CICE Performance In CESM

Motivation

CICE performance is typically on the critical path with respect to overall
CESM performance and in some cases is playing an important role in
limiting CESM throughput

With the current decompositions, CICE runs effectively on only limited pe
counts

Goals

Understand better where time is spent in CICE

Understand better how CICE cost varies as we change the decomposition
or increase the number of processes

Explore alternative decompositions depending on the outcome of the
above assessments

Look for some low hanging fruit wrt code optimization

Reduce the cost of CICE in CESM and provide more opportunities to run on
a wider range of processes

Results:
Net CICE performance improvement on hopper

* Using updated decompositions and masked halos seems to
— improve performance by > 20% for most cases
— allow us to run on relatively arbitrary processor counts

at gx1v6 (time to run 20 days)
16 pes, 272s --> 212s(22%)
64 pes, 91s --> 69s (24%)
320 pes, 27s --> 21s(22%)
1280 pes, 19s --> 10s (43%)

at tx0.1v2 (time to run 10 days)
1200 pes, 582s --> 361s (38%)
4800 pes, 148s --> 112s (24%)
18000 pes, 68s --> 68s (0%)

CICE Performance in CESM1.1

CICE, gx1v6, 16, 64, 320, 1280 pes, NERSC hopper
20 day runs, time in seconds

* Computation

— Physics — computations only where there 30.00
is sea ice (therm1, therm?2) 33000 25.00
— Radiation — new dEdd implementation is 300.00 20:00
expensive. computations only where 250,00 11500 TR
there is sea ice and the sun is up. 10.00 other
. 200.00 i — 0 L
— EVP subcycling — stress/stepu, cycled 500 radiation
. . . Ju— — — id
about 100 times per cice timestep 150.00 600 : g h
orz_trans other
— Horizontal Transport 100.00 1 - T 8x T X
— orz_trans tracer halo
50.00 T p— i subcycling halo
* Communication (halo updates) oo | 1 B = subcycling stress
— EVP subcycling, cycled about 100 times YOS SR SN ¥ therm2
O A A therm1
per cice timestep A % therm
— Horizontal Transport (tracer updates) & & & L
NG NZ S o
— bound_state (therm?2, etc) O N

*Performance is ultimately limited by slowest processor

Performance of CICE

 Computational performance driven by load imbalance to zeroth order, dominant term at low
process counts and important at high process counts

— CICE computations generally done only where there is sea ice
— Large areas of the CICE grid never have any sea ice
— The radiation computation done where there is sea ice and the sun is up
— CICE varies seasonally and sun angle varies on diurnal cycle and seasonal timescales
* Communication is nearest neighbor halo update, it is a critical term at high process counts

— Want to minimize number of messages and size of messages and maximize relative
nearness of neighbors in communication network

| | |

350 350 —

250

150

T I I T I
50 150 250

Mask and sample Jan 1 sea ice coverage Solar Angle on Jan 1 at 0Z

Decomposition is a Critical Performance Tuning Knob

CICE decomposes the horizontal grid across processes (tasks and/or threads)
For a given global grid size, “nx” by “ny”

Define a blocksize, “bx” x “by”

Label the blocks

Distribute blocks to processes using some decomposition strategy

1. Cartesian Square-POP

2. Cartesian SlenderX1

3. Cartesian SlenderX2 blocks 13.16 >

4. Spacecurve (Dennis) blocks 9-12 > ny._global = 16

5. Roundrobin (New-ish) blocks 5-8 > by =4

6. Blkrobin (New) blocks 1-4>

nx_global = 16

7. Blkcart (NEW) bx = 4 blue=pe 0
red=pel
green = pe 2

yellow = pe 3

1. cartesian square-pop

pes 80-90

320
300
350
280
260

240

220
250

200
180
160
140

150 120

100
a0
60

50 40

20

T T @
50 150 250

block allocation to processors

Blocks aligned into contiguous “squares”
blocksize = 8 x 6, 8 blocks per processor

Good
* size of halo (low aspect ratio)
* number of neighbors (8)

OK
* limited pe counts

Poor
* cice load balance (N/S and radiation)

. land block elimination

2. cartesian slenderX1

pes 80-90

350

250

150

50

50 150 250

block allocation to processors

Blocks aligned “vertically”, span entire J
index space

blocksize = 1 x 48, 8 blocks/processor

Good
* cice load balance (N/S and radiation)
* number of neighbors (2)

OK
* size of halo (high aspect ratio)

Poor

. limited pe counts (320, 160, 80, 64,
etc)

. land block elimination

350

250

150

50

3. cartesian slenderX2

pes 80-90

50

150 250

block allocation to processors

320
300
280
260
240
220
200
180

160

Blocks aligned “vertically”, span half J

index space

blocksize = 2 x 24, 8 blocks per processor

Good

OK

Poor

cice load balance (N/S)
number of neighbors (5)

cice load balance (radiation)
size of halo (high aspect ratio)

limited pe counts (640, 320, 160, 80,
64, etc)
land block elimination

4. spacecurve*

350

250

150

50

I I I
5C 150 250

block allocation to processors

320
300
280
260
240
220
200
180
160
140
120
100

80

60

40

20

Blocks allocated linearly along spacecurve
after land block elimination

blocksize = 8 x 6, 8 blocks/processor

Good
* size of halo
* number of neighbors (~8)

flexible pe counts

land block elimination

Poor
. cice load balance (N/S and radiation)

*credit to John Dennis

350

250

150

50

5. roundrobin

pes 80-90

B2l | N =
j/JL‘——

I I I I
150 250

block allocation to processors

320
300
280
260
240
220
200
180
180
140
120
100

30

60

40

20

Blocks allocated round robin (left to right)
after land block elimination

blocksize = 8 x 6, 8 blocks/processor

Good

* cice load balance (N/S and radiation)
* arbitrary pe counts

* land block elimination

Poor
* size of halo (local blocks not contiguous)

