Skip to content


Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

41 lines (28 sloc) 1.489 kb
package com.twitter.scalding.examples
import com.twitter.scalding._
import com.twitter.scalding.mathematics.Matrix
* MatrixTutorial2.scala
* Loads a directed graph adjacency matrix where a[i,j] = 1 if there is an edge from a[i] to b[j]
* and returns a graph containing only the nodes with outdegree smaller than a given value
* ../scripts/scald.rb --local MatrixTutorial2.scala --input data/graph.tsv --maxOutdegree 1000 --output data/graphFiltered.tsv
class FilterOutdegreeJob(args : Args) extends Job(args) {
import Matrix._
val adjacencyMatrix = Tsv( args("input"), ('user1, 'user2, 'rel) )
.toMatrix[Long,Long,Double]('user1, 'user2, 'rel)
// Each row corresponds to the outgoing edges so to compute the outdegree we sum out the columns
val outdegree = adjacencyMatrix.sumColVectors
// We convert the column vector to a matrix object to be able to use the matrix method filterValues
// we make all non zero values into ones and then convert it back to column vector
val outdegreeFiltered = outdegree.toMatrix[Int](1)
.filterValues{ _ < args("maxOutdegree").toDouble }
// We multiply on the left hand side with the diagonal matrix created from the column vector
// to keep only the rows with outdregree smaller than maxOutdegree
(outdegreeFiltered.diag * adjacencyMatrix).write(Tsv( args("output") ) )
Jump to Line
Something went wrong with that request. Please try again.