From 60f8f97653beb94e6c1dc4959fa309aa2fde1b04 Mon Sep 17 00:00:00 2001 From: ubilabs CI bot <35459088+ubilabs-ci@users.noreply.github.com> Date: Thu, 26 Aug 2021 17:06:51 +0200 Subject: [PATCH] feat(stories): update story: story-26 (#955) * Auto content commit for story id: story-26 * Auto content commit for story id: story-26 Co-authored-by: StoryMapper --- storage/stories/story-26/story-26-de.json | 88 +++++++++++++++-------- storage/stories/story-26/story-26-en.json | 28 ++++++++ storage/stories/story-26/story-26-es.json | 88 +++++++++++++++-------- storage/stories/story-26/story-26-fr.json | 88 +++++++++++++++-------- storage/stories/story-26/story-26-nl.json | 88 +++++++++++++++-------- 5 files changed, 260 insertions(+), 120 deletions(-) diff --git a/storage/stories/story-26/story-26-de.json b/storage/stories/story-26/story-26-de.json index 92e9e7a6e..31cf82600 100644 --- a/storage/stories/story-26/story-26-de.json +++ b/storage/stories/story-26/story-26-de.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", - "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", + "text": "# Taking the Pulse of the Planet\r\n\r\nSatelliten bieten eine einzigartige globale Perspektive auf das Klima der Erde. Sie liefern uns nun mehr als drei Jahrzehnte an Beobachtungen, die einige der wichtigsten Klimavariablen beschreiben. Diese Informationen sind eine nützliche Ressource sowohl für die Erstellung von Klimamodellen als auch für die Überprüfung ihrer Genauigkeit.", + "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatelliten bieten eine einzigartige globale Perspektive auf das Klima der Erde. Sie liefern uns nun mehr als drei Jahrzehnte an Beobachtungen, die einige der wichtigsten Klimavariablen beschreiben. Diese Informationen sind eine nützliche Ressource sowohl für die Erstellung von Klimamodellen als auch für die Überprüfung ihrer Genauigkeit.", "images": [ "assets/Sentinel-2.jpg" ] }, { "type": "image", - "text": "## A Blue Marble\r\n\r\nWhen the crew of Apollo 17 looked back at their home planet in 1972, they photographed an entirely sunlit Earth for the first time. It was also the last time that humans were far enough away from home to see the whole planet for themselves. That view of a ‘blue marble’ hanging in space has become a familiar sight and is possibly the most reproduced photo in history.\r\n\r\nThe blue water of the seas and oceans dominates the picture. But if we take a closer look, we can distinguish many more colours. For instance, we can see the yellow sand of the Sahara Desert, the dark green of tropical rainforests, and the white of clouds over the oceans and ice and snow covering Antarctica.\r\n\r\nToday, Earth observation satellites take daily blue marble images that reveal a wealth of detail about our changing planet. They have become an essential tool to monitor climate at both local and global scales. They are particularly useful for monitoring inaccessible areas, such as the oceans, tropical rainforests and the polar regions, which are among the areas that are most vulnerable to climate change and most under threat.\r\n \r\nThese ‘remote sensors’ can see [ice expanding and contracting](stories/story-15/3) at the poles, monitor [glaciers](stories/story-21/6) and [fires](stories/story-28/1), track clouds and aerosols moving through the [atmosphere](stories/story-21/4), and measure how [nutrients and temperatures](stories/story-16/4) are changing across the oceans. The first operational remote sensing missions were in the late 1970s so, for many components of the climate system, we now have observations spanning more than thirty years – long enough to see what global warming is doing to our planet.", - "shortText": "## A Blue Marble\r\n\r\nFirst fully-sunlit photo of Earth – _Apollo 17, 1972_\r\n\r\n- 1960: first weather satellite– TIROS-1\r\n- 1972: Earth Resources Technology Satellite – Landsat-1 \r\n- 1991: European Remote Sensing satellite – ERS-1\r\n- today: daily ‘blue marble’ images from a fleet of satellites\r\n- unique overview of inaccessible regions – oceans, rainforests, polar regions\r\n- Earth observations spanning more than 30 years\r\n- long enough to see what global warming is doing to our planet", + "text": "## Eine blaue Murmel\r\n\r\nAls die Besatzung von Apollo 17 1972 auf ihren Heimatplaneten zurückblickte, fotografierten sie zum ersten Mal eine völlig sonnenbeschienene Erde. Es war auch das letzte Mal, dass Menschen weit genug von ihrer Heimat entfernt waren, um den ganzen Planeten mit eigenen Augen zu sehen. Dieser Anblick einer \"blauen Murmel\", die im Weltraum hängt, ist zu einem vertrauten Anblick geworden und ist möglicherweise das am häufigsten reproduzierte Foto der Geschichte.\r\n\r\nDas blaue Wasser der Meere und Ozeane dominiert das Bild. Aber wenn wir genauer hinsehen, können wir viele weitere Farben erkennen. Wir sehen zum Beispiel den gelben Sand der Sahara-Wüste, das dunkle Grün der tropischen Regenwälder, das Weiß der Wolken über den Ozeanen und das Eis und den Schnee, die die Antarktis bedecken.\r\n\r\nHeute nehmen Erdbeobachtungssatelliten täglich Bilder von der blauen Murmel auf, die eine Fülle von Details über unseren sich verändernden Planeten offenbaren. Sie sind zu einem unverzichtbaren Instrument für die Überwachung des Klimas sowohl auf lokaler als auch auf globaler Ebene geworden. Sie sind besonders nützlich für die Überwachung unzugänglicher Gebiete wie der Ozeane, der tropischen Regenwälder und der Polarregionen, die zu den Gebieten gehören, die am stärksten vom Klimawandel betroffen und bedroht sind.\r\n \r\nDiese \"Fernsensoren\" können [Eis, das sich ausdehnt und schrumpft](stories/story-15/3) an den Polen sehen, [Gletscher](stories/story-21/6) und [Brände](stories/story-28/1) überwachen, Wolken und Aerosole verfolgen, die sich durch die [Atmosphäre](stories/story-21/4) bewegen, und messen, wie sich [Nährstoffe und Temperaturen](stories/story-16/4) in den Ozeanen verändern. Die ersten operativen Fernerkundungsmissionen fanden Ende der 1970er Jahre statt, so dass wir heute für viele Komponenten des Klimasystems Beobachtungen über einen Zeitraum von mehr als dreißig Jahren haben - lange genug, um zu sehen, wie sich die globale Erwärmung auf unseren Planeten auswirkt.", + "shortText": "## Eine blaue Murmel\r\n\r\nErstes vollständig von der Sonne beschienenes Foto der Erde - _Apollo 17, 1972_\r\n\r\n- 1960: Erster Wettersatellit - TIROS-1\r\n- 1972: Erdressourcen-Technologie-Satellit - Landsat-1\r\n- 1991: Europäischer Fernerkundungssatellit - ERS-1\r\n- heute: tägliche \"Blue Marble\"-Bilder von einer Flotte von Satelliten\r\n- einzigartiger Überblick über unzugängliche Regionen - Ozeane, Regenwälder, Polarregionen\r\n- Erdbeobachtungen über einen Zeitraum von mehr als 30 Jahren\r\n- lange genug, um zu sehen, was die globale Erwärmung mit unserem Planeten macht", "images": [ "assets/cloud_large_01.jpg", "assets/story26-image10.jpg", @@ -21,17 +21,24 @@ "assets/intro_large_09.jpg" ], "imageCaptions": [ - "Photograph of the Earth taken by the Apollo 17 crew in 1972 (NASA)", - "The first image taken by the experimental weather satellite TIROS-1 in April 1960 (NASA)", - "Europe's first weather satellite, Meteosat-1, was launched in November 1977 (ESA)", - "The first image from the the European Remote Sensing satellite (ERS-1) showed the Flevoland polder and the Ijsselmeer in the Netherlands on 27 July 1991 (ESA)", - "Data from three generations of radar satellites shows the retreat of two large glaciers in southeast Greenland over 36 years (ESA)" + "Foto der Erde, aufgenommen von der Apollo-17-Besatzung im Jahr 1972 (NASA)", + "Das erste Bild, das der experimentelle Wettersatellit TIROS-1 im April 1960 aufnahm (NASA)", + "Der erste europäische Wettersatellit, Meteosat-1, wurde im November 1977 gestartet (ESA)", + "Das erste Bild des europäischen Fernerkundungssatelliten (ERS-1) zeigt den Polder Flevoland und das Ijsselmeer in den Niederlanden am 27. Juli 1991 (ESA)", + "Daten von drei Generationen von Radarsatelliten zeigen den Rückgang von zwei großen Gletschern in Südostgrönland über 36 Jahre (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Satellite Orbits\r\n\r\nSatellite technology is part of our everyday life: it is the backbone of the navigation systems in our cars, it delivers telephone and television signals and is a keystone of the daily weather forecast we watch on TV. These applications take advantage of the different orbits that are possible for spacecraft circling the Earth. A remote sensing system needs a _sensor_ (the camera) and a _platform_ (in this case, the satellite). Different sorts of cameras can be combined with satellites in different orbits in various ways, depending on what we want to find out. \r\n\r\n## Geostationary Orbit\r\n\r\nMost weather forecast images are taken by a camera on a satellite flying in orbit 36,000 km above the Earth. Satellites like these are referred to as geostationary satellites. They move around the Earth at the same rate as the planet rotates so they are always above the same point; they always see the same side of the Earth. This path, called a geostationary equatorial orbit (GEO), allows the camera to take many pictures of the same location every day so meteorologists can track how weather systems develop. Geostationary orbits are also used by most telecommunications and TV broadcast satellites. \r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Meteosat is in a geostationary orbit and Sentinel-5P in a polar orbit (Planetary Visions)_\r\n\r\n## Polar Orbit\r\n\r\nNot all satellites are geostationary. Others can look at the entire globe by travelling from pole to pole. These polar-orbiting satellites are in a low Earth orbit (LEO) at an altitude of about 700 km. Polar-orbiting satellites typically take about a hundred minutes to go around the globe and their path crosses the equator about fourteen times a day. Most polar-orbiting satellites follow a very specific path called a sun-synchronous orbit. Their orbit doesn’t go right over the poles but is slightly tilted. As a result, they pass over a particular point on the equator at approximately the same local time each day. \r\n\r\nThe cameras on Sun-synchronous polar-orbiting satellites can take only one picture per day of most places on Earth. However, the images are more detailed than those taken from geostationary satellites because the camera is much closer to the Earth. Another advantage of using a Sun-synchronous orbit is that, because all the images of a certain place are taken at the same time of day, the pictures are not affected by the changes in light intensity and direction that happen naturally over the course of a day. This makes it possible to see other changes accurately, something that is essential for observing climate and measuring quantities known as essential climate variables (ECVs). ECVs give an indication of the health of our planet, in the same way that taking your pulse can tell a doctor about your health.", - "shortText": "## Satellite Orbits\r\n\r\nSatellite technology is part of everyday life: satnav, communications, weather forecasts. Sensors, platforms and orbits can be combined in various ways.\r\n\r\nGeostationary Equatorial Orbit (GEO)\r\n\r\n- 36,000 km above surface, 24 hour orbit\r\n- Equatorial, geosynchronous orbit\r\n- fixed view of one hemisphere\r\n- low resolution, rapid repeat view\r\n\r\nLow Earth Obit (LEO)\r\n\r\n- 700-800 km above surface, 100 minute orbit\r\n- pole-to-pole, Sun-synchronous orbit\r\n- covers whole world, at same local time of day\r\n- high resolution, daily (or less) repeat view\r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Geostationary and polar orbits (Planetary Visions)_", + "text": "## Satellitenumlaufbahnen\r\n\r\nDie Satellitentechnologie ist Teil unseres Alltags: Sie ist das Rückgrat der Navigationssysteme in unseren Autos, sie überträgt Telefon- und Fernsehsignale und ist ein Grundpfeiler der täglichen Wettervorhersage, die wir im Fernsehen verfolgen. Diese Anwendungen machen sich die verschiedenen Umlaufbahnen zunutze, die für Raumfahrzeuge um die Erde möglich sind. Ein Fernerkundungssystem benötigt einen _Sensor_ (die Kamera) und eine _Plattform_ (in diesem Fall den Satelliten). Verschiedene Arten von Kameras können auf unterschiedliche Weise mit Satelliten in verschiedenen Umlaufbahnen kombiniert werden, je nachdem, was wir herausfinden wollen.\r\n\r\n## Geostationäre Umlaufbahn\r\n\r\nDie meisten Wettervorhersagebilder werden von einer Kamera auf einem Satelliten aufgenommen, der in einer Umlaufbahn in 36.000 km Höhe über der Erde fliegt. Satelliten wie diese werden als geostationäre Satelliten bezeichnet. Sie bewegen sich im gleichen Rhythmus um die Erde, wie sich der Planet dreht, so dass sie sich immer über demselben Punkt befinden und immer dieselbe Seite der Erde sehen. Auf diesem Weg, der als geostationäre äquatoriale Umlaufbahn (GEO) bezeichnet wird, kann die Kamera jeden Tag viele Bilder vom selben Ort aufnehmen, so dass Meteorologen die Entwicklung der Wettersysteme verfolgen können. Geostationäre Umlaufbahnen werden auch von den meisten Telekommunikations- und Fernsehsatelliten genutzt.\r\n\r\n![Geostationäre und polare Umlaufbahnen ](assets/story26-image01.jpg)\r\n_Meteosat befindet sich in einer geostationären Umlaufbahn und Sentinel-5P in einer polaren Umlaufbahn (Planetary Visions)_\r\n\r\n## Polare Umlaufbahn\r\n\r\nNicht alle Satelliten sind geostationär. Andere können den gesamten Globus überblicken, indem sie sich von Pol zu Pol bewegen. Diese polumlaufenden Satelliten befinden sich in einer niedrigen Erdumlaufbahn (LEO) in einer Höhe von etwa 700 km. Polumlaufende Satelliten brauchen in der Regel etwa hundert Minuten, um die Erde zu umrunden, und überqueren den Äquator etwa vierzehn Mal am Tag. Die meisten polumlaufenden Satelliten folgen einer ganz bestimmten Bahn, die als sonnensynchrone Umlaufbahn bezeichnet wird. Ihre Umlaufbahn führt nicht direkt über die Pole, sondern ist leicht geneigt. Das hat zur Folge, dass sie jeden Tag zur ungefähr gleichen Ortszeit einen bestimmten Punkt auf dem Äquator überfliegen.\r\n\r\nDie Kameras der sonnensynchronen polumlaufenden Satelliten können von den meisten Orten auf der Erde nur ein Bild pro Tag aufnehmen. Die Bilder sind jedoch detaillierter als die von geostationären Satelliten aufgenommenen, da sich die Kamera viel näher an der Erde befindet. Ein weiterer Vorteil der sonnensynchronen Umlaufbahn besteht darin, dass alle Bilder eines bestimmten Ortes zur gleichen Tageszeit aufgenommen werden und somit nicht durch die im Laufe eines Tages auftretenden Änderungen der Lichtintensität und -richtung beeinflusst werden. Dies ermöglicht es, andere Veränderungen genau zu erkennen, was für die Beobachtung des Klimas und die Messung von Größen, die als wesentliche Klimavariablen (ECV) bezeichnet werden, unerlässlich ist. Die ECVs geben Aufschluss über den Gesundheitszustand unseres Planeten, so wie ein Arzt durch das Messen des Pulses etwas über die Gesundheit erfahren kann.", + "shortText": "## Satellitenumlaufbahnen\r\n\r\nSatellitentechnologie ist Teil des täglichen Lebens: Satellitennavigation, Kommunikation, Wettervorhersage. Sensoren, Plattformen und Umlaufbahnen können auf verschiedene Weise kombiniert werden.\r\n\r\nGeostationäre äquatoriale Umlaufbahn (GEO)\r\n\r\n- 36.000 km über der Erde, 24-Stunden-Umlaufbahn\r\n- Äquatoriale, geosynchrone Umlaufbahn\r\n- fester Blick auf eine Hemisphäre\r\n- geringe Auflösung, schnelle Wiederholung der Ansicht\r\n\r\nNiedrige Erdumlaufbahn (LEO)\r\n\r\n- 700-800 km über der Oberfläche, 100-minütige Umlaufbahn\r\n- Pol-zu-Pol, sonnensynchrone Umlaufbahn\r\n- deckt die ganze Welt ab, zur gleichen lokalen Tageszeit\r\n- hohe Auflösung, täglich (oder weniger) wiederholte Ansicht\r\n\r\n![Geostationäre und polare Umlaufbahnen ](assets/story26-image01.jpg)\r\n_Geostationäre und polare Umlaufbahnen (Planetary Visions)_", "images": [ "assets/story26-image02.jpg", "assets/story26-image03.jpg", @@ -40,17 +47,24 @@ "assets/intro_large_11.jpg" ], "imageCaptions": [ - "Meteosat – a geostationary weather satellite (Planetary Visions/ESA)", - "Copernicus Sentinel 3 – a polar-orbiting Earth observation satellite (ESA)", - "The Soil Moisture and Ocean Salinity satellite (SMOS), one of ESA’s Earth Explorer science satellites (ESA)", - "The European Data Relay System (EDRS) provides a geostationary communications relay \r\nbetween satellites in low Earth orbit and receiving stations on the ground (ESA)", - "European Space Agency satellite ground station in Frascati, Italy (ESA)" + "Meteosat - ein geostationärer Wettersatellit (Planetary Visions/ESA)", + "Copernicus Sentinel 3 - ein polarumlaufender Erdbeobachtungssatellit (ESA)", + "Der Satellit SMOS (Soil Moisture and Ocean Salinity), einer der ESA-Wissenschaftssatelliten Earth Explorer (ESA)", + "Das Europäische Datenrelaissystem (EDRS) ist ein geostationäres Kommunikationsrelais\r\nzwischen Satelliten in niedriger Erdumlaufbahn und Empfangsstationen am Boden (ESA)", + "Satellitenbodenstation der Europäischen Weltraumorganisation (ESA) in Frascati, Italien" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Looking at Earth Through a Different Lens\r\n\r\nThe Blue Marble photo shows Earth as we see it with the naked eye. By detecting red, green and blue light, the human eye – and the sensor in a standard digital camera – ‘see’ a full range of colours. Satellite cameras can gather much more information about our planet by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum, and each region reveals different aspects of Earth’s character.