A Haskell Perspective on a general perspective on the Metropolis-Hastings kernel

Dominic Steinitz

November 14, 2022

Todo list

I think I have squared some of this but need to write this down 8
This needs a bit more explanation 9
This needs a bit more explanation 10
It should make no difference what we return in the momentum position; yet it does? Maybe not but at least investigate it. 11
It's not clear this is a useful section but who knows? 11

1 Introduction

Remarkably (to me at least) all ${ }^{1}$ MCMC algorithms can be captured by one general algorithm. At the moment you are expected to know how MCMC works to be able to read what follows. I may add a section introducing MCMC later.

Here's Algorithm 1 from [1]:

```
algo1 :: Show \(a \Rightarrow\) Show \(b \Rightarrow(\) MonadDistribution \(m\), Fractional \(t) \Rightarrow\)
    \((a, c) \rightarrow(a \rightarrow m b) \rightarrow((a, b) \rightarrow(a, b)) \rightarrow(t \rightarrow\) Double \() \rightarrow((a, b) \rightarrow t) \rightarrow m(a, b)\)
algo1 \(\left(\xi_{0}, \__{-}\right) \mu_{\xi_{0}} \phi a \rho=\mathbf{d o}\)
    \(\mu_{\xi_{-0}} \leftarrow \mu_{\xi_{0}} \xi_{0}\)
    let \(\xi=\left(\xi_{0}, \mu_{\xi_{-0}}\right)\)
    let \(\alpha=a \$(\rho \circ \phi) \xi / \rho \xi\)
    \(u \leftarrow\) random
    if \(u<\alpha\)
        then return \(\$ \phi \xi\)
        else return \(\xi\)
```

Something very similar seems to have been discovered in [3] and [5]. Serendipitously, all three papers call this algorithm 1!.

[^0]
2 An Example with an Analytical Solution

In Bayesian statistics we have a prior distribution for the unknown mean which we also take to be normal

$$
\mu \sim \mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}\right)
$$

and then use a sample

$$
x \mid \mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

to produce a posterior distribution for it

$$
\mu \left\lvert\, x \sim \mathcal{N}\left(\frac{\sigma_{0}^{2}}{\sigma^{2}+\sigma_{0}^{2}} x+\frac{\sigma^{2}}{\sigma^{2}+\sigma_{0}^{2}} \mu_{0},\left(\frac{1}{\sigma_{0}^{2}}+\frac{1}{\sigma^{2}}\right)^{-1}\right)\right.
$$

If we continue to take samples then the posterior distribution becomes

$$
\mu \mid x_{1}, x_{2}, \cdots, x_{n} \sim \mathcal{N}\left(\frac{\sigma_{0}^{2}}{\frac{\sigma^{2}}{n}+\sigma_{0}^{2}} \bar{x}+\frac{\sigma^{2}}{\frac{\sigma^{2}}{n}+\sigma_{0}^{2}} \mu_{0},\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\right)
$$

Note that if we take σ_{0} to be very large (we have little prior information about the value of μ) then

$$
\mu \mid x_{1}, x_{2}, \cdots, x_{n} \sim \mathcal{N}\left(\bar{x},\left(\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}\right)^{-1}\right)
$$

and if we take n to be very large then

$$
\mu \mid x_{1}, x_{2}, \cdots, x_{n} \sim \mathcal{N}\left(\bar{x}, \frac{\sigma}{\sqrt{n}}\right)
$$

which ties up with the classical estimate.
Let's illustrate this with a few numbers.

```
\(\mu_{0}, \sigma_{0}, \sigma, \sigma_{P}, z::\) Floating \(a \Rightarrow a\)
\(\mu_{0}=0.0\)
\(\sigma_{0}=1.0\)
\(\sigma=1.0\)
\(\sigma_{P}=0.2\)
\(z=4.0\)
\(\hat{\mu}\) :: Double
\(\hat{\mu}=z * \sigma_{0} \uparrow 2 /\left(\sigma \uparrow 2+\sigma_{0} \uparrow 2\right)+\mu_{0} * \sigma \uparrow 2 /\left(\sigma \uparrow 2+\sigma_{0} \uparrow 2\right)\)
\(\hat{\sigma}::\) Double
\(\hat{\sigma}=\operatorname{sqrt} \$ \operatorname{recip}\left(\operatorname{recip} \sigma_{0} \uparrow 2+\operatorname{recip} \sigma \uparrow 2\right)\)
```

