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Abstract 

Stereotypes of social groups have a canonical multidimensional structure, reflecting the extent to 

which groups are considered competent and trustworthy. Traditional explanations for stereotypes 

– group motives, cognitive biases, minority/majority environments, or real-group differences – 

assume that they result from deficits in humans or their environments. A recently-proposed 

alternative explanation – that stereotypes can emerge when exploration is costly – posits that 

even optimal decision-makers in an ideal environment can inadvertently create incorrect 

impressions. However, existing theories fail to explain the multidimensionality of stereotypes. 

We show that multidimensional stratification and the associated stereotypes can result from 

feature-based exploration: when individuals make self-interested decisions based on past 

experiences in an environment where exploring new options carries an implicit cost, and when 

these options share similar attributes, they are more likely to separate groups along multiple 

dimensions. We formalize this theory via the contextual multi-armed bandit problem, use the 

resulting model to generate testable predictions, and evaluate those predictions against human 

behavior. In particular, we evaluate this process in incentivized decisions involving as many as 

20 real jobs, and successfully recover the classic warmth-by-competence stereotype space. 

Further experiments show that intervening on the cost of exploration effectively mitigates bias, 

further demonstrating that exploration cost per se is the operating variable. Future diversity 

interventions may consider how to reduce exploration cost, such as introducing bonus rewards 

for diverse hires, assessing candidates using challenging tasks, and randomly making some 

groups unavailable for selection. 

 

Keywords: Stereotype, Multidimension, Explore-Exploit, Generalization, Intervention 
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Public Significance Statements 

Stereotypes are multidimensional, including features that go beyond sheer good-bad valence. 

Current psychological theories, which focus on social, cognitive, and sample biases do not 

explain the origins of such complex stereotypes. Here we show that a novel psychological 

mechanism can reproduce the multidimensional stratification of social groups and the resulting 

complex stereotypes: when individuals make self-interested decisions based on past experiences 

in an environment where exploring new options carries an implicit cost, and when options share 

similar attributes, they are more likely to separate groups along multiple dimensions. A further 

set of intervention experiments provides causal evidence that reducing exploration cost can 

substantially mitigate even complex stereotypes. 

  



4 
 

Main Text 

Introduction 

Social stereotypes seem to be a fundamental part of human societies. They organize expectations 

about gender, race, nationality, and appearance, and carry associations about perceived 

trustworthiness and competence (Bai et al., 2020; Bian et al., 2017; Katz & Braly, 1933; Todorov 

et al., 2015). People often learn these complex stereotypes from segregated societal structures 

signaling, for example, social status and cooperative intent (Fiske et al., 2002; Koenig & Eagly, 

2014). What position a specific group occupies in such structures depends on complex economic, 

cultural, historical, and political circumstances. However, the mechanisms that differentiate 

groups follow basic psychological principles. Incorrect impressions of the abilities of different 

groups can emerge purely because of individuals who make social decisions facing an implicit 

cost for exploring new options (Bai et al., 2022). Here, we use a combination of computational 

simulations and incentivized behavioral experiments to show that the same mechanism can 

produce multidimensional stereotypes that recapitulate the axes along which people represent 

real social groups: differentiated stereotypes emerge spontaneously when exploration is costly 

and is guided by socially constructed features.  

Existing psychological explanations for social stratification between groups have focused 

on four causes: biased decision-makers, particularly those who are high status and powerful, 

assigning minorities to disadvantageous positions in order to protect their ingroup or to oppress 

outgroups (Altemeyer, 1983; Brewer, 1999; Jost & Banaji, 1994; Pratto et al., 1994); cognitively 

limited decision-makers having distorted mental representations due to inherent constraints such 

as memory capacity or attention selectivity (Fiske & Taylor, 1984; Hamilton & Gifford, 1976; 

Macrae et al., 1994; Sherman et al., 2000; Trope & Thompson, 1997); statistically 
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unsophisticated decision-makers not taking into account that they are observing unrepresentative 

samples, producing biases (Fiedler, 2000; Denrell, 2005; Payne et al., 2017); and, most 

controversially, actual group differences resulting in groups being sorted into different positions 

(Eagly & Steffen, 1984; McCauley et al., 1995). These four explanations thus attribute the 

origins of stereotypes to a defect in human decision-making or in the environmental samples. 

Contrary to these notions, a recently-proposed fifth perspective informed by work in 

computer science that highlights the inherent tradeoff between “exploring” new options and 

“exploiting” existing knowledge (Sutton & Barto, 2018) posits that even optimal decision-

makers might inadvertently produce bias when exploring unfamiliar options entails an implicit 

cost (Bai et al., 2022). While these five accounts might explain why people differentiate between 

groups, particularly identifying an in-group as good and an out-group as less good, they do not 

explain more complex stereotypes that go beyond a simple good-bad dichotomy (Abele et al., 

2021; Koch et al., 2016; Nicolas et al., 2022; Zou & Cheryan, 2017). For example, stereotypes of 

immigrants in the US are not merely binary; perceptions vary in a multifaceted manner: Russians 

are seen as competent but untrustworthy, Mexicans are neither competent nor trustworthy, 

Native Americans as friendly but not competent, and Canadians are capable and friendly (Bai et 

al., 2020; Lee & Fiske, 2016). We build on the explore-exploit framework to show that 

multidimensional social stratification need not to be rooted in flaws in humans or the 

environments, it is simply a consequence of the way social decisions are often posed. Costly 

exploration, combined with socially constructed features that provide a basis for generalization, 

is sufficient to produce rich multidimensional stereotypes. 

To illustrate our proposed mechanism and to anticipate the methods used in our 

experiments, imagine a manager hiring individuals from different social groups for different jobs 
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(Figure. 1). The manager’s goal is to ensure successful outcomes in these jobs. Assume 

individuals from all groups are equally and highly likely to succeed in all kinds of jobs. The 

manager does not know this and seeks to learn how well the different groups perform based on 

experience. Unfortunately, the learning process suffers from a serious constraint: The manager 

can only observe the performance of people they hire, so they remain ignorant of how well the 

people they did not hire could have done.  

As a specific example, consider five jobs that vary on two features: high-status and high-

trust doctors and veterinarians; high-status and low-trust lawyers; low-status and high-trust 

childcare aides; low-status and low-trust garbage collectors (Fiske & Dupree, 2014; Koenig & 

Eagly, 2014). As jobs become available one by one, the manager assigns people from different 

groups to do each job in turn and observes the performance of the hired individuals.  

Initially, when a garbage collector position opens, the manager may randomly choose a 

person from one group (blue) without enough information to make a better decision. But they 

learn that it is a good choice. Next, the manager must choose somebody for a doctor position, 

still without enough evidence to support a definitive decision, so perhaps they want to stick to 

the same group one more time but quickly discover it is a poor decision (suppose they happen to 

hit the rare incompetent individual in this population where most groups can do most jobs). A 

third job, a veterinarian position, is available. Although the manager has not hired a veterinarian 

before, given that veterinarians share similar features with doctors, managers may generalize 

from their past experiences. Given their past negative experience with blues as doctors, the 

manager may switch to a different group (yellow). They learn that the newly recommended 

individual performs well. The process continues. 
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Figure. 1. The hiring task as a contextual multi-armed bandit. An example illustrates how 
making new decisions based on past (selective) experiences can create a stratified unit that 
produces multi-dimensional stereotypes that are incorrect. Panel a shows example jobs, their 
associated features such as social status and cooperative intent, and four groups. Each decision 
only has one group being hired, whose performance is then revealed and is used to guide new 
decisions, while the other three groups remain unknown. Panel b shows mental representations 
after these decisions are made. The example mental map is organized by two features – 
competence and trustworthiness. The true situation is pictured in the background, while the 
incorrect impressions of the groups formed by the decision-maker are shown in the foreground. 
 

Remember, the underlying probability of being successful is identical and high for all 

pairs of jobs and groups. Despite individual variation, on average, every group is just as good as 

any other group at performing all jobs. Intuitively, initial positive experiences recommending 

members of one group for garbage collectors may encourage the manager to recommend more 

members from that group as garbage collectors or for similar jobs. Consequently, the manager is 

less likely to recommend people from other groups for the same positions, or people from that 

group for other jobs. If so, the manager has introduced social stratification, hiring more people 

from one group for low-status and low-trust jobs. Observing this pattern, the manager and others 

might wrongly conclude that the overrepresented group in these positions is incompetent and 

untrustworthy. 

This example illustrates how a series of seemingly adaptive decisions can produce a 

social reality that sorts members of different groups into distinct positions, without needing to 
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appeal to group motives, cognitive limits, sample imbalances, or group differences. This 

behavior is adaptive for the individual decision-maker as it optimizes hiring performance in two 

key ways. First, it minimizes the implicit cost from exploring a new uncertain group, which 

might not perform as reliably as a more familiar choice (Bai et al., 2022). Second, it further 

reduces the exploration cost by generalizing shared features across positions. Using these 

features, the decision-maker can recommend similar but not identical positions to the same group 

(Shepard, 1987). Despite multiple adaptive benefits to the individual, this behavior is detrimental 

to society because the byproduct of these decisions is a biased and stratified representation of 

reality. Not only do some groups receive inadequate exploration, but the underlying features 

associated with them also become the foundation for complex, multidimensional stereotypes. 

Multidimensional stratification emerges from adaptive individual decisions for the individual, 

but decisions that are maladaptive for the collective. 

This minimal explanation for the origin of stereotypes is challenging to test because 

multiple mechanisms are confounded in studies of stereotypes based on real-world knowledge. 

