Skip to content

uber-research/DeepPruner

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch

This repository releases code for our paper DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch.

Table of Contents

DeepPruner
Differentiable Patch Match
Requirements (Major Dependencies)
Citation

DeepPruner

  • An efficient "Real Time Stereo Matching" algorithm, which takes as input 2 images and outputs a disparity (or depth) map.

  • Results/ Metrics:

    • KITTI: Results competitive to SOTA, while being real-time (8x faster than SOTA). SOTA among published real-time algorithms.

    • ETH3D: SOTA among all ROB entries.

    • SceneFlow: 2nd among all published algorithms, while being 8x faster than the 1st.

    • Runtime: 62ms (for DeepPruner-fast), 180ms (for DeepPruner-best)

    • Cuda Memory Requirements: 805MB (for DeepPruner-best)

Differentiable Patch Match

  • Fast algorithm for finding dense nearest neighbor correspondences between patches of images regions. Differentiable version of the generalized Patch Match algorithm. (Barnes et al.)

More details in the corresponding folder README.

Requirements (Major Dependencies)

  • Pytorch (0.4.1+)
  • Python2.7
  • torchvision (0.2.0+)

Citation

If you use our source code, or our paper, please consider citing the following:

@inproceedings{Duggal2019ICCV,
title = {DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch},
author = {Shivam Duggal and Shenlong Wang and Wei-Chiu Ma and Rui Hu and Raquel Urtasun},
booktitle = {ICCV},
year = {2019} }

Correspondences to Shivam Duggal shivamduggal.9507@gmail.com, Shenlong Wang slwang@cs.toronto.edu, Wei-Chiu Ma weichium@mit.edu

About

DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch (ICCV 2019)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages