
Multi-column Float Proposal
April 6, 2023

John Skottis

Contents
1 Motivation ... 1

1.1 Global column-sizing .. 1
1.2 Page-width figures .. 2
1.3 Remove content gaps ... 3
1.4 Remove content gaps and enable positional placement .. 6
1.5 Remove content gaps and enable contextual placement ... 10
1.6 Vertical-only ... 10
1.7 Horizontal-only wrapping .. 11
1.8 Circular wrapping ... 12
1.9 Figure-only page ... 13

2 Proposed API .. 15
2.1 Wrap Element Algorithm .. 15
2.2 Scope .. 15
2.3 Alignment Rules .. 15

2.3.1 Wrap Conflict Resolution .. 16
2.4 Wrap Direction .. 16

1 Motivation
Typst is a very powerful typeseing engine, however, it is still incomplete and limited in certain
scenarios. Below are some of the scenarios that existing versions of typst struggle with, as well as
other scenarios that typst should support in the future.

1.1 Global column-sizing
With the existing layout engine design, element sizing depends on its local scope. If the column
feature is activated for the entire document, then all subsequent elements sizing will reflect that,
resulting in awkward rendering of some of the elements (e.g. tables). In addition, if a figure does not
fit within the remaining space in a page/column it will move to the next page leaving a content gap
behind it.

1

1.2 Page-width figures
Just allowing elements to escape the global scope context is not enough as it still doesn’t solve the gap
issue.

2

1.3 Remove content gaps
I expect that being able to remove content gaps will be the primary usecase for the majority of typst
users for both column-width and page-width figures.

3

4

It is important here that if a figure does not fit into the current page/column because other floating
figures are claiming the space that we continue adding other content (unless explicitly asked not to)
to avoid weird rendition like the one below:

5

1.4 Remove content gaps and enable positional placement
However, in some cases such academic journal explicit placement of elements (e.g. figure) might be
required. One such example is IEEE, that requires full-width figures to be placed at the top of the page.
Another user pointed out that it is also convention, that if both an image and a table appear in the
same page that the table must be rendered at the top while the image at the boom.

6

7

8

9

1.5 Remove content gaps and enable contextual placement
“In a lot of cases, it’s far more important to say ‘place this element somewhere before the next subsec-
tion’ than making a statement about the position. Here’s a table that could have been beer placed by
floating anywhere else aer the \subsection{Encounters}.” - Andonome (Github comment)

1.6 Vertical-only
Just allowing for text to wrap around figure without any restriction can result in unwanted artifacts.
One such example can be an image that doesn’t cover the entire width of the page and thus allows for
very lile text (1-2 words) to wrap on its sides resulting in a very ugly rendition. Giving an option to
disable horizontal wrapping would alleviate the issue.

10

1.7 Horizontal-only wrapping
In other cases, we might want to enable only content wrapping only in the horizontal direction (e.g.
books and magazines).

11

1.8 Circular wrapping
And in others, wrapping around a figure might be the desired user intention.

12

1.9 Figure-only page
Finally, in other cases we might only want to break the column rules and render with the full width
of the page for a series of images (e.g. figure page) without allowing for any next in that page. In that
case the user should be able to disable wrapping altogether.

13

14

2 Proposed API
ere are currently two types of elements supported by typst. flow-nowrap elements is the default for
all elements and noflow element is only supported by the #place element. A new flow-wrap element
called #wrap can be useful for solving the gap issues 1.3 presented for both the local and global scope.
e proposed API changes will apply to the new #wrap element and to the #place element. I expect
that being able to break to the page scope will be a useful for #place as well.

• #place(scope, alignment, dx, dy, body)
• #wrap(scope, [alignment], [dx], [dy], direction, body)

2.1 Wrap Element Algorithm
Algorithm for #wrap elements:
1. Calculate #wrap element’s dimensions and check if the element can fit to existing page/column

(other #wrap elements might already populate the page)
2. If it can, place #wrap element at correct position in current page/column based on its alignment

policy. Relayout all other content (except other #wrap elements) in current page/column.
3. If not, place #wrap element at correct position in the next page/column based on its alignment

policy. Keep adding content to current page until it is filled. Here there will be two types of data
structures, one indicating the current page we perform layout on and another indicating pending
pages that will be used for laying out subsequent content once the current page is filled.

2.2 Scope
e first breaking change that is proposed is that we introduce a scope option to the #place element
and scope tracking to the layout engine itself. Being able to track the scope of an element will enable
the “full-width figure" 1.2 and partially satisfy the contextual placement 1.5 usecase. Extending the
scope to cover other scopes such as margin and footnote allows us to cover two common requests for
many users in a single unified API.

Scope Options
• page
• margin
• main - (default)

• heading
• paragraph
• footnote

e scope modifiers listed below will allow for more precise scope control for #place and #wrap
elements. is covers the contextual placement 1.5 usecase.

Scope Modifiers
• previous
• current - (default)
• next

2.3 Alignment Rules
Unlike the #place element the #wrap element accepts a list of alignments. e alignment list can be
useful to capture the user’s intent. e first alignment in the list is the user’s ideal situation and all
the other options are there to handle placement conflicts with other #wrap elements. Here is a list of
examples of alignments and what they mean:
• []: Stay in place or move to top of next page/column (don’t leave gaps)
• [top]: Must be the topmost figure/tables/etc.

15

• [top, top, bottom, bottom]: Must be the topmost or 2nd from top or 1st from boom or 2nd from
boom

e alignment rules allows to fullfil the “Remove content gaps and enable custom placement" 1.4
usecase.

2.3.1 Wrap Conflict Resolution
In case 2 or more #wrap elements are placed in the same position in a page/column fallback arguments
can be used to decide its position:
• Repeated secondary alignment - [alignment1, alignment1]: place it to the next available spot

(e.g. if 2 #wrap elements request the top position then place the first #wrap element at the top and
the second #wrap below it.)

• Alternate secondary alignment - [alignment1, alignment2]: Place the 2nd #wrap to the position
indicated by alignment2. Assuming there are no more conflicts the content is laid out again in
the available space. If there is another conflict move to the next page and repeat (alignment1 ->
alignment2). For example if the first #wrap request the top position then the second can request in
the fallback the boom.

• Only primary alignment - [alignment]: no fallback value is provided, move to the next page and
repeat (alignment)

• No primary alignment - []: no primary alignment value is provided, try to fit #wrap into existing
page/column. Otherwise move to the top of next page/column. If there is a conflict move to an
empty space below

• Only secondary alignment - [, alignment]: Try to place to current page/column at current
position. If it doesn’t fit or there is some other conflict use secondary alignment. If there are more
conflicts move to the top of next page and repeat

2.4 Wrap Direction
e wrap direction arguement allows to express the final 4 usecases for vertical-only 1.6, horizontal-
only 1.7, wrapping around 1.8 and disabling wrapping 1.9.

Wrap Direction Options
• Vertical
• Horizontal
• Around
• None

16