This gives $\hat{\mu}=2.0$ and $\hat{\sigma}=0.7071067811865476$ which is what we would expect: we thought the mean was $\mu_{0}=0.0$ but we have an observation $z=4.0$ and also the variance is now less.

3 Using MCMC

For us, we want the posterior

$$
\varpi(\mu)=\frac{1}{Z} \exp \frac{(x-\mu)^{2}}{2 \sigma^{2}} \exp \frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}
$$

where x, μ_{0}, σ and σ_{0} are all given but Z is unknown.

3.1 Random Walk Metropolis

Let's implement a traditional random walk. Here's the proposal distribution:

$$
\begin{aligned}
& Q:: \text { Double } \rightarrow \text { Double } \rightarrow \text { Double } \\
& Q w w^{\prime}=\exp \left(-\left(w-w^{\prime}\right) \uparrow 2 /\left(2 * \sigma_{P} \uparrow 2\right)\right)
\end{aligned}
$$

And here's the specification for ρ :

$$
\begin{aligned}
& \tilde{\rho}::(a \rightarrow \text { Double }) \rightarrow(a \rightarrow b \rightarrow \text { Double }) \rightarrow(a, b) \rightarrow \text { Double } \\
& \tilde{\rho} \varphi q\left(w, w^{\prime}\right)=\varphi w * q w w^{\prime}
\end{aligned}
$$

Here's the un-normalised posterior:

$$
\begin{aligned}
& \tilde{\varphi}:: \text { Floating } a \Rightarrow a \rightarrow a \\
& \tilde{\varphi} \mu=\exp (-(z-\mu) \uparrow 2 /(2 * \sigma \uparrow 2)) * \exp \left(-\left(\mu-\mu_{0}\right) \uparrow 2 /\left(2 * \sigma_{0} \uparrow 2\right)\right)
\end{aligned}
$$

We can now use one step of the algorithm and then run it for as many times as we wish:

```
testRwmOneStep :: MonadDistribution \(m \Rightarrow\) (Double, Double \() \rightarrow m\) (Double, Double)
testRwmOneStep \(\left(\xi_{0},{ }_{-}\right)=\operatorname{algo1}\left(\xi_{0}, \perp\right) \mu_{\xi_{0}} \phi\) a \(\rho\)
        where
            \(\phi=\lambda(x, y) \rightarrow(y, x)\)
            \(a=\min 1.0\)
            \(\rho=\tilde{\rho} \tilde{\varphi} Q\)
            \(\mu_{\xi_{0}}=\lambda \zeta \rightarrow\) normal \(\zeta \sigma_{P}\)
testRwm :: (Eq a, Num a, MonadDistribution m) \(\Rightarrow\)
    \(a \rightarrow m[(\) Double, Double \()]\)
testRwm \(n=\) unfoldM \(f(n,(1.0,0.0 / 0.0))\)
    where
            \(f\left(0,{ }_{-}\right)=\)return Nothing
            \(f(m, s)=\) do \(x \leftarrow\) testRwmOneStep \(s\)
            return \(\$ \operatorname{Just}(s,(m-1, x))\)
```

And we can see the results in Figure 1. A bit skewed but we didn't burn in and the starting value is 1.0.

