9bdd70d Jan 5, 2018
1 contributor

Users who have contributed to this file

128 lines (105 sloc) 4.87 KB
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
import tensorflow as tf
import horovod.keras as hvd
# Horovod: initialize Horovod.
# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
batch_size = 128
num_classes = 10
# Enough epochs to demonstrate learning rate warmup and the reduction of
# learning rate when training plateaues.
epochs = 24
# Input image dimensions
img_rows, img_cols = 28, 28
# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Determine how many batches are there in train and test sets
train_batches = len(x_train) // batch_size
test_batches = len(x_test) // batch_size
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(lr=1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
# Horovod: average metrics among workers at the end of every epoch.
# Note: This callback must be in the list before the ReduceLROnPlateau,
# TensorBoard or other metrics-based callbacks.
# Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final
# accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during
# the first five epochs. See for details.
hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=5, verbose=1),
# Reduce the learning rate if training plateaues.
keras.callbacks.ReduceLROnPlateau(patience=10, verbose=1),
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:
# Set up ImageDataGenerators to do data augmentation for the training images.
train_gen = ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3,
height_shift_range=0.08, zoom_range=0.08)
test_gen = ImageDataGenerator()
# Train the model.
# Horovod: the training will randomly sample 1 / N batches of training data and
# 3 / N batches of validation data on every worker, where N is the number of workers.
# Over-sampling of validation data helps to increase probability that every validation
# example will be evaluated.
model.fit_generator(train_gen.flow(x_train, y_train, batch_size=batch_size),
steps_per_epoch=train_batches // hvd.size(),
validation_data=test_gen.flow(x_test, y_test, batch_size=batch_size),
validation_steps=3 * test_batches // hvd.size())
# Evaluate the model on the full data set.
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])