 p p

1ln 1-π  = ln  
1+exp β +β x +...+β x

              = ln[1]  -  ln 1+exp β +β x +...+β x because ln (a/b) =  ln(a) - ln(b)

             = 0 - ln 1+exp β +β x +...+β x because ln[1]=0

          

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

( )0 1 1 p p  =  - ln 1+exp β +β x +...+β x⎡ ⎤⎣ ⎦

 

 
Overview 
 

• Maximum likelihood estimation of β0, β1, …., βp is accomplished by maximizing the natural logarithm 
of the likelihood L of the data. 
 

• We’ll let L (β) = ln { L } represent the natural logarithm of the data under the assumption of the 
logistic regression model. 
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Solution for L (β).   
This is the function of the data that we seek to maximize with respect to β0, β1, …., βp 
 

L (β) = ln { L } 
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Maximization of the Log-Likelihood L (β) = ln { L } 
 
Maximizing L (β) = ln { L } with respect to each of β0, β1, …., βp  is not the straightforward solution that was 
seen for estimating β0 and β1 in simple linear regression.   It is beyond the scope of this course to develop the 
solution required here.   
 
In brief, the solution for the maximum likelihood estimates is obtained by a method called Newton Raphson 
iteration.   In brief, this iterative procedure for maximizing L (β) = ln { L } works with a linear approximation 
of the derivative of  L (β) = ln { L } with respect to β0, β1, …., βp and an initial estimate of β0, β1, …., βp .  
From there an updated estimate of β0, β1, …., βp is obtained.  Iteration continues until a convergence criterion 
is reached.  
 