To address this challenge, we used a combination of computational modeling and incentivized 

behavioral experiments. The computational model precisely defines the problem being solved 

and demonstrates the emergence of stereotypes in the absence of group motivations, cognitive 

limitations, unequal sample size, or differing group qualities (see below, Model). The behavioral 

experiment enriches the simple scenario assumed in the model with as many as 20 real-world 

jobs. Both computational agents and human participants stratify their environments and form 

stereotypes, even along multiple dimensions, simply because feature-based exploration has 

intrinsic costs (see below, Experiment). Intervening to reduce these costs however reduces 

stratification and stereotypes (see below, Evaluating Interventions). 
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Results 

Model. To formalize our hiring problem, we adapt the contextual multiarmed bandit task – a 

fundamental problem explored in theoretical treatments of sequential decision-making and 

reinforcement learning in computer science and related disciplines (Sutton & Barto, 2018). In a 

multiarmed bandit task, an agent chooses actions (pulling an “arm” of the “bandit,” an old-

fashioned gambling machine) to receive rewards over multiple rounds. Each arm has a 

probability distribution over rewards. In each round, the agent selects an arm and receives a 

reward sampled with the corresponding probability. The agent wants to maximize their 

cumulative rewards but is unaware of the reward distributions associated with the arms. The 

agent thus needs to balance two competing options: exploring a new arm to learn its reward, and 

exploiting the arm that is known to give the highest expected reward.  

Many real decisions involve choosing between options that are differentiated by 

observable features. The contextual multiarmed bandit task captures this by assuming that the 

reward distribution depends not only on the arm but also on a set of features that describe the 

decision context on that round (Li et al., 2010). Instead of estimating the reward distribution for 

each arm, the agent now estimates the function that maps contextual features to reward 

distributions. While this problem is harder to solve than the simple multiarmed bandit, it yields 

greater flexibility, as the agent can learn to generalize to future similar but not identical situations 

based on their features. This is the critical modification that makes multidimensional stereotypes 

emerge.   

While there are no known optimal solutions for the contextual bandit task, we use a 

Bayesian approach called Thompson sampling (Thompson, 1933; Agrawal & Goyal, 2012). 

Thompson sampling uses Bayesian inference to estimate the probability of reward associated 
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with each arm, and then samples an arm with a probability that matches the posterior probability 

of that arm offering the best chance of reward. This approach has been shown to be an effective 

model of human choices and social interactions (Schulz et al., 2018; Bai et al., 2022). To learn 

the function between contextual features and reward distributions, we employ Bayesian logistic 

regression (Li et al., 2010; Chapelle & Li, 2011). 

Using the described model, we simulated the behavior of adaptive-decision agents who 

follow Thompson sampling and random-decision agents who do not maximize rewards or use 

past experiences in choosing among four groups over 40 choice trials (see SI for model details). 

The choices involved allocating members of the different groups to jobs, where each job had a 

known set of features reflecting the need for trustworthiness and competence, and the adaptive-

decision agents' estimated parameters for each group indicating the extent to which they had 

these features. The underlying rate at which rewards were delivered to all groups was the same: 

rewards were sampled from a Bernoulli distribution where each individual had a 90% chance of 

succeeding in the job, hence delivering a reward for the decision-maker. Note that the simulated 

agents are initialized with an uninformative prior follows a unit normal distribution for each 

group. The agents do not have parameters for group motivation or memory limitations, and the 

ground truth dataset does not contain unequal population sizes or different reward probabilities 

(see other simulation variants such as differing ground truth and differing prior beliefs in SI).  

Nonetheless, the simulation reveals that adaptive-decision agents, while attempting to 

maximize rewards through past experience, are more likely to allocate groups differentially and 

form stereotypes compared to random-decision agents. We illustrate this using an ordinary-least-

squares linear regression model with the agent type as the predictor variable (adaptive coded as 1  
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Figure. 2. Two example simulated results from an agent who makes adaptive decisions (in 
panels a-b) and another agent who makes decisions at random (in panels c-d). The heatmaps on 
the left panels show how many times a group, on the horizontal axis, is recommended for a job, 
on the vertical axis. The scatterplots on the right panels show estimated coefficients for the four 
groups on the two binary features. For aggregate simulation results see SI simulation section.  
 

vs. random coded as 0) and the entropy of the distribution of choices over groups (i.e., choice 

entropy) and the distance between estimated parameters for the groups (i.e., stereotype 

dispersion) as the outcome variables. This model shows that the adaptive-decision agents show a 

lower entropy, indicative of stratified choices (b = -.645, 95% CI [-.614, -.676], p < .001), and a 

bigger distance, indicative of differentiated stereotypes (b = 1.447, 95% CI [1.596, 1.297], p 

< .001; Figure. 2 for prototypes) as compared to the random-decision agents. Stratified choices 
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and dispersed estimated parameters emerge from the agents trying to solve the explore-exploit 

dilemma to maximize their rewards, while minimizing the hidden cost of exploring the unknown. 

Experiment. We tested the predictions of this model in a large-scale online experiment in which 

participants (N = 1310) made hiring decisions involving novel social groups. Participants were 

told that they had been recruited by the mayor of a made-up place, Toma City, to recommend 

members of four groups of people, the Tufas, Aimas, Rekus, and Wekis, for different jobs. The 

better recommendations the participants make, the more money they earn. To test whether 

participants generalize their experiences from a few limited jobs to a large amount of similar but 

not identical jobs, we prepared 20 different kinds of jobs (Dupree & Fiske, 2014; Koenig & 

Eagly, 2014; see SI for a preliminary study norming these jobs), and jobs open one at a time at 

random. In the adaptive exploration condition, participants make decisions sequentially and learn 

the outcome of their recommendation after each decision, earning 1 point or 0 points. In the 

random exploration condition, participants observe the mayor making random decisions. This 

minimal design aimed to reduce the impact of group motivations, cognitive limitations, 

unrepresentative sampling, and quality differences, while focusing on the causal effects of 

adaptive versus random exploration (see SI for experimental designs). 

Confirming the model predictions, the human data show statistically significant 

differences in choice entropy between the adaptive exploration condition and the random 

exploration condition (b = -.476, 95% CI [-.437, -.514], p < .001). This analysis controls for 

individual differences in age, gender, race, education, and political orientation. Participants who 

make their own decisions display lower entropy, corresponding to more stratified and unequally 

distributed choices (Figure. 4a. “Default”). In contrast, participants who observe random 

decisions from the mayor display higher entropy with less stratified and more equally distributed 
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choices (Figure. 4a. “Ideal”). Moreover, compared to participants who observe random 

decisions, participants who adaptively explore are more likely to report larger mental distances in 

the trustworthiness-competence space (b = .343, 95% CI [.597, .089], p < .001; Figure. 4b. 

“Default” versus “Ideal”; Figure. 3 for example participants). The stratified choice also holds for 

imagined future hires where participants make new decisions regarding unseen applicants. The 

stereotype dispersion also holds for status and cooperation dimensions, which are theorized as 

structural antecedents of competence and trustworthiness (Abele et al., 2021; Fiske et al., 2002; 

see SI for more results).  

Two results are worth highlighting: First, we see evidence for the emergence of 

multidimensional stereotypes. As shown in Figure. 3b, participants do not simply polarize Toma 

groups as the uniformly good versus the utterly bad ones. Rather, they clearly differentiate along 

at least two dimensions – for example, Tufas are competent but not trustworthy or Wekis are 

incompetent but trustworthy (Figure. 3a). Second, we see evidence for generalization (Shepard, 

1987). Regardless of the diversity of the jobs, participants clearly find (dis)similarities between 

jobs. As shown in Figure. 3a, participants do not randomly assign jobs to people, but rather, they 

cluster jobs into reasonable categories, and use the generalized category to guide decisions. For 

example, once participants discover Rekus are good custodians, they then assign Rekus to be 

cashiers and dishwashers even though they never have direct experience of Reku cashiers or 

Reku dishwashers because they perceive custodians as similar to cashiers and dishwashers. 

These two results highlight the unique contribution of this work, which is how feature-based 

exploration enables the emergence of multidimensional stereotypes. In sum, human behavioral 

data replicate the model predictions, showing that a stratified society emerges from participants  
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Figure. 3. Prototypes of stratified vs. diversified hiring choices and dissimilar vs. similar 
stereotypes. Panels a and b show results from participant #153, who was assigned to the adaptive 
exploration condition. This participant predominantly selects Aimas to work in high-status high-
trust jobs, Tufas in high-status low-trust jobs, Wekis in low-status high-trust jobs, and Rekus in 
low-status low-trust jobs (a). As a result of such stratified choices, this participant thinks Aimas 
are warm (trustworthy) and competent, Tufas are competent but not warm, Wekis are 
incompetent but warm, and Rekus are neither competent nor warm (b). Panels c and d show 
results from participant #281, who was assigned to the random exploration condition. This 
participant observes the mayor selecting randomly (c). As a result, this participant thinks Aimas, 
Tufas, Wekis, and Rekus are similarly warm and competent (d). 
 
acting adaptively to solve the explore-exploit tradeoff, and that this stratification leads to 

multidimensional stereotypes with a similar structure to those observed for real social groups. 

Evaluating Interventions. If the implicit cost of exploration is the key mechanism that results in 

multidimensional stratification, intervening on this cost should reduce stratification and 



15 
 

stereotypes. We studied three interventions to test this prediction: adding an exploration bonus, 

decreasing the reward probability, and imposing a random holdout. Each intervention addresses 

the implicit cost of exploration in a different way. First, adding a bonus to untried options 

directly incentivizes exploration (Bellemare et al., 2016). Second, decreasing the reward 

probability to make all groups less likely to yield rewards should make it less likely that people 

quickly encounter a successful group, meaning that they need to explore more. Third, randomly 

holding out some groups to make them unavailable forces exploration, making the cost of 

exploration irrelevant.  