Figure 1: Random Walk Metropolis

3.2 Random walk Metropolis ratio

Here's a different algorithm expressed using the generalised approach. The results are in Figure 2.

```
testMwMrOneStep :: MonadDistribution \(m \Rightarrow(\) Double, Double \() \rightarrow m(\) Double, Double \()\)
testMwMrOneStep \(\left(\xi_{0},{ }_{-}\right)=\operatorname{algo1}\left(\xi_{0}, \perp\right) \mu_{\xi_{0}} \phi\) a \(\rho\)
    where
        \(\phi=\lambda(x, y) \rightarrow(x+y,-y)\)
        \(a=\min 1.0\)
        \(\rho=\tilde{\rho} \tilde{\varphi}\left(\backslash-\rightarrow \backslash_{-} \rightarrow 1.0\right)\)
        \(\mu_{\xi_{0}}=\) const (quantile (normalDistr 0.0 1.0) \(<\$>\) random \()\)
testMwMr :: (Eq a, Num a, MonadDistribution \(m) \Rightarrow\)
    \(a \rightarrow m[(\) Double, Double \()]\)
testMwMr \(n=\) unfoldM \(f(n,(1.0,0.0 / 0.0))\)
    where
        \(f(0,-)=\) return Nothing
        \(f(m, s)=\) do \(x \leftarrow\) testMwMrOneStep \(s\)
        return \(\$ \operatorname{Just}(s,(m-1, x))\)
```


3.3 What monad-bayes does

Here's our toy problem expressed in monad-bayes:

```
singleObs \(::(\) MonadDistribution \(m\), MonadFactor \(m) \Rightarrow m\) Double
single \(O b s=\) do
```

Histogram of dfMQ\$V2

Figure 2: Random walk Metropolis ratio

```
\(\mu \leftarrow\) normal \(\mu_{0} \sigma_{0}\)
factor \(\$\) normalPdf \(\mu \sigma z\)
return \(\mu\)
```

Here's what I think monad-bayes does with this using the General Perspective. The results are in Figure 3.

```
testMbOneStep :: MonadDistribution \(m \Rightarrow(\) Double, Double \() \rightarrow m\) (Double, Double)
testMbOneStep \(\left(\xi_{0},{ }_{-}\right)=\operatorname{algo1}\left(\xi_{0}, \perp\right) \mu_{\xi_{0}} \phi\) a \(\rho\)
    where
        \(\phi=\lambda(x, y) \rightarrow(y, x)\)
        \(a=\min 1.0\)
        \(\rho=\tilde{\rho}(\lambda \mu \rightarrow \exp (-(z-\mu) \uparrow 2 /(2 * \sigma \uparrow 2)))\left(\backslash_{-} \rightarrow \backslash_{-} \rightarrow 1.0\right)\)
        \(\mu_{\xi_{0}}=\) const \(\left(\right.\) quantile (normalDistr \(\left.\mu_{0} \sigma_{0}\right)<\$>\) random \()\)
testMb :: (Eq a, Num a, MonadDistribution m) \(\Rightarrow\)
    \(a \rightarrow m[(\) Double, Double \()]\)
testMb \(n=\) unfoldM \(f(n,(1.0,0.0 / 0.0))\)
    where
        \(f\left(0,{ }_{-}\right)=\)return Nothing
        \(f(m, s)=\) do \(x \leftarrow\) testMbOneStep \(s\)
        return \(\$\) Just \((s,(m-1, x))\)
```


Figure 3: monad-bayes

4 Some Mathematical Notes

Suppose we don't know the classical MCMC algorithm. We can derive it from [1]:

$$
r\left(z, z^{\prime}\right)=\frac{\varpi\left(z^{\prime}\right) q\left(z^{\prime}, z\right)}{\varpi(z) q\left(z, z^{\prime}\right)}
$$

But where does this come from? We define μ :

$$
\begin{gathered}
\mu(\mathrm{d} \xi) \triangleq \pi\left(\mathrm{d} \xi_{0}\right) \mu_{\xi_{0}}\left(\mathrm{~d} \xi_{-0}\right) \\
\mu\left(\mathrm{d}\left(z, z^{\prime}\right)\right) \triangleq \varpi(z) \mathrm{d} z q_{z}\left(z^{\prime}\right) \mathrm{d} z^{\prime}
\end{gathered}
$$

Let μ be a finite measure on $(E, \mathscr{E}), \phi: E \rightarrow E$ an involution, let $\lambda \gg \mu$ be a σ-finite measure satisfying $\lambda \equiv \lambda^{\phi}$ and let $\rho=\mathrm{d} \mu / \mathrm{d} \lambda$. Then we can take $S=S\left(\mu, \mu^{\phi}\right)$ to be $S=\{\xi: \rho(\xi) \wedge \rho \circ \phi(\xi)>0\}$ and

$$
r(\xi)= \begin{cases}\frac{\rho \circ \phi}{\rho}(\xi) \frac{\mathrm{d} \lambda^{\phi}}{\mathrm{d} \lambda}(\xi) & \xi \in S \\ 0 & \text { otherwise }\end{cases}
$$

So

$$
\rho\left(z, z^{\prime}\right) \triangleq \varpi(z) q_{z}\left(z^{\prime}\right)
$$

and with $\phi\left(z, z^{\prime}\right)=\left(z^{\prime}, z\right)$ we regain the familiar

$$
r\left(z, z^{\prime}\right)=\frac{\varpi\left(z^{\prime}\right) q\left(z^{\prime}, z\right)}{\varpi(z) q\left(z, z^{\prime}\right)}
$$

5 Student's T

Let's try running it on Student's T with 5 degrees of freedeom using what I hope the textbook presentation of Metropolis - Hastings. The probability density function (aka the Radon-Nikodym derivative wrt Lebesgue measure) is

$$
f(t)=\frac{8}{3 \pi \sqrt{5}\left(1+\frac{t^{2}}{5}\right)^{3}}
$$

It's traditional to have $q_{z}(\cdot) \sim \mathcal{N}\left(z, \sigma_{p}^{2}\right)$ for some given σ_{p}.
Here's the density function for Student's T with 5 degrees of freedom. We've defined it in terms of an un-normalised density so that we can pretend we don't know the normalisation constant but still sample from the distribution via MCMC.

```
student5U :: Floating \(a \Rightarrow a \rightarrow a\)
student5U \(t=1 /(1+t \uparrow 2 / 5) \uparrow 3\)
student5 :: Floating \(a \Rightarrow a \rightarrow a\)
student5 \(t=\) student5U \(t * 8 /(3 * p i *\) sqrt 5\()\)
```

Again, we can now use one step of the algorithm and then run it for as many times as we wish. We instantiate the algorithm to be a Random Walk Metropolis.

```
testStudentRwmOneStep :: MonadDistribution \(m \Rightarrow\)
    (Double, Double) \(\rightarrow m\) (Double, Double)
testStudentRwmOneStep \(\left(\xi_{0},-\right)=\) algo1 \(\left(\xi_{0}, \perp\right)\left(\lambda \zeta \rightarrow\right.\) normal \(\left.\zeta \sigma_{P}\right)\)
    \((\lambda(x, y) \rightarrow(y, x))(\min 1.0)(\tilde{\rho}\) student5U \(Q)\)
testStudentRwm :: (Eq a, Num a, MonadDistribution \(m) \Rightarrow\)
    \(a \rightarrow m\) [(Double, Double)]
testStudentRwm \(n=\) unfoldM \(f(n,(0.0,0.0 / 0.0))\)
    where
        \(f\left(0,{ }_{\mathrm{L}}\right)=\) return Nothing
        \(f(m, s)=\) do \(x \leftarrow\) testStudentRwmOneStep \(s\)
            return \(\$\) Just \((s,(m-1, x))\)
```

