No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
bin
conf
hive_lib/edu.berkeley.cs.shark
lib
project
sbt
src
LICENSE
README.md
clean.sh
run
scalastyle-config.xml

README.md

ABS: A System for Scalable Approximate Queries with Accuracy Guarantees

ABS is a parallel approximate query processing for running interactive SQL queries over massive data. It allows users to pick the desire spot in the latency-accuracy space by running the queries data samples, and presents approximate query results with accuracy guarantees.

ABS achieves this by exploiting the recent advance in scalable error estimation techniques -- Analytical Bootstrap Method, and lets the compiler automatically choose this fast method whenever possible and brings the error estimation overhead down to seconds.

ABS is available for Hive and Shark, and supports HiveQL.

ABS is currently built on top of

  • Hive 0.11
  • Shark 0.9.1
  • Spark 0.9.1

Note that ABS is different from the sequential implementation ABM presented in our SIGMOD paper, which is implemented as a middle layer on top of MonetDB using Java and R.

Standalone Setup

ABS can be set up very quickly using standalone mode.

  1. Clone the source
  2. Enter abs root folder cd abs
  3. Run clean script chmod +x clean.sh && ./clean.sh
  4. Compile using sbt/sbt compile

After you have successfully compiled your abs code, you can start ABS cli by ./bin/shark or start server by ./bin/shark --service sharkserver

Cluster Setup

ABS requires Spark 0.9.1 for running on clusters. You can setup the cluster by following similar steps in Running Shark on a Cluster

ABS extends Hive and Shark. This repository contains all the codes for Shark and for Hive, we provide a jar file: hive-exec-0.11.0-shark-0.9.1.jar. If you are interested in Hive implementation, please check here.

Related Papers

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari, Carlo Zaniolo: ABS: a system for scalable approximate queries with accuracy guarantees. ACM SIGMOD 2014 (Best Demo Award)

Kai Zeng, Shi Gao, Barzan Mozafari, Carlo Zaniolo: The analytical bootstrap: a new method for fast error estimation in approximate query processing. ACM SIGMOD 2014

Kai Zeng, Shi Gao, Barzan Mozafari, Carlo Zaniolo: The analytical bootstrap: a new method for fast error estimation in approximate query processing. Technical Report CSD #130028, UCLA, 2013.