We initially tested these interventions using our computational model, which showed that 

all three interventions resulted in more diverse choices and more similarity among the estimated 

parameters of the groups (see SI for modeling results). We then tested these interventions in a 

behavioral experiment. Human participants were randomly assigned to one of the four conditions 

(N = 807): The control condition proceeds with the same hiring scenario as the adaptive 

exploration condition of our original experiment; the exploration bonus condition adds a 

diversity bonus, and it displays the sum of rewards from hiring decisions throughout the 

experiment; the lower reward condition decreases the underlying reward probabilities without an 

explicit change in instructions; the random holdout condition adds a travel restriction that 

randomly affects different groups, making two groups unclickable most of the time (see SI for 

experimental designs).  

Consistent with the model, participants made more exploratory hiring when they were 

assigned to the exploration bonus (b = .390, 95% CI [.340, .440], p < .001), lower reward (b 

= .402, 95% CI [.355, .449], p < .001), and random holdout (b = .319, 95% CI [.272, .366], p  
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Figure. 4. Average treatment effects in human behavioral experiments. The vertical axis 
represents experimental conditions: The default panel with blue bars shows the adaptive 
exploration condition where participants make their own hiring decisions in the main study and 
replication in the mechanism study. The ideal panel with orange bars shows the random 
exploration condition where participants observe the mayor making random decisions. The 
intervention panel with green bars shows three interventions that manipulate the exploration cost 
to diversify choices and reduce stereotypes. The horizontal axis represents the average treatment 
effects for hiring choices in terms of choice entropy in panel a and stereotype dispersion in panel 
b. (a) shows more stratified choices to more diversified choices in the order of the default 
exploration, the interventions, and the random ideal condition. (b) shows more dissimilar to 
similar stereotypes in the order of the default exploration, the interventions, and the random ideal 
condition. In all graphs, error bars represent bootstrapped 95% confidence intervals. 
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< .001) conditions than those in the control condition (Figure. 4a.  “Interventions” and “Default 

replication”). There are consistent, although weaker, treatment effects on the distances between 

the estimated parameters of the four Toma groups. Compared to the baseline, participants reveal 

smaller distances on the trustworthiness-competence space in the exploration bonus (b = -.339, 

95% CI [-.603, -.074], p = .012), lower reward (b = -.693, 95% CI [-.959, -.427], p < .001), and 

random holdout (b = -.294, 95% CI [-.557, -.30], p = .029; Fig. 4b. “Interventions” and “Default 

replication”) conditions. This pattern is robust for future hires and status-cooperation dimensions 

(see SI for more results). Interventions that change the cost of exploration are thus promising 

avenues for mitigating stratification and stereotypes. 

Discussion 

The mechanism of feature-based exploration we have introduced in this paper makes 

several innovative contributions. First, it provides a plausible explanation for the emergence of 

multidimensional stereotypes rather than those based purely on valence. Without assuming 

deficits in either decision-makers or the environmental samples, feature-based exploration 

explains how multidimensional stratification and stereotypes can emerge when decision-makers 

need to minimize exploration cost by both exploiting past experiences and generalizing from 

limited experiences to similar but not identical contexts. In an incentivized hiring experiment, 

using as many as 20 diverse real jobs, this mechanism is sufficient to reproduce the warmth-by-

competence space that people use to represent real social groups. Learning that one group is 

good at doing one category of jobs and using that experience to guide category-sensitive 

decisions is adaptive to the individual because it minimizes exploration costs. Nonetheless, this 

strategy brings collateral damage to society - because it leaves other groups under-explored for 

certain types of jobs, resulting in stratification along dimensions that guide interpersonal 
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interactions. Second, our intervention studies are the first to show that exploration cost per se is 

the operative variable. Introducing bonus rewards for diverse hires, assessing candidates using 

challenging tasks, and randomly making some groups unavailable for selection effectively 

reduces the cost of exploration, diversifies decisions, and reduces stereotypes.  

Our proposed mechanism complements but differs from prior theories on the origin of 

stereotypes, as follows. (a) The motivation to maximize self-interest can be orthogonal to the 

motivation to maintain group identity or hierarchy (e.g., Brewer, 1999). Identifying the causes of 

stratification and stereotypes as pursuing self-interest with exploration yields very different 

interventions. Complementing strategies such as creating a common ingroup identity (Gaertner 

& Dovidio, 2009), our proposal suggests changes in the reward structure for exploration. 

Consistent with the call for structural changes to redress social bias, our mechanism provides 

concrete ideas such as introducing bonus rewards for diverse hires. (b) A lack of exploration 

differs from confirmation bias or metacognitive myopia (e.g., Hamilton & Gifford, 1976). To see 

why, disentangle two different goals. The incentive in our task is to maximize rewards (earn as 

many points as possible), whereas the incentive in confirmation bias and metacognitive myopia 

is to strengthen beliefs (learn the underlying principles as accurately as possible). Although it has 

been assumed that to maximize rewards one needs to maximize accuracy, we show that the two 

goals do not always align. Hence, inaccuracy can arise not as a cognitive limitation, but as a side-

effect of trying to maximize rewards (see also Le Mens & Denrell, 2011; Rich & Gureckis, 

2018). (c) Our proposed mechanism does not depend on asymmetric population sizes when one 

group is more accessible than other groups (e.g., Alves et al., 2018). Adding unbalanced 

population size may exacerbate this effect; however, one should not forget that the definitions of 

majority and minority are not fixed either. Rather than starting with a fixed majority/minority 
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representation, our mechanism provides a process that may create such asymmetry: Individuals 

who are not explored enough become the numerical minority. (d) Our proposed mechanism does 

not endorse stereotype accuracy at all (e.g., Jussim, 2017), because we showed inaccurate 

stereotypes emerge even when the ground truth is otherwise.  

Most importantly, none of the above theories demonstrably explains why stereotypes 

have more than one dimension. In contrast, we find the diverse contents of stereotypes associated 

with social groups could be a result of generalization based on socially constructed features of 

different jobs. Given that identical situations are rarely encountered twice, the ability to 

generalize is a crucial adaptive mechanism for humans (Shepard, 1987; Schulz et al., 2018). 

However, when this generalization process is coupled with decisions to balance exploration and 

exploitation, it can lead to wrongful association of certain features with specific groups. Absent 

evidence from less-explored alternatives, people might consistently apply these generalized 

features in future judgments, laying the ground for multidimensional stereotypes. If jobs or social 

roles were restricted to a single valence dimension, we would expect to see stereotypes 

represented merely by positivity and negativity. Yet, our empirical evidence – a large sample of 

ecologically valid jobs – indicates that human participants perceive jobs varying across at least 

two dimensions, supporting the plausibility of multidimensional stereotype framework. 

Social scientists have studied diversity and stereotypes from either an individual or a 

structural lens. However, the new mechanism we have identified suggests that the culprit may be 

an interaction of the two. It challenges the common assumption that unjust systems are either the 

result of prejudiced or cognitively stressed decision-makers, or the result of power-maintaining 

or undiversified organizational arrangements. Instead, it highlights the possibility that unjust 

systems can also be created by locally adaptive, reward-maximizing decision-makers. A 
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company merely pursuing its profit can hire certain groups of workers for specialized tasks but 

under-explore other groups for inexperienced tasks (Li et al., 2020). A university merely 

pursuing a higher ranking for research can admit certain kinds of researchers for particular 

disciplines but under-explore other combinations (Wapman et al., 2022). These reasonable local 

decisions in the short term can create stratified broader societal structures in the long term. 

Some real-world policy implications of this idea range well beyond employment 

discrimination. For example, one pertains to refugee resettlement. Policymakers and social 

scientists, leveraging large-scale datasets and machine-learning algorithms, propose allocating 

refugees with similar demographic features to specific locations for similar jobs based on past 

success (Bansak et al., 2016). Such a plan can be suitable for refugees in the short term because 

it brings more satisfaction and contributes to the local economy. However, this plan, our model 

predicts, will cause future damage in the form of multidimensional stereotyping and data-driven 

discrimination.  

The exploration-cost mechanism that produces stereotypes in humans also provides a 

psychological analog of fairness concerns in artificial intelligence. For instance, recommendation 

algorithms often attempt to infer user preferences based on their past behaviors. However, these 

algorithms may inadvertently limit exposure to diverse options, making some unreachable to 

users (Dean et al., 2020). While optimizing customer engagement may be an adaptive strategy 

for the local algorithm, it simultaneously perpetuates stratification in the global online system. 

Stereotypes are shared cultural beliefs, and segregation is a collective endeavor. Future 

work should study how idiosyncratic and biased individual experiences become entrenched, not 

mitigated, within collective systems (Martin et al., 2014; Lyons & Kashima, 2003). Our 

approach extracts the minimal conditions under which stereotypes can emerge, but it needs real-
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world corroboration. Future work can use historical, immigration, or organizational datasets to 

examine adaptive exploration in everyday choices (Card et al., 2022; Charlesworth et al., 2022). 

Costly exploration should be added to the list of psychological mechanisms that can lead to 

stereotypes, creating an opportunity for future research that integrates these different 

mechanisms (Almaatouq et al., 2022). However, continuing to ignore the role of exploration in 

the creation of stereotypes will reinforce the very injustices that we seek to eradicate. Scientists 

and practitioners should design systems that facilitate exploration in social decision-making, and 

the interventions explored here provide a first step in that direction. 

Materials and Methods 

Experimental details, dataset construction, analysis details, formal modeling, and computational 

simulations are provided in the Supplementary Information.
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The PDF file includes:

- Materials and Methods.

- Human Experiments.

- Computational Simulations.

- Figs. S1 to S11.

- Tables S1 to S4.

Other Supplementary Materials for this manuscript include the following:

- Movies S1 to S6.

- Data S1 to S3.

- Code S1 to S4.

Note. To facilitate the understanding of our mathematic models of contextual multi-armed bandit

and Bayesian inference, we made a tutorial video to explain the process as intuitively as possible.