\r\n\r\nAs we traverse the electromagnetic spectrum, the globe’s appearance changes as different parts of the Earth system come into view. At visible wavelengths (400–700 nanometres), optical sensors record the outline of lake and ocean shorelines, glaciers, urban areas and the colour changes due to phytoplankton in the ocean, an important carbon sink. Click through the image gallery to see how satellites see Earth at other wavelengths.\r\n\r\n## Shorter Wavelengths\r\nUltraviolet wavelengths are absorbed by ozone in the atmosphere. Sensors detecting this range of wavelengths played an important part in the discovery of the [ozone hole](stories/story-8/1) above Antarctica, and are still used to track how it is changing. X-rays and gamma rays have much shorter wavelengths than visible light (less than 10 nanometres). They are used in astronomy (and in medicine), but not by Earth observation satellites.\r\n\r\n## Longer Wavelengths\r\n\r\nNear-infrared wavelengths (about 1 micrometre) are used to measure the [vigour of plant growth](stories/story-29/3) on land, helping to keep track of agricultural productivity and the impact of stresses such as drought. The mid-infrared shows [water vapour in the atmosphere](stories/story-21/3). Using the same principles as the handheld thermal cameras used for temperature screening at some airports, the thermal infrared (wavelength about 10 micrometre) allows us to measure the temperature of the land and [sea surface](stories/story-16/2) and the tops of clouds. The far infrared reveals information about the energy radiated by the Earth and energy exchanges in the atmosphere. \r\n\r\nAt even longer wavelengths, microwaves (about 1 centimetre) can reveal the presence of water in all its forms: as liquid in the soil, frozen as snow and ice, and as vapour and water droplets in the atmosphere. Microwaves can penetrate clouds, so microwave sensors are able to provide data under most weather conditions and even in the prolonged dark of the polar winter. Microwaves emitted by the Earth allow us to monitor snow and [sea ice extent](stories/story-15/3) and [soil moisture](stories/story-21/5). \r\n\r\nActive microwave sensors, including radar, generate their own microwaves, much as a torch generates light. Detecting the reflected microwave energy allows us to track the motion of ice and, with radar altimeters, we can measure the [thickness of sea ice](stories/story-15/7) and ice sheets, and the height of ocean waves.", - "shortText": "## Looking at Earth Through a Different Lens\r\n\r\nSatellites gather information about Earth by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum:\r\n\r\n- ultraviolet (100–400 nm): ozone in the atmosphere \r\n- visible (400–700 nm): shorelines, glaciers, urban areas, clouds, ocean phytoplankton \r\n- near-infrared (~ 1 µm): plant growth on land\r\n- mid-infrared: water vapour in the atmosphere\r\n- thermal infrared (~ 10 µm): temperature of land, sea, clouds \r\n- far infrared: energy radiated by the Earth and energy exchanges in the atmosphere \r\n- microwaves (~ 1 cm): water – in the soil, frozen as snow and ice, as vapour and water droplets in the atmosphere\r\n- active microwave sensors, including radar: motion of ice, thickness of sea ice and ice sheets, height of ocean waves", + "text": "## Die Erde durch eine andere Linse betrachten\r\n\r\nDas Foto der Blauen Murmel zeigt die Erde, wie wir sie mit bloßem Auge sehen. Durch die Erkennung von rotem, grünem und blauem Licht \"sieht\" das menschliche Auge - und der Sensor in einer Standard-Digitalkamera - die gesamte Palette der Farben. Satellitenkameras können viel mehr Informationen über unseren Planeten sammeln, indem sie über die sichtbaren Wellenlängen hinaus in andere Bereiche des elektromagnetischen Spektrums blicken, und jeder Bereich offenbart andere Aspekte des Charakters der Erde.\r\n\r\nBeim Durchqueren des elektromagnetischen Spektrums verändert sich das Aussehen der Erde, da verschiedene Teile des Erdsystems sichtbar werden. Im sichtbaren Wellenlängenbereich (400-700 Nanometer) erfassen optische Sensoren die Umrisse von See- und Meeresküsten, Gletschern, städtischen Gebieten und die Farbveränderungen durch das Phytoplankton im Meer, einer wichtigen Kohlenstoffsenke. Klicken Sie sich durch die Bildergalerie, um zu sehen, wie die Satelliten die Erde bei anderen Wellenlängen sehen.\r\n\r\n## Kürzere Wellenlängen\r\nUltraviolette Wellenlängen werden von Ozon in der Atmosphäre absorbiert. Sensoren, die diesen Wellenlängenbereich aufspüren, spielten eine wichtige Rolle bei der Entdeckung des [Ozonlochs](stories/story-8/1) über der Antarktis und werden auch heute noch eingesetzt, um dessen Entwicklung zu verfolgen. Röntgen- und Gammastrahlen haben viel kürzere Wellenlängen als sichtbares Licht (weniger als 10 Nanometer). Sie werden in der Astronomie (und in der Medizin) verwendet, aber nicht von Erdbeobachtungssatelliten.\r\n\r\n## Längere Wellenlängen\r\n\r\nWellenlängen im nahen Infrarot (ca. 1 Mikrometer) werden zur Messung der [Stärke des Pflanzenwachstums](stories/story-29/3) auf dem Land verwendet und helfen dabei, die landwirtschaftliche Produktivität und die Auswirkungen von Stressfaktoren wie Dürre zu überwachen. Das mittlere Infrarot zeigt [Wasserdampf in der Atmosphäre](stories/story-21/3) an. Nach dem gleichen Prinzip wie die tragbaren Wärmebildkameras, die an einigen Flughäfen zur Temperaturkontrolle eingesetzt werden, können wir mit dem thermischen Infrarot (Wellenlänge etwa 10 Mikrometer) die Temperatur des Landes und der [Meeresoberfläche](stories/story-16/2) sowie der Wolkenoberseiten messen. Das Ferninfrarot gibt Aufschluss über die von der Erde abgestrahlte Energie und den Energieaustausch in der Atmosphäre.\r\n\r\nBei noch größeren Wellenlängen können Mikrowellen (etwa 1 Zentimeter) das Vorhandensein von Wasser in all seinen Formen aufzeigen: als Flüssigkeit im Boden, gefroren als Schnee und Eis und als Dampf und Wassertröpfchen in der Atmosphäre. Mikrowellen können Wolken durchdringen, so dass Mikrowellensensoren unter den meisten Wetterbedingungen und sogar in der anhaltenden Dunkelheit des polaren Winters Daten liefern können. Mit den von der Erde ausgesandten Mikrowellen können wir Schnee und [Meereisausdehnung](stories/story-15/3) und [Bodenfeuchtigkeit](stories/story-21/5) überwachen.\r\n\r\nAktive Mikrowellensensoren, einschließlich Radar, erzeugen ihre eigenen Mikrowellen, ähnlich wie eine Taschenlampe Licht erzeugt. Die Erkennung der reflektierten Mikrowellenenergie ermöglicht es uns, die Bewegung des Eises zu verfolgen, und mit Radar-Höhenmessern können wir die [Dicke des Meereises](stories/story-15/7) und der Eisschilde sowie die Höhe der Meereswellen messen.", + "shortText": "## Die Erde durch eine andere Linse betrachten\r\n\r\nSatelliten sammeln Informationen über die Erde, indem sie über die sichtbaren Wellenlängen hinaus in andere Bereiche des elektromagnetischen Spektrums blicken:\r\n\r\n- Ultraviolett (100-400 nm): Ozon in der Atmosphäre\r\n- sichtbar (400-700 nm): Küstenlinien, Gletscher, städtische Gebiete, Wolken, Phytoplankton im Meer\r\n- Nahinfrarot (~ 1 µm): Pflanzenwachstum an Land\r\n- Mittleres Infrarot: Wasserdampf in der Atmosphäre\r\n- Thermisches Infrarot (~ 10 µm): Temperatur von Land, Meer, Wolken\r\n- Ferninfrarot: von der Erde abgestrahlte Energie und Energieaustausch in der Atmosphäre\r\n- Mikrowellen (~ 1 cm): Wasser - im Boden, gefroren als Schnee und Eis, als Wasserdampf und Wassertröpfchen in der Atmosphäre\r\n- aktive Mikrowellensensoren, einschließlich Radar: Bewegung von Eis, Dicke von Meereis und Eisschilden, Höhe von Meereswellen", "images": [ "assets/story26-image05.jpg", "assets/story26-image07.jpg", @@ -59,17 +73,24 @@ "assets/story26-image12.jpg" ], "imageCaptions": [ - "Ultraviolet light reveals the concentration of atmospheric ozone (ESA-CCI Ozone)", - "Multispectral surface reflectance at visible and near-infrared wavelengths\r\nshows the vigour of plant life on land (ESA-CCI CCI Land Cover)", - "Atmospheric water vapour revealed at mid-infrared wavelengths by the Meteosat weather satellite (ESA/Eumetsat/DLR)", - "Thermal infrared wavelengths show the temperature of the Earth’s surface and cloud tops (ESA-CCI Cloud)", - "Microwave emissions are used to track soil moisture, sea ice, snow and atmospheric water. Brightness temperature at 89 GHz and 23.8 GHz from AMSR-E. (National Space Development Agency of Japan)" + "Ultraviolettes Licht zeigt die Konzentration des atmosphärischen Ozons (ESA-CCI Ozone)", + "Multispektrale Oberflächenreflexion im sichtbaren und nahen Infrarotbereich\r\nzeigt die Vitalität der Pflanzenwelt auf dem Boden (ESA-CCI CCI Land Cover)", + "Atmosphärischer Wasserdampf im mittleren Infrarotbereich, aufgenommen vom Wettersatelliten Meteosat (ESA/Eumetsat/DLR)", + "Thermische Infrarot-Wellenlängen zeigen die Temperatur der Erdoberfläche und der Wolkenoberteile (ESA-CCI Cloud)", + "Mikrowellenemissionen werden zur Erfassung von Bodenfeuchtigkeit, Meereis, Schnee und atmosphärischem Wasser verwendet. Helligkeitstemperatur bei 89 GHz und 23,8 GHz von AMSR-E. (Nationale Raumfahrtentwicklungsbehörde von Japan)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, the observations taken by their sensors need to be calibrated with _in situ_ measurements taken with conventional instruments on or near the surface. Satellites in most cases can only measure the surface. In the case of the temperature of the ocean this means much less than the top millimetre, so sea-surface temperature from satellite needs to be combined with data from ship-tethered or free-floating underwater probes to form a complete picture of ocean temperature.\r\n\r\nEarth observation specialists work with subject specialists ‘in the field’. This fieldwork is often an important part of designing a new satellite instrument or testing a new way of using existing satellite data. Fieldwork might involve the deployment of fixed instruments on the ground, drifting or gliding instruments in the ocean, or aircraft or balloon flights in the atmosphere. Scientists may spend months isolated in remote research stations in Antarctica or on board a ship locked in the Arctic sea ice. This ground-level work is an essential part of the calibration and validation of climate observations from space.", - "shortText": "# Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, their observations need to be calibrated with _in situ_ measurements taken on or near the surface. \r\n\r\n- fieldwork often an important part of designing a new satellite instrument \r\n- Earth observation specialists work with subject specialists ‘in the field’\r\n- fixed instruments on the ground\r\n- drifting or gliding instruments in the ocean\r\n- aircraft or balloon flights in the atmosphere\r\n- scientists may spend weeks on board ships \r\n- or months at remote research stations in Antarctica \r\n\r\nMuch of our knowledge of Earth’s past climate comes from the analysis of ice cores extracted from the thick ice sheets of Greenland or Antarctica.", + "text": "## Realitätscheck\r\n\r\nObwohl Satelliten es ermöglichen, in kurzer Zeit eine große Fläche zu erfassen, müssen die von ihren Sensoren gemachten Beobachtungen mit _in situ_ Messungen abgeglichen werden, die mit herkömmlichen Instrumenten auf oder nahe der Oberfläche vorgenommen werden. Satelliten können in den meisten Fällen nur die Oberfläche messen. Im Falle der Temperatur des Ozeans bedeutet dies viel weniger als den obersten Millimeter, so dass die Satellitentemperatur der Meeresoberfläche mit Daten von schiffsgebundenen oder frei schwimmenden Unterwassersonden kombiniert werden muss, um ein vollständiges Bild der Ozeantemperatur zu erhalten.\r\n\r\nSpezialisten für Erdbeobachtung arbeiten mit Fachleuten \"vor Ort\" zusammen. Diese Feldarbeit ist oft ein wichtiger Bestandteil der Entwicklung eines neuen Satelliteninstruments oder der Erprobung einer neuen Art der Nutzung vorhandener Satellitendaten. Die Feldarbeit kann den Einsatz fester Instrumente am Boden, treibende oder gleitende Instrumente im Ozean oder Flugzeug- oder Ballonflüge in der Atmosphäre umfassen. Wissenschaftler können Monate isoliert in abgelegenen Forschungsstationen in der Antarktis oder an Bord eines Schiffes im arktischen Meereis verbringen. Diese Arbeit am Boden ist ein wesentlicher Bestandteil der Kalibrierung und Validierung von Klimabeobachtungen aus dem Weltraum.", + "shortText": "# Reality Check\r\n\r\nObwohl Satelliten in kurzer Zeit eine große Fläche abdecken können, müssen ihre Beobachtungen mit _in situ_ Messungen an oder nahe der Oberfläche abgeglichen werden.\r\n\r\n- Feldarbeit ist oft ein wichtiger Bestandteil der Entwicklung eines neuen Satelliteninstruments\r\n- Erdbeobachtungsspezialisten arbeiten mit Fachleuten \"vor Ort\" zusammen\r\n- feste Instrumente am Boden\r\n- driftende oder gleitende Instrumente im Ozean\r\n- Flugzeug- oder Ballonflüge in der Atmosphäre\r\n- Wissenschaftler können Wochen an Bord von Schiffen verbringen\r\n- oder Monate auf abgelegenen Forschungsstationen in der Antarktis\r\n\r\nEin Großteil unseres Wissens über das vergangene Klima der Erde stammt aus der Analyse von Eiskernen, die aus den dicken Eisschilden Grönlands oder der Antarktis gewonnen wurden.", "images": [ "assets/sealevel_large_07.jpg", "assets/story26-image18.jpg", @@ -78,11 +99,18 @@ "assets/icesheet_large_06.jpg" ], "imageCaptions": [ - "A research ship deploying an Argo float. There are almost 4,000 of these automatic buoys floating across the world. They travel up and down the top 2,000 metres of the ocean continually recording temperature, salinity and current. Measurements from them are used to calibrate and validate satellite observations of the ocean surface. (Argo Programme/IFREMER)", - "Scientists taking sea ice cores in the Arctic winter. The German research vessel Polarstern was deliberately trapped for a year in the sea ice of the Arctic Ocean during 2019–20, as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", - "Aircraft provide a local remote sensing platform as well as transport in remote regions (A Hogg)", - "Taking soil moisture measurements in Sweden to support the development of ESA's BIOMASS satellite (FOI)", - "A wide-angle view from the joint French-Italian Concordia Research Station, located high on Dome C of the Antarctic Plateau, one of the coldest places on Earth (AP Salam)" + "Ein Forschungsschiff setzt eine Argo-Boje aus. Es gibt fast 4.000 dieser automatischen Bojen, die auf der ganzen Welt schwimmen. Sie fahren in den obersten 2.000 Metern des Ozeans auf und ab und zeichnen kontinuierlich Temperatur, Salzgehalt und Strömung auf. Ihre Messungen werden zur Kalibrierung und Validierung von Satellitenbeobachtungen der Meeresoberfläche verwendet. (Argo-Programm/IFREMER)", + "Wissenschaftler nehmen im arktischen Winter Meereiskerne. Das deutsche Forschungsschiff Polarstern wurde im Rahmen des Multidisziplinären driftenden Observatoriums zur Erforschung des arktischen Klimas (MOSAiC) 2019-20 absichtlich für ein Jahr im Meereis des Arktischen Ozeans eingeschlossen (Esther Horvath / Alfred-Wegener-Institut).", + "Flugzeuge bieten eine lokale Fernerkundungsplattform und ermöglichen den Transport in entlegene Regionen (A Hogg)", + "Bodenfeuchtemessungen in Schweden zur Unterstützung der Entwicklung des BIOMASS-Satelliten der ESA (FOI)", + "Ein Weitwinkel-Blick von der gemeinsamen französisch-italienischen Concordia-Forschungsstation, die hoch auf dem Dome C des antarktischen Plateaus liegt, einem der kältesten Orte der Erde (AP Salam)" + ], + "imageFits": [ + "cover", + "cover", + "cover", + "contain", + "cover" ] } ] diff --git a/storage/stories/story-26/story-26-en.json b/storage/stories/story-26/story-26-en.json index 92e9e7a6e..df4867d65 100644 --- a/storage/stories/story-26/story-26-en.json +++ b/storage/stories/story-26/story-26-en.json @@ -26,6 +26,13 @@ "Europe's first weather satellite, Meteosat-1, was launched in November 1977 (ESA)", "The first image from the the European Remote Sensing satellite (ERS-1) showed the Flevoland polder and the Ijsselmeer in the Netherlands on 27 July 1991 (ESA)", "Data from three generations of radar satellites shows the retreat of two large glaciers in southeast Greenland over 36 years (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { @@ -45,6 +52,13 @@ "The Soil Moisture and Ocean Salinity satellite (SMOS), one of ESA’s Earth Explorer science satellites (ESA)", "The European Data Relay System (EDRS) provides a geostationary communications relay \r\nbetween satellites in low Earth orbit and receiving stations on the ground (ESA)", "European Space Agency satellite ground station in Frascati, Italy (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { @@ -64,6 +78,13 @@ "Atmospheric water vapour revealed at mid-infrared wavelengths by the Meteosat weather satellite (ESA/Eumetsat/DLR)", "Thermal infrared wavelengths show the temperature of the Earth’s surface and cloud tops (ESA-CCI Cloud)", "Microwave emissions are used to track soil moisture, sea ice, snow and atmospheric water. Brightness temperature at 89 GHz and 23.8 GHz from AMSR-E. (National Space Development Agency of Japan)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { @@ -83,6 +104,13 @@ "Aircraft provide a local remote sensing platform as well as transport in remote regions (A Hogg)", "Taking soil moisture measurements in Sweden to support the development of ESA's BIOMASS satellite (FOI)", "A wide-angle view from the joint French-Italian Concordia Research Station, located high on Dome C of the Antarctic Plateau, one of the coldest places on Earth (AP Salam)" + ], + "imageFits": [ + "cover", + "cover", + "cover", + "contain", + "cover" ] } ] diff --git a/storage/stories/story-26/story-26-es.json b/storage/stories/story-26/story-26-es.json index 92e9e7a6e..e36b811bd 100644 --- a/storage/stories/story-26/story-26-es.json +++ b/storage/stories/story-26/story-26-es.