On the Ptolemy-Alhazen problem: source at infinite-distance

filename: cal20230511.tex
May 11, 2023

Assume that light rays reach the unit circle from the right side, parallel to the real axis.

Let $F(f), f=r e^{i \theta}$ be the observation point, where we can assume $r>1$ and $0 \leq \theta \leq \frac{\pi}{2}$ from symmetry.

Let $W(w)$ be the reflection point and $\widetilde{W}(\widetilde{w})$ be $\widetilde{w}=w+1$. Note that W and \widetilde{W} are points on a line parallel to the real axis.

Claim
The refrection point w is given as a solution of the equation

$$
\begin{equation*}
r e^{-i \theta} w^{4}-w^{3}+w-r e^{i \theta}=0 . \tag{1}
\end{equation*}
$$

Proof. From the reflection property, the following holds

$$
\angle(O, W, \widetilde{W})=\angle(F, W, O) .
$$

Therefore,

$$
\begin{aligned}
& \arg \frac{\widetilde{w}-w}{0-w}=\arg \frac{0-w}{f-w} \\
& \arg \frac{\widetilde{w}-w}{-w}-\arg \frac{-w}{f-w}=0 \\
& \arg \frac{w-\widetilde{w}}{w} \cdot \frac{w-f}{w}=0 \\
& \arg \frac{(w-(1+w))(w-f)}{w^{2}}=0 \\
& \arg \frac{f-w}{w^{2}}=0
\end{aligned}
$$

The last equality implies that $\frac{f-w}{w^{2}}$ is a real number. Since this complex conjugate is also real, we have

$$
\frac{f-w}{w^{2}}=\frac{\bar{f}-\bar{w}}{\bar{w}^{2}} .
$$

Hence, we have

$$
\bar{w}^{2}\left(r e^{i \theta}-w\right)=w^{2}\left(r e^{-i \theta}-\bar{w}\right)
$$

Since w is a point on the unit circle and satisfies $w \bar{w}=1$, the above equation can be written as

$$
r e^{-i \theta} w^{4}-w^{3}+w-r e^{i \theta}=0 .
$$

Remark. Equation (1) has four roots. Under the assumptions here, we can choose the one that can be written in $e^{i \varphi}\left(0 \leq \varphi \leq \frac{\pi}{2}\right)$.

Point w is the point of tangency of the unit circle to the parabola whose directrix is perpendicular to the real axis and whose focus is F.