Interested readers can find it from the link for Movie S6.
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Materials and Methods

Human Experiments.

In this section, we report additional details about human experiments. All studies are approved

by the Institutional Review Board at [mask] University under protocol number 13065. All studies

are preregistered at https://osf.io/6p8wu/registrations; author-identifiable information is included.

Additional pilot studies for minor tweaks, such as pilot experiments with selected prototypical

jobs, stimulus choices with respect to wording, and various intervention prompts are not included

in this report but are documented on the preregistration site. Corresponding to the main text,

Study S1 reports a systematic analysis of stimulus jobs, Study S2 reports the main hiring

experiment, and Study S3 reports mechanism experiments.

Study S1. Stimuli: Jobs and Dimensions.

Participants.We recruited N = 100 online workers from the Cloud Research high-quality subject

pool who speak English as their first language and are older than 18 years old. This sample size

was calculated based on prior work in warmth and competence research (3, 6, 23), The average

age was 41; 50% female, 50% male; 85% White, 7% Black, 4% Asian, and 71% participants

hold some college or bachelor’s degree, reflecting typical demographic characteristics of online

American workers for psychological studies.

Materials. In the survey, we asked participants to rate 24 occupations in terms of their perceived

status, cooperation, competence, and warmth. The 24 jobs were selected based on the US Bureau

of Labor Statistics Occupation Outlook Handbook published in 2020, social perceptions about

common jobs (29), and common beliefs about occupational roles (6). According to prior work,

we anticipated the following categories: perceived warm and competent jobs include Doctors,

Veterinarians, Professors, Teachers, Psychiatrists, and Computer Scientists; perceived cold but

competent jobs include Lawyers, Managers, Financial Advisors, Bankers, Politicians, and

Fashion Designers; perceived warm but incompetent jobs include Childcare Aides,

Receptionists, Rehabilitation Counselors, Waiters, Homemakers, and Nursing Assistants; and
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perceived cold and incompetent jobs include Janitors, Custodians, Truck Drivers, Garbage

Collectors, Dishwashers, and Cashiers.

For each job, we asked participants to rate the following eight items from 1 (not at all) to

5 (extremely), as viewed by American society (not their personal beliefs; 7). Status items: How

economically successful/well-educated have members of this occupation been? Cooperation

items: If resources go to members of this occupation, to what extent does that take resources

away from the rest of society/How much does special treatment given to members of this

occupation make things more difficult for other groups in society? Competence items: How

capable/confident are members of this occupation? Warmth items: How friendly/trustworthy are

members of this occupation? Movie S1 shows participant experiences during the task.

Results. K-means clustering is an unsupervised algorithm that was used to partition the 24 jobs

into 4 clusters in which each job belongs to the cluster with the nearest cluster centroid (23). We

used Lloyd’s algorithm to iteratively refine the cluster assignments. The algorithm proceeds by

alternating between the two steps of assignment and update. During the assignment step, it

assigns each observation to the cluster with the nearest mean or the least squared Euclidean

distance. During the update step, it recalculates the means for observations assigned to each

cluster. The algorithm converges when the assignments no longer change, giving the final cluster

assignments as the output. Data in Data S1, Analysis code in Code S1, and results in Fig. S1.

To reduce noise, we removed four ambiguous jobs: computer scientists could belong to

high-warmth high-competence or low-warmth high-competence clusters, fashion designers could

belong to high-warmth high-competence or low-warmth high competence, nursing assistants

could be high-warmth high-competence or high-warmth low-competence, and truck drivers

could be low-warmth low-competence or low-warmth high-competence. Hence, in the main

experiment, we used the refined 20 jobs as the experimental stimuli. This use of real-world jobs

and human judgments improves ecological validity.
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Fig. S1. Emerging clusters of common jobs in American society along dimensions of status or

competence, and cooperation or warmth. Values on the axis reflect estimated values, on a scale

from 1 to 5, of each job along the two dimensions. Colors indicate cluster assignments as

calculated via the KMeans clustering algorithm.

Study S2. Main Experiment: Hiring Consultant for Toma City

Participants.We recruited N = 403 online workers from the Cloud Research high-quality subject

pool with the same selection criteria as in Study S1. This sample size was calculated based on a

pilot study (see details in this anonymized preregistration). The average age was 40; 51% female,

46% male, and 1% non-binary; 74% White, 10% Black, 6% Hispanic, 5% Asian, and 4%

multi-racial; 75% of participants hold some college or bachelor’s degree; the average political

orientation was slightly liberal with an average score of 3.94 on a scale from 1 extremely

conservative to 6 extremely liberal.

Materials. This experiment extends the context-free multi-armed bandit behavioral experiment

in (27) to test the emergence of multi-dimensional stratification using hiring decisions. In the

cover story, participants learn that they will play a game with made-up people from a made-up

4
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city. Toma City has around 100,000 residents; they come from four ancestral villages: Tufa,

Aima, Reku, and Weki. Participants are hired as a consultant by the mayor of Toma City, and

their task is to recommend Toma people for various jobs, out of 20 jobs, in 40 sequential

decisions. After each recommendation, participants will learn whether it is a good choice or not.

A perfect fit earns 1 point whereas a bad fit earns 0 points. The more points the participants earn,

the more bonus they get (1 point = 1 cent), in addition to their base pay ($3 for a 20-minute task).

In the game phase, participants see “Job Opening: Doctors” in the first round. They then must

select one member from Tufa, Aima, Reku, and Weki groups. On the next page, they see either

“You earned 1 point” or “You earned 0 points.” Participants then proceed to the second round,

recommend another randomly generated job, and receive feedback. There are 40 trials in total,

and after finishing all decisions, participants are asked to answer some questions. First, they are

asked one generalization question: “Imagine there are 100 new individuals from each village

group applying for the jobs. Enter how many of them you would recommend for each job.” They

enter values for the four groups for the twenty jobs. Next, participants are asked about their

impressions of the four groups, on a scale from 1 (not at all) to 5 (extremely):

“Tufas/Aimas/Rekus/Wekis, in general, seem to be economically successful/interested in helping

others/competent or confident/friendly or trustworthy.”

As straightforward as the experiment appears, we made four critical decisions with the

goal of minimizing other psychological mechanisms in crafting this experiment. First, we

minimized group-serving motivations such as ingroup favoritism (e.g., 8) or social dominance

(e.g., 10) by assigning no prior group membership to any of our participants. In the spirit of the

minimal group paradigm, the use of novel groups achieved this goal. Second, we tried to

minimize the cognitive load (e.g., 13) by reducing the number of trials in this study, visual

representations in addition to abstract group names, and the overall presentation of the hiring

interface. Third, to rule out population size as one alternative explanation (e.g., 17), in the

backend, we prepared all groups with equal population sizes, that is 40 Tufas, 40 Aimas, 40

Rekus, and 40 Wekis will be available if selected. Fourth, just as in the model simulation, we set

the true success probability for the four groups in Toma City for the twenty jobs as high and

identical, with a 90% success rate for all job-group combinations. This manipulation eliminated

the alternative explanation of ground truth differences (e.g., 21). The average completion time is

18 minutes. Participants in general enjoyed this task as many left comments saying they had
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never done a task like this before and it made them think. Data in Data S2 and Movie S2

adaptive and random show participant experiences during the task.

Treatment. The key treatment is the method of exploration. There are two conditions in this

hiring experiment. In the experimental condition, participants made hiring decisions as they

wished in the infrastructure described above. In the control condition, participants did not have

the opportunity to make their own decisions. Instead, they learned that “The mayor will make

one recommendation each time, and you can observe the mayor’s decision.” From the backend,

the game infrastructure selected each group randomly at each time, to mimic the experience of

random-decision. After 40 trials of hiring decisions, participants in both conditions continued to

make future hires and provided impressions about the groups as described above.

Results.We estimated OLS regressions in which we regressed our outcomes – choice entropy

during the 40-trial game, choice entropy of future hires, dispersion of estimated status and

cooperation, and dispersion of estimated competence and warmth – over our treatment indicator (

), controlling for respondents’ age, gender, race, education, and political orientation. Our mainβ

quantity of interest is on identifying representing the average treatment effect of theβ

exploration strategy on participants’ hire decisions and impressions about Toma groups. Results

summary in Table S1. Analysis code in Code S2.
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Table S1. Average Treatment Effects.

β t p > | t | [.025, .975]

Choice entropy: 40-trial current hires

Intercept (=Adaptive)

Random

2.165

0.480

162.222

25.360

.000

.000

[2.138, 2.191]

[0.443, 0.518]

Choice entropy: 40-trial current hires

Intercept (=Adaptive,
Female, Black)

Random

Gender (=Male)

Gender (=Nonbinary)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.205

0.476

-0.017

0.097

-0.079

-0.084

-0.042

-0.009

-0.000

0.004

0.007

33.446

24.311

-0.880

1.006

-1.448

-2.559

-0.815

-0.152

-0.109

0.370

1.017

.000

.000

0.379

0.315

0.148

0.011

0.416

0.879

0.913

0.711

0.310

[2.076, 2.335]

[0.437, 0.514]

[-0.056, 0.021]

[-0.093, 0.288]

[-0.187, 0.028]

[-0.148, -0.019]

[-0.142, 0.059]

[-0.125, 0.107]

[-0.002, 0.002]

[-0.017, 0.024]

[-0.007, 0.021]

Choice entropy: 400 future hires

Intercept (=Adaptive)

Random

2.169

0.438

89.752

12.754

.000

.000

[2.122, 2.217]

[0.370, 0.505]

Choice entropy: 400 future hires

Intercept (=Adaptive,
Female, Black)

Random

2.331

0.432

19.363

12.104

.000

.000

[2.094, 2.568]

[0.362, 0.503]

7



Gender (=Male)

