From 58bfa85d1a57ac3ea06a3e3b4fa3c392842f3269 Mon Sep 17 00:00:00 2001 From: ubilabs CI bot <35459088+ubilabs-ci@users.noreply.github.com> Date: Thu, 26 Aug 2021 17:01:10 +0200 Subject: [PATCH] feat(stories): update story: story-12 (#951) * Auto content commit for story id: story-12 * Auto content commit for story id: story-12 Co-authored-by: StoryMapper --- storage/stories/story-12/story-12-de.json | 40 +++++++++++------------ storage/stories/story-12/story-12-es.json | 40 +++++++++++------------ storage/stories/story-12/story-12-fr.json | 40 +++++++++++------------ storage/stories/story-12/story-12-nl.json | 40 +++++++++++------------ 4 files changed, 80 insertions(+), 80 deletions(-) diff --git a/storage/stories/story-12/story-12-de.json b/storage/stories/story-12/story-12-de.json index dcf971805..59b17fd32 100644 --- a/storage/stories/story-12/story-12-de.json +++ b/storage/stories/story-12/story-12-de.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", - "shortText": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", + "text": "# Der Kohlenstoffkreislauf\r\n\r\nKohlenstoff ist eines der am häufigsten vorkommenden Elemente im Universum und die Grundlage allen Lebens auf der Erde. Er durchläuft die Atmosphäre, die Ozeane, Pflanzen und Gesteine, aber dieser natürliche Kreislauf ist durch menschliche Aktivitäten gestört worden, was tiefgreifende Auswirkungen auf das Klima der Erde hat.", + "shortText": "# Der Kohlenstoffkreislauf\r\n\r\nKohlenstoff ist eines der am häufigsten vorkommenden Elemente im Universum und die Grundlage allen Lebens auf der Erde. Er durchläuft die Atmosphäre, die Ozeane, Pflanzen und Gesteine, aber dieser natürliche Kreislauf ist durch menschliche Aktivitäten gestört worden, was tiefgreifende Auswirkungen auf das Klima der Erde hat.", "images": [ "assets/story12-image02.jpg" ] }, { "type": "image", - "text": "## A Vital Element \r\n\r\nCarbon is the basic building block for life on Earth. It can form stable chemical bonds with many elements, allowing large and complex molecules to be built, including the organic compounds essential to life. Carbon’s bonds to other elements are stable, but not so strong that they prevent chemical reaction. \r\n\r\nAs it reacts with other elements, carbon cycles through the atmosphere, the oceans, plants and animals, soil and rocks. There are exchanges between these carbon reservoirs through a variety of processes. When carbon bonds are broken, energy is released, making some carbon compounds – hydrocarbons – convenient fuel sources. \r\n \r\n## Greenhouse Gases \r\n\r\nBut the same bonds that make carbon molecules so essential to life and modern living have a downside. They are also good at absorbing long-wavelength infrared radiation, allowing the molecules to vibrate and warm up, trapping heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nCarbon compounds such as carbon dioxide and methane are not the only greenhouse gases, nor the most powerful, but our increased burning of fossil fuels – coal, oil and natural gas – has caused an accumulation of carbon dioxide in the atmosphere, disrupting the carbon cycle, and warming the Earth’s climate.", - "shortText": "## A Vital Element \r\n\r\n- Carbon is the basic building block for life on Earth.\r\n- Forms stable bonds with many elements.\r\n- Allows large and complex molecules to be built, including organic compounds essential for life.\r\n- Bonds are stable, but not so strong that they prevent chemical reaction. \r\n- Reactions drive carbon through the atmosphere, the oceans, plants and animals, soil and rocks. \r\n- When carbon bonds are broken, energy is released.\r\n- So some carbon compounds – hydrocarbons – are convenient fuel sources. \r\n\r\n## Greenhouse Gases \r\n\r\n- Carbon bonds also good at absorbing infrared radiation, allowing molecules to vibrate and warm up.\r\n- Traps heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nIncreased burning of fossil fuels has caused an accumulation of CO2 in the atmosphere, disrupting the carbon cycle, and warming the climate.", + "text": "## Ein lebenswichtiges Element\r\n\r\nKohlenstoff ist der Grundbaustein für das Leben auf der Erde. Er kann mit vielen Elementen stabile chemische Bindungen eingehen und ermöglicht so den Aufbau großer und komplexer Moleküle, einschließlich der für das Leben wichtigen organischen Verbindungen. Die Bindungen von Kohlenstoff zu anderen Elementen sind stabil, aber nicht so stark, dass sie eine chemische Reaktion verhindern.\r\n\r\nDurch die Reaktion mit anderen Elementen durchläuft der Kohlenstoff die Atmosphäre, die Ozeane, Pflanzen und Tiere, Böden und Gesteine. Zwischen diesen Kohlenstoffreservoirs findet ein Austausch durch eine Vielzahl von Prozessen statt. Wenn Kohlenstoffbindungen aufgebrochen werden, wird Energie freigesetzt, was einige Kohlenstoffverbindungen - Kohlenwasserstoffe - zu geeigneten Brennstoffquellen macht.\r\n \r\n## Treibhausgase\r\n\r\nAber die gleichen Bindungen, die Kohlenstoffmoleküle so wichtig für das Leben und das moderne Leben machen, haben auch eine Kehrseite. Sie absorbieren auch langwellige Infrarotstrahlung, so dass die Moleküle schwingen und sich erwärmen können, wodurch Wärme in der Atmosphäre gespeichert wird, was zum Treibhauseffekt beiträgt.\r\n\r\nKohlenstoffverbindungen wie Kohlendioxid und Methan sind weder die einzigen noch die stärksten Treibhausgase, aber unsere zunehmende Verbrennung von fossilen Brennstoffen - Kohle, Erdöl und Erdgas - hat zu einer Anhäufung von Kohlendioxid in der Atmosphäre geführt, wodurch der Kohlenstoffkreislauf gestört wird und sich das Klima der Erde erwärmt.", + "shortText": "## Ein lebenswichtiges Element\r\n\r\n- Kohlenstoff ist der Grundbaustein für das Leben auf der Erde.\r\n- Bildet stabile Bindungen mit vielen Elementen.\r\n- Ermöglicht den Aufbau großer und komplexer Moleküle, einschließlich der für das Leben wichtigen organischen Verbindungen.\r\n- Die Bindungen sind stabil, aber nicht so stark, dass sie eine chemische Reaktion verhindern.\r\n- Reaktionen treiben Kohlenstoff durch die Atmosphäre, die Ozeane, Pflanzen und Tiere, den Boden und das Gestein.\r\n- Wenn Kohlenstoffbindungen gebrochen werden, wird Energie freigesetzt.\r\n- Daher eignen sich einige Kohlenstoffverbindungen - Kohlenwasserstoffe - als Brennstoff.\r\n\r\n## Treibhausgase\r\n\r\n- Kohlenstoffverbindungen absorbieren auch gut Infrarotstrahlung, so dass die Moleküle vibrieren und sich erwärmen.\r\n- Sie halten die Wärme in der Atmosphäre zurück und tragen so zum Treibhauseffekt bei.\r\n\r\nDie zunehmende Verbrennung fossiler Brennstoffe hat zu einer Anhäufung von CO2 in der Atmosphäre geführt, wodurch der Kohlenstoffkreislauf gestört wird und sich das Klima erwärmt.", "images": [ "assets/story12-image01.jpg", "assets/ghg_large_16.png", @@ -20,10 +20,10 @@ "assets/ghg_large_11.png" ], "imageCaptions": [ - "Spare natural gas being burned off on an oil production platform in the North Sea. Carbon dioxide and water vapour are the main combustion products. Extracting and burning hydrocarbons pumps carbon from a rock reservoir into the atmosphere. (Varodrig)", - "# Atmospheric Carbon Dioxide Concentration\r\nAtmospheric carbon dioxide concentration over the last 300 years, based on air samples from ice cores and, since 1958, direct measurements from Mauna Loa Observatory, Hawaii. Carbon dioxide has been accumulating in the atmosphere since the Industrial Revolution, its concentration increasing rapidly in the second half of the twentieth century. (source: Scripps Institute of Oceanography)", - "The molecular structure of carbon dioxide and methane molecules allows them to absorb infrared radiation. Heat is absorbed by a molecule if the atoms inside can vibrate at the frequency of infrared radiation. More complex molecules have more vibrational modes, so more opportunities to absorb heat, making them more powerful greenhouse gases. A methane molecule, with one carbon atom (grey) bound to four hydrogen atoms (red), can absorb more heat than a carbon dioxide molecule, with one carbon atom bound to two oxygen atoms (blue). A chlorofluorocarbon like CFC-113 (green and yellow) has even more bonds, making it a very powerful greenhouse gas. (Planetary Visions)", - "# Atmospheric Carbon Dioxide as a Function of Time and Latitude\r\nThe data surface shows the natural annual cycle of carbon dioxide uptake and release, which is particularly strong in the northern hemisphere, as well as a gradual increase over the years resulting from human activity. Data derived from the SCIAMACHY sensor on Envisat. (ESA-CCI)" + "Verbrennung von überschüssigem Erdgas auf einer Ölförderplattform in der Nordsee. Kohlendioxid und Wasserdampf sind die wichtigsten Verbrennungsprodukte. Durch die Gewinnung und Verbrennung von Kohlenwasserstoffen wird Kohlenstoff aus einer Gesteinslagerstätte in die Atmosphäre gepumpt. (Varodrig)", + "# Atmosphärische Kohlendioxid-Konzentration\r\nAtmosphärische Kohlendioxidkonzentration in den letzten 300 Jahren, basierend auf Luftproben aus Eisbohrkernen und seit 1958 auf direkten Messungen des Mauna Loa Observatory, Hawaii. Kohlendioxid sammelt sich seit der industriellen Revolution in der Atmosphäre an, wobei seine Konzentration in der zweiten Hälfte des zwanzigsten Jahrhunderts rasch anstieg. (Quelle: Scripps Institute of Oceanography)", + "Die Molekularstruktur von Kohlendioxid- und Methanmolekülen ermöglicht es ihnen, Infrarotstrahlung zu absorbieren. Wärme wird von einem Molekül absorbiert, wenn die Atome im Inneren mit der Frequenz der Infrarotstrahlung schwingen können. Komplexere Moleküle haben mehr Schwingungsformen und damit mehr Möglichkeiten, Wärme zu absorbieren, was sie zu stärkeren Treibhausgasen macht. Ein Methanmolekül, in dem ein Kohlenstoffatom (grau) an vier Wasserstoffatome (rot) gebunden ist, kann mehr Wärme absorbieren als ein Kohlendioxidmolekül, in dem ein Kohlenstoffatom an zwei Sauerstoffatome (blau) gebunden ist. Ein Fluorchlorkohlenwasserstoff wie FCKW-113 (grün und gelb) hat sogar noch mehr Bindungen, was es zu einem sehr starken Treibhausgas macht. (Planetarische Visionen)", + "# Atmosphärisches Kohlendioxid als Funktion der Zeit und des Breitengrades\r\nDie Datenoberfläche zeigt den natürlichen Jahreszyklus der Kohlendioxidaufnahme und -abgabe, der auf der Nordhalbkugel besonders ausgeprägt ist, sowie einen allmählichen Anstieg im Laufe der Jahre, der auf menschliche Aktivitäten zurückzuführen ist. Die Daten stammen von dem SCIAMACHY-Sensor auf Envisat. (ESA-CCI)" ], "imageFits": [ "contain", @@ -35,8 +35,8 @@ }, { "type": "globe", - "text": "## The Fast Carbon Cycle\r\n\r\nPlants take up carbon dioxide from the atmosphere by photosynthesis as they grow in spring and summer, and return some of it when their leaves die back in autumn and winter. Carbon is also returned to the atmosphere by animals eating plants and breathing out carbon dioxide. The cycling of carbon through living things is known as the fast carbon cycle.\r\n\r\nThis seasonal growth cycle can be seen in the atmospheric carbon dioxide levels shown on the interactive globe: a peak is reached at the end of the northern winter, before rapidly-growing plants start absorbing carbon dioxide again in the spring. Atmospheric carbon varies most in the northern hemisphere because it has more land, and therefore more plants, than the southern hemisphere. On top of the seasonal cycle there is a clear increase in atmospheric carbon dioxide from year to year – a sign that the carbon cycle is out of balance, mainly due to the burning of fossil fuels.\r\n \r\n## Carbon and the Land \r\n\r\n[Changes in land use and land cover](stories/story-28/3) are also altering the carbon cycle. The clearing of tropical forests for agriculture has the double effect of adding large amounts of carbon dioxide to the atmosphere from fires, while also removing the trees that absorb and store carbon while they are alive. \r\n\r\nAround the Arctic, elevated air temperatures are thawing out large areas of [permafrost](stories/story-15/5). This exposes carbon in the soil to decomposition and could potentially release into the atmosphere vast amounts of methane. As northern latitudes thaw and dry out, vast areas of forest, bush and peat are newly exposed to the risk of [wildfires](stories/story-28/1). Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", - "shortText": "## The Fast Carbon Cycle \r\n\r\nCycling of carbon through living things is known as the fast carbon cycle.\r\n\r\n- Plants take up CO2 from the atmosphere by photosynthesis as they grow in spring and summer.\r\n- Some returned when leaves die and by animals eating plants and breathing out carbon dioxide. \r\n- Atmospheric CO2 peaks at the end of the northern winter.\r\n- Rapidly-growing plants start absorbing CO2 in the spring. \r\n- Atmospheric carbon varies most in the northern hemisphere (more land, therefore more plants).\r\n- Year-to-year increase in CO2 shows the carbon cycle is out of balance (mainly from fossil fuel burning).\r\n\r\n## Carbon and the Land\r\n\r\n- Changes in land use and land cover also alter the carbon cycle. \r\n- Tropical forest clearance releases large amounts of CO2 by fire and removes trees that absorb and store carbon. \r\n- Thawing permafrost releases soil carbon by decomposition and potentially vast amounts of methane. \r\n- Warming and drying of northern lands exposes vast areas of forest, bush and peat to the risk of wildfires. \r\n- Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", + "text": "## Der schnelle Kohlenstoffkreislauf\r\n\r\nPflanzen nehmen durch Photosynthese Kohlendioxid aus der Atmosphäre auf, wenn sie im Frühjahr und Sommer wachsen, und geben einen Teil davon wieder ab, wenn ihre Blätter im Herbst und Winter absterben. Auch Tiere, die Pflanzen fressen und Kohlendioxid ausatmen, geben Kohlenstoff an die Atmosphäre ab. Der Kreislauf des Kohlenstoffs durch die Lebewesen wird als schneller Kohlenstoffkreislauf bezeichnet.\r\n\r\nDieser jahreszeitliche Wachstumszyklus lässt sich an den Kohlendioxidwerten in der Atmosphäre ablesen, die auf dem interaktiven Globus dargestellt sind: Am Ende des nördlichen Winters wird ein Höchststand erreicht, bevor die schnell wachsenden Pflanzen im Frühjahr wieder Kohlendioxid aufnehmen. Der atmosphärische Kohlendioxidgehalt schwankt auf der Nordhalbkugel am stärksten, weil es dort mehr Land und damit mehr Pflanzen gibt als auf der Südhalbkugel. Zusätzlich zum jahreszeitlichen Zyklus ist ein deutlicher Anstieg des atmosphärischen Kohlendioxids von Jahr zu Jahr zu beobachten - ein Zeichen dafür, dass der Kohlenstoffkreislauf aus dem Gleichgewicht geraten ist, was hauptsächlich auf die Verbrennung fossiler Brennstoffe zurückzuführen ist.\r\n \r\n## Kohlenstoff und das Land\r\n\r\n[Veränderungen in der Landnutzung und Landbedeckung](stories/story-28/3) verändern ebenfalls den Kohlenstoffkreislauf. Die Abholzung tropischer Wälder für die Landwirtschaft hat den doppelten Effekt, dass große Mengen an Kohlendioxid durch Brände in die Atmosphäre gelangen, während gleichzeitig die Bäume entfernt werden, die Kohlenstoff absorbieren und speichern, solange sie noch leben.\r\n\r\nIn der Arktis tauen durch die erhöhten Lufttemperaturen große Flächen [Permafrost] auf (stories/story-15/5). Dadurch wird der Kohlenstoff im Boden der Zersetzung ausgesetzt und könnte möglicherweise große Mengen an Methan in die Atmosphäre freisetzen. Wenn die nördlichen Breitengrade auftauen und austrocknen, werden riesige Wald-, Busch- und Torfgebiete neu der Gefahr von [Waldbränden] ausgesetzt (stories/story-28/1). Feuer ist eine Schlüsselkomponente des Kohlenstoffkreislaufs, die Kohlenstoff aus der Biosphäre in die Atmosphäre transportiert.", + "shortText": "## Der schnelle Kohlenstoffkreislauf\r\n\r\nDer Kreislauf des Kohlenstoffs durch Lebewesen ist als schneller Kohlenstoffkreislauf bekannt.\r\n\r\n- Pflanzen nehmen durch Photosynthese CO2 aus der Atmosphäre auf, wenn sie im Frühjahr und Sommer wachsen.\r\n- Ein Teil wird durch das Absterben von Blättern und durch Tiere, die Pflanzen fressen und Kohlendioxid ausatmen, wieder abgegeben.\r\n- Der CO2-Gehalt in der Atmosphäre erreicht am Ende des nördlichen Winters seinen Höhepunkt.\r\n- Schnell wachsende Pflanzen beginnen im Frühjahr mit der Aufnahme von CO2.