
Particle Filtering for Agent Based Models

Introduction
Some references for ABMs and inference:

• Ross et al. (2017), Lima et al. (2021), Christ et al. (2021), Rocha et al.
(2021)

Some references for SMC:

• Dai et al. (n.d.), Endo, Van Leeuwen, and Baguelin (2019), Dahlin and
Schön (n.d.), Svensson and Schön (n.d.)

Example
The Susceptible / Infected / Recovered (SIR) model has three parameters: one
describing how infectious the pathogen is, one describing how much contact a
host has with other hosts and one describing how quickly a host recovers.

dS

dt
= −βS

I

N
dI

dt
= βS

I

N
− γI

dR

dt
= γI

In order to estimate these parameters, we can assume that they come from prior
distribution suggested by the literature and ideally then use a standard Markov
Chain Monte Carlo (MCMC) technique to sample from the posterior. But with
an Agent-Based Model (ABM), the likelihood is almost always intractable. We
thus approximate the likelihood using particle filtering. The samples for the
parameters that arise in this way are then drawn from the posterior and not just
an approximation to the posterior.

In a nutshell, we draw the parameters from a proposal distribution and then
run the particle filter to calculate the likelihood and compare likelihoods as in
standard MCMC in order to run the chain.

1

Preliminary results have given a very good fit against observed data of an
influenza outbreak in a boarding school in the UK.

A Deterministic Haskell Model
First let us set the necessary Haskell extensions and import the required modules.

!-- This is all an HTML comment.

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE NumDecimals #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -Wno-type-defaults #-}

module Main (
main
) where

import Numeric.Sundials
import Numeric.LinearAlgebra
import Prelude hiding (putStr, writeFile)
import Katip.Monadic
import qualified Data.Vector.Storable as VS
import Data.List (transpose)
import System.Random
import System.Random.Stateful (IOGenM, newIOGenM)

import Data.Random.Distribution.Normal
import qualified Data.Random as R

import Control.Monad.IO.Class (MonadIO)

import Data.PMMH
import Data.OdeSettings
import Data.Chart

–>

Define the state and parameters for the model (FIXME: the infectivity rate and
the contact rate are always used as cβ and are thus non-identifiable - I should
probably just write the model with a single parameter α = cβ).

Extensions and imports for this Literate Haskell file

2

data SirState = SirState {
sirStateS :: Double

, sirStateI :: Double
, sirStateR :: Double
} deriving (Eq, Show)

data SirParams = SirParams {
sirParamsBeta :: Double

, sirParamsC :: Double
, sirParamsGamma :: Double
} deriving (Eq, Show)

data Sir = Sir {
sirS :: SirState

, sirP :: SirParams
} deriving (Eq, Show)

Define the actual ODE problem itself (FIXME: we can hide a lot more of the
unnecessary details)

sir :: Vector Double -> Sir -> OdeProblem
sir ts ps = emptyOdeProblem

{ odeRhs = odeRhsPure f
, odeJacobian = Nothing
, odeInitCond = [initS, initI, initR]
, odeEventHandler = nilEventHandler
, odeMaxEvents = 0
, odeSolTimes = ts
, odeTolerances = defaultTolerances
}
where

f _ (VS.toList -> [s, i, r]) =
let n = s + i + r in

[-beta * c * i / n * s
, beta * c * i / n * s - gamma * i
, gamma * i
]

f _ _ = error $ "Incorrect number of parameters"

beta = realToFrac (sirParamsBeta $ sirP ps)
c = realToFrac (sirParamsC $ sirP ps)
gamma = realToFrac (sirParamsGamma $ sirP ps)
initS = realToFrac (sirStateS $ sirS ps)
initI = realToFrac (sirStateI $ sirS ps)
initR = realToFrac (sirStateR $ sirS ps)

sol :: MonadIO m =>
(a -> b -> OdeProblem) -> b -> a -> m (Matrix Double)

3

sol s ps ts = do
x <- runNoLoggingT $ solve (defaultOpts $ ARKMethod SDIRK_5_3_4) (s ts ps)
case x of

Left e -> error $ show e
Right y -> return (solutionMatrix y)

We can now run the model and compare its output to the actuals.

testSol :: IO ([Double])
testSol = do

m <- sol sir (Sir (SirState 762 1 0) (SirParams 0.2 10.0 0.5)) (vector us)
let n = tr m
return $ toList (n!1)

FIXME: Sadly this does not work and I would rather write the draft first and
then fight with BlogLiterately.