Gender (=Nonbinary)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

0.014

0.240

-0.152

-0.132

-0.168

-0.064

-0.002

-0.007

0.011

0.389

1.359

-1.521

-2.203

-1.796

-0.600

-1.128

-0.375

0.850

0.698

0.175

0.129

0.028

0.073

0.549

0.260

0.708

0.396

[-0.057, 0.085]

[-0.107, 0.588]

[-0.349, 0.045]

[-0.249, -0.014]

[-0.351, 0.016]

[-0.275, 0.147]

[-0.005, 0.001]

[-0.045, 0.030]

[-0.014, 0.036]

Stereotype dispersion: cooperation and status

Intercept (=Adaptive)

Random

2.637

-0.747

27.428

-5.476

.000

.000

[2.448, 2.826]

[-1.016, -0.479]

Stereotype dispersion: cooperation and status

Intercept (=Adaptive,
Female, Black)

Random

Gender (=Male)

Gender (=Nonbinary)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

3.360

-0.753

0.037

-0.116

-0.047

0.126

0.392

0.087

-0.004

6.978

-5.271

0.253

-0.164

-0.117

0.527

1.050

0.202

-0.721

.000

.000

0.801

0.869

0.907

0.598

0.294

0.840

0.472

[2.413, 4.307]

[-1.034, -0.472]

[-0.247, 0.320]

[-1.507, 1.275]

[-0.833, 0.740]

[-0.344, 0.596]

[-0.342, 1.126]

[-0.757, 0.931]

[-0.016, 0.008]
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Education

Political Orientation

-0.127

-0.056

-1.660

-1.096

0.098

0.274

[-0.277, 0.023]

[-0.157, 0.045]

Stereotype dispersion: warmth and competence

Intercept (=Adaptive)

Random

1.861

-0.327

21.520

-2.665

.000

.008

[1.691, 2.031]

[-0.568, -0.086]

Stereotype dispersion: warmth and competence

Intercept (=Adaptive,
Female, Black)

Random

Gender (=Male)

Gender (=Nonbinary)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.397

-0.343

-0.002

-0.201

-0.204

0.050

-0.013

0.023

-0.007

-0.056

-0.013

5.505

-2.653

-0.018

-0.314

-0.564

0.233

-0.039

0.059

-1.340

-0.814

-0.269

.000

.008

0.986

0.753

0.573

0.816

0.969

0.953

0.181

0.416

0.788

[1.541, 3.254]

[-0.597, -0.089]

[-0.259, 0.255]

[-1.459, 1.057]

[-0.916, 0.507]

[-0.375, 0.475]

[-0.677, 0.651]

[-0.741, 0.786]

[-0.018, 0.003]

[-0.192, 0.080]

[-0.104, 0.079]

Note. Estimates are based on an OLS model without (first panels) and with (second panels)

covariate variables of age, gender, race, education, and political orientation. N = 403.

We plotted exemplar participants from the 40-trial condition in the main text, here we provide

their hiring decisions in future jobs and along dimensions of status and cooperation (Figs. S2 -

S5). For complete participants, see Data S2 and use Code S2.
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Fig. S2. Illustrative participants ID = 153 in the adaptive exploration condition made more

stratified and less diverse future hiring decisions.
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Fig. S3. Illustrative participants ID = 281 in the random exploration condition made less

stratified and more equal future hiring decisions.
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Fig. S4. Illustrative participants ID = 153 in the adaptive exploration condition showed more

dispersed mental maps along the social status and cooperative intent dimensions.

Fig. S5. Illustrative participants ID = 281 in the random exploration condition showed less

dispersed mental maps along the social status and cooperative intent dimensions.

12



Study S3. Mechanism Experiment: Interventions for Exploration

Participants.We recruited N = 807 online workers from Connect, a new platform for paid online

studies hosted by Cloud Research. The reason to switch from Cloud Research to Connect is

rather practical as Cloud Research only allows large-scale payment if we recruit MTurk

participants, otherwise we have a daily payment limitation. We used the same selection criteria

as in previous experiments, while also imposing gender balance given it is a convenient function

on Connect. The sample size was again to ensure 200 participants per condition, to be consistent

with Study 2 (see details in this anonymized preregistration). The average age was 40; 50%

female, 50% male; 67% White, 11% Black, 9% Asian, 6% Hispanic, and 4% multi-racial; 71%

of participants hold some college or bachelor’s degree; the average political orientation was

slightly liberal with an average score of 3.98 on a scale from 1 extremely conservative to 6

extremely liberal. The average score for this task was 4.7 out of 5, indicating acceptable

engagement among participants. In addition to the main mechanism, we also piloted similar

experiments to nail down the wording for the interventions; details can be found in

pre-registration reports titled “mechanism pilot.”

Materials. The experiment materials were largely identical to the main experiment described

above. All data from this experiment are in Data S3. The baseline condition is identical, whereas

the intervention conditions contain different designs mainly in the cover story, the hiring

decisions, and the feedback pages, as follows.

In the exploration bonus condition, after participants read general instructions about the

city, jobs, their roles, and points, and before they started the game, they saw a new page titled

“Diversity Bonus.” They read: “Recently Toma City launched a hiring initiative. The mayor will

pay an extra bonus for more variety in who you hire. The bonus decreases for each hire of a

person from a group that has previously been hired for that job. Your total earnings will be the

sum of rewards from making suitable hires and the diversity bonus.” After they made one hiring

decision, they received feedback as participants in the baseline condition. However, the bonus

was now calculated as the sum of their actual reward (1 or 0) and a diversity bonus of 1/(N+1), N

being the times of the same group being recommended for the same cluster of jobs. Therefore,

rather than displaying an integer value of 1 or 0, this page showed floating numbers such as 2 (if
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the selection is completely new, 1/(0+1), and the selection is good, 1), 1.5 (if the selection is

good, but it is the second time being recommended, 1/(1+1)), and so on. Movie S3 shows

participants' experiences in this condition.

In the reward rate condition, the instructions did not change at all. The only difference

was the underlying expected reward which changed from 90% to 10%. For example, among 40

available members from village Tufa, a 90% success rate means 36 of them would return a

reward of 1 for the jobs being recommended, versus a 10% success rate means only 4 of them

would be successful. Note that participants did not have access to this information before the

game, and the only way to figure this out was through experience. Movie S4 shows participants'

experiences in this condition.

In the random holdout condition, after participants read general instructions and before

they started the game, they saw a new page titled “Travel Restrictions.” They read: “Due to

recent travel restrictions, not all villagers are able to come to work at all times. Sometimes your

selected members might become unavailable; if so, you need to choose from the available

members.” To reflect this change, on their hiring page, 90% of all trials made 2 out of 4 groups

not clickable indicating those two groups are not available due to travel restrictions. It was a

random selection of which two groups to disable and on which trials participants encountered

travel restrictions. Movie S5 shows participants' experiences in this condition.

Results.We used the same analysis strategy as in Study 2 in which we estimated OLS

regressions by regressing our outcomes - choice entropy during the 40-trial game, choice entropy

of future hires, dispersion of estimated status and cooperation, and dispersion of estimated

competence and warmth - over our treatment indicator ( ), controlling for respondents’ age,β

gender, race, education, and political orientation. Our main quantity of interest is on identifying

representing the average treatment effect of the baseline default hiring and each of the threeβ

proposed interventions - exploration bonus, reward rate, random holdout - on participants’ hire

decisions and impressions about Toma groups. Given that we test for three hypotheses, the

analysis used Bonferroni correction of the alpha level at 0.01. More precisely, the threshold

should be the original alpha value divided by the number of comparisons, that is 0.05/3 = 0.0167.

Results summary in Tables S2 - S4. Analysis code in Code S3.
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Table S2. Average Treatment Effects (Exploration Bonus)

β t p > | t | [.025, .975]

Choice entropy: 40-trial current hires

Intercept (=Adaptive)

Exploration Bonus

2.133

0.400

118.962

16.168

.000

.000

[2.097, 2.168]

[0.352, 0.449]

Choice entropy: 40-trial current hires

Intercept (=Adaptive,
Female, Black)

Exploration Bonus

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.156

0.396

-0.022

-0.114

-0.153

-0.076

-0.125

0.001

0.008

0.011

27.396

15.484

-0.820

-2.108

-3.410

-1.223

-1.778

1.033

0.943

1.281

.000

.000

0.413

0.036

0.001

0.222

0.076

0.302

0.346

0.201

[2.001, 2.310]

[0.346, 0.447]

[-0.073, 0.030]

[-0.221, -0.008]

[-0.241, -0.065]

[-0.197, 0.046]

[-0.263, 0.013]

[-0.001, 0.003]

[-0.009, 0.026]

[-0.006, 0.028]

Choice entropy: 400-trial future hires

Intercept (=Adaptive)

Exploration Bonus

2.166

0.368

79.479

9.768

.000

.000

[2.113, 2.220]

[0.294, 0.442]

Choice entropy: 400-trial future hires
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Intercept (=Adaptive,
Female, Black)

Exploration Bonus

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

1.955

0.366

-0.028

-0.078

-0.124

-0.109

0.081

0.003

0.020

0.029

16.418

9.445

-0.710

-0.954

-1.824

-1.163

0.756

2.068

1.513

2.272

.000

.000

0.478

0.341

0.069

0.246

0.450

0.039

0.131

0.024

[1.721, 2.189]

[0.290, 0.442]

[-0.106, 0.050]

[-0.240, 0.083]

[-0.258, 0.010]

[-0.294, 0.075]

[-0.129, 0.290]

[0.000, 0.007]

[-0.006, 0.047]

[0.004, 0.054]

Stereotype dispersion: cooperation and status

Intercept (=Adaptive)

Exploration Bonus

2.618

-0.774

24.191

-5.179

.000

.000

[2.405, 2.830]

[-1.068, -0.480]