\r\n- Der atmosphärische Kohlenstoffgehalt variiert am stärksten auf der nördlichen Hemisphäre (mehr Land, daher mehr Pflanzen).\r\n- Ein jährlicher Anstieg des CO2 zeigt, dass der Kohlenstoffkreislauf aus dem Gleichgewicht geraten ist (hauptsächlich durch die Verbrennung fossiler Brennstoffe).\r\n\r\n## Kohlenstoff und das Land\r\n\r\n- Auch Veränderungen in der Landnutzung und der Bodenbedeckung verändern den Kohlenstoffkreislauf.\r\n- Bei der Abholzung von Tropenwäldern werden durch Brände große Mengen an CO2 freigesetzt und Bäume entfernt, die Kohlenstoff aufnehmen und speichern.\r\n- Auftauender Permafrost setzt durch Zersetzung Bodenkohlenstoff und potenziell große Mengen Methan frei.\r\n- Die Erwärmung und Austrocknung der nördlichen Länder setzt große Wald-, Busch- und Torfgebiete der Gefahr von Waldbränden aus.\r\n- Feuer ist eine Schlüsselkomponente des Kohlenstoffkreislaufs, die Kohlenstoff aus der Biosphäre in die Atmosphäre transportiert.", "imageFits": [ "contain", "contain", @@ -62,12 +62,12 @@ "timestamp": "2007-12-06T00:00:00.000Z" } ], - "layerDescription": "# CCI Atmospheric Carbon Dioxide Concentration" + "layerDescription": "# CCI Atmosphärische Kohlendioxid-Konzentration" }, { "type": "video", - "text": "## The Slow Carbon Cycle\r\n\r\nCarbon is exchanged between the atmosphere and the ocean at the sea surface. Carbon dioxide is dissolved in sea water but also [absorbed by ocean plants](stories/story-31/3) – phytoplankton – which use chlorophyll to perform photosynthesis in the same way as plants on land. Some carbon dioxide is quickly released back to the atmosphere, so the oceans play a part in the fast carbon cycle, but some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle. \r\n\r\nOceanic lifeforms from phytoplankton to coral, crustaceans and whales absorb carbon as they grow and take some of it to the sea floor when they die. Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store. Under certain conditions layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas. \r\n\r\nThe slow cycle eventually returns carbon to the atmosphere through geological processes. Carbon dioxide is expelled from rocks under extreme heat and pressure and vented to the atmosphere in volcanic eruptions. From the atmosphere, carbon can return to the surface dissolved in rainwater as weak carbonic acid, where it plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", - "shortText": "## The Slow Carbon Cycle\r\n\r\n- CO2 is dissolved in sea water but also absorbed by ocean plants – phytoplankton.\r\n- Some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle.\r\n\r\n- Oceanic lifeforms absorb carbon as they grow and take some of it to the sea floor when they die.\r\n- Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store.\r\n- Layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas.\r\n\r\n- The slow cycle eventually returns carbon to the atmosphere through geological processes.\r\n- CO2 is expelled from rocks and vented into the atmosphere during volcanic eruptions.\r\n- Carbon returns to the surface dissolved in rainwater as weak carbonic acid.\r\n- It then plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", + "text": "## Der langsame Kohlenstoffkreislauf\r\n\r\nDer Kohlenstoffaustausch zwischen der Atmosphäre und dem Ozean findet an der Meeresoberfläche statt. Kohlendioxid ist im Meerwasser gelöst, wird aber auch [von Meerespflanzen](stories/story-31/3) - Phytoplankton - aufgenommen, die mit Hilfe von Chlorophyll Photosynthese betreiben, genau wie Pflanzen an Land. Ein Teil des Kohlendioxids wird schnell wieder in die Atmosphäre freigesetzt, so dass die Ozeane eine Rolle im schnellen Kohlenstoffkreislauf spielen, aber ein anderer Teil wird in die Tiefsee gemischt, wo er jahrhundertelang als Teil des langsamen Kohlenstoffkreislaufs verbleibt.\r\n\r\nOzeanische Lebensformen, vom Phytoplankton bis zu Korallen, Krustentieren und Walen, nehmen während ihres Wachstums Kohlenstoff auf und nehmen einen Teil davon mit auf den Meeresboden, wenn sie sterben. Dort wird der Kohlenstoff in Sedimentgestein, dem größten Kohlenstoffspeicher der Erde, gebunden. Unter bestimmten Bedingungen können sich Schichten aus organischem Kohlenstoff zu Lagerstätten fossiler Brennstoffe - Kohle, Öl oder Erdgas - aufbauen.\r\n\r\nDer langsame Kreislauf führt den Kohlenstoff schließlich durch geologische Prozesse wieder in die Atmosphäre zurück. Kohlendioxid wird unter extremer Hitze und hohem Druck aus dem Gestein ausgestoßen und bei Vulkanausbrüchen in die Atmosphäre entlassen. Aus der Atmosphäre kann der Kohlenstoff in Form von schwacher Kohlensäure im Regenwasser gelöst an die Oberfläche zurückkehren, wo er bei der chemischen Verwitterung von Gestein und der Abgabe von Mineralien und Salzen an das Meer eine Rolle spielt.", + "shortText": "## Der langsame Kohlenstoffkreislauf\r\n\r\n- CO2 ist im Meerwasser gelöst, wird aber auch von Meerespflanzen - dem Phytoplankton - absorbiert.\r\n- Ein Teil gelangt in die Tiefsee, wo es als Teil des langsamen Kohlenstoffkreislaufs jahrhundertelang verbleibt.\r\n\r\n- Ozeanische Lebensformen nehmen während ihres Wachstums Kohlenstoff auf und geben einen Teil davon nach ihrem Tod an den Meeresboden ab.\r\n- Dort wird der Kohlenstoff in Sedimentgestein, dem größten Kohlenstoffspeicher der Erde, gebunden.\r\n- Schichten von organischem Kohlenstoff können sich zu Lagerstätten fossiler Brennstoffe - Kohle, Erdöl oder Erdgas - aufbauen.\r\n\r\n- Der langsame Kreislauf führt den Kohlenstoff schließlich durch geologische Prozesse wieder in die Atmosphäre zurück.\r\n- Bei Vulkanausbrüchen wird CO2 aus dem Gestein ausgestoßen und in die Atmosphäre entlassen.\r\n- Der Kohlenstoff kehrt in Form von schwacher Kohlensäure, die im Regenwasser gelöst ist, an die Oberfläche zurück.\r\n- Er spielt dann eine Rolle bei der chemischen Verwitterung von Gesteinen und bei der Abgabe von Mineralien und Salzen an das Meer.", "imageFits": [ "contain", "contain", @@ -79,17 +79,17 @@ }, { "type": "image", - "text": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. As we extract and burn coal, oil and natural gas, we are effectively short-circuiting the slow carbon cycle, and hugely accelerating the delivery of carbon into the atmosphere. Each year, humans emit 100-300 times more carbon dioxide from burning fossil fuels than the slow carbon cycle emits from volcanoes.\r\n\r\nThe land and the ocean have absorbed some of this excess carbon dioxide, but atmospheric carbon dioxide has still increased by 30% in the last 150 years – enough to significantly enhance the greenhouse effect and change the climate. Since 1970, our carbon dioxide emissions have increased by 90%. Global daily average atmospheric carbon dioxide reached 400 parts per million in 2013 and has remained above this level since 2016. There is more carbon dioxide in the atmosphere now than at any time in the last 2.6 million years. The resulting boost to the greenhouse effect has increased global average [land temperature](stories/story-27/1) by about one degree Celsius over the last century, and [climate models](stories/story-31/0) predict it will rise 2 to 4 degrees Celsius above pre-industrial levels by the end of this century.", - "shortText": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. \r\n\r\n- Extracting and burning coal, oil and natural gas, short-circuits the slow carbon cycle, hugely accelerating the delivery of carbon into the atmosphere. \r\n- Each year, 100-300 times more CO2 from burning fossil fuels than from volcanoes.\r\n- Land and ocean absorb some of the excess CO2.\r\n- But still 30% increase in atmospheric CO2 in the last 150 years.\r\n- 90% increase in CO2 emissions since 1970.\r\n- Atmospheric CO2 has been above 400 parts per million since 2016. \r\n- Higher now than at any time in the last 2.6 million years. \r\n- 1 °C increase in average land temperature over the last century.\r\n- 2 to 4 °C above pre-industrial levels forecast by 2100.", + "text": "## Menschliche Intervention\r\n\r\nMenschliche Aktivitäten, vor allem die Verbrennung fossiler Brennstoffe, haben die Kohlenstoffmenge in der Atmosphäre über ihr natürliches Maß hinaus erhöht. Durch die Förderung und Verbrennung von Kohle, Erdöl und Erdgas schließen wir den langsamen Kohlenstoffkreislauf kurz und beschleunigen die Freisetzung von Kohlenstoff in die Atmosphäre gewaltig. Jedes Jahr stößt der Mensch durch die Verbrennung fossiler Brennstoffe 100-300 Mal mehr Kohlendioxid aus, als der langsame Kohlenstoffkreislauf durch Vulkane freisetzt.\r\n\r\nDas Land und die Ozeane haben einen Teil dieses überschüssigen Kohlendioxids absorbiert, aber das atmosphärische Kohlendioxid ist in den letzten 150 Jahren immer noch um 30 % gestiegen - genug, um den Treibhauseffekt erheblich zu verstärken und das Klima zu verändern. Seit 1970 haben unsere Kohlendioxidemissionen um 90 % zugenommen. Der globale Tagesdurchschnitt des atmosphärischen Kohlendioxids erreichte 2013 einen Wert von 400 Teilen pro Million und liegt seit 2016 über diesem Niveau. Heute befindet sich mehr Kohlendioxid in der Atmosphäre als jemals zuvor in den letzten 2,6 Millionen Jahren. Die daraus resultierende Verstärkung des Treibhauseffekts hat die globale durchschnittliche [Landtemperatur](stories/story-27/1) im letzten Jahrhundert um etwa ein Grad Celsius erhöht, und [Klimamodelle](stories/story-31/0) sagen voraus, dass sie bis zum Ende dieses Jahrhunderts um 2 bis 4 Grad Celsius über das vorindustrielle Niveau steigen wird.", + "shortText": "## Menschliche Intervention\r\n\r\nMenschliche Aktivitäten, vor allem die Verbrennung fossiler Brennstoffe, haben die Kohlenstoffmenge in der Atmosphäre über ihr natürliches Niveau hinaus erhöht.\r\n\r\n- Die Gewinnung und Verbrennung von Kohle, Erdöl und Erdgas unterbricht den langsamen Kohlenstoffkreislauf und beschleunigt den Eintrag von Kohlenstoff in die Atmosphäre enorm.\r\n- Jedes Jahr wird durch die Verbrennung fossiler Brennstoffe 100-300 mal mehr CO2 freigesetzt als durch Vulkane.\r\n- Land und Ozean absorbieren einen Teil des überschüssigen CO2.\r\n- Dennoch ist der CO2-Ausstoß in der Atmosphäre in den letzten 150 Jahren um 30 % gestiegen.\r\n- 90%iger Anstieg der CO2-Emissionen seit 1970.\r\n- Der CO2-Gehalt in der Atmosphäre liegt seit 2016 über 400 Teile pro Million.\r\n- Höher als zu jedem anderen Zeitpunkt in den letzten 2,6 Millionen Jahren.\r\n- 1 °C Anstieg der durchschnittlichen Landtemperatur im letzten Jahrhundert.\r\n- 2 bis 4 °C über dem vorindustriellen Niveau bis 2100 prognostiziert.", "images": [ "assets/intro_large_13.jpg", "assets/ghg_large_18.jpg", "assets/intro_large_15.png" ], "imageCaptions": [ - "On a clear night light shines out from urban areas across western Europe, painting a portrait of an energy-hungry society. Photograph taken by ESA astronaut Alexander Gerst from the International Space Station on July 26 2014. (ESA/NASA)", - "Deforestation in the state of Rondônia in western Brazil, as imaged by ESA’s Proba-V minisatellite. The brown colours indicate deforested areas – note the distinctive ‘fishbone’ pattern as main roads are cut through an area, followed by secondary roads for further clearing. Agricultural activities including deforestation are the second-largest source of greenhouse gases, after fossil fuels. (ESA/VITO)", - "# Atmospheric Carbon Dioxide over the Last 800,000 Years\r\nCarbon dioxide concentration based on air samples from ice cores at Vostok Station, Antarctica, and since 1958, direct measurements from Mauna Loa Observatory, Hawaii. The present concentration of over 400 parts per million is thought to be higher than it has been for many millions of years. (data source: Scripps Institute of Oceanography)" + "In einer klaren Nacht leuchtet das Licht aus den Städten Westeuropas und zeichnet das Bild einer energiehungrigen Gesellschaft. Aufnahme des ESA-Astronauten Alexander Gerst von der Internationalen Raumstation aus am 26. Juli 2014. (ESA/NASA)", + "Abholzung im Bundesstaat Rondônia im Westen Brasiliens, aufgenommen von ESAs Minisatellit Proba-V. Die braunen Farben zeigen abgeholzte Gebiete an - man beachte das charakteristische \"Fischgrätenmuster\", wenn Hauptstraßen durch ein Gebiet führen, gefolgt von Nebenstraßen für weitere Abholzungen. Landwirtschaftliche Aktivitäten, einschließlich der Abholzung von Wäldern, sind nach fossilen Brennstoffen die zweitgrößte Quelle von Treibhausgasen. (ESA/VITO)", + "# Atmosphärisches Kohlendioxid während der letzten 800.000 Jahre\r\nKohlendioxidkonzentration auf der Grundlage von Luftproben aus Eisbohrkernen der Wostok-Station in der Antarktis und seit 1958 aus direkten Messungen des Mauna Loa Observatoriums auf Hawaii. Man geht davon aus, dass die derzeitige Konzentration von über 400 Teilen pro Million so hoch ist wie seit vielen Millionen Jahren nicht mehr. (Datenquelle: Scripps Institute of Oceanography)" ], "imageFits": [ "contain", @@ -101,8 +101,8 @@ }, { "type": "video", - "text": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. The European Space Agency’s Envisat, launched in 2002, carried one of the first sensors that measure concentrations of carbon dioxide and methane near the surface. The Japanese satellite GOSAT followed in 2009. Future satellite sensors will allow us to detect smaller sources of greenhouse gases.\r\n\r\nESA’s [Climate Change Initiative](stories/story-32/3) is also tracking carbon through its cycle on land and in the ocean. Land cover and biomass maps allow us to determine the amount of carbon stored in plants on land; ocean colour measurements show phytoplankton, giving an idea of how much carbon is being taken up by these ocean plants.\r\n\r\nClimate scientists are using this information to improve our understanding of the carbon cycle and its representation in their climate models. Improved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", - "shortText": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. \r\n\r\n- 2002: ESA’s Envisat carried one of the first sensors to measure CO2 and methane near the surface. \r\n- 2009: Japanese satellite GOSAT followed. \r\n- Future satellites will allow us to detect smaller sources of greenhouse gases.\r\n- ESA’s Climate Change Initiative is also tracking carbon through its cycle on land and in the ocean. \r\n- Land cover and biomass maps give the amount of carbon stored in plants on land.\r\n- Ocean colour maps show phytoplankton, giving the carbon taken up by ocean plants.\r\n- This improves understanding of the carbon cycle and its representation in climate models. \r\n\r\nImproved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", + "text": "## Kohlenstoff aus dem Weltraum aufspüren\r\n\r\nDie von Satelliten gesammelten Daten geben Aufschluss darüber, wie sich die Treibhausgase auf der ganzen Welt verändern. Der 2002 gestartete Envisat der Europäischen Weltraumorganisation trug einen der ersten Sensoren zur Messung der Kohlendioxid- und Methankonzentration in Oberflächennähe. Der japanische Satellit GOSAT folgte im Jahr 2009. Künftige Satellitensensoren werden es uns ermöglichen, kleinere Quellen von Treibhausgasen zu erkennen.\r\n\r\nDie [Initiative zum Klimawandel](stories/story-32/3) der ESA verfolgt auch den Kohlenstoffkreislauf an Land und im Meer. Anhand von Karten der Bodenbedeckung und der Biomasse lässt sich die Menge des in den Pflanzen an Land gespeicherten Kohlenstoffs bestimmen; Messungen der Meeresfarbe zeigen das Phytoplankton und geben Aufschluss darüber, wie viel Kohlenstoff von diesen Meerespflanzen aufgenommen wird.\r\n\r\nKlimawissenschaftler nutzen diese Informationen, um unser Verständnis des Kohlenstoffkreislaufs und dessen Darstellung in ihren Klimamodellen zu verbessern. Verbesserte Klimaprojektionen werden Entscheidungsträgern dabei helfen, herauszufinden, wie wir unsere Kohlenstoffemissionen steuern und das Gleichgewicht des Kohlenstoffkreislaufs wiederherstellen können.", + "shortText": "## Kohlenstoff aus dem Weltraum aufspüren\r\n\r\nDie von Satelliten gesammelten Daten ermöglichen es uns, die Entwicklung der Treibhausgase auf der ganzen Welt zu verfolgen.\r\n\r\n- 2002: Der Envisat-Satellit der ESA trug einen der ersten Sensoren zur Messung von CO2 und Methan in Oberflächennähe.\r\n- 2009: Der japanische Satellit GOSAT folgte.\r\n- Künftige Satelliten werden es uns ermöglichen, kleinere Quellen von Treibhausgasen aufzuspüren.