[ghci]

4

import Data.List
:t transpose
import Numeric.LinearAlgebra
:t vector
import Data.PMMH
:t pf

Generalising the Model
We see that e.g. on day our model predicts 93 students in the sick bay while
in fact there are 192 students there. What we would like to do is to use the
last observation to inform our prediction. First we have to generalise our model
so that it can be influenced by the data by allowing the state to be a general
distribution rather than a particular value. Once we have done this, we can,
using particle filtering, approximate the conditional probability measure of the
state given the observations prior to the state we wish to estimate. How this is
done more precisely is given in the section “Whatever.”

So here is the generalised model where we add noise to the state. N.B. the
invariant that the sum of the susceptible, infected and recovered remains constant
no longer holds.

topF :: R.StatefulGen a IO => SirParams -> a -> SirState -> IO SirState
topF ps gen qs = do

m <- sol sir (Sir qs ps) [0.0, 1.0]
newS <- R.sampleFrom gen (normal (log (m!1!0)) 0.1)
newI <- R.sampleFrom gen (normal (log (m!1!1)) 0.1)
newR <- R.sampleFrom gen (normal (log (m!1!2)) 0.1)
return (SirState (exp newS) (exp newI) (exp newR))

Apparently the person recording the outbreak only kept records of how many
students were sick on any given day. We create a type for the daily observation
and a function to create this from the state. In this case the observation function
is particularly simple.

newtype Observed = Observed { observed :: Double } deriving (Eq, Show, Num, Fractional)

topG :: SirState -> Observed
topG = Observed . sirStateI

Particle Filtering in Practice
Since the number of infected students under the ODE model is not a whole
number, we can without too much embarassment make the assumption that the
probability density function for the observations is normally distributed,

5

topD :: Observed -> Observed -> Double
topD x y = R.logPdf (Normal (observed x) 0.1) (observed y)

Now we can define a function that takes the current set of particles, their weights
and the loglikelihood (FIXME: of what?) runs the particle filter for one time
step and returns the new set of particles, new weights, the updated loglikelihood
and a predicted value for the number of inspections.

FIXME: Include code here

Further we can create some initial values and seed the random number generator
(FIXME: I don’t think this is really seeded).

nParticles :: Int
nParticles = 64

initParticles :: Particles SirState
initParticles = [SirState 762 1 0 | _ <- [1 .. nParticles]]

initWeights :: Particles Double
initWeights = [recip (fromIntegral nParticles) | _ <- [1 .. nParticles]]

newStdGenM :: IO (IOGenM StdGen)
newStdGenM = newIOGenM =<< newStdGen

us :: [Double]
us = map fromIntegral [1 .. length actuals]

actuals :: [Double]
actuals = [1, 3, 8, 28, 76, 222, 293, 257, 237, 192, 126, 70, 28, 12, 5]

We can finally run the model against the data and plot the results.

FIXME: Include code here

main :: IO ()
main = do

q <- testSol
chart (zip us actuals) [q] "diagrams/modelActuals.png"
setStdGen (mkStdGen 42)
stdGen <- newStdGenM
ps <- predicteds (g' stdGen (topF (SirParams 0.2 10.0 0.5)) topG topD) initParticles initWeights (map Observed q)
let qs :: [[Double]]

qs = transpose $ map (map sirStateI) $ snd ps
chart (zip us q) [map observed $ fst ps] "diagrams/predicteds.png"
chart (zip us q) qs "diagrams/generateds.png"

6

7

Estimating the Paramaters via MCMC
This is all find and dandy but we have assumed that we know the infection rate
and recovery rate parameters. In reality we don’t know these. We could use
Markov Chain Monte Carlo (or Hamiltonian Monte Carlo) using the deterministic
SIR model. FIXME: we could use the Stan example to draw some pictures but
for Agent Based Models, this is rarely available.

functions {
array[] real sir(real t, array[] real y, array[] real theta,

array[] real x_r, array[] int x_i) {
real S = y[1];
real I = y[2];
real R = y[3];
real N = x_i[1];

8

real beta = theta[1];
real gamma = theta[2];

real dS_dt = -beta * I * S / N;
real dI_dt = beta * I * S / N - gamma * I;
real dR_dt = gamma * I;

return {dS_dt, dI_dt, dR_dt};
}

}
data {

int<lower=1> n_days;
array[3] real y0;
real t0;
array[n_days] real ts;
int N;
array[n_days] int cases;

}
transformed data {

array[0] real x_r;
array[1] int x_i = {N};

}
parameters {

real<lower=0> gamma;
real<lower=0> beta;
real<lower=0> phi_inv;