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", - "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", + "text": "# Tomando el pulso al planeta\r\n\r\nLos satélites ofrecen una perspectiva global única sobre el clima de la Tierra. Gracias a ellos, disponemos de más de tres décadas de observaciones que describen algunas de las variables climáticas más importantes. Esta información es un recurso útil tanto para establecer modelos climáticos como para comprobar su exactitud.", + "shortText": "# Tomando el pulso al planeta\r\n\r\nLos satélites ofrecen una perspectiva global única sobre el clima de la Tierra. Gracias a ellos, disponemos de más de tres décadas de observaciones que describen algunas de las variables climáticas más importantes. Esta información es un recurso útil tanto para establecer modelos climáticos como para comprobar su exactitud.", "images": [ "assets/Sentinel-2.jpg" ] }, { "type": "image", - "text": "## A Blue Marble\r\n\r\nWhen the crew of Apollo 17 looked back at their home planet in 1972, they photographed an entirely sunlit Earth for the first time. It was also the last time that humans were far enough away from home to see the whole planet for themselves. That view of a ‘blue marble’ hanging in space has become a familiar sight and is possibly the most reproduced photo in history.\r\n\r\nThe blue water of the seas and oceans dominates the picture. But if we take a closer look, we can distinguish many more colours. For instance, we can see the yellow sand of the Sahara Desert, the dark green of tropical rainforests, and the white of clouds over the oceans and ice and snow covering Antarctica.\r\n\r\nToday, Earth observation satellites take daily blue marble images that reveal a wealth of detail about our changing planet. They have become an essential tool to monitor climate at both local and global scales. They are particularly useful for monitoring inaccessible areas, such as the oceans, tropical rainforests and the polar regions, which are among the areas that are most vulnerable to climate change and most under threat.\r\n \r\nThese ‘remote sensors’ can see [ice expanding and contracting](stories/story-15/3) at the poles, monitor [glaciers](stories/story-21/6) and [fires](stories/story-28/1), track clouds and aerosols moving through the [atmosphere](stories/story-21/4), and measure how [nutrients and temperatures](stories/story-16/4) are changing across the oceans. The first operational remote sensing missions were in the late 1970s so, for many components of the climate system, we now have observations spanning more than thirty years – long enough to see what global warming is doing to our planet.", - "shortText": "## A Blue Marble\r\n\r\nFirst fully-sunlit photo of Earth – _Apollo 17, 1972_\r\n\r\n- 1960: first weather satellite– TIROS-1\r\n- 1972: Earth Resources Technology Satellite – Landsat-1 \r\n- 1991: European Remote Sensing satellite – ERS-1\r\n- today: daily ‘blue marble’ images from a fleet of satellites\r\n- unique overview of inaccessible regions – oceans, rainforests, polar regions\r\n- Earth observations spanning more than 30 years\r\n- long enough to see what global warming is doing to our planet", + "text": "## A Blue Marble\r\n\r\nCuando la tripulación del Apolo 17 miró a su planeta natal en 1972, fotografió por primera vez una Tierra completamente iluminada por el sol. También fue la última vez que los humanos se alejaron lo suficiente de su hogar como para ver el planeta entero por sí mismos. Esa vista de una \"canica azul\" colgada en el espacio se ha convertido en una imagen familiar y es posiblemente la foto más reproducida de la historia.\r\n\r\nEl agua azul de los mares y océanos domina la imagen. Pero si nos fijamos más de cerca, podemos distinguir muchos más colores. Por ejemplo, podemos ver la arena amarilla del desierto del Sahara, el verde oscuro de las selvas tropicales y el blanco de las nubes sobre los océanos y el hielo y la nieve que cubren la Antártida.\r\n\r\nHoy en día, los satélites de observación de la Tierra toman diariamente imágenes de mármol azul que revelan una gran cantidad de detalles sobre nuestro cambiante planeta. Se han convertido en una herramienta esencial para vigilar el clima tanto a escala local como global. Son especialmente útiles para vigilar zonas inaccesibles, como los océanos, las selvas tropicales y las regiones polares, que se encuentran entre las zonas más vulnerables al cambio climático y más amenazadas.\r\n \r\nEstos \"sensores remotos\" pueden ver [el hielo que se expande y se contrae](stories/story-15/3) en los polos, vigilar [los glaciares](stories/story-21/6) y [los incendios](stories/story-28/1), rastrear las nubes y los aerosoles que se desplazan por la [atmósfera](stories/story-21/4) y medir cómo cambian [los nutrientes y las temperaturas](stories/story-16/4) en los océanos. Las primeras misiones operativas de teledetección se llevaron a cabo a finales de la década de 1970, por lo que, en el caso de muchos componentes del sistema climático, disponemos ahora de observaciones que abarcan más de treinta años, tiempo suficiente para ver lo que el calentamiento global está haciendo en nuestro planeta.", + "shortText": "## A Blue Marble\r\n\r\nPrimera foto de la Tierra totalmente iluminada por el sol - _Apollo 17, 1972_\r\n\r\n- 1960: primer satélite meteorológico - TIROS-1\r\n- 1972: Satélite de tecnología de los recursos de la Tierra - Landsat-1\r\n- 1991: satélite europeo de teledetección - ERS-1\r\n- hoy en día: imágenes diarias de la \"canica azul\" de una flota de satélites\r\n- visión única de regiones inaccesibles: océanos, selvas tropicales, regiones polares\r\n- observaciones de la Tierra durante más de 30 años\r\n- tiempo suficiente para ver lo que el calentamiento global está haciendo a nuestro planeta", "images": [ "assets/cloud_large_01.jpg", "assets/story26-image10.jpg", @@ -21,17 +21,24 @@ "assets/intro_large_09.jpg" ], "imageCaptions": [ - "Photograph of the Earth taken by the Apollo 17 crew in 1972 (NASA)", - "The first image taken by the experimental weather satellite TIROS-1 in April 1960 (NASA)", - "Europe's first weather satellite, Meteosat-1, was launched in November 1977 (ESA)", - "The first image from the the European Remote Sensing satellite (ERS-1) showed the Flevoland polder and the Ijsselmeer in the Netherlands on 27 July 1991 (ESA)", - "Data from three generations of radar satellites shows the retreat of two large glaciers in southeast Greenland over 36 years (ESA)" + "Fotografía de la Tierra tomada por la tripulación del Apolo 17 en 1972 (NASA)", + "La primera imagen tomada por el satélite meteorológico experimental TIROS-1 en abril de 1960 (NASA)", + "El primer satélite meteorológico europeo, Meteosat-1, fue lanzado en noviembre de 1977 (ESA)", + "La primera imagen del satélite europeo de teledetección (ERS-1) mostraba el pólder de Flevoland y el Ijsselmeer en los Países Bajos el 27 de julio de 1991 (ESA)", + "Los datos de tres generaciones de satélites de radar muestran el retroceso de dos grandes glaciares en el sureste de Groenlandia durante 36 años (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Satellite Orbits\r\n\r\nSatellite technology is part of our everyday life: it is the backbone of the navigation systems in our cars, it delivers telephone and television signals and is a keystone of the daily weather forecast we watch on TV. These applications take advantage of the different orbits that are possible for spacecraft circling the Earth. A remote sensing system needs a _sensor_ (the camera) and a _platform_ (in this case, the satellite). Different sorts of cameras can be combined with satellites in different orbits in various ways, depending on what we want to find out. \r\n\r\n## Geostationary Orbit\r\n\r\nMost weather forecast images are taken by a camera on a satellite flying in orbit 36,000 km above the Earth. Satellites like these are referred to as geostationary satellites. They move around the Earth at the same rate as the planet rotates so they are always above the same point; they always see the same side of the Earth. This path, called a geostationary equatorial orbit (GEO), allows the camera to take many pictures of the same location every day so meteorologists can track how weather systems develop. Geostationary orbits are also used by most telecommunications and TV broadcast satellites. \r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Meteosat is in a geostationary orbit and Sentinel-5P in a polar orbit (Planetary Visions)_\r\n\r\n## Polar Orbit\r\n\r\nNot all satellites are geostationary. Others can look at the entire globe by travelling from pole to pole. These polar-orbiting satellites are in a low Earth orbit (LEO) at an altitude of about 700 km. Polar-orbiting satellites typically take about a hundred minutes to go around the globe and their path crosses the equator about fourteen times a day. Most polar-orbiting satellites follow a very specific path called a sun-synchronous orbit. Their orbit doesn’t go right over the poles but is slightly tilted. As a result, they pass over a particular point on the equator at approximately the same local time each day. \r\n\r\nThe cameras on Sun-synchronous polar-orbiting satellites can take only one picture per day of most places on Earth. However, the images are more detailed than those taken from geostationary satellites because the camera is much closer to the Earth. Another advantage of using a Sun-synchronous orbit is that, because all the images of a certain place are taken at the same time of day, the pictures are not affected by the changes in light intensity and direction that happen naturally over the course of a day. This makes it possible to see other changes accurately, something that is essential for observing climate and measuring quantities known as essential climate variables (ECVs). ECVs give an indication of the health of our planet, in the same way that taking your pulse can tell a doctor about your health.", - "shortText": "## Satellite Orbits\r\n\r\nSatellite technology is part of everyday life: satnav, communications, weather forecasts. Sensors, platforms and orbits can be combined in various ways.\r\n\r\nGeostationary Equatorial Orbit (GEO)\r\n\r\n- 36,000 km above surface, 24 hour orbit\r\n- Equatorial, geosynchronous orbit\r\n- fixed view of one hemisphere\r\n- low resolution, rapid repeat view\r\n\r\nLow Earth Obit (LEO)\r\n\r\n- 700-800 km above surface, 100 minute orbit\r\n- pole-to-pole, Sun-synchronous orbit\r\n- covers whole world, at same local time of day\r\n- high resolution, daily (or less) repeat view\r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Geostationary and polar orbits (Planetary Visions)_", + "text": "## Órbitas de los satélites\r\n\r\nLa tecnología de los satélites forma parte de nuestra vida cotidiana: es la espina dorsal de los sistemas de navegación de nuestros coches, transmite señales de teléfono y televisión y es la piedra angular de la previsión meteorológica diaria que vemos en la televisión. Estas aplicaciones aprovechan las diferentes órbitas posibles para las naves espaciales que giran alrededor de la Tierra. Un sistema de teledetección necesita un _sensor_ (la cámara) y una _plataforma_ (en este caso, el satélite). Se pueden combinar diferentes tipos de cámaras con satélites en diferentes órbitas de varias maneras, dependiendo de lo que queramos averiguar.\r\n\r\n## Órbita geoestacionaria\r\n\r\nLa mayoría de las imágenes de previsión meteorológica se toman con una cámara en un satélite que vuela en órbita a 36.000 km sobre la Tierra. Los satélites de este tipo se denominan satélites geoestacionarios. Se mueven alrededor de la Tierra al mismo ritmo que el planeta gira, por lo que siempre están por encima del mismo punto; siempre ven el mismo lado de la Tierra. Esta trayectoria, denominada órbita ecuatorial geoestacionaria (GEO), permite a la cámara tomar muchas imágenes del mismo lugar cada día para que los meteorólogos puedan seguir la evolución de los sistemas meteorológicos. Las órbitas geoestacionarias también son utilizadas por la mayoría de los satélites de telecomunicaciones y de televisión.\r\n\r\nÓrbitas geoestacionarias y polares ](assets/story26-image01.jpg)\r\nEl Meteosat está en una órbita geoestacionaria y el Sentinel-5P en una órbita polar (Planetary Visions)_.\r\n\r\n## Órbita polar\r\n\r\nNo todos los satélites son geoestacionarios. Otros pueden observar todo el planeta viajando de polo a polo. Estos satélites de órbita polar se encuentran en una órbita terrestre baja (LEO) a una altura de unos 700 km. Los satélites de órbita polar suelen tardar unos cien minutos en dar la vuelta al mundo y su trayectoria cruza el ecuador unas catorce veces al día. La mayoría de los satélites de órbita polar siguen una trayectoria muy específica denominada órbita sincrónica solar. Su órbita no pasa justo por encima de los polos, sino que está ligeramente inclinada. Por ello, pasan sobre un punto concreto del ecuador aproximadamente a la misma hora local cada día.\r\n\r\nLas cámaras de los satélites de órbita polar sincrónica al Sol sólo pueden tomar una imagen al día de la mayoría de los lugares de la Tierra. Sin embargo, las imágenes son más detalladas que las tomadas desde los satélites geoestacionarios porque la cámara está mucho más cerca de la Tierra. Otra ventaja de utilizar una órbita sincrónica al Sol es que, como todas las imágenes de un determinado lugar se toman a la misma hora del día, las imágenes no se ven afectadas por los cambios de intensidad y dirección de la luz que se producen de forma natural a lo largo de un día. Esto permite ver con precisión otros cambios, algo esencial para observar el clima y medir las cantidades conocidas como variables climáticas esenciales (VCE). Las VCE dan una indicación de la salud de nuestro planeta, del mismo modo que tomar el pulso puede informar a un médico sobre su salud.", + "shortText": "## Órbitas de los satélites\r\n\r\nLa tecnología de los satélites forma parte de la vida cotidiana: navegación por satélite, comunicaciones, previsiones meteorológicas. Los sensores, las plataformas y las órbitas pueden combinarse de diversas maneras.