We can also instantiate it with what I think monad-bayes does.

```
testStudentMbOneStep :: MonadDistribution m = (Double, b) ->m (Double, Double)
testStudentMbOneStep }(\mp@subsup{\xi}{0}{},\mp@subsup{_}{~}{\prime})=\mathrm{ algo1 }(\mp@subsup{\xi}{0}{},\perp)(\operatorname{const}((quantile (studentT 5))<$> random)
```

```
        \((\lambda(x, y) \rightarrow(x+y,-y))(\min 1.0)(\) student \(5 U \circ f s t)\)
testStudentMb :: (Eq a, Num a , MonadDistribution m) \(\Rightarrow\)
    \(a \rightarrow m[(\) Double, Double \()]\)
testStudentMb \(n=\) unfoldM \(f(n,(0.0,0.0 / 0.0))\)
    where
        \(f\left(0,{ }_{-}\right)=\)return Nothing
        \(f(m, s)=\) do \(x \leftarrow\) testStudentMbOneStep \(s\)
            return \(\$\) Just \((s,(m-1, x))\)
```

The results are shown in Figure 4 and Figure 5.

Figure 4: Random Walk Metropolis Student's T 5

6 Hamiltonian Monte Carlo

We'd like to put HMC into the same general framework but at the moment, I am having trouble squaring Example 14 in [1] with the algorithm given in [4] (and I haven't even looked in [2]). Here's as far as I got with Student's t-distribution of degree 5. There's something going on with exponentiating the Hamiltonian which I don't understand yet either.

Here's Student's T again:

I think I have squared some of this but need to write this down

$$
f(t)=\frac{8}{3 \pi \sqrt{5}\left(1+\frac{t^{2}}{5}\right)^{3}}
$$

Histogram of dfMStudentMb\$V2

Figure 5: Monad Bayes Student's T 5

Unnormalised:

$$
g(t)=\frac{1}{\left(1+\frac{t^{2}}{5}\right)^{3}}
$$

And as the potential energy part of the Hamiltonian:

$$
U(t)=-\log g(t)=3 \log \left(1+\frac{r^{2}}{5}\right)
$$

Here's a version of the leapfrog algorithm:

```
leapfrog :: Fractional \(a \Rightarrow a \rightarrow\) Int \(\rightarrow(a \rightarrow a) \rightarrow(a, a) \rightarrow(a, a)\)
leapfrog epsilon l gradU \((q \operatorname{Prev}, p)=(q 1, p 3)\)
        where
        \(p^{\prime}=p-\) epsilon \(*\) gradU qPrev \(/ 2\)
        \(f 0(q\) Old,\(p\) Old \()=r\)
        where
            \(q N e w=q O l d+e p s i l o n * p O l d\)
            \(p N e w=p\) Old
            \(r=(q N e w, p N e w)\)
    \(f_{-}(q\) Old,\(p\) Old \()=r\)
        where
```

$$
\begin{aligned}
& \text { qNew }=q \text { Old }+ \text { epsilon } * \text { pOld } \\
& \text { pNew }=\text { pOld }- \text { epsilon } * \text { gradU } q N e w \\
& \quad r=(q N e w, p N e w) \\
& (q 1, p 1)=\text { foldr } f\left(q P r e v, p^{\prime}\right)([0 \ldots l-1]) \\
& \text { p2 }=p 1-\text { epsilon } * \text { gradU } q 1 / 2 \\
& \text {-- Is this necessary? } \\
& p 3=\text { negate p2 }
\end{aligned}
$$

This is the Hamiltonian: \qquad This needs a bit more explanation

```
rhoHmc :: Floating \(a \Rightarrow(b \rightarrow a) \rightarrow(b, a) \rightarrow a\)
rhoHmc \(u(q, p)=p U * p K\)
    where
        \(p U=\) recip \(\$ u q\)
        \(p K=\exp \$ p \uparrow 2 / 2\)
```