}
transformed parameters {

array[n_days, 3] real y;
real phi = 1. / phi_inv;
{

array[2] real theta;
theta[1] = beta;
theta[2] = gamma;

y = integrate_ode_rk45(sir, y0, t0, ts, theta, x_r, x_i);
}

}
model {

//priors
beta ~ normal(2, 1);
gamma ~ normal(0.4, 0.5);
phi_inv ~ exponential(5);

//sampling distribution
//col(matrix x, int n) - The n-th column of matrix x. Here the number of infected people

9

cases ~ neg_binomial_2(col(to_matrix(y), 2), phi);
}
generated quantities {

real R0 = beta / gamma;
real recovery_time = 1 / gamma;
array[n_days] real pred_cases;
pred_cases = neg_binomial_2_rng(col(to_matrix(y), 2), phi);

}

Markov Process and Chains
A probability kernel is a mapping K : X × Y → R+ where (X, X) and (Y, Y)
are two measurable spaces such that K(s, ·) is a probability measure on Y for
all s ∈ X and such that K(·, A) is a measurable function on X for all A ∈ Y.

A sequence of random variables X0:T from (X, X) to (X, X) with joint distribution

10

given by

PT (X0:T ∈ dx0:T) = P0(dx0)
T∏

s=1
Ks(xs−1, dxs)

where Kt are a sequence of probability kernels is called a (discrete-time) Markov
process. The measure so given is a path measure.

Note that, e.g.,

P1((X0, X1) ∈ A0 × A1) =
∫

A0×A1

P0(dx0)K1(x0, dx1)

It can be shown that

PT (Xt ∈ dxt | X0:t−1 = x0:t−1) = PT (Xt ∈ dxt, Xt−1 = xt−1) = Kt(xt−1, dxt)

and this is often used as the defintion of a (discrete-time) Markov Process.

Let (X, X) and (Y, Y) be two measure (actually Polish) spaces. We define a
hidden Markov model as a (X×Y, X⊗Y)-measurable Markov process (Xn, Yn)n≥0
whose joint distribution is given by

PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T) = P0(dx0)Fs(x0, dy0)
T∏

s=1
Ks(xs−1, dxs)Fs(xs, dys)

Writing Q0(dx0, dy0) = P0(dx0)F0(x0, dy0) and Lt((xt−1, yt−1), (dxt, dyt)) =
Kt(xt−1, dxt)Ft(xt, dyt) we see that this is really is a Markov process:

PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T) = P0(dx0)F0(x0, dy0)
T∏

s=1
Ks(xs−1, dxs)Fs(xs, dys) = Q0(dx0, dy0)

T∏
s=1

Ls((xs−1, ys−1), (dxs, dys))

We make the usual assumption that

Ft(xt, dyt) = ft(xt, yt)ν(dy)

We can marginalise out X0:T :

PT (Y0:t ∈ dy0:t) = EPt

[
t∏

s=0
fs(Xs, ys)

]
t∏

s=0
ν(dys)

11

And writing

pT (y0:t) = pt(y0:t) = EPt

[
t∏

s=0
fs(Xs, ys)

]

We can write

Pt(X0:t ∈ dx0:t | Y0:t = y0:t) = 1
pt(y0:t)

[
t∏

s=0
f(xs, ys)

]
Pt(d0:t)

We can generalise this. Let us start by with a Markov process

MT (X0:T ∈ dx0:T) = M0(dx0)
T∏

s=1
Ms(xs−1, dxs)

and then assume that we are given a sequence of potential functions (the
nomenclature appears to come from statistical physics) G0 : X → R+ and
Gt : X × X → R+ for 1 ≤ t ≤ T . Then a sequence of Feynman-Kac models is
given by a change of measure (FIXME: not even mentioned so far) from Mt:

Qt(dx0:t) ≜
1
Lt

G0(x0)
[

t∏
s=1

Gs(xs−1, xs)
]
Mt(dx0:t)

(N.B. we don’t yet know this is a Markov measure - have we even defined a
Markov measure?)

where

Lt =
∫

X t+1
G0(x0)

[
t∏

s=1
Gs(xs−1, xs)

]
Mt(dx0:t)

With some manipulation we can write these recursively (FIXME: we had better
check this).

Extension (of the path) which we will use to derive the predictive step:

Qt−1 (dxt−1:t) = Qt−1 (dxt−1) Mt (xt−1, dxt)

and the change of measure step which we will use to derive the correction step:

Qt (dxt−1:t) = 1
ℓt

Gt (xt−1, xt)Qt−1 (dxt−1:t)

12

where

ℓ0 = L0 =
∫

X
G0 (x0) M0 (dx0)

and

ℓt = Lt

Lt−1
=

∫
X 2

Gt (xt−1, xt)Qt−1 (dxt−1:t)

for t ≥ 1.

For a concrete example (bootstrap Feynman-Kac), we can take

M0 (dx0) = P0 (dx0) , G0 (x0) = f0 (x0, y0)
Mt (xt−1, dxt) = Kt (xt−1, dxt) , Gt (xt−1, xt) = ft (xt, yt)

Then using extension and marginalising we have

Pt−1 (Xt ∈ dxt | Y0:t−1 = y0:t−1) =
∫

xt−1∈X
Kt (xt−1, dxt)Pt (Xt−1 ∈ dxt−1 | Y0:t−1 = y0:t−1)

And using change of measure and marginalising we have

Pt (Xt ∈ dxt | Y0:t−1 = y0:t−1) = 1
ℓt

ft (xt, yt)Pt−1 (Xt ∈ dxt | Y0:t−1 = y0:t−1)

If we define an operator P on measures as:

Pρ ≜
∫

ρ(dx)K (x, dx′)

and an operator Ct as:

Ctρ ≜
ρ(dx)f (x, yt)∫
ρ(dx)f (x, yt)

πn ≜ P (Xn ∈ · | Y1, . . . , Yn)

πn−1
prediction−→ Pπn−1

correction−→ πn = CnPπn−1

π̂n−1
prediction−→ Pπ̂n−1

sampling−→ SN Pπ̂n−1
correction−→ π̂n := Cn SN Pπ̂n−1

13

SN ρ := 1
N

N∑
i=1

δX(i), X(1), . . . , X(N) are i.i.d. samples with distribution ρ

sup
|f |≤1

E |πnf − π̂nf | ≤ C√
N

References
Christ, Andreas, Sølvsten Jørgensen, Atiyo Ghosh, and Marc Sturrock. 2021.

“Efficient inference for agent-based models of real-world phenomena Author
summary,” 1–32.

Dahlin, Johan, and Thomas B Schön. n.d. “Getting Started with Particle
Metropolis-Hastings for Inference in Nonlinear Dynamical Models.” https:
//cran.r-project.org/package=pmhtutorial.

Dai, Chenguang, Jeremy Heng, Pierre E Jacob, and Nick Whiteley. n.d. “An
invitation to sequential Monte Carlo samplers.” https://arxiv.org/abs/2007.1
1936v1.

Endo, Akira, Edwin Van Leeuwen, and Marc Baguelin. 2019. “Introduction to
particle Markov-chain Monte Carlo for disease dynamics modellers.” https:
//doi.org/10.1016/j.epidem.2019.100363.

Lima, Ernesto A. B. F., Danial Faghihi, Russell Philley, Jianchen Yang, John
Virostko, Caleb M. Phillips, and Thomas E. Yankeelov. 2021. Bayesian
calibration of a stochastic, multiscale agent-based model for predicting in vitro
tumor growth. Vol. 17. 11. https://doi.org/10.1371/journal.pcbi.1008845.

Rocha, Heber L., Inês Godet, Furkan Kurtoglu, John Metzcar, Kali Kon-
stantinopoulos, Soumitra Bhoyar, Daniele M. Gilkes, and Paul Macklin.
2021. “A persistent invasive phenotype in post-hypoxic tumor cells is
revealed by fate mapping and computational modeling.” iScience 24 (9).
https://doi.org/10.1016/j.isci.2021.102935.

Ross, Robert J. H., R. E. Baker, Andrew Parker, M. J. Ford, R. L. Mort, and
C. A. Yates. 2017. “Using approximate Bayesian computation to quantify
cell–cell adhesion parameters in a cell migratory process.” Npj Systems Biology
and Applications 3 (1): 1–9. https://doi.org/10.1038/s41540-017-0010-7.

Svensson, Andreas, and Thomas B Schön. n.d. “Comparing Two Recent
Particle Filter Implementations of Bayesian System Identification.” http:
//www.it.uu.se/katalog/andsv164.

14

https://cran.r-project.org/package=pmhtutorial.
https://cran.r-project.org/package=pmhtutorial.
https://arxiv.org/abs/2007.11936v1
https://arxiv.org/abs/2007.11936v1
https://doi.org/10.1016/j.epidem.2019.100363
https://doi.org/10.1016/j.epidem.2019.100363
https://doi.org/10.1371/journal.pcbi.1008845
https://doi.org/10.1016/j.isci.2021.102935
https://doi.org/10.1038/s41540-017-0010-7
http://www.it.uu.se/katalog/andsv164
http://www.it.uu.se/katalog/andsv164

	Introduction
	Example
	A Deterministic Haskell Model

	Generalising the Model
	Particle Filtering in Practice
	Estimating the Paramaters via MCMC
	Markov Process and Chains
	References

