diff --git a/intro-to-pytorch/Part 7 - Loading Image Data (Exercises).ipynb b/intro-to-pytorch/Part 7 - Loading Image Data (Exercises).ipynb index e4cbb8ff40..c6e040d110 100644 --- a/intro-to-pytorch/Part 7 - Loading Image Data (Exercises).ipynb +++ b/intro-to-pytorch/Part 7 - Loading Image Data (Exercises).ipynb @@ -39,7 +39,7 @@ "The easiest way to load image data is with `datasets.ImageFolder` from `torchvision` ([documentation](http://pytorch.org/docs/master/torchvision/datasets.html#imagefolder)). In general you'll use `ImageFolder` like so:\n", "\n", "```python\n", - "dataset = datasets.ImageFolder('path/to/data', transform=transforms)\n", + "dataset = datasets.ImageFolder('path/to/data', transform=transform)\n", "```\n", "\n", "where `'path/to/data'` is the file path to the data directory and `transforms` is a list of processing steps built with the [`transforms`](http://pytorch.org/docs/master/torchvision/transforms.html) module from `torchvision`. ImageFolder expects the files and directories to be constructed like so:\n", @@ -98,7 +98,7 @@ "source": [ "data_dir = 'Cat_Dog_data/train'\n", "\n", - "transforms = # TODO: compose transforms here\n", + "transform = # TODO: compose transforms here\n", "dataset = # TODO: create the ImageFolder\n", "dataloader = # TODO: use the ImageFolder dataset to create the DataLoader" ]