\r\n- Die ESA-Initiative zum Klimawandel verfolgt auch den Kohlenstoffkreislauf an Land und im Meer.\r\n- Karten der Bodenbedeckung und der Biomasse geben Aufschluss über die Menge des in Pflanzen an Land gespeicherten Kohlenstoffs.\r\n- Die Farbkarten der Ozeane zeigen das Phytoplankton, das den von den Meerespflanzen aufgenommenen Kohlenstoff darstellt.\r\n- Dies verbessert das Verständnis des Kohlenstoffkreislaufs und seiner Darstellung in Klimamodellen.\r\n\r\nVerbesserte Klimaprojektionen werden Entscheidungsträgern dabei helfen, herauszufinden, wie wir unsere Kohlenstoffemissionen steuern und das Gleichgewicht des Kohlenstoffkreislaufs wiederherstellen können.", "imageFits": [ "contain", "contain", diff --git a/storage/stories/story-12/story-12-es.json b/storage/stories/story-12/story-12-es.json index dcf971805..54984b1e6 100644 --- a/storage/stories/story-12/story-12-es.json +++ b/storage/stories/story-12/story-12-es.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", - "shortText": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", + "text": "# El ciclo del carbono\r\n\r\nEl carbono es uno de los elementos más abundantes del universo y la base de toda la vida en la Tierra. Pasa por la atmósfera, los océanos, las plantas y las rocas, pero este ciclo natural ha sido interrumpido por la actividad humana, con profundas implicaciones para el clima de la Tierra.", + "shortText": "# El ciclo del carbono\r\n\r\nEl carbono es uno de los elementos más abundantes del universo y la base de toda la vida en la Tierra. Pasa por la atmósfera, los océanos, las plantas y las rocas, pero este ciclo natural ha sido interrumpido por la actividad humana, con profundas implicaciones para el clima de la Tierra.", "images": [ "assets/story12-image02.jpg" ] }, { "type": "image", - "text": "## A Vital Element \r\n\r\nCarbon is the basic building block for life on Earth. It can form stable chemical bonds with many elements, allowing large and complex molecules to be built, including the organic compounds essential to life. Carbon’s bonds to other elements are stable, but not so strong that they prevent chemical reaction. \r\n\r\nAs it reacts with other elements, carbon cycles through the atmosphere, the oceans, plants and animals, soil and rocks. There are exchanges between these carbon reservoirs through a variety of processes. When carbon bonds are broken, energy is released, making some carbon compounds – hydrocarbons – convenient fuel sources. \r\n \r\n## Greenhouse Gases \r\n\r\nBut the same bonds that make carbon molecules so essential to life and modern living have a downside. They are also good at absorbing long-wavelength infrared radiation, allowing the molecules to vibrate and warm up, trapping heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nCarbon compounds such as carbon dioxide and methane are not the only greenhouse gases, nor the most powerful, but our increased burning of fossil fuels – coal, oil and natural gas – has caused an accumulation of carbon dioxide in the atmosphere, disrupting the carbon cycle, and warming the Earth’s climate.", - "shortText": "## A Vital Element \r\n\r\n- Carbon is the basic building block for life on Earth.\r\n- Forms stable bonds with many elements.\r\n- Allows large and complex molecules to be built, including organic compounds essential for life.\r\n- Bonds are stable, but not so strong that they prevent chemical reaction. \r\n- Reactions drive carbon through the atmosphere, the oceans, plants and animals, soil and rocks. \r\n- When carbon bonds are broken, energy is released.\r\n- So some carbon compounds – hydrocarbons – are convenient fuel sources. \r\n\r\n## Greenhouse Gases \r\n\r\n- Carbon bonds also good at absorbing infrared radiation, allowing molecules to vibrate and warm up.\r\n- Traps heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nIncreased burning of fossil fuels has caused an accumulation of CO2 in the atmosphere, disrupting the carbon cycle, and warming the climate.", + "text": "## Un elemento vital\r\n\r\nEl carbono es el componente básico de la vida en la Tierra. Puede formar enlaces químicos estables con muchos elementos, lo que permite construir moléculas grandes y complejas, incluidos los compuestos orgánicos esenciales para la vida. Los enlaces del carbono con otros elementos son estables, pero no tan fuertes como para impedir la reacción química.\r\n\r\nAl reaccionar con otros elementos, el carbono circula por la atmósfera, los océanos, las plantas y los animales, el suelo y las rocas. Hay intercambios entre estos depósitos de carbono a través de diversos procesos. Cuando se rompen los enlaces del carbono, se libera energía, lo que hace que algunos compuestos de carbono - hidrocarburos - sean fuentes de combustible convenientes.\r\n \r\n## Gases de efecto invernadero\r\n\r\nPero los mismos enlaces que hacen que las moléculas de carbono sean tan esenciales para la vida y la vida moderna tienen un inconveniente. También son buenas para absorber la radiación infrarroja de gran longitud de onda, lo que permite que las moléculas vibren y se calienten, atrapando el calor en la atmósfera y contribuyendo al efecto invernadero.\r\n\r\nLos compuestos de carbono, como el dióxido de carbono y el metano, no son los únicos gases de efecto invernadero, ni los más potentes, pero nuestra creciente quema de combustibles fósiles -carbón, petróleo y gas natural- ha provocado una acumulación de dióxido de carbono en la atmósfera, alterando el ciclo del carbono y calentando el clima de la Tierra.", + "shortText": "## Un elemento vital\r\n\r\n- El carbono es el componente básico de la vida en la Tierra.\r\n- Forma enlaces estables con muchos elementos.\r\n- Permite construir moléculas grandes y complejas, incluidos los compuestos orgánicos esenciales para la vida.\r\n- Los enlaces son estables, pero no tan fuertes como para impedir la reacción química.\r\n- Las reacciones impulsan al carbono en la atmósfera, los océanos, las plantas y los animales, el suelo y las rocas.\r\n- Cuando los enlaces del carbono se rompen, se libera energía.\r\n- Así que algunos compuestos de carbono - hidrocarburos - son fuentes de combustible convenientes.\r\n\r\n## Gases de efecto invernadero\r\n\r\n- Los enlaces del carbono también son buenos para absorber la radiación infrarroja, lo que permite que las moléculas vibren y se calienten.\r\n- Atrapa el calor en la atmósfera, contribuyendo al efecto invernadero.\r\n\r\nEl aumento de la quema de combustibles fósiles ha provocado una acumulación de CO2 en la atmósfera, alterando el ciclo del carbono y calentando el clima.", "images": [ "assets/story12-image01.jpg", "assets/ghg_large_16.png", @@ -20,10 +20,10 @@ "assets/ghg_large_11.png" ], "imageCaptions": [ - "Spare natural gas being burned off on an oil production platform in the North Sea. Carbon dioxide and water vapour are the main combustion products. Extracting and burning hydrocarbons pumps carbon from a rock reservoir into the atmosphere. (Varodrig)", - "# Atmospheric Carbon Dioxide Concentration\r\nAtmospheric carbon dioxide concentration over the last 300 years, based on air samples from ice cores and, since 1958, direct measurements from Mauna Loa Observatory, Hawaii. Carbon dioxide has been accumulating in the atmosphere since the Industrial Revolution, its concentration increasing rapidly in the second half of the twentieth century. (source: Scripps Institute of Oceanography)", - "The molecular structure of carbon dioxide and methane molecules allows them to absorb infrared radiation. Heat is absorbed by a molecule if the atoms inside can vibrate at the frequency of infrared radiation. More complex molecules have more vibrational modes, so more opportunities to absorb heat, making them more powerful greenhouse gases. A methane molecule, with one carbon atom (grey) bound to four hydrogen atoms (red), can absorb more heat than a carbon dioxide molecule, with one carbon atom bound to two oxygen atoms (blue). A chlorofluorocarbon like CFC-113 (green and yellow) has even more bonds, making it a very powerful greenhouse gas. (Planetary Visions)", - "# Atmospheric Carbon Dioxide as a Function of Time and Latitude\r\nThe data surface shows the natural annual cycle of carbon dioxide uptake and release, which is particularly strong in the northern hemisphere, as well as a gradual increase over the years resulting from human activity. Data derived from the SCIAMACHY sensor on Envisat. (ESA-CCI)" + "Quema de gas natural sobrante en una plataforma de producción de petróleo en el Mar del Norte. El dióxido de carbono y el vapor de agua son los principales productos de la combustión. La extracción y quema de hidrocarburos bombea el carbono de un depósito de roca a la atmósfera. (Varodrig)", + "# Concentración de dióxido de carbono en la atmósfera\r\nConcentración atmosférica de dióxido de carbono en los últimos 300 años, basada en muestras de aire de núcleos de hielo y, desde 1958, en mediciones directas del Observatorio de Mauna Loa, en Hawai. El dióxido de carbono se ha ido acumulando en la atmósfera desde la Revolución Industrial, y su concentración aumentó rápidamente en la segunda mitad del siglo XX. (fuente: Instituto Scripps de Oceanografía)", + "La estructura molecular de las moléculas de dióxido de carbono y metano les permite absorber la radiación infrarroja. El calor es absorbido por una molécula si los átomos de su interior pueden vibrar a la frecuencia de la radiación infrarroja. Las moléculas más complejas tienen más modos de vibración y, por tanto, más posibilidades de absorber calor, lo que las convierte en gases de efecto invernadero más potentes. Una molécula de metano, con un átomo de carbono (gris) unido a cuatro átomos de hidrógeno (rojo), puede absorber más calor que una molécula de dióxido de carbono, con un átomo de carbono unido a dos átomos de oxígeno (azul). Un clorofluorocarbono como el CFC-113 (verde y amarillo) tiene aún más enlaces, lo que lo convierte en un gas de efecto invernadero muy potente. (Planetary Visions)", + "# Dióxido de carbono atmosférico en función del tiempo y la latitud\r\nLa superficie de datos muestra el ciclo anual natural de captación y liberación de dióxido de carbono, que es especialmente intenso en el hemisferio norte, así como un aumento gradual a lo largo de los años derivado de la actividad humana. Datos derivados del sensor SCIAMACHY en Envisat. (ESA-CCI)" ], "imageFits": [ "contain", @@ -35,8 +35,8 @@ }, { "type": "globe", - "text": "## The Fast Carbon Cycle\r\n\r\nPlants take up carbon dioxide from the atmosphere by photosynthesis as they grow in spring and summer, and return some of it when their leaves die back in autumn and winter. Carbon is also returned to the atmosphere by animals eating plants and breathing out carbon dioxide. The cycling of carbon through living things is known as the fast carbon cycle.\r\n\r\nThis seasonal growth cycle can be seen in the atmospheric carbon dioxide levels shown on the interactive globe: a peak is reached at the end of the northern winter, before rapidly-growing plants start absorbing carbon dioxide again in the spring. Atmospheric carbon varies most in the northern hemisphere because it has more land, and therefore more plants, than the southern hemisphere. On top of the seasonal cycle there is a clear increase in atmospheric carbon dioxide from year to year – a sign that the carbon cycle is out of balance, mainly due to the burning of fossil fuels.\r\n \r\n## Carbon and the Land \r\n\r\n[Changes in land use and land cover](stories/story-28/3) are also altering the carbon cycle. The clearing of tropical forests for agriculture has the double effect of adding large amounts of carbon dioxide to the atmosphere from fires, while also removing the trees that absorb and store carbon while they are alive. \r\n\r\nAround the Arctic, elevated air temperatures are thawing out large areas of [permafrost](stories/story-15/5). This exposes carbon in the soil to decomposition and could potentially release into the atmosphere vast amounts of methane. As northern latitudes thaw and dry out, vast areas of forest, bush and peat are newly exposed to the risk of [wildfires](stories/story-28/1). Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", - "shortText": "## The Fast Carbon Cycle \r\n\r\nCycling of carbon through living things is known as the fast carbon cycle.\r\n\r\n- Plants take up CO2 from the atmosphere by photosynthesis as they grow in spring and summer.\r\n- Some returned when leaves die and by animals eating plants and breathing out carbon dioxide. \r\n- Atmospheric CO2 peaks at the end of the northern winter.\r\n- Rapidly-growing plants start absorbing CO2 in the spring. \r\n- Atmospheric carbon varies most in the northern hemisphere (more land, therefore more plants).\r\n- Year-to-year increase in CO2 shows the carbon cycle is out of balance (mainly from fossil fuel burning).\r\n\r\n## Carbon and the Land\r\n\r\n- Changes in land use and land cover also alter the carbon cycle. \r\n- Tropical forest clearance releases large amounts of CO2 by fire and removes trees that absorb and store carbon. \r\n- Thawing permafrost releases soil carbon by decomposition and potentially vast amounts of methane. \r\n- Warming and drying of northern lands exposes vast areas of forest, bush and peat to the risk of wildfires. \r\n- Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", + "text": "## El ciclo rápido del carbono\r\n\r\nLas plantas absorben dióxido de carbono de la atmósfera mediante la fotosíntesis mientras crecen en primavera y verano, y devuelven una parte cuando sus hojas mueren en otoño e invierno. El carbono también es devuelto a la atmósfera por los animales que se alimentan de las plantas y exhalan dióxido de carbono. El ciclo del carbono a través de los seres vivos se conoce como ciclo rápido del carbono.\r\n\r\nEste ciclo de crecimiento estacional puede verse en los niveles de dióxido de carbono atmosférico que se muestran en el globo terráqueo interactivo: se alcanza un pico al final del invierno boreal, antes de que las plantas de rápido crecimiento comiencen a absorber dióxido de carbono de nuevo en la primavera. El carbono atmosférico varía más en el hemisferio norte porque tiene más tierra, y por tanto más plantas, que el hemisferio sur. Además del ciclo estacional, hay un claro aumento del dióxido de carbono atmosférico de un año a otro, lo que indica que el ciclo del carbono está desequilibrado, principalmente debido a la quema de combustibles fósiles.\r\n \r\n## El carbono y la tierra\r\n\r\n[Los cambios en el uso y la cobertura del suelo](stories/story-28/3) también están alterando el ciclo del carbono. La tala de bosques tropicales para la agricultura tiene el doble efecto de añadir grandes cantidades de dióxido de carbono a la atmósfera a causa de los incendios, al tiempo que elimina los árboles que absorben y almacenan el carbono mientras están vivos.\r\n\r\nEn el Ártico, las elevadas temperaturas del aire están descongelando grandes áreas de [permafrost](stories/story-15/5). Esto expone el carbono del suelo a la descomposición y podría liberar a la atmósfera grandes cantidades de metano. A medida que las latitudes septentrionales se descongelan y se secan, vastas zonas de bosques, arbustos y turba quedan expuestas al riesgo de [incendios forestales](stories/story-28/1). El fuego es un componente clave del ciclo del carbono, que lleva el carbono de la biosfera a la atmósfera.", + "shortText": "## El ciclo rápido del carbono\r\n\r\nEl ciclo del carbono a través de los seres vivos se conoce como el ciclo rápido del carbono.\r\n\r\n- Las plantas toman el CO2 de la atmósfera mediante la fotosíntesis mientras crecen en primavera y verano.\r\n- También lo devuelven cuando mueren las hojas y por los animales que se comen las plantas y exhalan el dióxido de carbono.\r\n- El CO2 atmosférico alcanza su punto máximo al final del invierno boreal.\r\n- Las plantas de crecimiento rápido empiezan a absorber CO2 en primavera.\r\n- El carbono atmosférico varía más en el hemisferio norte (más tierra, por tanto más plantas).\r\n- El aumento anual de CO2 muestra que el ciclo del carbono está desequilibrado (principalmente por la quema de combustibles fósiles).\r\n\r\n## El carbono y la tierra\r\n\r\n- Los cambios en el uso y la cobertura del suelo también alteran el ciclo del carbono.\r\n- La tala de bosques tropicales libera grandes cantidades de CO2 por el fuego y elimina los árboles que absorben y almacenan el carbono.\r\n- El deshielo del permafrost libera carbono del suelo por descomposición y potencialmente grandes cantidades de metano.\r\n- El calentamiento y la desecación de las tierras septentrionales exponen vastas zonas de bosque, matorral y turba al riesgo de incendios forestales.\r\n- El fuego es un componente clave del ciclo del carbono, que lleva el carbono de la biosfera a la atmósfera.", "imageFits": [ "contain", "contain", @@ -62,12 +62,12 @@ "timestamp": "2007-12-06T00:00:00.000Z" } ], - "layerDescription": "# CCI Atmospheric Carbon Dioxide Concentration" + "layerDescription": "# CCI Concentración de dióxido de carbono en la atmósfera" }, { "type": "video", - "text": "## The Slow Carbon Cycle\r\n\r\nCarbon is exchanged between the atmosphere and the ocean at the sea surface. Carbon dioxide is dissolved in sea water but also [absorbed by ocean plants](stories/story-31/3) – phytoplankton – which use chlorophyll to perform photosynthesis in the same way as plants on land. Some carbon dioxide is quickly released back to the atmosphere, so the oceans play a part in the fast carbon cycle, but some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle. \r\n\r\nOceanic lifeforms from phytoplankton to coral, crustaceans and whales absorb carbon as they grow and take some of it to the sea floor when they die. Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store. Under certain conditions layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas. \r\n\r\nThe slow cycle eventually returns carbon to the atmosphere through geological processes. Carbon dioxide is expelled from rocks under extreme heat and pressure and vented to the atmosphere in volcanic eruptions. From the atmosphere, carbon can return to the surface dissolved in rainwater as weak carbonic acid, where it plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", - "shortText": "## The Slow Carbon Cycle\r\n\r\n- CO2 is dissolved in sea water but also absorbed by ocean plants – phytoplankton.\r\n- Some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle.\r\n\r\n- Oceanic lifeforms absorb carbon as they grow and take some of it to the sea floor when they die.\r\n- Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store.\r\n- Layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas.\r\n\r\n- The slow cycle eventually returns carbon to the atmosphere through geological processes.\r\n- CO2 is expelled from rocks and vented into the atmosphere during volcanic eruptions.\r\n- Carbon returns to the surface dissolved in rainwater as weak carbonic acid.\r\n- It then plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", + "text": "## El ciclo lento del carbono\r\n\r\nEl carbono se intercambia entre la atmósfera y el océano en la superficie del mar. El dióxido de carbono se disuelve en el agua del mar, pero también [es absorbido por las plantas oceánicas](stories/story-31/3) -el fitoplancton- que utilizan la clorofila para realizar la fotosíntesis del mismo modo que las plantas en tierra. Parte del dióxido de carbono se devuelve rápidamente a la atmósfera, por lo que los océanos participan en el ciclo rápido del carbono, pero otra parte se mezcla en las profundidades del océano, donde permanece durante siglos como parte del ciclo lento del carbono.\r\n\r\nLas formas de vida oceánicas, desde el fitoplancton hasta el coral, pasando por los crustáceos y las ballenas, absorben carbono a medida que crecen y se llevan parte de él al fondo marino cuando mueren. Allí, el carbono queda encerrado en las rocas sedimentarias, el mayor almacén de carbono de la Tierra. En determinadas condiciones, las capas de carbono orgánico pueden acumularse en depósitos de combustibles fósiles: carbón, petróleo o gas natural.\r\n\r\nEl lento ciclo acaba devolviendo el carbono a la atmósfera mediante procesos geológicos. El dióxido de carbono se expulsa de las rocas bajo un calor y una presión extremos y se expulsa a la atmósfera en las erupciones volcánicas. Desde la atmósfera, el carbono puede volver a la superficie disuelto en el agua de lluvia en forma de ácido carbónico débil, donde desempeña un papel en la meteorización química de las rocas y la entrega de minerales y sales al mar.", + "shortText": "## El ciclo lento del carbono\r\n\r\n- El CO2 se disuelve en el agua del mar, pero también es absorbido por las plantas oceánicas, el fitoplancton.\r\n- Una parte se mezcla en las profundidades del océano, donde permanece durante siglos como parte del ciclo lento del carbono.\r\n\r\n- Las formas de vida oceánicas absorben el carbono a medida que crecen y se llevan parte de él al fondo marino cuando mueren.\r\n- Allí, el carbono queda encerrado en la roca sedimentaria, el mayor almacén de carbono de la Tierra.\r\n- Las capas de carbono orgánico pueden acumularse en depósitos de combustibles fósiles: carbón, petróleo o gas natural.\r\n\r\n- El lento ciclo acaba devolviendo el carbono a la atmósfera a través de procesos geológicos.\r\n- El CO2 es expulsado de las rocas y expulsado a la atmósfera durante las erupciones volcánicas.\r\n- El carbono vuelve a la superficie disuelto en el agua de lluvia en forma de ácido carbónico débil.\r\n- A continuación, interviene en la meteorización química de las rocas y en la entrega de minerales y sales al mar.", "imageFits": [ "contain", "contain", @@ -79,17 +79,17 @@ }, { "type": "image", - "text": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. As we extract and burn coal, oil and natural gas, we are effectively short-circuiting the slow carbon cycle, and hugely accelerating the delivery of carbon into the atmosphere. Each year, humans emit 100-300 times more carbon dioxide from burning fossil fuels than the slow carbon cycle emits from volcanoes.\r\n\r\nThe land and the ocean have absorbed some of this excess carbon dioxide, but atmospheric carbon dioxide has still increased by 30% in the last 150 years – enough to significantly enhance the greenhouse effect and change the climate. Since 1970, our carbon dioxide emissions have increased by 90%. Global daily average atmospheric carbon dioxide reached 400 parts per million in 2013 and has remained above this level since 2016. There is more carbon dioxide in the atmosphere now than at any time in the last 2.6 million years. The resulting boost to the greenhouse effect has increased global average [land temperature](stories/story-27/1) by about one degree Celsius over the last century, and [climate models](stories/story-31/0) predict it will rise 2 to 4 degrees Celsius above pre-industrial levels by the end of this century.", - "shortText": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. \r\n\r\n- Extracting and burning coal, oil and natural gas, short-circuits the slow carbon cycle, hugely accelerating the delivery of carbon into the atmosphere. \r\n- Each year, 100-300 times more CO2 from burning fossil fuels than from volcanoes.\r\n- Land and ocean absorb some of the excess CO2.\r\n- But still 30% increase in atmospheric CO2 in the last 150 years.\r\n- 90% increase in CO2 emissions since 1970.\r\n- Atmospheric CO2 has been above 400 parts per million since 2016. \r\n- Higher now than at any time in the last 2.6 million years. \r\n- 1 °C increase in average land temperature over the last century.\r\n- 2 to 4 °C above pre-industrial levels forecast by 2100.", + "text": "## Human Intervention\r\n\r\nLa actividad humana, principalmente la quema de combustibles fósiles, ha aumentado la cantidad de carbono en la atmósfera por encima de su nivel natural. Al extraer y quemar carbón, petróleo y gas natural, estamos cortocircuitando el lento ciclo del carbono y acelerando enormemente la emisión de carbono a la atmósfera. Cada año, los seres humanos emiten entre 100 y 300 veces más dióxido de carbono por la quema de combustibles fósiles que el ciclo lento del carbono emitido por los volcanes.\r\n\r\nLa tierra y el océano han absorbido parte de este exceso de dióxido de carbono, pero aun así el dióxido de carbono atmosférico ha aumentado un 30% en los últimos 150 años, lo suficiente como para potenciar el efecto invernadero y cambiar el clima. Desde 1970, nuestras emisiones de dióxido de carbono han aumentado un 90%. El promedio diario global de dióxido de carbono atmosférico alcanzó las 400 partes por millón en 2013 y se ha mantenido por encima de este nivel desde 2016. Ahora hay más dióxido de carbono en la atmósfera que en cualquier otro momento de los últimos 2,6 millones de años. El aumento resultante del efecto invernadero ha incrementado la temperatura media global [terrestre](stories/story-27/1) en aproximadamente un grado centígrado durante el último siglo, y los [modelos climáticos](stories/story-31/0) predicen que aumentará entre 2 y 4 grados centígrados por encima de los niveles preindustriales a finales de este siglo.", + "shortText": "## Human Intervention\r\n\r\nLa actividad humana, principalmente la quema de combustibles fósiles, ha aumentado la cantidad de carbono en la atmósfera por encima de su nivel natural.\r\n\r\n- La extracción y quema de carbón, petróleo y gas natural, cortocircuita el lento ciclo del carbono, acelerando enormemente la entrega de carbono a la atmósfera.\r\n- Cada año, la quema de combustibles fósiles emite entre 100 y 300 veces más CO2 que los volcanes.\r\n- La tierra y el océano absorben parte del exceso de CO2.\r\n- Pero aún así, el CO2 atmosférico ha aumentado un 30% en los últimos 150 años.\r\n- Aumento del 90% de las emisiones de CO2 desde 1970.\r\n- El CO2 atmosférico ha estado por encima de 400 partes por millón desde 2016.\r\n- Más alto ahora que en cualquier momento de los últimos 2,6 millones de años.\r\n- Aumento de 1 °C en la temperatura media de la tierra durante el último siglo.\r\n- Se prevén de 2 a 4 °C por encima de los niveles preindustriales para 2100.", "images": [ "assets/intro_large_13.jpg", "assets/ghg_large_18.jpg", "assets/intro_large_15.png" ], "imageCaptions": [ - "On a clear night light shines out from urban areas across western Europe, painting a portrait of an energy-hungry society. Photograph taken by ESA astronaut Alexander Gerst from the International Space Station on July 26 2014. (ESA/NASA)", - "Deforestation in the state of Rondônia in western Brazil, as imaged by ESA’s Proba-V minisatellite. The brown colours indicate deforested areas – note the distinctive ‘fishbone’ pattern as main roads are cut through an area, followed by secondary roads for further clearing. Agricultural activities including deforestation are the second-largest source of greenhouse gases, after fossil fuels. (ESA/VITO)", - "# Atmospheric Carbon Dioxide over the Last 800,000 Years\r\nCarbon dioxide concentration based on air samples from ice cores at Vostok Station, Antarctica, and since 1958, direct measurements from Mauna Loa Observatory, Hawaii. The present concentration of over 400 parts per million is thought to be higher than it has been for many millions of years. (data source: Scripps Institute of Oceanography)" + "En una noche clara, la luz brilla en las zonas urbanas de Europa occidental, pintando un retrato de una sociedad hambrienta de energía. Fotografía tomada por el astronauta de la ESA Alexander Gerst desde la Estación Espacial Internacional el 26 de julio de 2014. (ESA/NASA)", + "Deforestación en el estado de Rondônia, en el oeste de Brasil, según las imágenes del minisatélite Proba-V de la ESA. Los colores marrones indican las áreas deforestadas - nótese el distintivo patrón de \"espina de pescado\" cuando se cortan caminos principales a través de un área, seguidos por caminos secundarios para una mayor tala. Las actividades agrícolas, incluida la deforestación, son la segunda fuente de gases de efecto invernadero, después de los combustibles fósiles. (ESA/VITO)", + "# Dióxido de carbono atmosférico en los últimos 800.000 años\r\nConcentración de dióxido de carbono basada en muestras de aire de los núcleos de hielo de la Estación Vostok, en la Antártida, y desde 1958, en mediciones directas del Observatorio Mauna Loa, en Hawai. Se cree que la concentración actual, de más de 400 partes por millón, es más alta de lo que ha sido durante muchos millones de años. (fuente de datos: Instituto Scripps de Oceanografía)" ], "imageFits": [ "contain", @@ -101,8 +101,8 @@ }, { "type": "video", - "text": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. The European Space Agency’s Envisat, launched in 2002, carried one of the first sensors that measure concentrations of carbon dioxide and methane near the surface. The Japanese satellite GOSAT followed in 2009. Future satellite sensors will allow us to detect smaller sources of greenhouse gases.\r\n\r\nESA’s [Climate Change Initiative](stories/story-32/3) is also tracking carbon through its cycle on land and in the ocean. Land cover and biomass maps allow us to determine the amount of carbon stored in plants on land; ocean colour measurements show phytoplankton, giving an idea of how much carbon is being taken up by these ocean plants.\r\n\r\nClimate scientists are using this information to improve our understanding of the carbon cycle and its representation in their climate models. Improved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", - "shortText": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. \r\n\r\n- 2002: ESA’s Envisat carried one of the first sensors to measure CO2 and methane near the surface. \r\n- 2009: Japanese satellite GOSAT followed. \r\n- Future satellites will allow us to detect smaller sources of greenhouse gases.\r\n- ESA’s Climate Change Initiative is also tracking carbon through its cycle on land and in the ocean. \r\n- Land cover and biomass maps give the amount of carbon stored in plants on land.\r\n- Ocean colour maps show phytoplankton, giving the carbon taken up by ocean plants.\r\n- This improves understanding of the carbon cycle and its representation in climate models. \r\n\r\nImproved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", + "text": "## Seguimiento del carbono desde el espacio\r\n\r\nLos datos recogidos por los satélites nos permiten ver cómo varían los gases de efecto invernadero en todo el planeta. El Envisat de la Agencia Espacial Europea, lanzado en 2002, llevó uno de los primeros sensores que miden las concentraciones de dióxido de carbono y metano cerca de la superficie. Le siguió el satélite japonés GOSAT en 2009. Los futuros sensores de los satélites permitirán detectar fuentes más pequeñas de gases de efecto invernadero.\r\n\r\nLa [Iniciativa sobre el Cambio Climático](stories/story-32/3) de la ESA también está rastreando el carbono a través de su ciclo en la tierra y en el océano. Los mapas de la cubierta terrestre y la biomasa nos permiten determinar la cantidad de carbono almacenado en las plantas de la tierra; las mediciones del color del océano muestran el fitoplancton, lo que da una idea de la cantidad de carbono que absorben estas plantas oceánicas.\r\n\r\nLos científicos del clima utilizan esta información para mejorar nuestra comprensión del ciclo del carbono y su representación en sus modelos climáticos. La mejora de las proyecciones climáticas ayudará a los responsables de la toma de decisiones a determinar cómo podemos gestionar nuestras emisiones de carbono y restablecer el equilibrio del ciclo del carbono.", + "shortText": "## Seguimiento del carbono desde el espacio\r\n\r\nLos datos recogidos por los satélites nos permiten ver cómo varían los gases de efecto invernadero en todo el mundo.\r\n\r\n- 2002: El Envisat de la ESA llevó uno de los primeros sensores para medir el CO2 y el metano cerca de la superficie.\r\n- 2009: Le siguió el satélite japonés GOSAT.\r\n- Los futuros satélites permitirán detectar fuentes más pequeñas de gases de efecto invernadero.\r\n- La Iniciativa sobre el Cambio Climático de la ESA también está rastreando el carbono a través de su ciclo en la tierra y en el océano.\r\n- Los mapas de la cubierta terrestre y de la biomasa indican la cantidad de carbono almacenado en las plantas de la tierra.\r\n- Los mapas de color de los océanos muestran el fitoplancton, lo que indica el carbono absorbido por las plantas oceánicas.