We need the derivative of the potential energy for the leapfrog method. We could use automatic differentiation of course.

```
gradU :: Fractional \(a \Rightarrow a \rightarrow a\)
\(\operatorname{gradU} r=3 *(2 * r / 5) /(1+(r \uparrow 2) / 5)\)
bigU \(::\) Floating \(a \Rightarrow a \rightarrow a\)
big \(U=\) negate \(\circ \log \circ\) student5 \(U\)
gradUAD :: Floating \(a \Rightarrow a \rightarrow a\)
\(\operatorname{gradUAD} w=\mathbf{c a s e} \operatorname{grad}(\lambda[x] \rightarrow \operatorname{big} U x) \$[w]\) of
    \([y] \rightarrow y\)
    _ \(\rightarrow\) error "Whatever"
```

And now we can run the sampler. The results are in 6 .

```
eta \(::\) Fractional \(a \Rightarrow a\)
eta \(=0.3\)
bigL :: Int
bigL \(=10\)
testHmcOneStep :: MonadDistribution \(m \Rightarrow\) (Double, Double) \(\rightarrow m\) (Double, Double)
testHmcOneStep \(\left(\xi_{0},{ }_{-}\right)=\operatorname{algo1}\left(\xi_{0}, \perp\right) \mu_{\xi_{0}} \phi\) a \(\rho\)
    where
            \(\phi=\) leapfrog eta bigL gradU
            \(a=\min 1.0\)
            \(\rho=\) rhoHmc student5U
            \(\mu_{\xi_{0}}=\) const \(\$\) normal 0.01 .0
testHmc :: (Eq a, MonadDistribution m,Num a) \(\Rightarrow\)
    \(a \rightarrow m[(\) Double, Double \()]\)
testHmc \(n=\) unfoldM \(f(n,(0.0,0.0))\)
    where
```

Histogram of dfMQ\$V2

Figure 6: Hamiltonian Monte Carlo Student's T 5

```
f(0, _) = return Nothing
f(m,s)= do }a\leftarrow\mathrm{ testHmcOneStep s
    return $ Just (s,(m-1,a))
```


7 Gen

```
It should make no differ-
ence what we return in the momentum position; yet
it does? Maybe not but at least investigate it.
```

Gen is a probabilistic programming language. I've taken the example from [3] and converted it to use monad-bayes.
genEg :: MonadDistribution $m \Rightarrow$ Int $\rightarrow m$ [Double]
It's not clear this is a useful section but who knows?
$k \leftarrow(+1)<\$>$ poisson 1.0
means \leftarrow replicate $k<\$>$ normal 0.010 .0
gammas \leftarrow replicate $k<\$>$ gamma 1.010 .0
let invGammas $=$ map recip gammas
weights \leftarrow dirichlet (V.replicate $k 2.0$)
replicate $n<\$>($ categorical weights $\gg \lambda i \rightarrow$ normal (means !! i) (invGammas !! i))

8 Bibliography

References

[1] Christophe Andrieu, Anthony Lee, and Sam Livingstone. A general perspective on the metropolishastings kernel. arXiv, December 2020. 1, 6, 8
[2] M. J. Betancourt, Simon Byrne, Samuel Livingstone, and Mark Girolami. The geometric foundations of hamiltonian monte carlo, 2014. 8
[3] Marco Cusumano-Towner, Alexander K Lew, and Vikash K Mansinghka. Automating involutive memc using probabilistic and differentiable programming. arXiv preprint arXiv:2007.09871, 2020. 1, 11
[4] Radford M. Neal. Mcmc using hamiltonian dynamics. arXiv: Computation, pages 139-188, 2011. 8
[5] Kirill Neklyudov, Max Welling, Evgenii Egorov, and Dmitry Vetrov. Involutive mcmc: a unifying framework. In International Conference on Machine Learning, pages 7273-7282. PMLR, 2020. 1

[^0]: ${ }^{1}$ well almost all