Stereotype dispersion: cooperation and status
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Intercept (=Adaptive,
Female, Black)

Exploration Bonus

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.628

-0.788

0.104

0.483

0.039

-0.325

0.254

0.006

-0.015

-0.080

5.506

-5.074

0.657

1.466

0.142

-0.865

0.427

0.947

-0.284

-1.543

.000

.000

0.512

0.143

0.887

0.388

0.552

0.344

0.776

0.124

[1.690, 3.567]

[-1.093, -0.482]

[-0.208, 0.416]

[-0.165, 1.132]

[-0.497, 0.575]

[-1.065, 0.414]

[-0.585, 1.093]

[-0.007, 0.019]

[-0.121, 0.090]

[-0.181, 0.022]

Stereotype dispersion: warmth and competence

Intercept (=Adaptive)

Exploration Bonus

1.888

-0.340

20.060

-2.619

.000

.009

[1.703, 2.073]

[-0.596, -0.085]

Stereotype dispersion: warmth and competence
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Intercept (=Adaptive,
Female, Black)

Exploration Bonus

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

1.941

-0.325

0.041

0.691

0.423

0.112

0.276

0.000

-0.041

-0.072

4.648

-2.392

0.294

2.395

1.775

0.340

0.739

-0.017

-0.872

-1.592

.000

.017

0.769

0.017

0.077

0.734

0.460

0.987

0.384

0.112

[1.130, 2.762]

[-0.592, -0.058]

[-0.232, 0.314]

[0.124, 1.258]

[-0.046, 0.892]

[-0.535, 0.759]

[-0.458, 1.010]

[-0.011, 0.011]

[-0.134, 0.051]

[-0.160, 0.017]

Note. Estimates are based on an OLS model without (first panels) and with (second panels)

covariate variables of age, gender, race, education, and political orientation. N = 194 in baseline

and N = 214 in exploration bonus conditions.
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Table S3. Average Treatment Effects (Lower Reward)

β t p > | t | [.025, .975]

Choice entropy: 40-trial current hires

Intercept (=Adaptive)

Lower Reward

2.133

0.414

128.688

17.797

.000

.000

[2.100, 2.165]

[0.368, 0.460]

Choice entropy: 40-trial current hires

Intercept (=Adaptive,
Female, Black)
Lower Reward

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.236

0.410

-0.026

-0.153

-0.178

-0.130

-0.171

0.001

0.011

0.003

31.890

17.254

-1.061

-2.879

-4.345

-2.174

-2.502

0.420

1.480

0.403

.000

.000

0.289

0.004

0.000

0.030

0.013

0.675

0.140

0.687

[2.098, 2.374]

[0.363, 0.456]

[-0.073, 0.022]

[-0.257, -0.048]

[-0.259, -0.098]

[-0.305, -0.037]

[-0.305, -0.037]

[-0.002, 0.002]

[-0.004, 0.027]

[-0.012, 0.018]

Choice entropy: 400-trial future hires

Intercept (=Adaptive)

Lower Reward

2.166

0.356

75.212

8.788

.000

.000

[2.110, 2.223]

[0.276, 0.435]

Choice entropy: 400-trial future hires
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Intercept (=Adaptive,
Female, Black)
Lower Reward

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.054

0.353

-0.069

-0.065

-0.087

-0.063

-0.144

0.002

0.026

0.014

16.648

8.449

-1.639

-0.695

-1.200

-0.603

-1.199

1.179

1.866

1.055

.000

.000

0.102

0.488

0.231

0.547

0.231

0.239

0.063

0.292

[1.811, 2.296]

[0.271, 0.435]

[-0.153, 0.014]

[-0.248, 0.119]

[-0.229, 0.055]

[-0.269, 0.143]

[-0.380, 0.092]

[-0.001, 0.006]

[-0.001, 0.052]

[-0.012, 0.041]

Stereotype dispersion: cooperation and status

Intercept (=Adaptive)

Lower Reward

2.618

-1.073

23.833

-6.953

.000

.000

[2.402, 2.834]

[-1.377, -0.770]

Stereotype dispersion: cooperation and status
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Intercept (=Adaptive,
Female, Black)
Lower Reward

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.194

-1.096

0.098

0.782

0.348

0.522

1.001

0.007

0.041

-0.111

4.626

-6.825

0.599

2.181

1.254

1.295

2.167

1.083

0.776

-2.137

.000

.000

0.550

0.030

0.211

0.196

0.031

0.280

0.438

0.033

[1.261, 3.126]

[-1.411, -0.780]

[-0.233, 0.418]

[0.077, 1.486]

[-0.198, 0.894]

[-0.270, 1.314]

[0.092, 1.909]

[-0.006, 0.021]

[-0.063, 0.144]

[-0.213, -0.009]

Stereotype dispersion: warmth and competence

Intercept (=Adaptive)

Lower Reward

1.888

-0.630

20.209

-4.796

.000

.000

[1.704, 2.071]

[-0.888, -0.371]

Stereotype dispersion: warmth and competence
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Intercept (=Adaptive,
Female, Black)
Lower Reward

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

1.754

-0.657

-0.111

0.734

0.338

0.588

0.580

0.001

-0.003

-0.049

4.340

-4.801

-0.801

2.405

1.430

1.712

1.475

0.182

-0.058

-1.119

0.000

0.000

0.424

0.017

0.154

0.088

0.141

0.855

0.954

0.264

[0.959, 2.548]

[-0.925, -0.388]

[-0.384, 0.162]

[0.134, 1.334]

[-0.127, 0.804]

[-0.087, 1.263]

[-0.194, 1.354]

[-0.010, 0.012]

[-0.091, 0.086]

[-0.136, 0.037]

Note. Estimates are based on an OLS model without (first panels) and with (second panels)

covariate variables of age, gender, race, education, and political orientation. N = 194 in baseline

and N = 199 in lower reward conditions.
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Table S4. Average Treatment Effects (Random Holdout)

β t p > | t | [.025, .975]

Choice entropy: 40-trial current hires

Intercept (=Adaptive)

Random Holdout

2.133

0.333

127.071

14.132

.000

.000

[2.100, 2.166]

[0.286, 0.379]

Choice entropy: 40-trial current hires

Intercept (=Adaptive,
Female, Black)

Random Holdout

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.292

0.321

-0.049

-0.149

-0.176

-0.115

-0.199

0.001

0.001

-0.002

34.362

13.200

-2.047

-2.588

-4.492

-1.857

-2.614

0.136

0.961

-0.276

.000

.000

0.041

0.010

0.000

0.064

0.009

0.892

0.337

0.783

[2.161, 2.423]

[0.273, 0.369]

[-0.096, -0.002]

[-0.261, -0.036]

[-0.253, -0.099]

[-0.237, 0.007]

[-0.349, -0.049]

[-0.008, 0.023]

[-0.008, 0.023]

[-0.018, 0.013]

Choice entropy: 400-trial future hires

Intercept (=Adaptive)

Random Holdout

2.166

0.180

72.792

4.306

.000

.000

[2.108, 2.225]

[0.098, 0.262]

Choice entropy: 400-trial future hires
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Intercept (=Adaptive,
Female, Black)

Random Holdout

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.242

0.153

-0.029

-0.165

-0.181

-0.373

-0.050

0.001

0.029

0.001

18.668

3.509

-0.671

-1.594

-2.559

-3.341

-0.363

0.160

2.035

0.058

.000

.001

0.503

0.112

0.011

0.001

0.717

0.873

0.043

0.954

[2.006, 2.479]

[0.067, 0.239]

[-0.114, 0.056]

[-0.368, 0.039]

[-0.593, -0.154]

[-0.593, -0.154]

[-0.320, 0.220]

[-0.003, 0.004]

[0.001, 0.058]

[-0.027, 0.029]

Stereotype dispersion: cooperation and status

Intercept (=Adaptive)

Random Holdout

2.618

-0.615

24.555

-4.107

.000

.000

[2.408, 2.827]

[-0.909, -0.320]

Stereotype dispersion: cooperation and status

24



Intercept (=Adaptive,
Female, Black)

Random Holdout

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.967

-0.607

-0.126

0.879

0.114

0.314

0.533

0.003

0.012

-0.135

6.898

-3.877

-0.814

2.373

0.452

0.785

1.084

0.047

0.238

-2.638

.000

.000

0.416

0.018

0.652

0.433

0.279

0.962

0.812

0.009

[2.121, 3.813]

[-0.915, -0.299]

[-0.431, 0.179]

[0.151, 1.606]

[-0.383, 0.612]

[-0.473, 1.101]

[-0.433, 1.499]

[-0.012, 0.012]

[-0.089, 0.114]

[-0.235, -0.034]

Stereotype dispersion: warmth and competence

Intercept (=Adaptive)

Random Holdout

1.888

-0.328

20.723

-2.562

0.000

0.011

[1.709, 2.067]

[-0.579, -0.076]

Stereotype dispersion: warmth and competence
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Intercept (=Adaptive,
Female, Black)

Random Holdout

Gender (=Male)

Race (=Asian)

Race (=Caucasian)

Race (=Hispanic)

Race (=Multiracial)

Age

Education

Political Orientation

2.189

-0.315

-0.161

0.944

0.237

0.348

0.114

-0.004

0.023

-0.098

5.893

-2.327

-1.204

2.952

1.083

1.006

0.268

-0.761

0.525

-2.230

0.000

0.021

0.229

0.003

0.280

0.315

0.789

0.447

0.600

0.026

[1.459, 2.920]

[-0.581, -0.049]

[-0.424, 0.102]

[0.315, 1.572]

[-0.193, 0.666]

[-0.332, 1.027]

[-0.721, 0.948]

[-0.014, 0.006]

[-0.064, 0.111]

[-0.185, -0.012]

Note. Estimates are based on an OLS model without (first panels) and with (second panels)

covariate variables of age, gender, race, education, and political orientation. N = 194 in baseline

and N = 200 in random holdout conditions.
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Computational Simulations

Formalism: Contextual Multi-Armed Bandit and Bayesian Inference.

Using the job recommendation example in the main text, we consider how a rational

agent in a contextual multi-armed bandit setting should solve this problem. We show that strong

differences in the allocation of groups to societal positions can be produced by rational agents in

the absence of any real inter-group differences and that these agents form stereotype contents

along multiple dimensions. The goal of this section is to provide details on the computational

modeling approach in the main text. We made a movie (no audio) presentation to animate this

mathematical model, readers can watch it in Movie S6.

The agent has access to a discrete number of groups , and interacts with candidate jobs𝐺

across discrete trials , where the reward is whether or not the job is a good fit for𝑡 =  1,  2,  ...,  𝑇

the recommended group member. The jobs are characterized by contextual information

, that is, jobs have as many as dimensions of features. Here, in our example, we set𝑥;  𝑥 ∈  ℜ𝐷 𝐷

to be 2, corresponding to levels of status and cooperation. For simplicity, we set the number of𝐷

groups to be 4, but it can apply to larger finite numbers, as many as the social groups we have𝐺

in society.

At trial , the agent observes the current job characterized by its features , and the𝑡 𝑥
𝑡

available groups. The goal of the agent is to provide the job with a person from one group who

may fit the position. The groups are thus the arms of the bandit, the selection of a group is the

action, and the context is the job features . After making the recommendation, the agent𝑥
𝑡

receives a reward, . If the person selected is a good fit for the job, then equals 1, if not,𝑟
𝑡

𝑟
𝑡

𝑟
𝑡

equals 0. The rewards follow a distribution which can be characterized by the context, , and𝑥

parameters, , written where is the group to which those parameters correspond.θ
𝑔

𝑃(𝑟;  𝑥,  θ
𝑔
) 𝑔

is also in , so 2 dimensions in our example. The expected reward for each group, , can beθ ℜ𝐷 𝑔

written as:
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, where . [1]𝐸 [𝑟
𝑔 

| 𝑥,  θ
𝑔
] =  𝑓(𝑥𝑇θ

𝑔
) 𝑓(.) =  𝑒𝑥𝑝(.) / (1 +  𝑒𝑥𝑝(.))

where is the inner product of these two vectors, being a linear function of with parameters𝑥𝑇θ
𝑔

𝑥

. The parameter vector thus encodes how the dimensions of , corresponding to the featuresθ
𝑔

θ
𝑔

𝑥

of the jobs, are weighted for group when predicting whether a member of that group will be𝑔

successful in the job. Here, is a sigmoid function that transforms an arbitrary value into a𝑓(.)

continuous value in , to give us .[0,  1] 𝑃(𝑟;  𝑥,  θ
𝑔
)

For , the agent observes past observations of the contexts, the actions𝑡 =  1,  2,  ...,  𝑇 𝑡

chosen, and their corresponding rewards . Importantly, no payoff information is(𝑥
𝑡
,  𝑔

𝑡
,  𝑟

𝑡
)

revealed for the unchosen groups, . The objective is to find a solution that minimizes the𝑔 ≠ 𝑔
𝑡

cumulative regret; the regret is the expected difference between the optimal reward received by

always playing the optimal group, , and the reward received by following the actually chosen𝑔
𝑡
*

group, . Thus, the cumulative regret at the end of the game, can be written as:𝑔
𝑡

𝑅(𝑇)

. [2]𝑅(𝑇) =  
𝑡=1

𝑇

∑ 𝐸[𝑟
𝑔*

|𝑥
𝑡
, θ

𝑔*
] − 𝐸[𝑟

𝑔
|𝑥

𝑡
, θ

𝑔
]

Finding the optimal solution to this problem requires balancing between exploration and

exploitation. While there are no known optimal solutions to contextual bandits, we focus on an

approach known as Thompson sampling (26, 27) which generalizes an optimal solution to the

standard multiarmed bandit. Thompson sampling has previously been used to show how adaptive

exploration can produce stereotypes in a simpler context-free multiarmed bandit setting (29) and

has been shown to be a good model of human choices on contextual bandit tasks (30).

Using the same job recommendation example, Thompson sampling for contextual bandit

can be defined in terms of the Bayesian solution to the problem of estimating . For each group,θ
𝑔

, if we know , then applying any context , we can derive the expected reward via Equation𝑔 θ
𝑔

𝑥
𝑡

1. But we do not know the parameters , so the goal is to estimate them. At time step , first, aθ
𝑔

𝑡
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prior distribution represents uncertainty over the parameter space and the likelihood𝑃(θ
𝑔
)

function represents the probability of reward given a context and a parameter .𝑃(𝑟
𝑔
|𝑥

𝑡
,  θ

𝑔
) 𝑥

𝑡
θ

𝑔

Applying Bayes’ rule, the posterior distribution over is given by:θ
𝑔

. [3]𝑃(θ
𝑔
|𝑟

𝑔
, 𝑥

𝑡
) ∝ 𝑃(𝑟

𝑔
|𝑥

𝑡
, θ

𝑔
) 𝑃(θ

𝑔
)

The posterior distribution, therefore, represents the updated beliefs about the parameters afterθ
𝑔

incorporating the new evidence and the prior belief. Next, a sample is randomly drawnθ
𝑡+1,𝑔

from this posterior, corresponding to a stochastic estimate of after time steps. The agentθ
𝑔

𝑡

follows this procedure – estimate , draw a random sample – for all groups, and plays theθ
𝑔

θ
𝑡+1,𝑔

group for which the predicted probability of reward is highest. This is equivalent to sampling

each group with a probability corresponding to the posterior probability that group is most likely

to generate a reward, which is Thompson sampling.

Specifically, in Equation 3 we assume the prior, , follows a Gaussian distribution𝑃(θ
𝑔
)

and the likelihood, , follows a Bernoulli distribution, with the joint𝑁(µ
0
, 𝑆

0
) 𝑃(𝑟

𝑔
|𝑥

𝑡
, θ

𝑔
)

probability mass function over the rewards:

. [4]
𝑡=1

𝑇

∏ 𝑃(𝑟
𝑡

= 1|𝑥
𝑡
, θ

𝑡
) =

𝑡=1

𝑇

∏ [1 / (1 + 𝑒
−θ

𝑡
𝑇𝑥
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𝑟
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𝑡
𝑇𝑥

𝑡 / (1 + 𝑒
−θ

𝑡
𝑇𝑥

𝑡)]
1−𝑟

𝑡

The posterior distribution derived from this joint probability distribution is intractable, hence, we

use Laplace’s method to approximate the posterior distribution with a multivariate Gaussian

distribution with a diagonal covariance matrix. The mean of this distribution is the

maximum-a-posteriori estimate, and the inverse variance of each feature is the curvature

(Algorithms 3 in 28).
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Simulation Results for Main Hypothesis:

In this section, we present predictions derived from the above model with simulation

data. Again, for all simulations, we use Bayesian logistic regression to estimate the function

between job features and groups and use Thompson sampling to make decisions about how to

solve the explore-exploit dilemma. As defined above, the context vector has two dimensions,

corresponding to status and trust with binary features: indicates high status and high trust1, 1{ }

jobs such as doctors, indicates high status low trust jobs such as lawyers,1, − 1{ } − 1, 1{ }

indicates low status high trust jobs such as childcare aides, and indicates low status− 1, − 1{ }

and low trust jobs such as janitors. There are four groups; whose reward distributions are

independent from each other. The current model has the same intercept for all groups as we

assume no group-level differences. The underlying expected reward probability centers around

0.9, , for all groups. We made the variance small because we assume all groups𝑁(0. 9,  0. 001)

are equally and highly likely to be successful. The agent starts with a prior belief follows a

normal distribution of With this set up, we ran 100 simulations. Within each simulation,𝑁(0,  1).

the Bayesian agent played 40 rounds of the game.

The critical prediction from our model is that the Bayesian agents will end up creating a

biased social structure such that certain groups are selectively recommended to certain jobs,

compared to that produced by agents who make choices at random. Two key outcome variables

quantify this hypothesis: selective recommendation patterns and dispersed mental

representations.

First, for recommendation choices, we predict Bayesian agents do not recommend jobs

indifferently, but rather should differentially recommend certain groups to do certain kinds of

jobs. This occurs because of the explore-exploit tradeoff: Having found a group that performs

well at a given job, searching for other groups that might also perform well is costly, and it is

better to focus on the group that is known to perform well. However, this selective choice should

not appear in random decisions when the agents do not intend to use past success experiences to

solve the explore-exploit tradeoff. One way to quantify the randomness of a system is entropy
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(Shannon, 1948). Given an output 4-by-4 matrix where the rows represent groups and the𝑁

columns represent jobs, with a number of assignments in each cell:𝑛
𝑔,𝑗

log . [5]𝐻(𝑁) =−
𝑔,𝑗
∑ 𝑛

𝑔,𝑗
/𝑛 𝑛

𝑔,𝑗
/𝑛

where is the total number of assignments. We can compare this entropy value between choices𝑛

made by the Bayesian agents and the random-decision agents.

Second for mental representations, we predict Bayesian agents will develop dispersed

mental maps for the four groups along the two dimensions as a result of these differential

recommendations. Here, we use the estimated coefficient vector to approximate the agents’θ

mental model of each group’s perceived trustworthiness and competence. The Bayesian agents

should give differential estimates of the parameters given their selective experiences, whereas the

random-decision agents should give relatively equal estimates of the parameters given they

encounter similar amounts of experiences with all groups. Given a learned two-dimensional

array of coefficients, we can calculate the summed Euclidean distance among the four groups:𝑆

. [6]𝑆(Θ) =
𝑔
∑

𝑑
∑ (θ

𝑔,𝑑
− µ

𝑑
)2

where refers to the collection of all , refers to the estimated coefficients for each group,Θ θ
𝑔

θ
𝑔

and is the averaged coefficients for all groups. We can compare the mental representationµ

distance of the estimated coefficients between the Bayesian agents and the random-decision

agents.