\r\n- Esto mejora la comprensión del ciclo del carbono y su representación en los modelos climáticos.\r\n\r\nLa mejora de las proyecciones climáticas ayudará a los responsables de la toma de decisiones a determinar cómo podemos gestionar nuestras emisiones de carbono y restablecer el equilibrio del ciclo del carbono.", "imageFits": [ "contain", "contain", diff --git a/storage/stories/story-12/story-12-fr.json b/storage/stories/story-12/story-12-fr.json index dcf971805..368aa67b2 100644 --- a/storage/stories/story-12/story-12-fr.json +++ b/storage/stories/story-12/story-12-fr.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", - "shortText": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", + "text": "# Le cycle du carbone\r\n\r\nLe carbone est l'un des éléments les plus abondants de l'univers et la base de toute vie sur Terre. Il passe par l'atmosphère, les océans, les plantes et les roches, mais ce cycle naturel a été perturbé par l'activité humaine, avec de profondes répercussions sur le climat de la Terre.", + "shortText": "# Le cycle du carbone\r\n\r\nLe carbone est l'un des éléments les plus abondants de l'univers et la base de toute vie sur Terre. Il passe par l'atmosphère, les océans, les plantes et les roches, mais ce cycle naturel a été perturbé par l'activité humaine, avec de profondes répercussions sur le climat de la Terre.", "images": [ "assets/story12-image02.jpg" ] }, { "type": "image", - "text": "## A Vital Element \r\n\r\nCarbon is the basic building block for life on Earth. It can form stable chemical bonds with many elements, allowing large and complex molecules to be built, including the organic compounds essential to life. Carbon’s bonds to other elements are stable, but not so strong that they prevent chemical reaction. \r\n\r\nAs it reacts with other elements, carbon cycles through the atmosphere, the oceans, plants and animals, soil and rocks. There are exchanges between these carbon reservoirs through a variety of processes. When carbon bonds are broken, energy is released, making some carbon compounds – hydrocarbons – convenient fuel sources. \r\n \r\n## Greenhouse Gases \r\n\r\nBut the same bonds that make carbon molecules so essential to life and modern living have a downside. They are also good at absorbing long-wavelength infrared radiation, allowing the molecules to vibrate and warm up, trapping heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nCarbon compounds such as carbon dioxide and methane are not the only greenhouse gases, nor the most powerful, but our increased burning of fossil fuels – coal, oil and natural gas – has caused an accumulation of carbon dioxide in the atmosphere, disrupting the carbon cycle, and warming the Earth’s climate.", - "shortText": "## A Vital Element \r\n\r\n- Carbon is the basic building block for life on Earth.\r\n- Forms stable bonds with many elements.\r\n- Allows large and complex molecules to be built, including organic compounds essential for life.\r\n- Bonds are stable, but not so strong that they prevent chemical reaction. \r\n- Reactions drive carbon through the atmosphere, the oceans, plants and animals, soil and rocks. \r\n- When carbon bonds are broken, energy is released.\r\n- So some carbon compounds – hydrocarbons – are convenient fuel sources. \r\n\r\n## Greenhouse Gases \r\n\r\n- Carbon bonds also good at absorbing infrared radiation, allowing molecules to vibrate and warm up.\r\n- Traps heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nIncreased burning of fossil fuels has caused an accumulation of CO2 in the atmosphere, disrupting the carbon cycle, and warming the climate.", + "text": "## Un élément vital\r\n\r\nLe carbone est l'élément de base de la vie sur Terre. Il peut former des liaisons chimiques stables avec de nombreux éléments, ce qui permet de construire de grandes molécules complexes, dont les composés organiques essentiels à la vie. Les liaisons du carbone avec les autres éléments sont stables, mais pas assez fortes pour empêcher toute réaction chimique.\r\n\r\nLorsqu'il réagit avec d'autres éléments, le carbone suit un cycle dans l'atmosphère, les océans, les plantes et les animaux, le sol et les roches. Il y a des échanges entre ces réservoirs de carbone à travers une variété de processus. Lorsque les liens du carbone sont rompus, de l'énergie est libérée, ce qui fait de certains composés du carbone - les hydrocarbures - des sources de carburant pratiques.\r\n \r\n## Gaz à effet de serre\r\n\r\nMais ces mêmes liaisons qui rendent les molécules de carbone si essentielles à la vie et à la vie moderne ont un inconvénient. Elles sont également capables d'absorber le rayonnement infrarouge de grande longueur d'onde, ce qui permet aux molécules de vibrer et de se réchauffer, piégeant ainsi la chaleur dans l'atmosphère et contribuant à l'effet de serre.\r\n\r\nLes composés carbonés tels que le dioxyde de carbone et le méthane ne sont pas les seuls gaz à effet de serre, ni les plus puissants, mais notre consommation accrue de combustibles fossiles - charbon, pétrole et gaz naturel - a provoqué une accumulation de dioxyde de carbone dans l'atmosphère, perturbant le cycle du carbone et réchauffant le climat de la Terre.", + "shortText": "## Un élément vital\r\n\r\n- Le carbone est l'élément de base de la vie sur Terre.\r\n- Il forme des liaisons stables avec de nombreux éléments.\r\n- Il permet de construire des molécules grandes et complexes, y compris des composés organiques essentiels à la vie.\r\n- Les liaisons sont stables, mais pas si fortes qu'elles empêchent toute réaction chimique.\r\n- Les réactions entraînent le carbone dans l'atmosphère, les océans, les plantes et les animaux, le sol et les roches.\r\n- Lorsque les liaisons du carbone sont rompues, de l'énergie est libérée.\r\n- Ainsi, certains composés du carbone - les hydrocarbures - sont des sources de carburant pratiques.\r\n\r\n## Gaz à effet de serre\r\n\r\n- Les liaisons carbone sont également efficaces pour absorber le rayonnement infrarouge, ce qui permet aux molécules de vibrer et de se réchauffer.\r\n- Ils piègent la chaleur dans l'atmosphère, contribuant ainsi à l'effet de serre.\r\n\r\nLa combustion accrue de combustibles fossiles a provoqué une accumulation de CO2 dans l'atmosphère, perturbant le cycle du carbone et réchauffant le climat.", "images": [ "assets/story12-image01.jpg", "assets/ghg_large_16.png", @@ -20,10 +20,10 @@ "assets/ghg_large_11.png" ], "imageCaptions": [ - "Spare natural gas being burned off on an oil production platform in the North Sea. Carbon dioxide and water vapour are the main combustion products. Extracting and burning hydrocarbons pumps carbon from a rock reservoir into the atmosphere. (Varodrig)", - "# Atmospheric Carbon Dioxide Concentration\r\nAtmospheric carbon dioxide concentration over the last 300 years, based on air samples from ice cores and, since 1958, direct measurements from Mauna Loa Observatory, Hawaii. Carbon dioxide has been accumulating in the atmosphere since the Industrial Revolution, its concentration increasing rapidly in the second half of the twentieth century. (source: Scripps Institute of Oceanography)", - "The molecular structure of carbon dioxide and methane molecules allows them to absorb infrared radiation. Heat is absorbed by a molecule if the atoms inside can vibrate at the frequency of infrared radiation. More complex molecules have more vibrational modes, so more opportunities to absorb heat, making them more powerful greenhouse gases. A methane molecule, with one carbon atom (grey) bound to four hydrogen atoms (red), can absorb more heat than a carbon dioxide molecule, with one carbon atom bound to two oxygen atoms (blue). A chlorofluorocarbon like CFC-113 (green and yellow) has even more bonds, making it a very powerful greenhouse gas. (Planetary Visions)", - "# Atmospheric Carbon Dioxide as a Function of Time and Latitude\r\nThe data surface shows the natural annual cycle of carbon dioxide uptake and release, which is particularly strong in the northern hemisphere, as well as a gradual increase over the years resulting from human activity. Data derived from the SCIAMACHY sensor on Envisat. (ESA-CCI)" + "Combustion de gaz naturel excédentaire sur une plate-forme de production pétrolière en mer du Nord. Le dioxyde de carbone et la vapeur d'eau sont les principaux produits de combustion. L'extraction et la combustion des hydrocarbures pompent le carbone d'un réservoir rocheux dans l'atmosphère. (Varodrig)", + "# Concentration de dioxyde de carbone atmosphérique\r\nConcentration de dioxyde de carbone dans l'atmosphère au cours des 300 dernières années, sur la base d'échantillons d'air provenant de carottes de glace et, depuis 1958, de mesures directes effectuées par l'observatoire de Mauna Loa, à Hawaï. Le dioxyde de carbone s'est accumulé dans l'atmosphère depuis la révolution industrielle, sa concentration augmentant rapidement dans la seconde moitié du XXe siècle. (source : Institut océanographique Scripps)", + "# Concentration de dioxyde de carbone atmosphérique\r\nConcentration de dioxyde de carbone dans l'atmosphère au cours des 300 dernières années, sur la base d'échantillons d'air provenant de carottes de glace et, depuis 1958, de mesures directes effectuées par l'observatoire de Mauna Loa, à Hawaï. Le dioxyde de carbone s'est accumulé dans l'atmosphère depuis la révolution industrielle, sa concentration augmentant rapidement dans la seconde moitié du XXe siècle. (source : Institut océanographique Scripps)", + "# Dioxyde de carbone atmosphérique en fonction du temps et de la latitude\r\nLa surface des données montre le cycle annuel naturel d'absorption et de libération du dioxyde de carbone, qui est particulièrement fort dans l'hémisphère nord, ainsi qu'une augmentation progressive au fil des ans résultant de l'activité humaine. Données dérivées du capteur SCIAMACHY sur Envisat. (ESA-CCI)" ], "imageFits": [ "contain", @@ -35,8 +35,8 @@ }, { "type": "globe", - "text": "## The Fast Carbon Cycle\r\n\r\nPlants take up carbon dioxide from the atmosphere by photosynthesis as they grow in spring and summer, and return some of it when their leaves die back in autumn and winter. Carbon is also returned to the atmosphere by animals eating plants and breathing out carbon dioxide. The cycling of carbon through living things is known as the fast carbon cycle.\r\n\r\nThis seasonal growth cycle can be seen in the atmospheric carbon dioxide levels shown on the interactive globe: a peak is reached at the end of the northern winter, before rapidly-growing plants start absorbing carbon dioxide again in the spring. Atmospheric carbon varies most in the northern hemisphere because it has more land, and therefore more plants, than the southern hemisphere. On top of the seasonal cycle there is a clear increase in atmospheric carbon dioxide from year to year – a sign that the carbon cycle is out of balance, mainly due to the burning of fossil fuels.\r\n \r\n## Carbon and the Land \r\n\r\n[Changes in land use and land cover](stories/story-28/3) are also altering the carbon cycle. The clearing of tropical forests for agriculture has the double effect of adding large amounts of carbon dioxide to the atmosphere from fires, while also removing the trees that absorb and store carbon while they are alive. \r\n\r\nAround the Arctic, elevated air temperatures are thawing out large areas of [permafrost](stories/story-15/5). This exposes carbon in the soil to decomposition and could potentially release into the atmosphere vast amounts of methane. As northern latitudes thaw and dry out, vast areas of forest, bush and peat are newly exposed to the risk of [wildfires](stories/story-28/1). Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", - "shortText": "## The Fast Carbon Cycle \r\n\r\nCycling of carbon through living things is known as the fast carbon cycle.\r\n\r\n- Plants take up CO2 from the atmosphere by photosynthesis as they grow in spring and summer.\r\n- Some returned when leaves die and by animals eating plants and breathing out carbon dioxide. \r\n- Atmospheric CO2 peaks at the end of the northern winter.\r\n- Rapidly-growing plants start absorbing CO2 in the spring. \r\n- Atmospheric carbon varies most in the northern hemisphere (more land, therefore more plants).\r\n- Year-to-year increase in CO2 shows the carbon cycle is out of balance (mainly from fossil fuel burning).\r\n\r\n## Carbon and the Land\r\n\r\n- Changes in land use and land cover also alter the carbon cycle. \r\n- Tropical forest clearance releases large amounts of CO2 by fire and removes trees that absorb and store carbon. \r\n- Thawing permafrost releases soil carbon by decomposition and potentially vast amounts of methane. \r\n- Warming and drying of northern lands exposes vast areas of forest, bush and peat to the risk of wildfires. \r\n- Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", + "text": "## Le cycle rapide du carbone\r\n\r\nLes plantes absorbent le dioxyde de carbone de l'atmosphère par photosynthèse lors de leur croissance au printemps et en été, et en restituent une partie lorsque leurs feuilles meurent en automne et en hiver. Le carbone est également renvoyé dans l'atmosphère par les animaux qui mangent des plantes et rejettent du dioxyde de carbone. Le cycle du carbone à travers les êtres vivants est connu sous le nom de cycle rapide du carbone.\r\n\r\nCe cycle de croissance saisonnier est visible dans les niveaux de dioxyde de carbone atmosphérique indiqués sur le globe interactif : un pic est atteint à la fin de l'hiver nordique, avant que les plantes à croissance rapide ne recommencent à absorber du dioxyde de carbone au printemps. Le carbone atmosphérique varie le plus dans l'hémisphère nord, car il y a plus de terres, et donc plus de plantes, que dans l'hémisphère sud. Outre le cycle saisonnier, on observe une nette augmentation du dioxyde de carbone atmosphérique d'une année à l'autre, signe que le cycle du carbone est déséquilibré, principalement en raison de la combustion de combustibles fossiles.\r\n \r\n## Le carbone et la terre\r\n\r\n[Les changements dans l'utilisation et la couverture des sols](stories/story-28/3) modifient également le cycle du carbone. Le défrichage des forêts tropicales pour l'agriculture a le double effet d'ajouter de grandes quantités de dioxyde de carbone dans l'atmosphère à cause des incendies, tout en éliminant les arbres qui absorbent et stockent le carbone lorsqu'ils sont vivants.\r\n\r\nDans l'Arctique, les températures élevées de l'air font dégeler de vastes zones de [permafrost] (stories/story-15/5). Cela expose le carbone du sol à la décomposition et pourrait libérer dans l'atmosphère de grandes quantités de méthane. À mesure que les latitudes septentrionales dégèlent et s'assèchent, de vastes zones de forêt, de brousse et de tourbe sont nouvellement exposées au risque d'[incendies](stories/story-28/1). Le feu est un élément clé du cycle du carbone, qui fait passer le carbone de la biosphère dans l'atmosphère.", + "shortText": "## Le cycle rapide du carbone\r\n\r\nLe cycle du carbone à travers les êtres vivants est connu sous le nom de cycle rapide du carbone.\r\n\r\n- Les plantes absorbent le CO2 de l'atmosphère par photosynthèse lors de leur croissance au printemps et en été.\r\n- Une partie est restituée lorsque les feuilles meurent et par les animaux qui mangent les plantes et expirent du dioxyde de carbone.\r\n- Le CO2 atmosphérique atteint son maximum à la fin de l'hiver nordique.\r\n- Les plantes à croissance rapide commencent à absorber du CO2 au printemps.\r\n- Le carbone atmosphérique varie le plus dans l'hémisphère nord (plus de terres, donc plus de plantes).\r\n- L'augmentation du CO2 d'une année sur l'autre montre que le cycle du carbone est déséquilibré (principalement à cause de la combustion de combustibles fossiles).\r\n\r\n## Le carbone et la terre\r\n\r\n- Les changements dans l'utilisation et la couverture des sols modifient également le cycle du carbone.\r\n- Le défrichement des forêts tropicales libère de grandes quantités de CO2 par le feu et élimine les arbres qui absorbent et stockent le carbone.\r\n- Le dégel du pergélisol libère le carbone du sol par décomposition et potentiellement de grandes quantités de méthane.\r\n- Le réchauffement et l'assèchement des terres nordiques exposent de vastes zones de forêt, de brousse et de tourbe au risque d'incendies.\r\n- Le feu est un élément clé du cycle du carbone, qui fait passer le carbone de la biosphère dans l'atmosphère.", "imageFits": [ "contain", "contain", @@ -62,12 +62,12 @@ "timestamp": "2007-12-06T00:00:00.000Z" } ], - "layerDescription": "# CCI Atmospheric Carbon Dioxide Concentration" + "layerDescription": "# Concentration de dioxyde de carbone atmosphérique (CCI)" }, { "type": "video", - "text": "## The Slow Carbon Cycle\r\n\r\nCarbon is exchanged between the atmosphere and the ocean at the sea surface. Carbon dioxide is dissolved in sea water but also [absorbed by ocean plants](stories/story-31/3) – phytoplankton – which use chlorophyll to perform photosynthesis in the same way as plants on land. Some carbon dioxide is quickly released back to the atmosphere, so the oceans play a part in the fast carbon cycle, but some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle. \r\n\r\nOceanic lifeforms from phytoplankton to coral, crustaceans and whales absorb carbon as they grow and take some of it to the sea floor when they die. Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store. Under certain conditions layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas. \r\n\r\nThe slow cycle eventually returns carbon to the atmosphere through geological processes. Carbon dioxide is expelled from rocks under extreme heat and pressure and vented to the atmosphere in volcanic eruptions. From the atmosphere, carbon can return to the surface dissolved in rainwater as weak carbonic acid, where it plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", - "shortText": "## The Slow Carbon Cycle\r\n\r\n- CO2 is dissolved in sea water but also absorbed by ocean plants – phytoplankton.\r\n- Some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle.\r\n\r\n- Oceanic lifeforms absorb carbon as they grow and take some of it to the sea floor when they die.\r\n- Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store.\r\n- Layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas.\r\n\r\n- The slow cycle eventually returns carbon to the atmosphere through geological processes.\r\n- CO2 is expelled from rocks and vented into the atmosphere during volcanic eruptions.\r\n- Carbon returns to the surface dissolved in rainwater as weak carbonic acid.\r\n- It then plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", + "text": "## Le cycle lent du carbone\r\n\r\nLe carbone est échangé entre l'atmosphère et l'océan à la surface de la mer. Le dioxyde de carbone est dissous dans l'eau de mer mais aussi [absorbé par les plantes océaniques](stories/story-31/3) - le phytoplancton - qui utilisent la chlorophylle pour réaliser la photosynthèse de la même manière que les plantes terrestres. Une partie du dioxyde de carbone est rapidement libérée dans l'atmosphère, de sorte que les océans jouent un rôle dans le cycle rapide du carbone, mais une autre partie est mélangée dans les profondeurs de l'océan, où elle reste pendant des siècles dans le cadre du cycle lent du carbone.\r\n\r\nLes formes de vie océaniques, du phytoplancton au corail, en passant par les crustacés et les baleines, absorbent du carbone au cours de leur croissance et en ramènent une partie au fond de la mer lorsqu'elles meurent. Là, le carbone est enfermé dans la roche sédimentaire, la plus grande réserve de carbone de la Terre. Dans certaines conditions, des couches de carbone organique peuvent s'accumuler pour former des gisements de combustibles fossiles - charbon, pétrole ou gaz naturel.\r\n\r\nCe lent cycle finit par renvoyer le carbone dans l'atmosphère par le biais de processus géologiques. Le dioxyde de carbone est expulsé des roches sous l'effet d'une chaleur et d'une pression extrêmes et rejeté dans l'atmosphère lors d'éruptions volcaniques. De l'atmosphère, le carbone peut revenir à la surface, dissous dans l'eau de pluie sous forme d'acide carbonique faible, où il joue un rôle dans l'altération chimique des roches et la libération de minéraux et de sels dans la mer.", + "shortText": "## Le cycle lent du carbone\r\n\r\n- Le CO2 est dissous dans l'eau de mer mais aussi absorbé par les plantes océaniques - le phytoplancton.\r\n- Une partie est mélangée aux profondeurs de l'océan, où elle reste pendant des siècles dans le cadre du cycle lent du carbone.\r\n\r\n- Les formes de vie océaniques absorbent le carbone au cours de leur croissance et en ramènent une partie au fond de la mer lorsqu'elles meurent.\r\n- Là, le carbone est enfermé dans la roche sédimentaire, la plus grande réserve de carbone de la Terre.\r\n- Des couches de carbone organique peuvent s'accumuler pour former des dépôts de combustibles fossiles - charbon, pétrole ou gaz naturel.\r\n\r\n- Ce lent cycle finit par renvoyer le carbone dans l'atmosphère par le biais de processus géologiques.\r\n- Le CO2 est expulsé des roches et rejeté dans l'atmosphère lors des éruptions volcaniques.\r\n- Le carbone revient à la surface dissous dans l'eau de pluie sous forme d'acide carbonique faible.\r\n- Il joue alors un rôle dans l'altération chimique des roches et la libération de minéraux et de sels dans la mer.", "imageFits": [ "contain", "contain", @@ -79,17 +79,17 @@ }, { "type": "image", - "text": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. As we extract and burn coal, oil and natural gas, we are effectively short-circuiting the slow carbon cycle, and hugely accelerating the delivery of carbon into the atmosphere. Each year, humans emit 100-300 times more carbon dioxide from burning fossil fuels than the slow carbon cycle emits from volcanoes.\r\n\r\nThe land and the ocean have absorbed some of this excess carbon dioxide, but atmospheric carbon dioxide has still increased by 30% in the last 150 years – enough to significantly enhance the greenhouse effect and change the climate. Since 1970, our carbon dioxide emissions have increased by 90%. Global daily average atmospheric carbon dioxide reached 400 parts per million in 2013 and has remained above this level since 2016. There is more carbon dioxide in the atmosphere now than at any time in the last 2.6 million years. The resulting boost to the greenhouse effect has increased global average [land temperature](stories/story-27/1) by about one degree Celsius over the last century, and [climate models](stories/story-31/0) predict it will rise 2 to 4 degrees Celsius above pre-industrial levels by the end of this century.", - "shortText": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. \r\n\r\n- Extracting and burning coal, oil and natural gas, short-circuits the slow carbon cycle, hugely accelerating the delivery of carbon into the atmosphere. \r\n- Each year, 100-300 times more CO2 from burning fossil fuels than from volcanoes.\r\n- Land and ocean absorb some of the excess CO2.\r\n- But still 30% increase in atmospheric CO2 in the last 150 years.\r\n- 90% increase in CO2 emissions since 1970.\r\n- Atmospheric CO2 has been above 400 parts per million since 2016. \r\n- Higher now than at any time in the last 2.6 million years. \r\n- 1 °C increase in average land temperature over the last century.\r\n- 2 to 4 °C above pre-industrial levels forecast by 2100.", + "text": "## Intervention humaine\r\n\r\nL'activité humaine, principalement la combustion de combustibles fossiles, a augmenté la quantité de carbone dans l'atmosphère au-delà de son niveau naturel. En extrayant et en brûlant du charbon, du pétrole et du gaz naturel, nous court-circuitons effectivement le cycle lent du carbone et accélérons considérablement la libération de carbone dans l'atmosphère. Chaque année, les humains émettent 100 à 300 fois plus de dioxyde de carbone en brûlant des combustibles fossiles que le cycle lent du carbone n'en émet par les volcans.\r\n\r\nLa terre et l'océan ont absorbé une partie de cet excès de dioxyde de carbone, mais le dioxyde de carbone atmosphérique a tout de même augmenté de 30 % au cours des 150 dernières années, ce qui est suffisant pour renforcer considérablement l'effet de serre et modifier le climat. Depuis 1970, nos émissions de dioxyde de carbone ont augmenté de 90 %. La moyenne journalière mondiale du dioxyde de carbone atmosphérique a atteint 400 parties par million en 2013 et est restée au-dessus de ce niveau depuis 2016. Il y a plus de dioxyde de carbone dans l'atmosphère aujourd'hui qu'à n'importe quel moment au cours des 2,6 millions d'années écoulées. Le renforcement de l'effet de serre qui en résulte a augmenté la [température terrestre](histoires/story-27/1) moyenne mondiale d'environ un degré Celsius au cours du siècle dernier, et les [modèles climatiques](histoires/story-31/0) prévoient qu'elle augmentera de 2 à 4 degrés Celsius par rapport aux niveaux préindustriels d'ici la fin du siècle.", + "shortText": "## Intervention humaine\r\n\r\nL'activité humaine, principalement la combustion de combustibles fossiles, a augmenté la quantité de carbone dans l'atmosphère au-delà de son niveau naturel.\r\n\r\n- L'extraction et la combustion du charbon, du pétrole et du gaz naturel court-circuitent le lent cycle du carbone, accélérant considérablement la libération de carbone dans l'atmosphère.\r\n- Chaque année, la combustion de combustibles fossiles produit 100 à 300 fois plus de CO2 que les volcans.\r\n- La terre et l'océan absorbent une partie de l'excès de CO2.\r\n- Mais il y a quand même eu une augmentation de 30 % du CO2 atmosphérique au cours des 150 dernières années.\r\n- Augmentation de 90 % des émissions de CO2 depuis 1970.\r\n- Le CO2 atmosphérique est supérieur à 400 parties par million depuis 2016.\r\n- Plus élevé aujourd'hui qu'à n'importe quel moment au cours des 2,6 derniers millions d'années.\r\n- Augmentation de 1 °C de la température moyenne des terres au cours du siècle dernier.\r\n- 2 à 4 °C au-dessus des niveaux préindustriels prévus d'ici 2100.", "images": [ "assets/intro_large_13.jpg", "assets/ghg_large_18.jpg", "assets/intro_large_15.png" ], "imageCaptions": [ - "On a clear night light shines out from urban areas across western Europe, painting a portrait of an energy-hungry society. Photograph taken by ESA astronaut Alexander Gerst from the International Space Station on July 26 2014. (ESA/NASA)", - "Deforestation in the state of Rondônia in western Brazil, as imaged by ESA’s Proba-V minisatellite. The brown colours indicate deforested areas – note the distinctive ‘fishbone’ pattern as main roads are cut through an area, followed by secondary roads for further clearing. Agricultural activities including deforestation are the second-largest source of greenhouse gases, after fossil fuels. (ESA/VITO)", - "# Atmospheric Carbon Dioxide over the Last 800,000 Years\r\nCarbon dioxide concentration based on air samples from ice cores at Vostok Station, Antarctica, and since 1958, direct measurements from Mauna Loa Observatory, Hawaii. The present concentration of over 400 parts per million is thought to be higher than it has been for many millions of years. (data source: Scripps Institute of Oceanography)" + "Par une nuit claire, la lumière brille dans les zones urbaines de l'Europe occidentale, dressant le portrait d'une société gourmande en énergie. Photo prise par l'astronaute de l'ESA Alexander Gerst depuis la station spatiale internationale le 26 juillet 2014. (ESA/NASA)", + "Déforestation dans l'état de Rondônia dans l'ouest du Brésil, telle qu'imagée par le minisatellite Proba-V de l'ESA. Les couleurs brunes indiquent les zones déboisées - notez le motif caractéristique en \"arête de poisson\" lorsque des routes principales sont coupées à travers une zone, suivies de routes secondaires pour d'autres défrichements. Les activités agricoles, y compris la déforestation, sont la deuxième source de gaz à effet de serre, après les combustibles fossiles. (ESA/VITO)", + "Déforestation dans l'état de Rondônia dans l'ouest du Brésil, telle qu'imagée par le minisatellite Proba-V de l'ESA. Les couleurs brunes indiquent les zones déboisées - notez le motif caractéristique en \"arête de poisson\" lorsque des routes principales sont coupées à travers une zone, suivies de routes secondaires pour d'autres défrichements. Les activités agricoles, y compris la déforestation, sont la deuxième source de gaz à effet de serre, après les combustibles fossiles. (ESA/VITO)" ], "imageFits": [ "contain", @@ -101,8 +101,8 @@ }, { "type": "video", - "text": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. The European Space Agency’s Envisat, launched in 2002, carried one of the first sensors that measure concentrations of carbon dioxide and methane near the surface. The Japanese satellite GOSAT followed in 2009. Future satellite sensors will allow us to detect smaller sources of greenhouse gases.\r\n\r\nESA’s [Climate Change Initiative](stories/story-32/3) is also tracking carbon through its cycle on land and in the ocean. Land cover and biomass maps allow us to determine the amount of carbon stored in plants on land; ocean colour measurements show phytoplankton, giving an idea of how much carbon is being taken up by these ocean plants.\r\n\r\nClimate scientists are using this information to improve our understanding of the carbon cycle and its representation in their climate models. Improved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", - "shortText": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. \r\n\r\n- 2002: ESA’s Envisat carried one of the first sensors to measure CO2 and methane near the surface. \r\n- 2009: Japanese satellite GOSAT followed. \r\n- Future satellites will allow us to detect smaller sources of greenhouse gases.\r\n- ESA’s Climate Change Initiative is also tracking carbon through its cycle on land and in the ocean. \r\n- Land cover and biomass maps give the amount of carbon stored in plants on land.\r\n- Ocean colour maps show phytoplankton, giving the carbon taken up by ocean plants.\r\n- This improves understanding of the carbon cycle and its representation in climate models. \r\n\r\nImproved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", + "text": "## Suivi du carbone depuis l'espace\r\n\r\nLes données recueillies par les satellites nous permettent de voir comment les gaz à effet de serre varient sur la planète. Le satellite Envisat de l'Agence spatiale européenne, lancé en 2002, a transporté l'un des premiers capteurs qui mesurent les concentrations de dioxyde de carbone et de méthane près de la surface. Le satellite japonais GOSAT a suivi en 2009. Les futurs capteurs satellitaires nous permettront de détecter des sources plus petites de gaz à effet de serre.\r\n\r\nL'initiative de l'ESA sur le changement climatique (stories/story-32/3) suit également le carbone tout au long de son cycle sur terre et dans l'océan. Les cartes de la couverture terrestre et de la biomasse nous permettent de déterminer la quantité de carbone stockée dans les plantes terrestres ; les mesures de la couleur des océans montrent le phytoplancton, ce qui donne une idée de la quantité de carbone absorbée par ces plantes océaniques.\r\n\r\nLes climatologues utilisent ces informations pour améliorer notre compréhension du cycle du carbone et sa représentation dans leurs modèles climatiques. L'amélioration des projections climatiques aidera les décideurs à déterminer comment gérer nos émissions de carbone et rétablir l'équilibre du cycle du carbone.", + "shortText": "## Suivi du carbone depuis l'espace\r\n\r\nLes données recueillies par les satellites nous permettent de voir comment les gaz à effet de serre varient à travers le monde.\r\n\r\n- 2002 : Le satellite Envisat de l'ESA transporte l'un des premiers capteurs à mesurer le CO2 et le méthane près de la surface.\r\n- 2009 : Le satellite japonais GOSAT a suivi.\r\n- Les futurs satellites nous permettront de détecter de plus petites sources de gaz à effet de serre.\r\n- L'initiative de l'ESA sur le changement climatique suit également le carbone tout au long de son cycle sur terre et dans l'océan.\r\n- Les cartes de la couverture terrestre et de la biomasse indiquent la quantité de carbone stockée dans les plantes sur terre.\r\n- Les cartes de la couleur des océans montrent le phytoplancton et indiquent la quantité de carbone absorbée par les plantes océaniques.\r\n- Cela permet de mieux comprendre le cycle du carbone et sa représentation dans les modèles climatiques.\r\n\r\nL'amélioration des projections climatiques aidera les décideurs à déterminer comment gérer nos émissions de carbone et rétablir l'équilibre du cycle du carbone.", "imageFits": [ "contain", "contain", diff --git a/storage/stories/story-12/story-12-nl.json b/storage/stories/story-12/story-12-nl.json index dcf971805..73cf004e7 100644 --- a/storage/stories/story-12/story-12-nl.json +++ b/storage/stories/story-12/story-12-nl.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", - "shortText": "# The Carbon Cycle\r\n\r\nCarbon is one of the most abundant elements in the universe and the basis of all life on Earth. It passes through the atmosphere, the oceans, plants and rocks, but this natural cycle has been disrupted by human activity, with profound implications for Earth’s climate.", + "text": "# The Carbon Cycle\r\n\r\nKoolstof is een van de meest overvloedige elementen in het universum en de basis van al het leven op aarde. Het stroomt door de atmosfeer, de oceanen, planten en rotsen, maar deze natuurlijke cyclus is verstoord door menselijke activiteit, met ingrijpende gevolgen voor het klimaat op aarde.", + "shortText": "# The Carbon Cycle\r\n\r\nKoolstof is een van de meest overvloedige elementen in het universum en de basis van al het leven op aarde. Het stroomt door de atmosfeer, de oceanen, planten en rotsen, maar deze natuurlijke cyclus is verstoord door menselijke activiteit, met ingrijpende gevolgen voor het klimaat op aarde.", "images": [ "assets/story12-image02.jpg" ] }, { "type": "image", - "text": "## A Vital Element \r\n\r\nCarbon is the basic building block for life on Earth. It can form stable chemical bonds with many elements, allowing large and complex molecules to be built, including the organic compounds essential to life. Carbon’s bonds to other elements are stable, but not so strong that they prevent chemical reaction. \r\n\r\nAs it reacts with other elements, carbon cycles through the atmosphere, the oceans, plants and animals, soil and rocks. There are exchanges between these carbon reservoirs through a variety of processes. When carbon bonds are broken, energy is released, making some carbon compounds – hydrocarbons – convenient fuel sources. \r\n \r\n## Greenhouse Gases \r\n\r\nBut the same bonds that make carbon molecules so essential to life and modern living have a downside. They are also good at absorbing long-wavelength infrared radiation, allowing the molecules to vibrate and warm up, trapping heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nCarbon compounds such as carbon dioxide and methane are not the only greenhouse gases, nor the most powerful, but our increased burning of fossil fuels – coal, oil and natural gas – has caused an accumulation of carbon dioxide in the atmosphere, disrupting the carbon cycle, and warming the Earth’s climate.", - "shortText": "## A Vital Element \r\n\r\n- Carbon is the basic building block for life on Earth.\r\n- Forms stable bonds with many elements.\r\n- Allows large and complex molecules to be built, including organic compounds essential for life.\r\n- Bonds are stable, but not so strong that they prevent chemical reaction. \r\n- Reactions drive carbon through the atmosphere, the oceans, plants and animals, soil and rocks. \r\n- When carbon bonds are broken, energy is released.\r\n- So some carbon compounds – hydrocarbons – are convenient fuel sources. \r\n\r\n## Greenhouse Gases \r\n\r\n- Carbon bonds also good at absorbing infrared radiation, allowing molecules to vibrate and warm up.\r\n- Traps heat in the atmosphere, contributing to the greenhouse effect. \r\n\r\nIncreased burning of fossil fuels has caused an accumulation of CO2 in the atmosphere, disrupting the carbon cycle, and warming the climate.", + "text": "## A Vital Element\r\n\r\nKoolstof is de basisbouwsteen voor het leven op aarde. Het kan stabiele chemische bindingen vormen met veel elementen, waardoor grote en complexe moleculen kunnen worden gemaakt, waaronder de organische verbindingen die essentieel zijn voor het leven. De bindingen van koolstof met andere elementen zijn stabiel, maar niet zo sterk dat ze een chemische reactie verhinderen.\r\n\r\nDoor zijn reactie met andere elementen kringelt koolstof door de atmosfeer, de oceanen, planten en dieren, de bodem en het gesteente. Er vindt uitwisseling plaats tussen deze koolstofreservoirs via een verscheidenheid aan processen. Wanneer koolstofverbindingen worden verbroken, komt er energie vrij, waardoor sommige koolstofverbindingen - koolwaterstoffen - handige brandstofbronnen worden.\r\n \r\n## Broeikasgassen\r\n\r\nMaar dezelfde bindingen die koolstofmoleculen zo essentieel maken voor het leven en het moderne leven, hebben een keerzijde. Ze zijn ook goed in het absorberen van infrarode straling met een lange golflengte, waardoor de moleculen kunnen vibreren en opwarmen, waardoor ze warmte vasthouden in de atmosfeer en bijdragen tot het broeikaseffect.\r\n\r\nKoolstofverbindingen zoals kooldioxide en methaan zijn niet de enige broeikasgassen, noch de krachtigste, maar onze toegenomen verbranding van fossiele brandstoffen - steenkool, aardolie en aardgas - heeft geleid tot een opeenhoping van kooldioxide in de atmosfeer, waardoor de koolstofkringloop is verstoord en het klimaat op aarde is opgewarmd.", + "shortText": "## A Vital Element\r\n\r\n- Koolstof is de basisbouwsteen voor het leven op aarde.\r\n- Vormt stabiele bindingen met vele elementen.\r\n- Maakt de bouw van grote en complexe moleculen mogelijk, waaronder organische verbindingen die essentieel zijn voor het leven.\r\n- Bindingen zijn stabiel, maar niet zo sterk dat ze chemische reacties verhinderen.\r\n- Reacties stuwen koolstof door de atmosfeer, de oceanen, planten en dieren, bodem en rotsen.\r\n- Wanneer koolstofverbindingen worden verbroken, komt er energie vrij.\r\n- Sommige koolstofverbindingen - koolwaterstoffen - zijn dus handige brandstofbronnen.\r\n\r\n## Broeikasgassen\r\n\r\n- Koolstofverbindingen zijn ook goed in het absorberen van infrarode straling, waardoor moleculen kunnen vibreren en opwarmen.\r\n- Het houdt warmte vast in de atmosfeer en draagt zo bij tot het broeikaseffect.\r\n\r\nDe toegenomen verbranding van fossiele brandstoffen heeft geleid tot een ophoping van CO2 in de atmosfeer, waardoor de koolstofcyclus is verstoord en het klimaat is opgewarmd.", "images": [ "assets/story12-image01.jpg", "assets/ghg_large_16.png", @@ -20,10 +20,10 @@ "assets/ghg_large_11.png" ], "imageCaptions": [ - "Spare natural gas being burned off on an oil production platform in the North Sea. Carbon dioxide and water vapour are the main combustion products. Extracting and burning hydrocarbons pumps carbon from a rock reservoir into the atmosphere. (Varodrig)", - "# Atmospheric Carbon Dioxide Concentration\r\nAtmospheric carbon dioxide concentration over the last 300 years, based on air samples from ice cores and, since 1958, direct measurements from Mauna Loa Observatory, Hawaii. Carbon dioxide has been accumulating in the atmosphere since the Industrial Revolution, its concentration increasing rapidly in the second half of the twentieth century. (source: Scripps Institute of Oceanography)", - "The molecular structure of carbon dioxide and methane molecules allows them to absorb infrared radiation. Heat is absorbed by a molecule if the atoms inside can vibrate at the frequency of infrared radiation. More complex molecules have more vibrational modes, so more opportunities to absorb heat, making them more powerful greenhouse gases. A methane molecule, with one carbon atom (grey) bound to four hydrogen atoms (red), can absorb more heat than a carbon dioxide molecule, with one carbon atom bound to two oxygen atoms (blue). A chlorofluorocarbon like CFC-113 (green and yellow) has even more bonds, making it a very powerful greenhouse gas. (Planetary Visions)", - "# Atmospheric Carbon Dioxide as a Function of Time and Latitude\r\nThe data surface shows the natural annual cycle of carbon dioxide uptake and release, which is particularly strong in the northern hemisphere, as well as a gradual increase over the years resulting from human activity. Data derived from the SCIAMACHY sensor on Envisat. (ESA-CCI)" + "Aardgas dat wordt afgefakkeld op een olieproductieplatform in de Noordzee. Kooldioxide en waterdamp zijn de belangrijkste verbrandingsproducten. Bij de winning en verbranding van koolwaterstoffen komt koolstof uit een rotsreservoir in de atmosfeer terecht. (Varodrig)", + "# Atmosferische kooldioxideconcentratie\r\nKooldioxideconcentratie in de atmosfeer over de afgelopen 300 jaar, gebaseerd op luchtmonsters uit ijskernen en, sinds 1958, directe metingen van het Mauna Loa Observatorium, Hawaii. Koolstofdioxide heeft zich sinds de industriële revolutie in de atmosfeer opgehoopt, waarbij de concentratie in de tweede helft van de twintigste eeuw snel toenam. (bron: Scripps Institute of Oceanography)", + "De moleculaire structuur van kooldioxide- en methaanmoleculen maakt het mogelijk infrarode straling te absorberen. Warmte wordt door een molecuul geabsorbeerd als de atomen binnenin kunnen vibreren op de frequentie van infrarode straling. Complexere moleculen hebben meer trillingswijzen en dus meer mogelijkheden om warmte te absorberen, waardoor ze sterkere broeikasgassen zijn. Een methaanmolecuul, met één koolstofatoom (grijs) gebonden aan vier waterstofatomen (rood), kan meer warmte absorberen dan een kooldioxidemolecuul, met één koolstofatoom gebonden aan twee zuurstofatomen (blauw). Een chloorfluorkoolstof zoals CFK-113 (groen en geel) heeft nog meer bindingen, waardoor het een zeer krachtig broeikasgas is. (Planetaire Visies)", + "# Atmosferische kooldioxide als functie van tijd en breedtegraad\r\nHet gegevensoppervlak toont de natuurlijke jaarlijkse cyclus van koolstofdioxide-opname en -afgifte, die bijzonder sterk is op het noordelijk halfrond, evenals een geleidelijke toename in de loop der jaren als gevolg van menselijke activiteit. Gegevens afkomstig van de SCIAMACHY-sensor op Envisat. (ESA-CCI)" ], "imageFits": [ "contain", @@ -35,8 +35,8 @@ }, { "type": "globe", - "text": "## The Fast Carbon Cycle\r\n\r\nPlants take up carbon dioxide from the atmosphere by photosynthesis as they grow in spring and summer, and return some of it when their leaves die back in autumn and winter. Carbon is also returned to the atmosphere by animals eating plants and breathing out carbon dioxide. The cycling of carbon through living things is known as the fast carbon cycle.\r\n\r\nThis seasonal growth cycle can be seen in the atmospheric carbon dioxide levels shown on the interactive globe: a peak is reached at the end of the northern winter, before rapidly-growing plants start absorbing carbon dioxide again in the spring. Atmospheric carbon varies most in the northern hemisphere because it has more land, and therefore more plants, than the southern hemisphere. On top of the seasonal cycle there is a clear increase in atmospheric carbon dioxide from year to year – a sign that the carbon cycle is out of balance, mainly due to the burning of fossil fuels.\r\n \r\n## Carbon and the Land \r\n\r\n[Changes in land use and land cover](stories/story-28/3) are also altering the carbon cycle. The clearing of tropical forests for agriculture has the double effect of adding large amounts of carbon dioxide to the atmosphere from fires, while also removing the trees that absorb and store carbon while they are alive. \r\n\r\nAround the Arctic, elevated air temperatures are thawing out large areas of [permafrost](stories/story-15/5). This exposes carbon in the soil to decomposition and could potentially release into the atmosphere vast amounts of methane. As northern latitudes thaw and dry out, vast areas of forest, bush and peat are newly exposed to the risk of [wildfires](stories/story-28/1). Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", - "shortText": "## The Fast Carbon Cycle \r\n\r\nCycling of carbon through living things is known as the fast carbon cycle.\r\n\r\n- Plants take up CO2 from the atmosphere by photosynthesis as they grow in spring and summer.\r\n- Some returned when leaves die and by animals eating plants and breathing out carbon dioxide. \r\n- Atmospheric CO2 peaks at the end of the northern winter.\r\n- Rapidly-growing plants start absorbing CO2 in the spring. \r\n- Atmospheric carbon varies most in the northern hemisphere (more land, therefore more plants).\r\n- Year-to-year increase in CO2 shows the carbon cycle is out of balance (mainly from fossil fuel burning).\r\n\r\n## Carbon and the Land\r\n\r\n- Changes in land use and land cover also alter the carbon cycle. \r\n- Tropical forest clearance releases large amounts of CO2 by fire and removes trees that absorb and store carbon. \r\n- Thawing permafrost releases soil carbon by decomposition and potentially vast amounts of methane. \r\n- Warming and drying of northern lands exposes vast areas of forest, bush and peat to the risk of wildfires. \r\n- Fire is a key component of the carbon cycle, taking carbon from the biosphere into the atmosphere.", + "text": "## The Fast Carbon Cycle\r\n\r\nPlanten nemen kooldioxide op uit de atmosfeer door fotosynthese als ze groeien in de lente en de zomer, en geven een deel weer terug als hun bladeren afsterven in de herfst en de winter. Koolstof wordt ook teruggevoerd in de atmosfeer door dieren die planten eten en kooldioxide uitademen. De kringloop van koolstof door levende wezens staat bekend als de snelle koolstofcyclus.\r\n\r\nDeze seizoensgebonden groeicyclus is te zien aan de kooldioxideconcentraties in de atmosfeer op de interactieve wereldbol: aan het eind van de noordelijke winter wordt een piek bereikt, voordat snelgroeiende planten in het voorjaar weer kooldioxide beginnen te absorberen. De koolstofconcentratie in de atmosfeer varieert het sterkst op het noordelijk halfrond, omdat daar meer land en dus meer planten voorkomen dan op het zuidelijk halfrond. Bovenop de seizoensgebonden cyclus is er van jaar tot jaar een duidelijke stijging van het kooldioxidegehalte in de atmosfeer - een teken dat de koolstofcyclus uit balans is, voornamelijk als gevolg van de verbranding van fossiele brandstoffen.\r\n \r\n## Koolstof en het land\r\n\r\n[Veranderingen in landgebruik en bodembedekking](stories/story-28/3) veranderen ook de koolstofcyclus. Het kappen van tropische bossen voor landbouw heeft het dubbele effect dat grote hoeveelheden koolstofdioxide door branden aan de atmosfeer worden toegevoegd, terwijl ook de bomen worden verwijderd die koolstof absorberen en opslaan terwijl ze leven.\r\n\r\nRond de Noordpool ontdooien door de hoge luchttemperaturen grote gebieden [permafrost](stories/story-15/5). Hierdoor wordt koolstof in de bodem blootgesteld aan ontbinding en kunnen enorme hoeveelheden methaan vrijkomen in de atmosfeer. Naarmate de noordelijke breedtegraden ontdooien en uitdrogen, worden uitgestrekte gebieden met bos, struikgewas en veen blootgesteld aan het risico van [natuurbranden](verhalen/story-28/1). Vuur is een belangrijk onderdeel van de koolstofcyclus, die koolstof uit de biosfeer in de atmosfeer brengt.", + "shortText": "## The Fast Carbon Cycle\r\n\r\nDe cyclus van koolstof door levende wezens staat bekend als de snelle koolstofcyclus.\r\n\r\n- Planten nemen CO2 op uit de atmosfeer door fotosynthese als ze groeien in de lente en de zomer.\r\n- Een deel komt terug als bladeren afsterven en door dieren die planten eten en kooldioxide uitademen.\r\n- Atmosferische CO2 piekt aan het eind van de noordelijke winter.\r\n- Snelgroeiende planten beginnen in het voorjaar CO2 te absorberen.\r\n- Atmosferische koolstof varieert het meest op het noordelijk halfrond (meer land, dus meer planten).\r\n- De jaarlijkse toename van CO2 toont aan dat de koolstofcyclus uit balans is (voornamelijk door de verbranding van fossiele brandstoffen).\r\n\r\n## Koolstof en het land\r\n\r\n- Veranderingen in landgebruik en bodembedekking veranderen ook de koolstofcyclus.\r\n- Bij het kappen van tropische bossen komen grote hoeveelheden CO2 vrij door brand en worden bomen verwijderd die koolstof absorberen en opslaan.\r\n- Bij het ontdooien van permafrost komt door ontbinding koolstof in de bodem vrij en mogelijk ook grote hoeveelheden methaan.\r\n- Door de opwarming en uitdroging van de noordelijke gebieden worden uitgestrekte bos-, struik- en veengebieden blootgesteld aan het risico van bosbranden.\r\n- Vuur is een belangrijk onderdeel van de koolstofcyclus, waarbij koolstof uit de biosfeer in de atmosfeer terechtkomt.", "imageFits": [ "contain", "contain", @@ -62,12 +62,12 @@ "timestamp": "2007-12-06T00:00:00.000Z" } ], - "layerDescription": "# CCI Atmospheric Carbon Dioxide Concentration" + "layerDescription": "# CCI Atmosferische Kooldioxide Concentratie" }, { "type": "video", - "text": "## The Slow Carbon Cycle\r\n\r\nCarbon is exchanged between the atmosphere and the ocean at the sea surface. Carbon dioxide is dissolved in sea water but also [absorbed by ocean plants](stories/story-31/3) – phytoplankton – which use chlorophyll to perform photosynthesis in the same way as plants on land. Some carbon dioxide is quickly released back to the atmosphere, so the oceans play a part in the fast carbon cycle, but some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle. \r\n\r\nOceanic lifeforms from phytoplankton to coral, crustaceans and whales absorb carbon as they grow and take some of it to the sea floor when they die. Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store. Under certain conditions layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas. \r\n\r\nThe slow cycle eventually returns carbon to the atmosphere through geological processes. Carbon dioxide is expelled from rocks under extreme heat and pressure and vented to the atmosphere in volcanic eruptions. From the atmosphere, carbon can return to the surface dissolved in rainwater as weak carbonic acid, where it plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", - "shortText": "## The Slow Carbon Cycle\r\n\r\n- CO2 is dissolved in sea water but also absorbed by ocean plants – phytoplankton.\r\n- Some is mixed into the deep ocean, where it stays for centuries as part of the slow carbon cycle.\r\n\r\n- Oceanic lifeforms absorb carbon as they grow and take some of it to the sea floor when they die.\r\n- Here, carbon is locked up in sedimentary rock, Earth’s largest carbon store.\r\n- Layers of organic carbon can build up into fossil fuel deposits – coal, oil or natural gas.\r\n\r\n- The slow cycle eventually returns carbon to the atmosphere through geological processes.\r\n- CO2 is expelled from rocks and vented into the atmosphere during volcanic eruptions.\r\n- Carbon returns to the surface dissolved in rainwater as weak carbonic acid.\r\n- It then plays a role in the chemical weathering of rocks and the delivery of minerals and salts to the sea.", + "text": "## The Slow Carbon Cycle\r\n\r\nKoolstof wordt aan het zeeoppervlak uitgewisseld tussen de atmosfeer en de oceaan. Koolstofdioxide wordt opgelost in zeewater, maar ook [geabsorbeerd door oceaanplanten](verhalen/verhaal-31/3) - fytoplankton - die chlorofyl gebruiken om fotosynthese uit te voeren op dezelfde manier als planten op het land. Een deel van de kooldioxide wordt snel weer afgegeven aan de atmosfeer, zodat de oceanen een rol spelen in de snelle koolstofcyclus, maar een deel wordt gemengd in de diepe oceaan, waar het eeuwenlang blijft als onderdeel van de langzame koolstofcyclus.\r\n\r\nOceaanorganismen, van fytoplankton tot koraal, schaaldieren en walvissen, nemen koolstof op wanneer ze groeien en nemen een deel ervan mee naar de zeebodem wanneer ze sterven. Hier wordt koolstof opgesloten in sedimentair gesteente, de grootste koolstofopslagplaats op aarde. Onder bepaalde omstandigheden kunnen lagen van organische koolstof zich ophopen tot afzettingen van fossiele brandstoffen - steenkool, olie of aardgas.\r\n\r\nDe langzame cyclus brengt uiteindelijk koolstof terug in de atmosfeer via geologische processen. Koolstofdioxide wordt onder extreme hitte en druk uit rotsen gedreven en bij vulkaanuitbarstingen in de atmosfeer gebracht. Vanuit de atmosfeer kan koolstof als zwak koolzuur opgelost in regenwater terugkeren naar de oppervlakte, waar het een rol speelt bij de chemische verwering van rotsen en de afvoer van mineralen en zouten naar de zee.", + "shortText": "## The Slow Carbon Cycle\r\n\r\n- CO2 wordt opgelost in zeewater, maar ook geabsorbeerd door oceaanplanten - fytoplankton.\r\n- Een deel wordt in de diepe oceaan gemengd, waar het eeuwenlang blijft als onderdeel van de langzame koolstofcyclus.\r\n\r\n- Oceaanorganismen nemen koolstof op wanneer ze groeien en nemen een deel ervan mee naar de zeebodem wanneer ze sterven.\r\n- Hier wordt koolstof opgesloten in sedimentair gesteente, de grootste koolstofopslagplaats op aarde.\r\n- Lagen van organische koolstof kunnen zich ophopen tot afzettingen van fossiele brandstoffen - steenkool, olie of aardgas.\r\n\r\n- De langzame cyclus brengt uiteindelijk koolstof terug in de atmosfeer via geologische processen.\r\n- Bij vulkaanuitbarstingen wordt CO2 uit rotsen verdreven en in de atmosfeer gebracht.\r\n- Koolstof keert terug naar de oppervlakte, opgelost in regenwater als zwak koolzuur.\r\n- Het speelt dan een rol bij de chemische verwering van rotsen en de afgifte van mineralen en zouten aan de zee.", "imageFits": [ "contain", "contain", @@ -79,17 +79,17 @@ }, { "type": "image", - "text": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. As we extract and burn coal, oil and natural gas, we are effectively short-circuiting the slow carbon cycle, and hugely accelerating the delivery of carbon into the atmosphere. Each year, humans emit 100-300 times more carbon dioxide from burning fossil fuels than the slow carbon cycle emits from volcanoes.\r\n\r\nThe land and the ocean have absorbed some of this excess carbon dioxide, but atmospheric carbon dioxide has still increased by 30% in the last 150 years – enough to significantly enhance the greenhouse effect and change the climate. Since 1970, our carbon dioxide emissions have increased by 90%. Global daily average atmospheric carbon dioxide reached 400 parts per million in 2013 and has remained above this level since 2016. There is more carbon dioxide in the atmosphere now than at any time in the last 2.6 million years. The resulting boost to the greenhouse effect has increased global average [land temperature](stories/story-27/1) by about one degree Celsius over the last century, and [climate models](stories/story-31/0) predict it will rise 2 to 4 degrees Celsius above pre-industrial levels by the end of this century.", - "shortText": "## Human Intervention\r\n\r\nHuman activity, primarily the burning of fossil fuels, has increased the amount of carbon in the atmosphere above its natural level. \r\n\r\n- Extracting and burning coal, oil and natural gas, short-circuits the slow carbon cycle, hugely accelerating the delivery of carbon into the atmosphere. \r\n- Each year, 100-300 times more CO2 from burning fossil fuels than from volcanoes.\r\n- Land and ocean absorb some of the excess CO2.\r\n- But still 30% increase in atmospheric CO2 in the last 150 years.\r\n- 90% increase in CO2 emissions since 1970.\r\n- Atmospheric CO2 has been above 400 parts per million since 2016. \r\n- Higher now than at any time in the last 2.6 million years. \r\n- 1 °C increase in average land temperature over the last century.\r\n- 2 to 4 °C above pre-industrial levels forecast by 2100.", + "text": "## Human Intervention\r\n\r\nMenselijke activiteit, voornamelijk het verbranden van fossiele brandstoffen, heeft de hoeveelheid koolstof in de atmosfeer verhoogd tot boven het natuurlijke niveau. Door het winnen en verbranden van steenkool, olie en aardgas kortsluiten we de langzame koolstofcyclus en versnellen we de opname van koolstof in de atmosfeer. Elk jaar stoten mensen 100-300 keer meer koolstofdioxide uit door het verbranden van fossiele brandstoffen dan de langzame koolstofcyclus door vulkanen uitstoot.\r\n\r\nHet land en de oceaan hebben een deel van deze overtollige koolstofdioxide geabsorbeerd, maar de atmosferische koolstofdioxide is in de afgelopen 150 jaar nog steeds met 30% toegenomen - genoeg om het broeikaseffect aanzienlijk te versterken en het klimaat te veranderen. Sinds 1970 is onze uitstoot van kooldioxide met 90% toegenomen. Het mondiale daggemiddelde van de kooldioxide in de atmosfeer bereikte in 2013 400 delen per miljoen en is sinds 2016 boven dit niveau gebleven. Er is nu meer kooldioxide in de atmosfeer dan op enig ander moment in de afgelopen 2,6 miljoen jaar. De resulterende versterking van het broeikaseffect heeft de wereldwijde gemiddelde [landtemperatuur](verhalen/verhaal-27/1) in de afgelopen eeuw met ongeveer één graad Celsius doen stijgen, en [klimaatmodellen](verhalen/verhaal-31/0) voorspellen dat deze tegen het einde van deze eeuw 2 tot 4 graden Celsius boven het pre-industriële niveau zal liggen.", + "shortText": "## Human Intervention\r\n\r\nMenselijke activiteit, voornamelijk de verbranding van fossiele brandstoffen, heeft de hoeveelheid koolstof in de atmosfeer tot boven het natuurlijke niveau doen stijgen.\r\n\r\n- Het winnen en verbranden van steenkool, olie en aardgas zorgt voor een kortsluiting in de trage koolstofcyclus, waardoor de koolstof veel sneller in de atmosfeer terechtkomt.\r\n- Elk jaar komt er 100-300 keer meer CO2 vrij door het verbranden van fossiele brandstoffen dan door vulkanen.\r\n- Land en oceanen absorberen een deel van de overtollige CO2.\r\n- Maar nog steeds 30% stijging van atmosferische CO2 in de laatste 150 jaar.\r\n- 90% toename van CO2-uitstoot sinds 1970.\r\n- Atmosferische CO2 is sinds 2016 boven de 400 delen per miljoen.\r\n- Hoger dan op enig moment in de laatste 2,6 miljoen jaar.\r\n- 1 °C stijging van de gemiddelde landtemperatuur in de afgelopen eeuw.\r\n- 2 tot 4 °C boven pre-industriële niveaus voorspeld tegen 2100.", "images": [ "assets/intro_large_13.jpg", "assets/ghg_large_18.jpg", "assets/intro_large_15.png" ], "imageCaptions": [ - "On a clear night light shines out from urban areas across western Europe, painting a portrait of an energy-hungry society. Photograph taken by ESA astronaut Alexander Gerst from the International Space Station on July 26 2014. (ESA/NASA)", - "Deforestation in the state of Rondônia in western Brazil, as imaged by ESA’s Proba-V minisatellite. The brown colours indicate deforested areas – note the distinctive ‘fishbone’ pattern as main roads are cut through an area, followed by secondary roads for further clearing. Agricultural activities including deforestation are the second-largest source of greenhouse gases, after fossil fuels. (ESA/VITO)", - "# Atmospheric Carbon Dioxide over the Last 800,000 Years\r\nCarbon dioxide concentration based on air samples from ice cores at Vostok Station, Antarctica, and since 1958, direct measurements from Mauna Loa Observatory, Hawaii. The present concentration of over 400 parts per million is thought to be higher than it has been for many millions of years. (data source: Scripps Institute of Oceanography)" + "Op een heldere nacht schijnt licht uit stedelijke gebieden in heel West-Europa, en schetst een portret van een energieverslindende samenleving. Foto genomen door ESA-astronaut Alexander Gerst vanuit het Internationaal ruimtestation op 26 juli 2014. (ESA/NASA)", + "Ontbossing in de deelstaat Rondônia in het westen van Brazilië, in beeld gebracht door de Proba-V minisatelliet van ESA. De bruine kleuren geven ontboste gebieden aan - let op het kenmerkende 'visgraat'-patroon wanneer hoofdwegen door een gebied worden aangelegd, gevolgd door secundaire wegen voor verdere ontbossing. Landbouwactiviteiten, waaronder ontbossing, zijn na fossiele brandstoffen de grootste bron van broeikasgassen. (ESA/VITO)", + "# Atmosferische kooldioxide gedurende de laatste 800.000 jaar\r\nKooldioxideconcentratie gebaseerd op luchtmonsters uit ijskernen in Vostok Station, Antarctica, en sinds 1958, directe metingen van Mauna Loa Observatory, Hawaii. De huidige concentratie van meer dan 400 deeltjes per miljoen wordt geacht hoger te zijn dan zij in vele miljoenen jaren is geweest. (gegevensbron: Scripps Institute of Oceanography)" ], "imageFits": [ "contain", @@ -101,8 +101,8 @@ }, { "type": "video", - "text": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. The European Space Agency’s Envisat, launched in 2002, carried one of the first sensors that measure concentrations of carbon dioxide and methane near the surface. The Japanese satellite GOSAT followed in 2009. Future satellite sensors will allow us to detect smaller sources of greenhouse gases.\r\n\r\nESA’s [Climate Change Initiative](stories/story-32/3) is also tracking carbon through its cycle on land and in the ocean. Land cover and biomass maps allow us to determine the amount of carbon stored in plants on land; ocean colour measurements show phytoplankton, giving an idea of how much carbon is being taken up by these ocean plants.\r\n\r\nClimate scientists are using this information to improve our understanding of the carbon cycle and its representation in their climate models. Improved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", - "shortText": "## Tracking Carbon from Space\r\n\r\nData collected by satellites allow us to see how greenhouse gases are varying across the globe. \r\n\r\n- 2002: ESA’s Envisat carried one of the first sensors to measure CO2 and methane near the surface. \r\n- 2009: Japanese satellite GOSAT followed. \r\n- Future satellites will allow us to detect smaller sources of greenhouse gases.\r\n- ESA’s Climate Change Initiative is also tracking carbon through its cycle on land and in the ocean. \r\n- Land cover and biomass maps give the amount of carbon stored in plants on land.\r\n- Ocean colour maps show phytoplankton, giving the carbon taken up by ocean plants.\r\n- This improves understanding of the carbon cycle and its representation in climate models. \r\n\r\nImproved climate projections will help decision-makers work out how we can manage our carbon emissions and restore balance to the carbon cycle.", + "text": "## Tracking Carbon from Space\r\n\r\nAan de hand van gegevens die door satellieten zijn verzameld, kunnen we zien hoe de broeikasgassen over de hele wereld variëren. Envisat van het Europees Ruimteagentschap, gelanceerd in 2002, droeg een van de eerste sensoren die de concentraties van koolstofdioxide en methaan aan het oppervlak meten. De Japanse satelliet GOSAT volgde in 2009. Toekomstige satellietsensoren zullen ons in staat stellen kleinere bronnen van broeikasgassen op te sporen.\r\n\r\nESA's [Climate Change Initiative](stories/story-32/3) volgt ook koolstof gedurende zijn hele cyclus op het land en in de oceaan. Met kaarten van landbedekking en biomassa kunnen we de hoeveelheid koolstof bepalen die is opgeslagen in planten op het land; kleurmetingen van de oceaan tonen fytoplankton, wat een idee geeft van de hoeveelheid koolstof die door deze oceaanplanten wordt opgenomen.\r\n\r\nKlimaatwetenschappers gebruiken deze informatie om ons begrip van de koolstofcyclus en de weergave daarvan in hun klimaatmodellen te verbeteren. Verbeterde klimaatprognoses zullen beleidsmakers helpen uit te werken hoe we onze koolstofuitstoot kunnen beheren en het evenwicht in de koolstofcyclus kunnen herstellen.", + "shortText": "## Tracking Carbon from Space\r\n\r\nAan de hand van door satellieten verzamelde gegevens kunnen we zien hoe de broeikasgassen zich over de hele wereld ontwikkelen.\r\n\r\n- 2002: ESA's Envisat droeg een van de eerste sensoren om CO2 en methaan aan het oppervlak te meten.\r\n- 2009: De Japanse satelliet GOSAT volgde.\r\n- Toekomstige satellieten zullen ons in staat stellen kleinere bronnen van broeikasgassen op te sporen.\r\n- Het ESA Climate Change Initiative volgt ook de koolstofcyclus op het land en in de oceaan.\r\n- Landbedekking en biomassakaarten geven de hoeveelheid koolstof aan die is opgeslagen in planten op het land.\r\n- Kaarten van de kleur van de oceaan tonen het fytoplankton, wat aangeeft hoeveel koolstof door oceaanplanten wordt opgenomen.\r\n- Dit verbetert het begrip van de koolstofcyclus en de weergave daarvan in klimaatmodellen.\r\n\r\nBetere klimaatprognoses zullen beleidsmakers helpen uit te werken hoe we onze koolstofuitstoot kunnen beheren en het evenwicht in de koolstofcyclus kunnen herstellen.", "imageFits": [ "contain", "contain",