\r\n\r\nÓrbita Ecuatorial Geoestacionaria (GEO)\r\n\r\n- 36.000 km sobre la superficie, órbita de 24 horas\r\n- Órbita ecuatorial, geosincrónica\r\n- vista fija de un hemisferio\r\n- baja resolución, vista de repetición rápida\r\n\r\nÓrbita terrestre baja (LEO)\r\n\r\n- 700-800 km sobre la superficie, órbita de 100 minutos\r\n- de polo a polo, órbita sincrónica al Sol\r\n- cubre todo el mundo, a la misma hora local del día\r\n- alta resolución, vista repetida diaria (o menos)\r\n\r\nÓrbitas geoestacionarias y polares ](assets/story26-image01.jpg)\r\nÓrbitas geoestacionarias y polares (Planetary Visions)_", "images": [ "assets/story26-image02.jpg", "assets/story26-image03.jpg", @@ -40,17 +47,24 @@ "assets/intro_large_11.jpg" ], "imageCaptions": [ - "Meteosat – a geostationary weather satellite (Planetary Visions/ESA)", - "Copernicus Sentinel 3 – a polar-orbiting Earth observation satellite (ESA)", - "The Soil Moisture and Ocean Salinity satellite (SMOS), one of ESA’s Earth Explorer science satellites (ESA)", - "The European Data Relay System (EDRS) provides a geostationary communications relay \r\nbetween satellites in low Earth orbit and receiving stations on the ground (ESA)", - "European Space Agency satellite ground station in Frascati, Italy (ESA)" + "Meteosat - un satélite meteorológico geoestacionario (Planetary Visions/ESA)", + "Copernicus Sentinel 3 - un satélite de observación de la Tierra en órbita polar (ESA)", + "El satélite de humedad del suelo y salinidad del océano (SMOS), uno de los satélites científicos Earth Explorer de la ESA", + "El Sistema Europeo de Retransmisión de Datos (EDRS) proporciona una retransmisión de comunicaciones geoestacionarias\r\nentre satélites en órbita terrestre baja y estaciones receptoras en tierra (ESA)", + "Estación terrestre de la Agencia Espacial Europea en Frascati, Italia (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Looking at Earth Through a Different Lens\r\n\r\nThe Blue Marble photo shows Earth as we see it with the naked eye. By detecting red, green and blue light, the human eye – and the sensor in a standard digital camera – ‘see’ a full range of colours. Satellite cameras can gather much more information about our planet by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum, and each region reveals different aspects of Earth’s character.\r\n\r\nAs we traverse the electromagnetic spectrum, the globe’s appearance changes as different parts of the Earth system come into view. At visible wavelengths (400–700 nanometres), optical sensors record the outline of lake and ocean shorelines, glaciers, urban areas and the colour changes due to phytoplankton in the ocean, an important carbon sink. Click through the image gallery to see how satellites see Earth at other wavelengths.\r\n\r\n## Shorter Wavelengths\r\nUltraviolet wavelengths are absorbed by ozone in the atmosphere. Sensors detecting this range of wavelengths played an important part in the discovery of the [ozone hole](stories/story-8/1) above Antarctica, and are still used to track how it is changing. X-rays and gamma rays have much shorter wavelengths than visible light (less than 10 nanometres). They are used in astronomy (and in medicine), but not by Earth observation satellites.\r\n\r\n## Longer Wavelengths\r\n\r\nNear-infrared wavelengths (about 1 micrometre) are used to measure the [vigour of plant growth](stories/story-29/3) on land, helping to keep track of agricultural productivity and the impact of stresses such as drought. The mid-infrared shows [water vapour in the atmosphere](stories/story-21/3). Using the same principles as the handheld thermal cameras used for temperature screening at some airports, the thermal infrared (wavelength about 10 micrometre) allows us to measure the temperature of the land and [sea surface](stories/story-16/2) and the tops of clouds. The far infrared reveals information about the energy radiated by the Earth and energy exchanges in the atmosphere. \r\n\r\nAt even longer wavelengths, microwaves (about 1 centimetre) can reveal the presence of water in all its forms: as liquid in the soil, frozen as snow and ice, and as vapour and water droplets in the atmosphere. Microwaves can penetrate clouds, so microwave sensors are able to provide data under most weather conditions and even in the prolonged dark of the polar winter. Microwaves emitted by the Earth allow us to monitor snow and [sea ice extent](stories/story-15/3) and [soil moisture](stories/story-21/5). \r\n\r\nActive microwave sensors, including radar, generate their own microwaves, much as a torch generates light. Detecting the reflected microwave energy allows us to track the motion of ice and, with radar altimeters, we can measure the [thickness of sea ice](stories/story-15/7) and ice sheets, and the height of ocean waves.", - "shortText": "## Looking at Earth Through a Different Lens\r\n\r\nSatellites gather information about Earth by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum:\r\n\r\n- ultraviolet (100–400 nm): ozone in the atmosphere \r\n- visible (400–700 nm): shorelines, glaciers, urban areas, clouds, ocean phytoplankton \r\n- near-infrared (~ 1 µm): plant growth on land\r\n- mid-infrared: water vapour in the atmosphere\r\n- thermal infrared (~ 10 µm): temperature of land, sea, clouds \r\n- far infrared: energy radiated by the Earth and energy exchanges in the atmosphere \r\n- microwaves (~ 1 cm): water – in the soil, frozen as snow and ice, as vapour and water droplets in the atmosphere\r\n- active microwave sensors, including radar: motion of ice, thickness of sea ice and ice sheets, height of ocean waves", + "text": "## Mirando a la Tierra a través de una lente diferente\r\n\r\nLa foto de la canica azul muestra la Tierra como la vemos a simple vista. Al detectar la luz roja, verde y azul, el ojo humano -y el sensor de una cámara digital estándar- \"ve\" una gama completa de colores. Las cámaras de los satélites pueden obtener mucha más información sobre nuestro planeta mirando más allá de las longitudes de onda visibles, en otras partes del espectro electromagnético, y cada región revela aspectos diferentes del carácter de la Tierra.\r\n\r\nAl atravesar el espectro electromagnético, el aspecto del globo cambia a medida que se ven las diferentes partes del sistema terrestre. En las longitudes de onda visibles (400-700 nanómetros), los sensores ópticos registran el contorno de las costas de los lagos y los océanos, los glaciares, las zonas urbanas y los cambios de color debidos al fitoplancton en el océano, un importante sumidero de carbono. Haz clic en la galería de imágenes para ver cómo los satélites ven la Tierra en otras longitudes de onda.\r\n\r\n## Longitudes de onda más cortas\r\nLas longitudes de onda ultravioleta son absorbidas por el ozono en la atmósfera. Los sensores que detectan esta gama de longitudes de onda desempeñaron un papel importante en el descubrimiento del [agujero de ozono](stories/story-8/1) sobre la Antártida, y todavía se utilizan para seguir su evolución. Los rayos X y los rayos gamma tienen longitudes de onda mucho más cortas que la luz visible (menos de 10 nanómetros). Se utilizan en astronomía (y en medicina), pero no en los satélites de observación de la Tierra.\r\n\r\n## Longitudes de onda más largas\r\n\r\nLas longitudes de onda del infrarrojo cercano (alrededor de 1 micrómetro) se utilizan para medir el [vigor del crecimiento de las plantas](stories/story-29/3) en la tierra, lo que ayuda a hacer un seguimiento de la productividad agrícola y del impacto de tensiones como la sequía. El infrarrojo medio muestra el [vapor de agua en la atmósfera](stories/story-21/3). Utilizando los mismos principios que las cámaras térmicas de mano que se utilizan para el control de la temperatura en algunos aeropuertos, el infrarrojo térmico (con una longitud de onda de unos 10 micrómetros) permite medir la temperatura de la tierra y de la [superficie del mar](stories/story-16/2) y de la parte superior de las nubes. El infrarrojo lejano revela información sobre la energía radiada por la Tierra y los intercambios de energía en la atmósfera.\r\n\r\nA longitudes de onda aún más largas, las microondas (alrededor de 1 centímetro) pueden revelar la presencia de agua en todas sus formas: como líquido en el suelo, congelada como nieve y hielo, y como vapor y gotas de agua en la atmósfera. Las microondas pueden penetrar las nubes, por lo que los sensores de microondas son capaces de proporcionar datos en la mayoría de las condiciones meteorológicas e incluso en la prolongada oscuridad del invierno polar. Las microondas emitidas por la Tierra nos permiten controlar la nieve y la [extensión del hielo marino](stories/story-15/3) y la [humedad del suelo](stories/story-21/5).\r\n\r\nLos sensores activos de microondas, incluido el radar, generan sus propias microondas, de forma parecida a como una linterna genera luz. La detección de la energía de microondas reflejada nos permite seguir el movimiento del hielo y, con los altímetros de radar, podemos medir el [espesor del hielo marino](stories/story-15/7) y las capas de hielo, así como la altura de las olas del océano.", + "shortText": "## Mirando a la Tierra a través de una lente diferente\r\n\r\nLos satélites recopilan información sobre la Tierra mirando más allá de las longitudes de onda visibles en otras partes del espectro electromagnético:\r\n\r\n- ultravioleta (100-400 nm): ozono en la atmósfera\r\n- visible (400-700 nm): costas, glaciares, zonas urbanas, nubes, fitoplancton oceánico\r\n- infrarrojo cercano (~ 1 µm): crecimiento de las plantas en la tierra\r\n- infrarrojo medio: vapor de agua en la atmósfera\r\n- infrarrojo térmico (~ 10 µm): temperatura de la tierra, el mar, las nubes\r\n- infrarrojo lejano: energía radiada por la Tierra e intercambios de energía en la atmósfera\r\n- microondas (~ 1 cm): agua - en el suelo, congelada como nieve y hielo, como vapor y gotas de agua en la atmósfera\r\n- sensores activos de microondas, incluido el radar: movimiento del hielo, espesor del hielo marino y de las capas de hielo, altura de las olas del océano", "images": [ "assets/story26-image05.jpg", "assets/story26-image07.jpg", @@ -59,17 +73,24 @@ "assets/story26-image12.jpg" ], "imageCaptions": [ - "Ultraviolet light reveals the concentration of atmospheric ozone (ESA-CCI Ozone)", - "Multispectral surface reflectance at visible and near-infrared wavelengths\r\nshows the vigour of plant life on land (ESA-CCI CCI Land Cover)", - "Atmospheric water vapour revealed at mid-infrared wavelengths by the Meteosat weather satellite (ESA/Eumetsat/DLR)", - "Thermal infrared wavelengths show the temperature of the Earth’s surface and cloud tops (ESA-CCI Cloud)", - "Microwave emissions are used to track soil moisture, sea ice, snow and atmospheric water. Brightness temperature at 89 GHz and 23.8 GHz from AMSR-E. (National Space Development Agency of Japan)" + "La luz ultravioleta revela la concentración de ozono atmosférico (ESA-CCI Ozone)", + "La reflectancia multiespectral de la superficie en longitudes de onda visibles e infrarrojas cercanas\r\nmuestra el vigor de la vida vegetal en la tierra (ESA-CCI Land Cover)", + "Vapor de agua atmosférico revelado en longitudes de onda del infrarrojo medio por el satélite meteorológico Meteosat (ESA/Eumetsat/DLR)", + "Las longitudes de onda del infrarrojo térmico muestran la temperatura de la superficie de la Tierra y de las cimas de las nubes (ESA-CCI Cloud)", + "Las emisiones de microondas se utilizan para rastrear la humedad del suelo, el hielo marino, la nieve y el agua atmosférica. Temperatura de brillo a 89 GHz y 23,8 GHz de AMSR-E. (Agencia Nacional de Desarrollo Espacial de Japón)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, the observations taken by their sensors need to be calibrated with _in situ_ measurements taken with conventional instruments on or near the surface. Satellites in most cases can only measure the surface. In the case of the temperature of the ocean this means much less than the top millimetre, so sea-surface temperature from satellite needs to be combined with data from ship-tethered or free-floating underwater probes to form a complete picture of ocean temperature.\r\n\r\nEarth observation specialists work with subject specialists ‘in the field’. This fieldwork is often an important part of designing a new satellite instrument or testing a new way of using existing satellite data. Fieldwork might involve the deployment of fixed instruments on the ground, drifting or gliding instruments in the ocean, or aircraft or balloon flights in the atmosphere. Scientists may spend months isolated in remote research stations in Antarctica or on board a ship locked in the Arctic sea ice. This ground-level work is an essential part of the calibration and validation of climate observations from space.", - "shortText": "# Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, their observations need to be calibrated with _in situ_ measurements taken on or near the surface. \r\n\r\n- fieldwork often an important part of designing a new satellite instrument \r\n- Earth observation specialists work with subject specialists ‘in the field’\r\n- fixed instruments on the ground\r\n- drifting or gliding instruments in the ocean\r\n- aircraft or balloon flights in the atmosphere\r\n- scientists may spend weeks on board ships \r\n- or months at remote research stations in Antarctica \r\n\r\nMuch of our knowledge of Earth’s past climate comes from the analysis of ice cores extracted from the thick ice sheets of Greenland or Antarctica.", + "text": "## Reality Check\r\n\r\nAunque los satélites permiten cubrir mucho terreno en poco tiempo, las observaciones realizadas por sus sensores deben calibrarse con mediciones _in situ_ realizadas con instrumentos convencionales en la superficie o cerca de ella. En la mayoría de los casos, los satélites sólo pueden medir la superficie. En el caso de la temperatura del océano, esto significa mucho menos que el milímetro superior, por lo que la temperatura de la superficie del mar obtenida por satélite debe combinarse con los datos de las sondas submarinas fijas o flotantes para obtener una imagen completa de la temperatura del océano.\r\n\r\nLos especialistas en observación de la Tierra trabajan con especialistas en la materia \"sobre el terreno\". Este trabajo de campo suele ser una parte importante del diseño de un nuevo instrumento satelital o de la prueba de una nueva forma de utilizar los datos satelitales existentes. El trabajo de campo puede consistir en el despliegue de instrumentos fijos en tierra, instrumentos a la deriva o planeando en el océano, o vuelos en avión o globo en la atmósfera. Los científicos pueden pasar meses aislados en estaciones de investigación remotas en la Antártida o a bordo de un barco encerrado en el hielo marino del Ártico. Este trabajo en tierra es una parte esencial de la calibración y validación de las observaciones climáticas desde el espacio.", + "shortText": "# Reality Check\r\n\r\nAunque los satélites permiten cubrir mucho terreno en poco tiempo, sus observaciones deben calibrarse con mediciones _in situ_ realizadas en la superficie o cerca de ella.\r\n\r\n- El trabajo de campo suele ser una parte importante del diseño de un nuevo instrumento satelital\r\n- Los especialistas en observación de la Tierra trabajan con especialistas en la materia \"sobre el terreno\".\r\n- instrumentos fijos en el suelo\r\n- instrumentos a la deriva o deslizantes en el océano\r\n- vuelos de aviones o globos en la atmósfera\r\n- los científicos pueden pasar semanas a bordo de barcos\r\n- o meses en estaciones de investigación remotas en la Antártida\r\n\r\nGran parte de nuestros conocimientos sobre el clima de la Tierra en el pasado proceden del análisis de núcleos de hielo extraídos de las gruesas capas de hielo de Groenlandia o la Antártida.", "images": [ "assets/sealevel_large_07.jpg", "assets/story26-image18.jpg", @@ -78,11 +99,18 @@ "assets/icesheet_large_06.jpg" ], "imageCaptions": [ - "A research ship deploying an Argo float. There are almost 4,000 of these automatic buoys floating across the world. They travel up and down the top 2,000 metres of the ocean continually recording temperature, salinity and current. Measurements from them are used to calibrate and validate satellite observations of the ocean surface. (Argo Programme/IFREMER)", - "Scientists taking sea ice cores in the Arctic winter. The German research vessel Polarstern was deliberately trapped for a year in the sea ice of the Arctic Ocean during 2019–20, as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", - "Aircraft provide a local remote sensing platform as well as transport in remote regions (A Hogg)", - "Taking soil moisture measurements in Sweden to support the development of ESA's BIOMASS satellite (FOI)", - "A wide-angle view from the joint French-Italian Concordia Research Station, located high on Dome C of the Antarctic Plateau, one of the coldest places on Earth (AP Salam)" + "Un barco de investigación despliega una boya Argo. Hay casi 4.000 de estas boyas automáticas flotando por todo el mundo. Suben y bajan los 2.000 metros superiores del océano registrando continuamente la temperatura, la salinidad y la corriente. Sus mediciones se utilizan para calibrar y validar las observaciones de la superficie del océano realizadas por satélite. (Programa Argo/IFREMER)", + "Científicos tomando núcleos de hielo marino en el invierno ártico. El buque de investigación alemán Polarstern fue atrapado deliberadamente durante un año en el hielo marino del Océano Ártico durante 2019-20, como parte del Observatorio Multidisciplinario a la deriva para el Estudio del Clima Ártico (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", + "Los aviones proporcionan una plataforma de teledetección local, así como el transporte en regiones remotas (A Hogg)", + "Medición de la humedad del suelo en Suecia para apoyar el desarrollo del satélite BIOMASS de la ESA (FOI)", + "Una vista de gran angular desde la estación de investigación conjunta franco-italiana Concordia, situada en lo alto del domo C de la meseta antártica, uno de los lugares más fríos de la Tierra (AP Salam)" + ], + "imageFits": [ + "cover", + "cover", + "cover", + "contain", + "cover" ] } ] diff --git a/storage/stories/story-26/story-26-fr.json b/storage/stories/story-26/story-26-fr.json index 92e9e7a6e..4bcbafd3e 100644 --- a/storage/stories/story-26/story-26-fr.json +++ b/storage/stories/story-26/story-26-fr.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", - "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", + "text": "# Prendre le pouls de la planète\r\n\r\nLes satellites offrent une perspective globale unique sur le climat de la Terre. Grâce à eux, nous disposons désormais de plus de trois décennies d'observations décrivant certaines des variables climatiques les plus importantes. Ces informations constituent une ressource utile pour établir des modèles climatiques et vérifier leur exactitude.", + "shortText": "# Prendre le pouls de la planète\r\n\r\nLes satellites offrent une perspective globale unique sur le climat de la Terre. Grâce à eux, nous disposons désormais de plus de trois décennies d'observations décrivant certaines des variables climatiques les plus importantes. Ces informations constituent une ressource utile pour établir des modèles climatiques et vérifier leur exactitude.", "images": [ "assets/Sentinel-2.jpg" ] }, { "type": "image", - "text": "## A Blue Marble\r\n\r\nWhen the crew of Apollo 17 looked back at their home planet in 1972, they photographed an entirely sunlit Earth for the first time. It was also the last time that humans were far enough away from home to see the whole planet for themselves. That view of a ‘blue marble’ hanging in space has become a familiar sight and is possibly the most reproduced photo in history.\r\n\r\nThe blue water of the seas and oceans dominates the picture. But if we take a closer look, we can distinguish many more colours. For instance, we can see the yellow sand of the Sahara Desert, the dark green of tropical rainforests, and the white of clouds over the oceans and ice and snow covering Antarctica.\r\n\r\nToday, Earth observation satellites take daily blue marble images that reveal a wealth of detail about our changing planet. They have become an essential tool to monitor climate at both local and global scales. They are particularly useful for monitoring inaccessible areas, such as the oceans, tropical rainforests and the polar regions, which are among the areas that are most vulnerable to climate change and most under threat.\r\n \r\nThese ‘remote sensors’ can see [ice expanding and contracting](stories/story-15/3) at the poles, monitor [glaciers](stories/story-21/6) and [fires](stories/story-28/1), track clouds and aerosols moving through the [atmosphere](stories/story-21/4), and measure how [nutrients and temperatures](stories/story-16/4) are changing across the oceans. The first operational remote sensing missions were in the late 1970s so, for many components of the climate system, we now have observations spanning more than thirty years – long enough to see what global warming is doing to our planet.", - "shortText": "## A Blue Marble\r\n\r\nFirst fully-sunlit photo of Earth – _Apollo 17, 1972_\r\n\r\n- 1960: first weather satellite– TIROS-1\r\n- 1972: Earth Resources Technology Satellite – Landsat-1 \r\n- 1991: European Remote Sensing satellite – ERS-1\r\n- today: daily ‘blue marble’ images from a fleet of satellites\r\n- unique overview of inaccessible regions – oceans, rainforests, polar regions\r\n- Earth observations spanning more than 30 years\r\n- long enough to see what global warming is doing to our planet", + "text": "## Une bille bleue\r\n\r\nLorsque l'équipage d'Apollo 17 a regardé sa planète natale en 1972, il a photographié pour la première fois une Terre entièrement éclairée par le soleil. C'était aussi la dernière fois que des humains étaient suffisamment éloignés de leur planète pour la voir en entier. Cette vue d'une \"bille bleue\" suspendue dans l'espace est devenue un spectacle familier et est probablement la photo la plus reproduite de l'histoire.\r\n\r\nL'eau bleue des mers et des océans domine l'image. Mais si nous regardons de plus près, nous pouvons distinguer bien d'autres couleurs. Par exemple, nous pouvons voir le sable jaune du désert du Sahara, le vert foncé des forêts tropicales, le blanc des nuages au-dessus des océans et la glace et la neige qui recouvrent l'Antarctique.\r\n\r\nAujourd'hui, les satellites d'observation de la Terre prennent quotidiennement des images de marbre bleu qui révèlent une foule de détails sur notre planète en mutation. Ils sont devenus un outil essentiel pour surveiller le climat à l'échelle locale et mondiale. Ils sont particulièrement utiles pour surveiller les zones inaccessibles, comme les océans, les forêts tropicales et les régions polaires, qui font partie des zones les plus vulnérables au changement climatique et les plus menacées.\r\n \r\nCes \"capteurs à distance\" peuvent observer [l'expansion et la contraction de la glace](histoires/story-15/3) aux pôles, surveiller les [glaciers](histoires/story-21/6) et les [incendies](histoires/story-28/1), suivre les nuages et les aérosols qui se déplacent dans l'[atmosphère](histoires/story-21/4) et mesurer l'évolution des [nutriments et des températures](histoires/story-16/4) dans les océans. Les premières missions opérationnelles de télédétection ont eu lieu à la fin des années 1970. Ainsi, pour de nombreux composants du système climatique, nous disposons aujourd'hui d'observations couvrant plus de trente ans - suffisamment longtemps pour voir ce que le réchauffement climatique fait à notre planète.", + "shortText": "## Une bille bleue\r\n\r\nPremière photo de la Terre entièrement éclairée par le soleil - _Apollo 17, 1972_.\r\n\r\n- 1960 : premier satellite météorologique - TIROS-1\r\n- 1972 : Satellite de technologie des ressources terrestres - Landsat-1\r\n- 1991 : satellite européen de télédétection - ERS-1\r\n- aujourd'hui : des images quotidiennes \"marbre bleu\" provenant d'une flotte de satellites\r\n- vue d'ensemble unique de régions inaccessibles - océans, forêts tropicales, régions polaires\r\n- observations de la Terre sur une période de plus de 30 ans\r\n- suffisamment longtemps pour voir ce que le réchauffement climatique fait à notre planète", "images": [ "assets/cloud_large_01.jpg", "assets/story26-image10.jpg", @@ -21,17 +21,24 @@ "assets/intro_large_09.jpg" ], "imageCaptions": [ - "Photograph of the Earth taken by the Apollo 17 crew in 1972 (NASA)", - "The first image taken by the experimental weather satellite TIROS-1 in April 1960 (NASA)", - "Europe's first weather satellite, Meteosat-1, was launched in November 1977 (ESA)", - "The first image from the the European Remote Sensing satellite (ERS-1) showed the Flevoland polder and the Ijsselmeer in the Netherlands on 27 July 1991 (ESA)", - "Data from three generations of radar satellites shows the retreat of two large glaciers in southeast Greenland over 36 years (ESA)" + "Photographie de la Terre prise par l'équipage d'Apollo 17 en 1972 (NASA)", + "La première image prise par le satellite météorologique expérimental TIROS-1 en avril 1960 (NASA)", + "Le premier satellite météorologique européen, Meteosat-1, a été lancé en novembre 1977 (ESA).", + "La première image du satellite européen de télédétection (ERS-1) montre le polder de Flevoland et l'Ijsselmeer aux Pays-Bas le 27 juillet 1991 (ESA).", + "Les données de trois générations de satellites radar montrent le recul de deux grands glaciers dans le sud-est du Groenland sur une période de 36 ans (ESA)." + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Satellite Orbits\r\n\r\nSatellite technology is part of our everyday life: it is the backbone of the navigation systems in our cars, it delivers telephone and television signals and is a keystone of the daily weather forecast we watch on TV. These applications take advantage of the different orbits that are possible for spacecraft circling the Earth. A remote sensing system needs a _sensor_ (the camera) and a _platform_ (in this case, the satellite). Different sorts of cameras can be combined with satellites in different orbits in various ways, depending on what we want to find out. \r\n\r\n## Geostationary Orbit\r\n\r\nMost weather forecast images are taken by a camera on a satellite flying in orbit 36,000 km above the Earth. Satellites like these are referred to as geostationary satellites. They move around the Earth at the same rate as the planet rotates so they are always above the same point; they always see the same side of the Earth. This path, called a geostationary equatorial orbit (GEO), allows the camera to take many pictures of the same location every day so meteorologists can track how weather systems develop. Geostationary orbits are also used by most telecommunications and TV broadcast satellites. \r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Meteosat is in a geostationary orbit and Sentinel-5P in a polar orbit (Planetary Visions)_\r\n\r\n## Polar Orbit\r\n\r\nNot all satellites are geostationary. Others can look at the entire globe by travelling from pole to pole. These polar-orbiting satellites are in a low Earth orbit (LEO) at an altitude of about 700 km. Polar-orbiting satellites typically take about a hundred minutes to go around the globe and their path crosses the equator about fourteen times a day. Most polar-orbiting satellites follow a very specific path called a sun-synchronous orbit. Their orbit doesn’t go right over the poles but is slightly tilted. As a result, they pass over a particular point on the equator at approximately the same local time each day. \r\n\r\nThe cameras on Sun-synchronous polar-orbiting satellites can take only one picture per day of most places on Earth. However, the images are more detailed than those taken from geostationary satellites because the camera is much closer to the Earth. Another advantage of using a Sun-synchronous orbit is that, because all the images of a certain place are taken at the same time of day, the pictures are not affected by the changes in light intensity and direction that happen naturally over the course of a day. This makes it possible to see other changes accurately, something that is essential for observing climate and measuring quantities known as essential climate variables (ECVs). ECVs give an indication of the health of our planet, in the same way that taking your pulse can tell a doctor about your health.", - "shortText": "## Satellite Orbits\r\n\r\nSatellite technology is part of everyday life: satnav, communications, weather forecasts. Sensors, platforms and orbits can be combined in various ways.\r\n\r\nGeostationary Equatorial Orbit (GEO)\r\n\r\n- 36,000 km above surface, 24 hour orbit\r\n- Equatorial, geosynchronous orbit\r\n- fixed view of one hemisphere\r\n- low resolution, rapid repeat view\r\n\r\nLow Earth Obit (LEO)\r\n\r\n- 700-800 km above surface, 100 minute orbit\r\n- pole-to-pole, Sun-synchronous orbit\r\n- covers whole world, at same local time of day\r\n- high resolution, daily (or less) repeat view\r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Geostationary and polar orbits (Planetary Visions)_", + "text": "## Orbites des satellites\r\n\r\nLa technologie des satellites fait partie de notre vie quotidienne : elle constitue l'épine dorsale des systèmes de navigation de nos voitures, elle achemine les signaux téléphoniques et télévisuels et elle est la clé de voûte des prévisions météorologiques quotidiennes que nous regardons à la télévision. Ces applications tirent parti des différentes orbites possibles pour les engins spatiaux tournant autour de la Terre. Un système de télédétection nécessite un _capteur_ (la caméra) et une _plateforme_ (dans ce cas, le satellite). Différents types de caméras peuvent être combinés avec des satellites sur différentes orbites, de différentes manières, en fonction de ce que l'on veut découvrir.\r\n\r\n## Orbite géostationnaire\r\n\r\nLa plupart des images de prévisions météorologiques sont prises par une caméra embarquée sur un satellite volant en orbite à 36 000 km au-dessus de la Terre. Les satellites de ce type sont appelés satellites géostationnaires. Ils se déplacent autour de la Terre au même rythme que la rotation de la planète, de sorte qu'ils se trouvent toujours au-dessus du même point ; ils voient toujours le même côté de la Terre. Cette trajectoire, appelée orbite équatoriale géostationnaire (GEO), permet à la caméra de prendre chaque jour de nombreuses photos du même endroit, ce qui permet aux météorologues de suivre l'évolution des systèmes météorologiques. Les orbites géostationnaires sont également utilisées par la plupart des satellites de télécommunications et de télédiffusion.\r\n\r\nOrbites géostationnaires et polaires ](assets/story26-image01.jpg)\r\n_Meteosat est sur une orbite géostationnaire et Sentinel-5P sur une orbite polaire (Planetary Visions)_.\r\n\r\n## Orbite polaire\r\n\r\nTous les satellites ne sont pas géostationnaires. D'autres peuvent observer l'ensemble du globe en se déplaçant d'un pôle à l'autre. Ces satellites à orbite polaire se trouvent sur une orbite terrestre basse (LEO) à une altitude d'environ 700 km. Les satellites à orbite polaire mettent généralement une centaine de minutes pour faire le tour du globe et leur trajectoire traverse l'équateur environ quatorze fois par jour. La plupart des satellites en orbite polaire suivent une trajectoire très spécifique appelée orbite héliosynchrone. Leur orbite ne passe pas directement au-dessus des pôles mais est légèrement inclinée. Par conséquent, ils passent au-dessus d'un point particulier de l'équateur à peu près à la même heure locale chaque jour.\r\n\r\nLes caméras des satellites en orbite polaire héliosynchrones ne peuvent prendre qu'une seule photo par jour de la plupart des endroits sur Terre. Cependant, les images sont plus détaillées que celles prises par les satellites géostationnaires car la caméra est beaucoup plus proche de la Terre. Un autre avantage de l'utilisation d'une orbite héliosynchrone est que, comme toutes les images d'un certain endroit sont prises au même moment de la journée, les images ne sont pas affectées par les changements d'intensité et de direction de la lumière qui se produisent naturellement au cours d'une journée. Cela permet de voir d'autres changements avec précision, ce qui est essentiel pour observer le climat et mesurer des quantités connues sous le nom de variables climatiques essentielles (VCE). Les VCE donnent une indication de l'état de santé de notre planète, de la même manière que la prise de votre pouls peut renseigner un médecin sur votre état de santé.", + "shortText": "## Orbites des satellites\r\n\r\nLa technologie des satellites fait partie de la vie quotidienne : navigation par satellite, communications, prévisions météorologiques. Les capteurs, les plateformes et les orbites peuvent être combinés de différentes manières.\r\n\r\nOrbite géostationnaire équatoriale (GEO)\r\n\r\n- 36 000 km au-dessus de la surface, orbite de 24 heures\r\n- orbite équatoriale, géosynchrone\r\n- vue fixe d'un hémisphère\r\n- basse résolution, vue à répétition rapide\r\n\r\nOrbite terrestre basse (LEO)\r\n\r\n- 700-800 km au-dessus de la surface, orbite de 100 minutes\r\n- pôle à pôle, orbite synchrone avec le soleil\r\n- couvre le monde entier, à la même heure locale de la journée\r\n- haute résolution, vue répétée quotidiennement (ou moins)\r\n\r\n!Orbites géostationnaires et polaires ](assets/story26-image01.jpg)\r\n_Orbites géostationnaires et polaires (Visions planétaires)_", "images": [ "assets/story26-image02.jpg", "assets/story26-image03.jpg", @@ -40,17 +47,24 @@ "assets/intro_large_11.jpg" ], "imageCaptions": [ - "Meteosat – a geostationary weather satellite (Planetary Visions/ESA)", - "Copernicus Sentinel 3 – a polar-orbiting Earth observation satellite (ESA)", - "The Soil Moisture and Ocean Salinity satellite (SMOS), one of ESA’s Earth Explorer science satellites (ESA)", - "The European Data Relay System (EDRS) provides a geostationary communications relay \r\nbetween satellites in low Earth orbit and receiving stations on the ground (ESA)", - "European Space Agency satellite ground station in Frascati, Italy (ESA)" + "Meteosat - un satellite météorologique géostationnaire (Planetary Visions/ESA)", + "Copernicus Sentinel 3 - un satellite d'observation de la Terre en orbite polaire (ESA)", + "Le satellite SMOS (Soil Moisture and Ocean Salinity), l'un des satellites scientifiques Earth Explorer de l'ESA (ESA).", + "Le système européen de relais de données (EDRS) fournit un relais de communication géostationnaire entre des satellites en orbite basse et des stations de réception au sol.\r\nentre des satellites en orbite terrestre basse et des stations de réception au sol (ESA).", + "Station terrestre de l'Agence spatiale européenne à Frascati, Italie (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Looking at Earth Through a Different Lens\r\n\r\nThe Blue Marble photo shows Earth as we see it with the naked eye. By detecting red, green and blue light, the human eye – and the sensor in a standard digital camera – ‘see’ a full range of colours. Satellite cameras can gather much more information about our planet by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum, and each region reveals different aspects of Earth’s character.\r\n\r\nAs we traverse the electromagnetic spectrum, the globe’s appearance changes as different parts of the Earth system come into view. At visible wavelengths (400–700 nanometres), optical sensors record the outline of lake and ocean shorelines, glaciers, urban areas and the colour changes due to phytoplankton in the ocean, an important carbon sink. Click through the image gallery to see how satellites see Earth at other wavelengths.\r\n\r\n## Shorter Wavelengths\r\nUltraviolet wavelengths are absorbed by ozone in the atmosphere. Sensors detecting this range of wavelengths played an important part in the discovery of the [ozone hole](stories/story-8/1) above Antarctica, and are still used to track how it is changing. X-rays and gamma rays have much shorter wavelengths than visible light (less than 10 nanometres). They are used in astronomy (and in medicine), but not by Earth observation satellites.\r\n\r\n## Longer Wavelengths\r\n\r\nNear-infrared wavelengths (about 1 micrometre) are used to measure the [vigour of plant growth](stories/story-29/3) on land, helping to keep track of agricultural productivity and the impact of stresses such as drought. The mid-infrared shows [water vapour in the atmosphere](stories/story-21/3). Using the same principles as the handheld thermal cameras used for temperature screening at some airports, the thermal infrared (wavelength about 10 micrometre) allows us to measure the temperature of the land and [sea surface](stories/story-16/2) and the tops of clouds. The far infrared reveals information about the energy radiated by the Earth and energy exchanges in the atmosphere. \r\n\r\nAt even longer wavelengths, microwaves (about 1 centimetre) can reveal the presence of water in all its forms: as liquid in the soil, frozen as snow and ice, and as vapour and water droplets in the atmosphere. Microwaves can penetrate clouds, so microwave sensors are able to provide data under most weather conditions and even in the prolonged dark of the polar winter. Microwaves emitted by the Earth allow us to monitor snow and [sea ice extent](stories/story-15/3) and [soil moisture](stories/story-21/5). \r\n\r\nActive microwave sensors, including radar, generate their own microwaves, much as a torch generates light. Detecting the reflected microwave energy allows us to track the motion of ice and, with radar altimeters, we can measure the [thickness of sea ice](stories/story-15/7) and ice sheets, and the height of ocean waves.", - "shortText": "## Looking at Earth Through a Different Lens\r\n\r\nSatellites gather information about Earth by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum:\r\n\r\n- ultraviolet (100–400 nm): ozone in the atmosphere \r\n- visible (400–700 nm): shorelines, glaciers, urban areas, clouds, ocean phytoplankton \r\n- near-infrared (~ 1 µm): plant growth on land\r\n- mid-infrared: water vapour in the atmosphere\r\n- thermal infrared (~ 10 µm): temperature of land, sea, clouds \r\n- far infrared: energy radiated by the Earth and energy exchanges in the atmosphere \r\n- microwaves (~ 1 cm): water – in the soil, frozen as snow and ice, as vapour and water droplets in the atmosphere\r\n- active microwave sensors, including radar: motion of ice, thickness of sea ice and ice sheets, height of ocean waves", + "text": "## Regarder la Terre à travers une lentille différente\r\n\r\nLa photo Blue Marble montre la Terre telle que nous la voyons à l'œil nu. En détectant la lumière rouge, verte et bleue, l'œil humain - et le capteur d'un appareil photo numérique standard - \"voit\" une gamme complète de couleurs. Les caméras satellites peuvent recueillir beaucoup plus d'informations sur notre planète en regardant au-delà des longueurs d'onde visibles, dans d'autres parties du spectre électromagnétique, et chaque région révèle différents aspects du caractère de la Terre.\r\n\r\nEn parcourant le spectre électromagnétique, l'apparence du globe change au fur et à mesure que les différentes parties du système terrestre sont visibles. Aux longueurs d'onde visibles (400-700 nanomètres), les capteurs optiques enregistrent le contour des rivages des lacs et des océans, les glaciers, les zones urbaines et les changements de couleur dus au phytoplancton dans l'océan, un important puits de carbone. Cliquez sur la galerie d'images pour voir comment les satellites voient la Terre à d'autres longueurs d'onde.\r\n\r\n## Longueurs d'onde plus courtes\r\nLes longueurs d'onde ultraviolettes sont absorbées par l'ozone dans l'atmosphère. Les capteurs détectant cette gamme de longueurs d'onde ont joué un rôle important dans la découverte du [trou d'ozone] (histoires/story-8/1) au-dessus de l'Antarctique, et sont toujours utilisés pour suivre son évolution. Les rayons X et les rayons gamma ont des longueurs d'onde beaucoup plus courtes que la lumière visible (moins de 10 nanomètres). Ils sont utilisés en astronomie (et en médecine), mais pas par les satellites d'observation de la Terre.\r\n\r\n## Longueurs d'onde plus grandes\r\n\r\nLes longueurs d'onde de l'infrarouge proche (environ 1 micromètre) sont utilisées pour mesurer la [vigueur de la croissance des plantes](histoires/story-29/3) sur la terre, ce qui permet de suivre la productivité agricole et l'impact de stress tels que la sécheresse. L'infrarouge moyen montre [la vapeur d'eau dans l'atmosphère](histoires/story-21/3). Utilisant les mêmes principes que les caméras thermiques portatives utilisées pour le contrôle de la température dans certains aéroports, l'infrarouge thermique (longueur d'onde d'environ 10 micromètres) nous permet de mesurer la température de la terre et de la [surface de la mer] (histoires/story-16/2) et le sommet des nuages. L'infrarouge lointain révèle des informations sur l'énergie rayonnée par la Terre et les échanges d'énergie dans l'atmosphère.\r\n\r\nÀ des longueurs d'onde encore plus grandes, les micro-ondes (environ 1 centimètre) peuvent révéler la présence d'eau sous toutes ses formes : liquide dans le sol, gelée sous forme de neige et de glace, et sous forme de vapeur et de gouttelettes d'eau dans l'atmosphère. Les micro-ondes peuvent pénétrer les nuages, ce qui permet aux capteurs à micro-ondes de fournir des données dans la plupart des conditions météorologiques et même dans l'obscurité prolongée de l'hiver polaire. Les micro-ondes émises par la Terre nous permettent de surveiller la neige et [l'étendue de la glace de mer](stories/story-15/3) et [l'humidité du sol](stories/story-21/5).\r\n\r\nLes capteurs actifs de micro-ondes, y compris les radars, génèrent leurs propres micro-ondes, tout comme une torche génère de la lumière. La détection de l'énergie micro-onde réfléchie nous permet de suivre le mouvement de la glace et, avec les altimètres radar, nous pouvons mesurer l'[épaisseur de la glace de mer](stories/story-15/7) et les couches de glace, ainsi que la hauteur des vagues océaniques.", + "shortText": "## Regarder la Terre à travers une lentille différente\r\n\r\nLes satellites recueillent des informations sur la Terre en regardant au-delà des longueurs d'onde visibles, dans d'autres parties du spectre électromagnétique :\r\n\r\n- ultraviolet (100-400 nm) : ozone dans l'atmosphère\r\n- visible (400-700 nm) : rivages, glaciers, zones urbaines, nuages, phytoplancton océanique\r\n- proche infrarouge (~ 1 µm) : croissance des plantes sur terre\r\n- infrarouge moyen : vapeur d'eau dans l'atmosphère\r\n- infrarouge thermique (~ 10 µm) : température de la terre, de la mer et des nuages\r\n- infrarouge lointain : énergie rayonnée par la Terre et échanges énergétiques dans l'atmosphère\r\n- micro-ondes (~ 1 cm) : eau - dans le sol, gelée sous forme de neige et de glace, sous forme de vapeur et de gouttelettes d'eau dans l'atmosphère\r\n- capteurs actifs de micro-ondes, y compris les radars : mouvement de la glace, épaisseur de la glace de mer et des couches de glace, hauteur des vagues océaniques.", "images": [ "assets/story26-image05.jpg", "assets/story26-image07.jpg", @@ -59,17 +73,24 @@ "assets/story26-image12.jpg" ], "imageCaptions": [ - "Ultraviolet light reveals the concentration of atmospheric ozone (ESA-CCI Ozone)", - "Multispectral surface reflectance at visible and near-infrared wavelengths\r\nshows the vigour of plant life on land (ESA-CCI CCI Land Cover)", - "Atmospheric water vapour revealed at mid-infrared wavelengths by the Meteosat weather satellite (ESA/Eumetsat/DLR)", - "Thermal infrared wavelengths show the temperature of the Earth’s surface and cloud tops (ESA-CCI Cloud)", - "Microwave emissions are used to track soil moisture, sea ice, snow and atmospheric water. Brightness temperature at 89 GHz and 23.8 GHz from AMSR-E. (National Space Development Agency of Japan)" + "La lumière ultraviolette révèle la concentration d'ozone atmosphérique (ESA-CCI Ozone)", + "La réflectance multispectrale de la surface aux longueurs d'onde du visible et du proche infrarouge\r\nmontre la vigueur de la vie végétale sur terre (ESA-CCI Land Cover)", + "Vapeur d'eau atmosphérique révélée aux longueurs d'onde de l'infrarouge moyen par le satellite météorologique Meteosat (ESA/Eumetsat/DLR)", + "Les longueurs d'onde de l'infrarouge thermique montrent la température de la surface de la Terre et des sommets des nuages (ESA-CCI Cloud)", + "Les émissions de micro-ondes sont utilisées pour suivre l'humidité du sol, la glace de mer, la neige et l'eau atmosphérique. Température de brillance à 89 GHz et 23,8 GHz de AMSR-E. (Agence nationale de développement spatial du Japon)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, the observations taken by their sensors need to be calibrated with _in situ_ measurements taken with conventional instruments on or near the surface. Satellites in most cases can only measure the surface. In the case of the temperature of the ocean this means much less than the top millimetre, so sea-surface temperature from satellite needs to be combined with data from ship-tethered or free-floating underwater probes to form a complete picture of ocean temperature.\r\n\r\nEarth observation specialists work with subject specialists ‘in the field’. This fieldwork is often an important part of designing a new satellite instrument or testing a new way of using existing satellite data. Fieldwork might involve the deployment of fixed instruments on the ground, drifting or gliding instruments in the ocean, or aircraft or balloon flights in the atmosphere. Scientists may spend months isolated in remote research stations in Antarctica or on board a ship locked in the Arctic sea ice. This ground-level work is an essential part of the calibration and validation of climate observations from space.", - "shortText": "# Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, their observations need to be calibrated with _in situ_ measurements taken on or near the surface. \r\n\r\n- fieldwork often an important part of designing a new satellite instrument \r\n- Earth observation specialists work with subject specialists ‘in the field’\r\n- fixed instruments on the ground\r\n- drifting or gliding instruments in the ocean\r\n- aircraft or balloon flights in the atmosphere\r\n- scientists may spend weeks on board ships \r\n- or months at remote research stations in Antarctica \r\n\r\nMuch of our knowledge of Earth’s past climate comes from the analysis of ice cores extracted from the thick ice sheets of Greenland or Antarctica.", + "text": "## Reality Check\r\n\r\nBien que les satellites permettent de couvrir beaucoup de terrain en peu de temps, les observations prises par leurs capteurs doivent être calibrées avec des mesures _in situ_ prises avec des instruments conventionnels sur ou près de la surface. Dans la plupart des cas, les satellites ne peuvent mesurer que la surface. Dans le cas de la température de l'océan, cela signifie bien moins que le millimètre supérieur, de sorte que la température de la surface de la mer mesurée par satellite doit être combinée avec des données provenant de sondes sous-marines attachées à des navires ou flottant librement pour obtenir une image complète de la température de l'océan.\r\n\r\nLes spécialistes de l'observation de la Terre travaillent avec des spécialistes du domaine \"sur le terrain\". Ce travail sur le terrain est souvent un élément important de la conception d'un nouvel instrument satellitaire ou de l'essai d'une nouvelle façon d'utiliser les données satellitaires existantes. Le travail sur le terrain peut impliquer le déploiement d'instruments fixes sur le sol, d'instruments dérivants ou planants dans l'océan, ou de vols en avion ou en ballon dans l'atmosphère. Les scientifiques peuvent passer des mois isolés dans des stations de recherche éloignées en Antarctique ou à bord d'un navire enfermé dans la glace de mer de l'Arctique. Ce travail au sol est une partie essentielle de l'étalonnage et de la validation des observations climatiques depuis l'espace.", + "shortText": "# La réalité\r\n\r\nBien que les satellites permettent de couvrir beaucoup de terrain en peu de temps, leurs observations doivent être calibrées avec des mesures _in situ_ prises sur ou près de la surface.\r\n\r\n- Le travail sur le terrain est souvent un élément important de la conception d'un nouvel instrument satellitaire.\r\n- Les spécialistes de l'observation de la Terre travaillent avec des spécialistes du domaine \"sur le terrain\".\r\n- instruments fixes au sol\r\n- instruments dérivants ou planants dans l'océan\r\n- vols en avion ou en ballon dans l'atmosphère\r\n- les scientifiques peuvent passer des semaines à bord de navires\r\n- ou des mois dans des stations de recherche éloignées en Antarctique.\r\n\r\nUne grande partie de nos connaissances sur le climat passé de la Terre provient de l'analyse de carottes de glace extraites des épaisses couches de glace du Groenland ou de l'Antarctique.", "images": [ "assets/sealevel_large_07.jpg", "assets/story26-image18.jpg", @@ -78,11 +99,18 @@ "assets/icesheet_large_06.jpg" ], "imageCaptions": [ - "A research ship deploying an Argo float. There are almost 4,000 of these automatic buoys floating across the world. They travel up and down the top 2,000 metres of the ocean continually recording temperature, salinity and current. Measurements from them are used to calibrate and validate satellite observations of the ocean surface. (Argo Programme/IFREMER)", - "Scientists taking sea ice cores in the Arctic winter. The German research vessel Polarstern was deliberately trapped for a year in the sea ice of the Arctic Ocean during 2019–20, as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", - "Aircraft provide a local remote sensing platform as well as transport in remote regions (A Hogg)", - "Taking soil moisture measurements in Sweden to support the development of ESA's BIOMASS satellite (FOI)", - "A wide-angle view from the joint French-Italian Concordia Research Station, located high on Dome C of the Antarctic Plateau, one of the coldest places on Earth (AP Salam)" + "Un navire de recherche déploie un flotteur Argo. Près de 4 000 de ces bouées automatiques flottent dans le monde. Elles parcourent les 2 000 mètres supérieurs de l'océan en enregistrant en permanence la température, la salinité et le courant. Les mesures qu'elles fournissent sont utilisées pour calibrer et valider les observations satellitaires de la surface de l'océan. (Programme Argo/IFREMER)", + "Des scientifiques prélèvent des carottes de glace de mer pendant l'hiver arctique. Le navire de recherche allemand Polarstern a été délibérément piégé pendant un an dans la glace de mer de l'océan Arctique en 2019-20, dans le cadre de l'Observatoire multidisciplinaire dérivant pour l'étude du climat arctique (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut).", + "Les avions fournissent une plateforme de télédétection locale ainsi que le transport dans les régions éloignées (A Hogg)", + "Mesure de l'humidité du sol en Suède pour soutenir le développement du satellite BIOMASS de l'ESA (FOI)", + "Une vue grand angle de la station de recherche commune franco-italienne Concordia, située sur le Dôme C du plateau antarctique, l'un des endroits les plus froids de la planète (AP Salam)." + ], + "imageFits": [ + "cover", + "cover", + "cover", + "contain", + "cover" ] } ] diff --git a/storage/stories/story-26/story-26-nl.json b/storage/stories/story-26/story-26-nl.json index 92e9e7a6e..c58756624 100644 --- a/storage/stories/story-26/story-26-nl.json +++ b/storage/stories/story-26/story-26-nl.json @@ -3,16 +3,16 @@ "slides": [ { "type": "splashscreen", - "text": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", - "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatellites offer a unique global perspective on the Earth’s climate. From them, we now have over three decades of observations describing some of the most important climate variables. This information is a useful resource for both setting up climate models and checking their accuracy.", + "text": "# De hartslag van de planeet meten\r\n\r\nSatellieten bieden een unieke blik op de aard. Ze verzamelen al meer dan drie decennia informatie over de staat van ons klimaat. Op basis van deze informatie worden klimaatmodellen ontwikkeld en wordt de nauwkeurigheid van de modellen gecontroleerd.", + "shortText": "# Taking the Pulse of the Planet\r\n\r\nSatellieten bieden een uniek wereldwijd perspectief op het klimaat van de aarde. Dankzij deze satellieten beschikken we nu over meer dan drie decennia aan waarnemingen die een aantal van de belangrijkste klimaatvariabelen beschrijven. Deze informatie is een nuttige bron voor zowel het opstellen van klimaatmodellen als het controleren van de nauwkeurigheid ervan.", "images": [ "assets/Sentinel-2.jpg" ] }, { "type": "image", - "text": "## A Blue Marble\r\n\r\nWhen the crew of Apollo 17 looked back at their home planet in 1972, they photographed an entirely sunlit Earth for the first time. It was also the last time that humans were far enough away from home to see the whole planet for themselves. That view of a ‘blue marble’ hanging in space has become a familiar sight and is possibly the most reproduced photo in history.\r\n\r\nThe blue water of the seas and oceans dominates the picture. But if we take a closer look, we can distinguish many more colours. For instance, we can see the yellow sand of the Sahara Desert, the dark green of tropical rainforests, and the white of clouds over the oceans and ice and snow covering Antarctica.\r\n\r\nToday, Earth observation satellites take daily blue marble images that reveal a wealth of detail about our changing planet. They have become an essential tool to monitor climate at both local and global scales. They are particularly useful for monitoring inaccessible areas, such as the oceans, tropical rainforests and the polar regions, which are among the areas that are most vulnerable to climate change and most under threat.\r\n \r\nThese ‘remote sensors’ can see [ice expanding and contracting](stories/story-15/3) at the poles, monitor [glaciers](stories/story-21/6) and [fires](stories/story-28/1), track clouds and aerosols moving through the [atmosphere](stories/story-21/4), and measure how [nutrients and temperatures](stories/story-16/4) are changing across the oceans. The first operational remote sensing missions were in the late 1970s so, for many components of the climate system, we now have observations spanning more than thirty years – long enough to see what global warming is doing to our planet.", - "shortText": "## A Blue Marble\r\n\r\nFirst fully-sunlit photo of Earth – _Apollo 17, 1972_\r\n\r\n- 1960: first weather satellite– TIROS-1\r\n- 1972: Earth Resources Technology Satellite – Landsat-1 \r\n- 1991: European Remote Sensing satellite – ERS-1\r\n- today: daily ‘blue marble’ images from a fleet of satellites\r\n- unique overview of inaccessible regions – oceans, rainforests, polar regions\r\n- Earth observations spanning more than 30 years\r\n- long enough to see what global warming is doing to our planet", + "text": "## De ‘Blue Marble’\r\n\r\nIn 1972 maakte de bemanning van Apollo 17 voor het eerst een foto van een volledig door de zon verlichte aarde. Het was gelijk ook de laatste keer dat mensen zo ver van de aarde waren dat ze de hele planeet konden overzien. De ‘Blue Marble’ (letterlijk: de blauwe knikker) hangend in de ruimte is een bekend beeld geworden. Het is misschien wel de meest gereproduceerde foto in de geschiedenis.\r\n \r\nHet blauwe water van de zeeën en oceanen domineert de foto. Maar als je beter kijkt, kun je veel meer kleuren onderscheiden. Je ziet bijvoorbeeld het gele zand van de Sahara, het donkergroen van tropische regenwouden en het wit van wolken boven de oceanen en van het ijs en de sneeuw die Antarctica bedekken.\r\n\r\nTegenwoordig maken satellieten dagelijks Blue Marble-achtige foto’s, die een schat aan informatie over onze veranderende planeet onthullen. Ze zijn een essentieel instrument geworden om het klimaat op lokale én mondiale schaal in kaart te brengen. Ze zijn vooral nuttig voor het monitoren van ontoegankelijke gebieden, zoals de oceanen, het tropisch regenwoud en de poolgebieden. Gebieden die tegelijk het kwetsbaarst zijn voor klimaatverandering en het meest worden bedreigd.\r\n\r\nDe _remote sensors_ (‘sensoren op afstand’) op satellieten kunnen volgen hoe [zee-ijs groeit en weer smelt](stories/story-15/3), [gletsjers](stories/story-21/6) en [natuurbranden](stories/story-28/1) in de gaten houden, wolken en aërosolen volgen die door de [atmosfeer](stories/story-21/4) bewegen en meten hoe [voedingsstoffen in en de watertemperatuur](stories/story-16/4) van de oceanen veranderen. De eerste remote sensing-missies werden al eind jaren zeventig uitgevoerd, dus voor veel aspecten van het klimaatsysteem hebben we nu waarnemingen die meer dan dertig jaar bestrijken. Lang genoeg om te zien wat de gevolgen van de opwarming van de aarde zijn.", + "shortText": "## A Blue Marble\r\n\r\nEerste volledig zonverlichte foto van de Aarde - _Apollo 17, 1972_\r\n\r\n- 1960: eerste weersatelliet - TIROS-1\r\n- 1972: Aardse Hulpbronnen Technologie Satelliet - Landsat-1\r\n- 1991: Europese teledetectiesatelliet - ERS-1\r\n- vandaag: dagelijkse \"blauwe knikker\"-beelden van een vloot satellieten\r\n- uniek overzicht van ontoegankelijke gebieden - oceanen, regenwouden, poolgebieden\r\n- Waarnemingen van de aarde over een periode van meer dan 30 jaar\r\n- lang genoeg om te zien wat de opwarming van de aarde met onze planeet doet", "images": [ "assets/cloud_large_01.jpg", "assets/story26-image10.jpg", @@ -21,17 +21,24 @@ "assets/intro_large_09.jpg" ], "imageCaptions": [ - "Photograph of the Earth taken by the Apollo 17 crew in 1972 (NASA)", - "The first image taken by the experimental weather satellite TIROS-1 in April 1960 (NASA)", - "Europe's first weather satellite, Meteosat-1, was launched in November 1977 (ESA)", - "The first image from the the European Remote Sensing satellite (ERS-1) showed the Flevoland polder and the Ijsselmeer in the Netherlands on 27 July 1991 (ESA)", - "Data from three generations of radar satellites shows the retreat of two large glaciers in southeast Greenland over 36 years (ESA)" + "Foto van de aarde genomen in 1972 door de Apollo 17 bemanning (NASA)", + "De eerste foto genomen door de experimentele weersatelliet TIROS-1 in april 1960 (NASA)", + "Europa's eerste weersatelliet, Meteosat-1, werd in november 1977 gelanceerd (ESA)", + "De eerste foto van de _European Remote Sensing_ satelliet (ERS-1) toonde Flevoland en het IJsselmeer in Nederland op 27 juli 1991 (ESA)", + "Data van drie generaties radarsatellieten tonen het smelten van twee grote gletsjers in zuidoost Groenland gedurende 36 jaar (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Satellite Orbits\r\n\r\nSatellite technology is part of our everyday life: it is the backbone of the navigation systems in our cars, it delivers telephone and television signals and is a keystone of the daily weather forecast we watch on TV. These applications take advantage of the different orbits that are possible for spacecraft circling the Earth. A remote sensing system needs a _sensor_ (the camera) and a _platform_ (in this case, the satellite). Different sorts of cameras can be combined with satellites in different orbits in various ways, depending on what we want to find out. \r\n\r\n## Geostationary Orbit\r\n\r\nMost weather forecast images are taken by a camera on a satellite flying in orbit 36,000 km above the Earth. Satellites like these are referred to as geostationary satellites. They move around the Earth at the same rate as the planet rotates so they are always above the same point; they always see the same side of the Earth. This path, called a geostationary equatorial orbit (GEO), allows the camera to take many pictures of the same location every day so meteorologists can track how weather systems develop. Geostationary orbits are also used by most telecommunications and TV broadcast satellites. \r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Meteosat is in a geostationary orbit and Sentinel-5P in a polar orbit (Planetary Visions)_\r\n\r\n## Polar Orbit\r\n\r\nNot all satellites are geostationary. Others can look at the entire globe by travelling from pole to pole. These polar-orbiting satellites are in a low Earth orbit (LEO) at an altitude of about 700 km. Polar-orbiting satellites typically take about a hundred minutes to go around the globe and their path crosses the equator about fourteen times a day. Most polar-orbiting satellites follow a very specific path called a sun-synchronous orbit. Their orbit doesn’t go right over the poles but is slightly tilted. As a result, they pass over a particular point on the equator at approximately the same local time each day. \r\n\r\nThe cameras on Sun-synchronous polar-orbiting satellites can take only one picture per day of most places on Earth. However, the images are more detailed than those taken from geostationary satellites because the camera is much closer to the Earth. Another advantage of using a Sun-synchronous orbit is that, because all the images of a certain place are taken at the same time of day, the pictures are not affected by the changes in light intensity and direction that happen naturally over the course of a day. This makes it possible to see other changes accurately, something that is essential for observing climate and measuring quantities known as essential climate variables (ECVs). ECVs give an indication of the health of our planet, in the same way that taking your pulse can tell a doctor about your health.", - "shortText": "## Satellite Orbits\r\n\r\nSatellite technology is part of everyday life: satnav, communications, weather forecasts. Sensors, platforms and orbits can be combined in various ways.\r\n\r\nGeostationary Equatorial Orbit (GEO)\r\n\r\n- 36,000 km above surface, 24 hour orbit\r\n- Equatorial, geosynchronous orbit\r\n- fixed view of one hemisphere\r\n- low resolution, rapid repeat view\r\n\r\nLow Earth Obit (LEO)\r\n\r\n- 700-800 km above surface, 100 minute orbit\r\n- pole-to-pole, Sun-synchronous orbit\r\n- covers whole world, at same local time of day\r\n- high resolution, daily (or less) repeat view\r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Geostationary and polar orbits (Planetary Visions)_", + "text": "## Satellietbanen\r\n\r\nSatelliettechnologie maakt deel uit van ons dagelijks leven. Zonder satellieten werken de navigatiesystemen in onze auto’s niet. Satellieten verzenden telefoon- en televisiesignalen en zijn onmisbaar voor de dagelijkse weersvoorspelling op tv. Deze toepassingen maken allemaal gebruik van _remote sensing_-technologie. Een _remote sensing_-systeem heeft een _sensor_ (de camera) en een _platform_ (in dit geval de satelliet) nodig. Afhankelijk van wat we willen weten en meten, kunnen verschillende soorten camera’s op allerlei manieren worden gecombineerd op een satelliet en kan een satelliet in een bepaalde baan rond de aarde worden gebracht.\r\n\r\n## Geostationaire baan\r\n\r\nBeelden die we gebruiken voor weersvoorspellingen komen voornamelijk van satellieten die in een baan op 36.000 km boven de aarde vliegen. Ze bewegen met dezelfde snelheid rond de aarde als de planeet draait. Ze bevinden zich daardoor altijd boven hetzelfde punt en zien altijd dezelfde kant van de aarde. Ze heten daarom geostationaire satellieten. Ze kunnen elke dag veel foto's van dezelfde locatie maken, zodat meteorologen de ontwikkeling van weersystemen kunnen volgen. Deze z.g. geostationaire equatoriale baan (GEO) wordt ook gebruikt voor de meeste telecommunicatie- en tv-satellieten. \r\n\r\n![Geostationary and polar orbits ](assets/story26-image01.jpg) \r\n_Meteosat vliegt in een geostationaire baan en Sentinel-5P in een polaire baan (Planetary Visions)_\r\n\r\n## Polaire baan\r\n\r\nEr zijn ook satellieten die de hele wereld bestrijken door van pool naar pool te vliegen. Deze satellieten draaien op een hoogte van ongeveer 700 km in een polaire baan om de aarde (_Low Earth Orbit_, LEO). Deze polaire satellieten doen er doorgaans ongeveer honderd minuten over om rond de wereld te reizen. Hun pad kruist de evenaar veertien keer per dag. De meeste polaire satellieten volgen een nog specifieker pad, dat een zonsynchrone baan wordt genoemd. Hun baan gaat niet recht over de polen, maar is licht gekanteld. Het resultaat is dat ze elke dag op ongeveer hetzelfde tijdstip een bepaald punt op de evenaar passeren.\r\n\r\nDe camera's van zonsynchrone polaire satellieten maken van de meeste plaatsen op aarde maar één foto per dag. De beelden zijn echter gedetailleerder dan die van geostationaire satellieten, doordat de camera veel dichter bij de aarde staat. Doordat ze altijd op hetzelfde tijdstip dezelfde plek op aarde in beeld brengen, worden de foto’s bovendien niet beïnvloed door veranderingen in lichtintensiteit en invalsrichting, die van nature over de loop van een dag plaatsvinden. Dit maakt het mogelijk om andere veranderingen in het beeld nauwkeurig te observeren, wat essentieel is voor het monitoren van het klimaat. Zo kunnen parameters, die bekend staan als essentiële klimaatvariabelen (_essential climate variables_, ECV's), worden gemeten. ECV's geven een indicatie van de gezondheid van onze planeet, net zoals het meten van je pols een arts iets vertelt over je gezondheid.", + "shortText": "## Satelliet Banen\r\n\r\nSatelliettechnologie maakt deel uit van het dagelijks leven: satellietnavigatie, communicatie, weersvoorspellingen. Sensoren, platforms en banen kunnen op verschillende manieren worden gecombineerd.\r\n\r\nGeostationaire Equatoriale Omloopbaan (GEO)\r\n\r\n- 36.000 km boven het aardoppervlak, 24-uurs omloopbaan\r\n- Equatoriale, geosynchrone baan\r\n- vast beeld van één halfrond\r\n- lage resolutie, snel herhalend zicht\r\n\r\nLaag aardoppervlak (LEO)\r\n\r\n- 700-800 km boven het aardoppervlak, baan van 100 minuten\r\n- pool-tot-pool, zon-synchrone baan\r\n- bestrijkt de hele wereld, op hetzelfde lokale tijdstip van de dag\r\n- hoge resolutie, dagelijks (of minder) herhaalde weergave\r\n\r\nGeostationaire en polaire banen ](assets/story26-image01.jpg)\r\nGeostationaire en polaire banen (Planetary Visions)_", "images": [ "assets/story26-image02.jpg", "assets/story26-image03.jpg", @@ -40,17 +47,24 @@ "assets/intro_large_11.jpg" ], "imageCaptions": [ - "Meteosat – a geostationary weather satellite (Planetary Visions/ESA)", - "Copernicus Sentinel 3 – a polar-orbiting Earth observation satellite (ESA)", - "The Soil Moisture and Ocean Salinity satellite (SMOS), one of ESA’s Earth Explorer science satellites (ESA)", - "The European Data Relay System (EDRS) provides a geostationary communications relay \r\nbetween satellites in low Earth orbit and receiving stations on the ground (ESA)", - "European Space Agency satellite ground station in Frascati, Italy (ESA)" + "Meteosat – een geostationaire weersatelliet (Planetary Visions/ESA)", + "Copernicus Sentinel 3 – een polaire aardobservatie satelliet (ESA)", + "De _Soil Moisture and Ocean Salinity_ satelliet (SMOS), één van ESA’s _Earth Explorer_ wetenschappelijke satellieten (ESA)", + "Het _European Data Relay System_ (EDRS) biedt een geostationair communicatie-relais\r\ntussen satellieten in een lage baan om de aarde en ontvangststations op de grond (ESA)", + "European Space Agency satelliet ontvangststation in Frascati, Italië (ESA)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Looking at Earth Through a Different Lens\r\n\r\nThe Blue Marble photo shows Earth as we see it with the naked eye. By detecting red, green and blue light, the human eye – and the sensor in a standard digital camera – ‘see’ a full range of colours. Satellite cameras can gather much more information about our planet by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum, and each region reveals different aspects of Earth’s character.