* number of neighbors (2+6*number of
blocks/processor)

350

250

150

50

6. blkrobin

pes 80-90

50

I I
150 250

block allocation to processors

320
300
280
260
240
220
200
180
160
140
120
100

30

g0

40

20

Blocks allocated round robin “grouped” (back
and forth) after land block elimination

blocksize = 8 x 6, 8 blocks/processor

Good

* cice load balance (N/S and radiation)
* arbitrary pe counts

* land block elimination

* size of halo (local blocks partly
contiguous)

* number of neighbors (26)

350

250

150

50

7. blkcart

pes 80-90

I I
150 250

block allocation to processors

320
300
280
260
240
220
200
180
160
140
120
100

30

60

40

20

Blocks allocated into quadrants preserving
neighbors.

blocksize = 8 x 6, 8 blocks/processor

Good
* cice load balance (N/S and radiation)
* number of neighbors (8)

OK

* size of halo (local blocks partly
contiguous)

* somewhat flexible pe counts (multiples
of 4 blocks per processor)

Poor
. land block elimination

Grading CICE Decompositions

decomposition cice load cice load number of amount of land block flexibility
balance balance neighbors data to elimination wrt pe

north/south radiation communicate | in decomp counts

1. cartesian square-pop

2. cartesian slenderX1

3. cartesian slenderX2
4. spacecurve

5. roundrobin

6. blkrobin

7. blkcart

horz_trans other

subcycling stress

radiation

ridge
“ horz_trans tracer halo

& subcycling halo

—
)
N =
=
)
u

Testing

iming

(time for 20 days)

CICET
for gx1v6, 320 pes, hopper

current default

80.00
70.00
60.00
50.00
40.00
30.00

& therm2
K therm1

(8 ¥zxz) uigolpunod

(8 tzxg) dod-asenbs

(8 9xg) uigoapuno.

(g 9xg) dod-asenbs

(8 9xg) dod-aienbs

(¥ TTX8) UlIgoJpunol

(8 ¥xz) uiqoay|q

(8 vzxz) wigoaq

(9 8xg) uiqoiq

(8 9xg) uigoay|q

(8 9x8) anunaaoeds

(8 9x8) anindadeds

(8 8VXT) TX49pUB|S

(¥ 8vxz) 1e||q

(8 9xg) 1ejq

(8 vzxz) TX49pUd|S

(8 9xg) 1edy|q

(8 ¥Zx2) Tx4apud|s

(¥ voxv) 1edyq

(¥ zTxg) 1eN||q

(2 96%2) TX43pUB]S

(T Z6TXT) TX42pPUD|S

(Z Z6TXT) SO|_Y P SEW+TXIDPUI|S
(¥ 2TX8) Sojey paysew+14ed|q

(8 ¥2xT) SOleY paysew-+uiqol|q
(8 8¥XT) SO|BY P SEW+TXIDPUS|S
(8 9x8) sojey paysew-+ulqoy|q

(8 vzxz) sojey paysew+gxJapuals
(2 96X2) sojey paysew+gxJapud|s

CICE Code Changes

* New Decompositions
e Masked Halos
— Most of the data “haloed” in CICE is unnecessary

— Can update the halo data structure on the fly quickly to remove both
messages and gridcells that don’t need to be communicated

— There may be some overhead in setting up the masked halo
— Set via namelist, default is “on”
* Overlapping Work and Communication
— Attempted in subcycling with limited success
— Works well if communication and work are about the same
— Load imbalance across processes impacts effectiveness
— Has some overhead
— Set via namelist, default is “off”

Results:
Net CICE performance improvement on hopper

* Using updated decompositions and masked halos seems to
— improve performance by > 20% for most cases
— allow us to run on relatively arbitrary processor counts

at gx1v6 (time to run 20 days)
16 pes, 272s -> 212s (roundrobin+masked halos, 20x48, 8)
64 pes, 91s -> 69s (blkrobin+masked halos, 10x24, 8)
320 pes, 27s -> 21s (slenderX2+masked halos, 2x96, 2)
1280 pes, 19s -> 10s (spacecurve+masked halos, 8x6, 2)

at tx0.1v2 (time to run 10 days)
1200 pes, 582s -> 361s (blkrobin+masked halos, 40x30, 6)
4800 pes, 148s -> 112s (blkrobin+masked halos, 15x15, 8)
18000 pes, 68s -> 68s (spacecurve, 6x6, 14)

Status

bit-for-bit validation continues (displaced pole/tripole, threading,
decomps, masked halos, various hardware)

Running performance tests on other platforms

Updating automatic cice decomp generation tool to provide “reasonable”
default decomps for all resolutions and pe counts

Improved weighting for spacecurve decomp being explored (John Dennis)
Hope to have an updated CICE version in CESM1.1 in July
High resolution exploration on Yellowstone high priority

Conclusions

Using updated decomps and masked halos seems to
— improve performance by > 20% for most cases
— allow us to run on relatively arbitrary processor counts

Now have a better sense of how the CICE performance varies with resolution
and decomposition — how do we share this information with the community?

Determining the optimal block size, decomposition, and thread count for a
given resolution, target processor count, and hardware still requires testing

Still want to understand performance better at highest resolution and highest
processor counts

Future Work ?
— “CICE performance simulator”
— Other decomposition strategies
— Allow distinct dynamics and physics decompositions (like CAM)
— Persistent Communication (Monika Liicke, GRS)
— More detailed algorithm profiling to identify poorly performing kernels