Below we present results of Equations 5 and 6 from the Bayesian agents and the

random-decision agents. To emphasize, the ground truth represents an original egalitarian social

world: among 10 potential pairs of jobs and groups, approximately 9 pairs generate a positive

reward of 1 and only 1 pair generates a reward of 0. As a natural consequence, the most accurate

mental map corresponding to this original social world should position groups close to each other

in terms of contextual features.
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First, the random-decision condition provides a sensible baseline; take one simulation as

an example (Fig. S6). When randomly exploring the world, the agent recommended

approximately equal numbers of each job to each group (Fig. S6a). Because of relatively equal

allocations of jobs and groups, we did not observe consideration distances among the learned

weights among the four groups in this random-decision agent (Fig. S6b). This implies that the

simulated random-decision agents did not form specific stereotypes of the four arms/groups.

Fig. S6. An example simulated results from an agent who makes decisions at random. The

heatmap on the left shows how many times a group (on the horizontal axis) is recommended for

a job (on the vertical axis). The scatterplot on the right shows estimated coefficients for the four

groups on two binary features.

Next, the Bayesian decision condition provides our critical prediction; take one

simulation as an example (Fig. S7). This simulated Bayesian agent confirmed the intuition given

in the introduction. Instead of recommending groups equally to jobs, the agent selectively

recommended one particular job to mostly one group, 9 or 10 times, and was, therefore, less

likely to recommend the other three jobs to the same group, 1 or 2 times (Fig. S7a). As a result of

such selective recommendation, we saw considerable variation in the estimated weights, such as

associating one group strongly with one feature or another group with another feature (Fig. S7b).

The dispersed mental representation indicates the emergence of stereotypes.
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Fig. S7. An example simulated results from an agent who makes adaptive decisions using

Thomson sampling. The heatmap on the left shows how many times a group (on the horizontal

axis) is recommended for a job (on the vertical axis). The scatterplot on the right shows

estimated coefficients for the four groups on two binary features.

Moving beyond individual examples, we next compared the aggregate-level pattern

across 100 simulations. To compare across simulations while also preserving each simulation’s

characteristics, we rank-ordered the choices within each simulation. The results confirmed the

individual examples: On average, Bayesian agents were more likely to selectively recommend

jobs to different groups (Fig. S8a) as compared to random-decision agents (Fig. S8b).

Fig. S8. Heatmaps between the two conditions, aggregated across 100 simulations after rank

order. The reason for rank order is that each simulation starts with a different prior, by chance,

and therefore, different subsequent decisions. Simply averaging across simulations loses the
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original features within each simulation. To minimize the loss of information, we rank-ordered

each simulation. Specifically, for each simulation, we find the max value of the entire 4-by-4

matrix, and store that row and column as the first row and column. We then find the max value of

the remaining 3-by-3 submatrix, store that row and column as the second row and column, and

repeat the same procedure for the remaining submatrices. After this transformation, we obtained

an aggregate summary for which the first row and the first column always store the max value,

the second row and column always store the second max value, etc.

To examine the robustness of this descriptive result, we ran statistical analyses across 100

simulations between the random decision condition and the Bayesian decision condition. We

used an Ordinary-Least-Square linear regression model with the condition as the predictor

variable (Bayesian coded as 0 vs. random coded as 1), choice entropy (Eq. 5), and mental map

dispersion (Eq. 6) as the outcome variable. We found the Bayesian condition showed a smaller

entropy (treatment effect: b = 0.645, 95% CI [0.614, 0.676], p < .001) and a bigger dispersion

(treatment effect: b = -1.447, 95% CI [-1.596, -1.297], p < .001) than the random-decision

condition. In other words, this result confirmed the above descriptive analysis: agents who use

their past success to guide new decisions to solve the explore-exploit dilemma were more likely

to differentially allocate groups and to form dispersed mental maps than agents who make

decisions at random.
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Simulation Results for Mechanism/Interventions:

Here we provide details on the intervention simulations. Specifically, we simulated three

interventions that are hypothesized to diversify choices and reduce stereotypes.

First is the exploration bonus. This is a mechanism that is commonly used to support

exploration by reinforcement learning systems in computer science. According to one popular

method for creating an exploration bonus, known as count-based exploration, we count how

many times a state (group-job pair) has been encountered and assign a bonus accordingly

(Bellemare et al., 2016). The bonus guides the agent’s behavior to prefer rarely visited states to

common states. Let be the empirical count function that tracks the real number of visits of𝑁
𝑛
(𝑠)

a state in the sequence of . The bonus is then proportional to . For example,𝑠 𝑠
1:𝑛

1/1 + 𝑁
𝑛
(𝑠)

if Tufa has been selected twice, the bonus reward will be = 0.577, and if this time,1/1 + 2

Tufa is a good choice, the base reward is 1, therefore the total reward will be 1.577 for choosing

Tufa. However, if Aima has not been selected at all, the bonus reward will be = 1, and if1/1

this time, Aima is a good choice, the base reward is 1, therefore the total reward will be 2 for

choosing Aima. The optimal solution is to choose Aima instead of Tufa, which can increase

exploration. See Code S4 Exploration Bonus and Figs. S9a and b.
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Fig. S9. Exploration bonus intervention. Panel a shows the increase in choice entropy as a

function of the unit price of the expiration bonus, that is, the more you pay for exploration, the

more diversified choices you will see. Panel b shows the decrease in stereotype dispersion as a

function of the unit price of the exploration bonus, as a consequence of increased exploration.

Grey bars highlight baseline conditions whereas red bars highlight the intervention conditions

that we use to design human experiments.

The second intervention is to make the tasks more challenging. In the baseline model, we

used an expected reward of 0.9 as the ground truth, making it very likely for the players to get a

reward. However, we can also decrease the expected reward. As a consequence, players are more

likely to encounter negative experiences which in turn can encourage them to explore new

options. See Code S4 Challenging Tasks and Figs. S10a and b.
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Fig. S10. Expected reward intervention. Panel a shows the decrease in choice entropy as a

function of the expectation of getting a reward in the game, that is, the less likely you think you

will get a reward, the more diversified choices you will make. Panel b shows the increase in

stereotype dispersion as the expected reward increases. Grey bars highlight baseline conditions

whereas red bars highlight the intervention conditions that we use to design human experiments.

The third intervention is to make some groups unavailable, at random. When agents make

decisions, they can always choose from all groups, so if they want, they can always stick to their

known options. However, if some groups are unavailable, the structure forces the agents to

explore other options. We varied the rate of unavailability and simulated the intervention effects.

That is, in some conditions, 10% of the trials will make two out of four groups unavailable, but

in other conditions, 50% of the trials will make two out of four groups unavailable, or other

times, the rate is 90%. See Code S4 Holdout At Random and Figs. S11a and b.
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Fig. S11. Random holdout intervention. Panel a shows the increase in choice entropy as a

function of the likelihood two out of four groups are unavailable when agents need to make a

decision. That is, the more likely you see two groups, at random, are unavailable, the more likely

you explore other groups. As a result, Panel b shows a decrease in stereotype dispersion as the

unavailability increases. Grey bars highlight baseline conditions whereas red bars highlight the

intervention conditions that we use to design human experiments.
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Simulation Results for Other Variants:

In the main text, we designed parameters to reflect our theoretical claims. In particular,

we decided to fix the underlying ground truth to be high and identical for all combinations of

contextual features and all groups. This is to minimize the confound of stereotype accuracy. We

found even if all groups are equally rewarding, the adaptive decision agents were unable to

recover that truth. Nonetheless, some readers may be interested in what might happen when the

ground truth indeed differs. Here we present the simulation results for this variant.

In simulations where the true reward distribution is identical, as follows ( ):θ =. 9

Group 1 Group 2 Group 3 Group 4

[1,1] 95 87 93 89

[1,-1] 88 92 92 82

[-1,-1] 91 92 92 88

[-1,1] 91 92 89 91

The Thompson sampling agents decide as follows:

Group 1 Group 2 Group 3 Group 4

[1,1] 1 94 5 0

[1,-1] 87 1 0 12

[-1,-1] 0 0 100 0

[-1,1] 2 0 1 97

In simulations where the true reward distribution is different, as follows ( vs .1):θ =. 9

Group 1 Group 2 Group 3 Group 4

[1,1] 88 10 12 9

[1,-1] 16 87 14 13

[-1,-1] 8 14 92 10
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[-1,1] 6 12 7 87

The Thompson sampling agents decide as follows:

Group 1 Group 2 Group 3 Group 4

[1,1] 93 6 0 1

[1,-1] 1 95 1 3

[-1,-1] 1 0 99 0

[-1,1] 2 0 3 95

In simulations where the true reward distribution is different, slightly, as follows ( vs. .8):θ =. 9

Group 1 Group 2 Group 3 Group 4

[1,1] 92 86 79 84

[1,-1] 82 91 82 74

[-1,-1] 81 81 89 77

[-1,1] 90 83 81 86

The Thompson sampling agents decide as follows:

Group 1 Group 2 Group 3 Group 4

[1,1] 0 0 0 100

[1,-1] 0 0 99 1

[-1,-1] 1 99 0 0

[-1,1] 98 1 1 0

In sum, we found that when the ground truth indeed differs significantly (0.9 vs. 0.1), the

adaptive decision agents can recover that difference. However, when the differences are not that

big (0.9 vs. 0.8), the adaptive-decision agents behave as if they recovered some differences,

which significantly exaggerated the ground truth difference.
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