\r\n\r\nAs we traverse the electromagnetic spectrum, the globe’s appearance changes as different parts of the Earth system come into view. At visible wavelengths (400–700 nanometres), optical sensors record the outline of lake and ocean shorelines, glaciers, urban areas and the colour changes due to phytoplankton in the ocean, an important carbon sink. Click through the image gallery to see how satellites see Earth at other wavelengths.\r\n\r\n## Shorter Wavelengths\r\nUltraviolet wavelengths are absorbed by ozone in the atmosphere. Sensors detecting this range of wavelengths played an important part in the discovery of the [ozone hole](stories/story-8/1) above Antarctica, and are still used to track how it is changing. X-rays and gamma rays have much shorter wavelengths than visible light (less than 10 nanometres). They are used in astronomy (and in medicine), but not by Earth observation satellites.\r\n\r\n## Longer Wavelengths\r\n\r\nNear-infrared wavelengths (about 1 micrometre) are used to measure the [vigour of plant growth](stories/story-29/3) on land, helping to keep track of agricultural productivity and the impact of stresses such as drought. The mid-infrared shows [water vapour in the atmosphere](stories/story-21/3). Using the same principles as the handheld thermal cameras used for temperature screening at some airports, the thermal infrared (wavelength about 10 micrometre) allows us to measure the temperature of the land and [sea surface](stories/story-16/2) and the tops of clouds. The far infrared reveals information about the energy radiated by the Earth and energy exchanges in the atmosphere. \r\n\r\nAt even longer wavelengths, microwaves (about 1 centimetre) can reveal the presence of water in all its forms: as liquid in the soil, frozen as snow and ice, and as vapour and water droplets in the atmosphere. Microwaves can penetrate clouds, so microwave sensors are able to provide data under most weather conditions and even in the prolonged dark of the polar winter. Microwaves emitted by the Earth allow us to monitor snow and [sea ice extent](stories/story-15/3) and [soil moisture](stories/story-21/5). \r\n\r\nActive microwave sensors, including radar, generate their own microwaves, much as a torch generates light. Detecting the reflected microwave energy allows us to track the motion of ice and, with radar altimeters, we can measure the [thickness of sea ice](stories/story-15/7) and ice sheets, and the height of ocean waves.", - "shortText": "## Looking at Earth Through a Different Lens\r\n\r\nSatellites gather information about Earth by looking beyond the visible wavelengths into other parts of the electromagnetic spectrum:\r\n\r\n- ultraviolet (100–400 nm): ozone in the atmosphere \r\n- visible (400–700 nm): shorelines, glaciers, urban areas, clouds, ocean phytoplankton \r\n- near-infrared (~ 1 µm): plant growth on land\r\n- mid-infrared: water vapour in the atmosphere\r\n- thermal infrared (~ 10 µm): temperature of land, sea, clouds \r\n- far infrared: energy radiated by the Earth and energy exchanges in the atmosphere \r\n- microwaves (~ 1 cm): water – in the soil, frozen as snow and ice, as vapour and water droplets in the atmosphere\r\n- active microwave sensors, including radar: motion of ice, thickness of sea ice and ice sheets, height of ocean waves", + "text": "## Door een andere lens naar de aarde kijken\r\n\r\nDe Blue Marble-foto toont de aarde zoals we die met het blote oog zien. Door rood, groen en blauw licht te detecteren 'ziet' het menselijk oog een volledig kleurenspectrum, net als de sensor in een standaard digitale camera. Satellietcamera's kunnen echter veel meer informatie over onze planeet verzamelen door ook naar andere delen van het elektromagnetische spectrum te kijken, voorbij de zichtbare golflengten. Ieder deel van het spectrum onthult weer andere eigenschappen van het aardoppervlak.\r\n\r\nAls we het elektromagnetische spectrum doorkruisen, komen verschillende delen van het systeem aarde in zicht. Op zichtbare golflengten (400-700 nanometer) registreren optische sensoren de oevers van meren en oceanen, gletsjers, stedelijke gebieden en kleurveranderingen als gevolg van planktongroei in de oceaan (belangrijk voor de opslag van koolstof). Klik door de fotogalerij hiernaast om te zien hoe satellieten de aarde op verschillende golflengten zien.\r\n\r\n\r\n## Kortere golflengten\r\n\r\nUltraviolette golflengten worden geabsorbeerd door de ozon in de atmosfeer. Sensoren die dit golflengtebereik detecteren speelden een belangrijke rol in de ontdekking van het ozongat boven Antarctica. Ze worden nog steeds gebruikt om te volgen hoe de omvang van dit gat verandert. Röntgen- en gammastralen hebben veel kortere golflengten dan zichtbaar licht (minder dan 10 nanometer). Ze worden gebruikt in de astronomie (en in de geneeskunde), maar niet in de aardobservatie door satellieten.\r\n\r\n## Langere golflengten\r\n\r\nNabij-infrarode golflengten (ongeveer 1 micrometer) worden gebruikt om de [groeikracht van planten](stories/story-29/3) te meten. Hiermee kunnen bijvoorbeeld de landbouwproductiviteit en de gevolgen van droogte worden gevolgd. Het middel-infrarode deel van het spectrum toont [waterdamp in de atmosfeer](stories/story-21/3) en het thermische infrarood (golflengte van ongeveer 10 micrometer) stelt ons in staat om de temperatuur van het land- en [zeeoppervlak](stories/story-16/2) en de toppen van wolken te meten. Dit is gebaseerd op dezelfde principes als de draagbare warmtecamera's die worden gebruikt voor temperatuurscreening op sommige luchthavens. Het ver-infrarood onthult informatie over de energie die de aarde uitstraalt en over energie-uitwisseling in de atmosfeer.\r\n\r\nBij nog langere golflengten (ongeveer 1 cm) kunnen microgolven de aanwezigheid van water in al zijn vormen onthullen: als vloeistof in de bodem, bevroren als sneeuw en ijs en als damp en waterdruppels in de atmosfeer. Microgolven kunnen door wolken heen dringen, dus microgolfsensoren kunnen gegevens verzamelen onder de meeste weersomstandigheden en zelfs in het langdurige donker van de poolwinter. Microgolven die door de aarde worden uitgezonden, stellen ons ook in staat om oppervlaktes van sneeuw en [zee-ijs](stories/story-15/3) en [bodemvochtigheid](stories/story-21/5) te volgen.\r\n\r\nActieve microgolfsensoren, waaronder radar, genereren hun eigen microgolven, net zoals een zaklamp licht genereert. Door de gereflecteerde energie te detecteren, kunnen we de beweging van ijs volgen en met radarhoogtemeters de [dikte van zee-ijs](stories/story-15/7) en ijskappen en de hoogte van oceaangolven meten.", + "shortText": "## Looking at Earth Through a Different Lens #\r\n\r\nSatellieten verzamelen informatie over de aarde door voorbij de zichtbare golflengten te kijken in andere delen van het elektromagnetische spectrum:\r\n\r\n- ultraviolet (100-400 nm): ozon in de atmosfeer\r\n- zichtbaar (400-700 nm): kustlijnen, gletsjers, stedelijke gebieden, wolken, fytoplankton in de oceaan\r\n- nabij-infrarood (~ 1 µm): plantengroei op het land\r\n- midden-infrarood: waterdamp in de atmosfeer\r\n- thermisch infrarood (~ 10 µm): temperatuur van land, zee, wolken\r\n- ver infrarood: energie uitgestraald door de aarde en energie-uitwisselingen in de atmosfeer\r\n- microgolven (~ 1 cm): water - in de bodem, bevroren als sneeuw en ijs, als damp en waterdruppels in de atmosfeer\r\n- actieve microgolfsensoren, waaronder radar: beweging van ijs, dikte van zee-ijs en ijskappen, hoogte van oceaangolven", "images": [ "assets/story26-image05.jpg", "assets/story26-image07.jpg", @@ -59,17 +73,24 @@ "assets/story26-image12.jpg" ], "imageCaptions": [ - "Ultraviolet light reveals the concentration of atmospheric ozone (ESA-CCI Ozone)", - "Multispectral surface reflectance at visible and near-infrared wavelengths\r\nshows the vigour of plant life on land (ESA-CCI CCI Land Cover)", - "Atmospheric water vapour revealed at mid-infrared wavelengths by the Meteosat weather satellite (ESA/Eumetsat/DLR)", - "Thermal infrared wavelengths show the temperature of the Earth’s surface and cloud tops (ESA-CCI Cloud)", - "Microwave emissions are used to track soil moisture, sea ice, snow and atmospheric water. Brightness temperature at 89 GHz and 23.8 GHz from AMSR-E. (National Space Development Agency of Japan)" + "Ultraviolet licht onthult de atmosferische ozonconcentratie (ESA-CCI Ozone)", + "Multispectrale\r\noppervlaktereflecties van zichtbare en nabij-infrarode golflengten\r\ntonen de groeikracht van het plantenleven op land \r\n (ESA-CCI CCI Land Cover)", + "Atmosferische waterdamp onthuld door mid-infrarode golflengten door de Meteosat weersatelliet (ESA/Eumetsat/DLR)", + "Thermisch infrarode golflengten tonen de temperatuur van het aardoppervlak en de toppen van wolken (ESA-CCI Cloud)", + "Microgolfemissies worden gebruikt om bodemvocht, zee-ijs, sneeuw en atmosferisch water te volgen. Helderheidstemperatuur op 89 GHz en 23,8 GHz van AMSR-E (National Space Development Agency of Japan)" + ], + "imageFits": [ + "contain", + "contain", + "contain", + "contain", + "contain" ] }, { "type": "image", - "text": "## Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, the observations taken by their sensors need to be calibrated with _in situ_ measurements taken with conventional instruments on or near the surface. Satellites in most cases can only measure the surface. In the case of the temperature of the ocean this means much less than the top millimetre, so sea-surface temperature from satellite needs to be combined with data from ship-tethered or free-floating underwater probes to form a complete picture of ocean temperature.\r\n\r\nEarth observation specialists work with subject specialists ‘in the field’. This fieldwork is often an important part of designing a new satellite instrument or testing a new way of using existing satellite data. Fieldwork might involve the deployment of fixed instruments on the ground, drifting or gliding instruments in the ocean, or aircraft or balloon flights in the atmosphere. Scientists may spend months isolated in remote research stations in Antarctica or on board a ship locked in the Arctic sea ice. This ground-level work is an essential part of the calibration and validation of climate observations from space.", - "shortText": "# Reality Check\r\n\r\nAlthough satellites allow a lot of ground to be covered in a short time, their observations need to be calibrated with _in situ_ measurements taken on or near the surface. \r\n\r\n- fieldwork often an important part of designing a new satellite instrument \r\n- Earth observation specialists work with subject specialists ‘in the field’\r\n- fixed instruments on the ground\r\n- drifting or gliding instruments in the ocean\r\n- aircraft or balloon flights in the atmosphere\r\n- scientists may spend weeks on board ships \r\n- or months at remote research stations in Antarctica \r\n\r\nMuch of our knowledge of Earth’s past climate comes from the analysis of ice cores extracted from the thick ice sheets of Greenland or Antarctica.", + "text": "## De satellietgegevens toetsen \r\n\r\nSatellieten kunnen in korte tijd dus veel van het aardoppervlak in beeld brengen, maar de waarnemingen van hun sensoren moeten wel worden getoetst (gekalibreerd). Dit gebeurt met _in-situ_ metingen (metingen ter plekke), die met conventionele instrumenten op of nabij het aardoppervlak worden uitgevoerd. Satellieten meten in de meeste gevallen alleen het aardoppervlak zélf. Voor oceaantemperatuur betekent dit bijvoorbeeld een meting van veel minder dan de bovenste millimeter van het water. Deze temperatuurmeting door een satelliet wordt vervolgens gecombineerd met gegevens van meetapparatuur aan boord van een schip of een drijvende sonde om een volledig beeld van de oceaantemperatuur te krijgen.\r\n\r\nSpecialisten op het gebied van satellietdata werken daarom samen met vakgenoten ‘in het veld’. Het veldwerk is vaak een belangrijk onderdeel van het ontwerpen van een nieuw satellietinstrument of het testen van een nieuwe manier om bestaande satellietdata te gebruiken. Metingen in het veld kunnen worden uitgevoerd door vaste instrumenten op de grond, drijvende of glijdende instrumenten in de oceaan of vliegtuigen of ballonvluchten in de atmosfeer. Wetenschappers brengen soms maanden geïsoleerd door in afgelegen onderzoeksstations op Antarctica of aan boord van een schip, vastgevroren in het Arctische zee-ijs. Dit veldwerk is een essentieel onderdeel van de kalibratie en validatie van klimaatwaarnemingen vanuit de ruimte.", + "shortText": "# Reality Check\r\n\r\nHoewel met satellieten in korte tijd veel grond kan worden bestreken, moeten hun waarnemingen worden gekalibreerd met _in situ_ metingen die aan of nabij het oppervlak worden verricht.\r\n\r\n- Veldwerk is vaak een belangrijk onderdeel van het ontwerp van een nieuw satellietinstrument\r\n- specialisten op het gebied van aardobservatie werken samen met vakspecialisten \"in het veld\r\n- vaste instrumenten op de grond\r\n- drijvende of zwevende instrumenten in de oceaan\r\n- vliegtuig- of ballonvluchten in de atmosfeer\r\n- wetenschappers kunnen weken aan boord van schepen doorbrengen\r\n- of maanden in afgelegen onderzoeksstations op Antarctica\r\n\r\nVeel van onze kennis over het klimaat op aarde is afkomstig van de analyse van ijskernen die uit de dikke ijskappen van Groenland of Antarctica worden gehaald.", "images": [ "assets/sealevel_large_07.jpg", "assets/story26-image18.jpg", @@ -78,11 +99,18 @@ "assets/icesheet_large_06.jpg" ], "imageCaptions": [ - "A research ship deploying an Argo float. There are almost 4,000 of these automatic buoys floating across the world. They travel up and down the top 2,000 metres of the ocean continually recording temperature, salinity and current. Measurements from them are used to calibrate and validate satellite observations of the ocean surface. (Argo Programme/IFREMER)", - "Scientists taking sea ice cores in the Arctic winter. The German research vessel Polarstern was deliberately trapped for a year in the sea ice of the Arctic Ocean during 2019–20, as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", - "Aircraft provide a local remote sensing platform as well as transport in remote regions (A Hogg)", - "Taking soil moisture measurements in Sweden to support the development of ESA's BIOMASS satellite (FOI)", - "A wide-angle view from the joint French-Italian Concordia Research Station, located high on Dome C of the Antarctic Plateau, one of the coldest places on Earth (AP Salam)" + "Een onderzoeksschip zet een Argo-drijver uit. Er drijven bijna 4,000 van deze automatische boeien over de hele wereld. Ze bewegen op en neer door de bovenste 2,000 meter van de oceaan en registreren voortdurend de temperatuur, het zoutgehalte en de stroming. Deze metingen worden gebruikt om satellietwaarnemingen van het oceaanoppervlak te kalibreren en te valideren. (Argo Programme/IFREMER)", + "Wetenschappers nemen boorkernen van het zee-ijs in de Arctische winter. Het Duitse onderzoeksschip Polarstern zat in de periode 2019-20 opzettelijk een jaar vast in het zee-ijs van de Noordelijke IJszee, als onderdeel van het _Multidisciplinary drifting Observatory for the Study of Arctic Climate_ (MOSAiC) (Esther Horvath / Alfred-Wegener-Institut)", + "Vliegtuigen bieden een lokaal _remote sensing_ -platform en transport in afgelegen gebieden (A Hogg)", + "Bodemvochtmetingen in Zweden ter ondersteuning van de ontwikkeling van ESA's BIOMASS satelliet (FOI)", + "Een groothoekbeeld vanaf het gezamenlijke Frans-Italiaanse Concordia-onderzoeksstation, hoog gelegen op Dome C van het Antarctische plateau, een van de koudste plekken op aarde (AP Salam)" + ], + "imageFits": [ + "cover", + "cover", + "cover", + "contain", + "cover" ] } ]