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PREFACE

Making optimal use of scarce resources, that is, maximizing subject
to constraints, is the central theme of economics. But students of
economics are often taught the mathematics of constrained maxi-
mization as a branch of mathematics, and its economic applications
follow separately. An integrated treatment that relates the math-
ematics to the economics from the beginning has the potential for
providing a quicker and deeper understanding. This book aims
to give such an exposition. I emphasize economic intuition rather
than mathematical rigor. Proofs of the mathematical theorems are
structured to bring out points of economic interest and facilitate
economic applications. The illustrative examples and exercises are
also chosen for their economic interest and usefulness.

The first edition of this book was published in 1976. The cen-
tral aim of the book is still valid, but the subject has changed a
great deal over the years. Therefore I have revised the text very
substantially. A chapter on uncertainty, with some treatment of
topics like finance and asymmetric information, is now indispens-
able. I have added such a chapter, and have also expanded the
chapter on dynamic programming to treat uncertainty.

Most chapters have been thoroughly rewritten, and many new
examples and exercises added. One innovation deserves special
mention. When the first edition was written, the main mode of ex-
position in elementary and intermediate microeconomics was geo-
metric, based on the tangency between a budget line and an indif-
ference curve, or a cost line and a production isoquant. Nowadays
this shibboleth of tangency seems less prevalent. Therefore I have
used a starting-point that is simpler and economically 1nore intu-
itive, namely the search for costless improvements through ‘arbi-
trage’ operations. This allows an integrated treatment of tangency
and corner optima, and its intuition extends much more readily to
situations involving time, uncertainty etc.

In the years since the first edition of this book was published,
the mathematical training of economics students has improved sub-
stantially. I have taken advantage of this by going a little deeper
into some topics, letting the pace pick up in the last three chap-
ters, and sketching the proof of the central result of constrained
maximization — the Kuhn-Tucker theorem — in a mathematical ap-
pendix. But the book remains aimed at the majority of economics
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students in the last two years of undergraduate studies or the first
year of graduate work, not the small minority who plan to become
mathematical economists.

The main use of the book is as a supplementary text in mi-
crocconomics courses at the interinediate and advanced levels. Tt
can be used as the main text, but should then be supplemented by
other books or articles, including those listed for further rcading
at the end of each chapter. Short courses on consumer and pro-
ducer behavior can be based on chapters 1-8. Chapters 9 and 10
arc independent of each other. Therefore courses that include op-
timization over time but not uncertainty can omit chapter 9 and
parts of 11. Conversely, those that include uncertainty but not
time can omit chapters 10 and 11.

The examples are fully solved out as far as the main hne of
reasoning is concerned, but some details are omitted. The exer-
cises contain further development of the theory in the text, as well
as applications. The examples and exercises are an integral part
of learning from the book, and I urge readers to work carefully
through them.

I thank many readers who gave me useful suggestions for im-
proving on the first edition. Among them, Pete Kyle deserves
special mention. I am very grateful to Richard Quandt for reading
the entire manuscript of the second edition with great care and
pointing out several crrors. I also thank Barry Nalebuff and Carl
Shapiro for reading several chapters. Peter Kenen’s Law says that
there is always at least one more typo than you think, and I retain
responsibility for the errors that remain.

Princeton

December 1989
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1 Introduction

Economics has been defined as the study of making the best use
of scarce resources, that is, of maximization subject to constraints.
The criterion being maximized, and the constraints imposed on
the choice, vary from one context to the next: households’ con-
sumption and labor supply, firms’ production, and governments’
policies. But all constrained maximization problems have a com-
mon mathematical structure, which in turn generates a common
economic intuition for them. This book aims to outline the math-
cmatics and develop the intuition.

The standard model of a consumer’s choice provides a good
point of departure. The basic concepts are a budget line and a set
of indifference curves. The points on the budget line represent all
affordable combinations of two goods. The family of indifference
curves represents the objective, namely to reach as high a curve as
possible. The optimum is where an indifference curve is tangential
to the budget line. Figure 1.1 shows the familiar picture.

In this chapter I shall develop this model further, using ver-
bal and geometric arguments, but with an eye toward the math-
ematical sharpening and generalization that will occupy us in later
chapters.

It helps to give a little algebraic content to the various mag-
nitudes in Figure 1.1. Write I for the consumer’s noney ineome,
p1 and p, for the prices of the two goods, and z; and z; for their
quantities. The budget line, where the expenditure exactly equals
income, can then be expressed by the equation

1 +p2.’E2:I. (11)

The consumer’s preferences over the amounts z; and z, of
these goods are represented by a numerical scale, called the utility
function. This assigns to each bundle (z1,z2) of goods a num-
ber U(z1,z2), called its utility level. In any comparison among
alternative bundles, the preferred bundle is the one that reccives
the highest utility number. Along an indifference curve, all points
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Fig. 1.1 — The consumer’s optimum choice

must have the same utility number. Therefore such a curve has an
equation
U(z,,29) = constant. (1.2)

The cxposition of the theory now proceeds by calculating the
slopes of the budget linc and the indifference curve. For tangency
between the two, the slopes must be equal. I shall do this soon.
But let me begin with a much simpler and more intuitive approach.

The Arbitrage Argument

The idea is to have the consumer start with any trial allocation of
his budget, and contemplate a change. If this leads to a bundle
of goods that he rates higher on his utility scale, then it is to be
adopted as a new trial allocation. Once a bundle is found that
cannot be bettered in this way, it will be the optimum allocation,
and will be the one actually consumed. Thus the impossibility of
finding an improvement will serve as the test of optimality.

The change does not entail any additional expenditures; it is
merely a reallocation of some amount of moncy from the purchase
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of one good to the other. If the initial allocation is not optimal, this
can raisc the consumer’s utility. When the consumer has made the
hest choice and reached his personal equilibrium, such opportun-
itics for doing better with no net inecrcase in expenditure vanish.
This has a close parallel in financial markets. Outside a market
equilibrium, participants can make ‘arbitrage’ profits at a zero net
outlay, taking advantage of discrepancies in prices of tle same asset
in different markets. In cquilibrium there are no such opportun-
ities. In fact the very process of people sceking arbitrage profits
brings about the equilibrium. I shall exploit this intuitive parallel
by labeling this whole linc of reasoning the ‘arbitrage argument’,
and the resulting optimality condition the ‘no-arbitrage condition’.

If goods are indivisible, these changes must occur in discrete
steps. However, it is often a good approximation to supposc that
goods are perfectly divisible. Then the changes can occur in in-
finttesimal amounts, or what cconomniists call marginal adjustments.
Even for scemingly indivisible goods, such as cars or other large
consumer durables, therc are dimensions of quality cte. that allow
continuous adjustment. In any event, such marginal changes are
tlie subject of our analysis in this book.

The standard symbol for ‘a small (marginal, infinitesimal)
change in the variable 2’ is dz. This is not to be thought of as
the product of two variables d and z, but an cntity dz in its own
right. The use of such infinitesimal magnitudes can be justified
rigorously, but for the niost part I shall use them in a loose heuris-
tic way. Where you doubt a statement involving infinitesimals, or
are unsure I have used them correctly, you should rework the argu-
ment using proper calculus methods, starting with a finite change
Az and then going to the limit as Az — 0.

First suppose that initial allocation of the budget has positive
amounts z; and z2 of both goods. Now contciplate a small arbi-
trage operation, or a marginal reallocation of a small but positive
amount of income dI from good 2 to good 1. Iu physical terms,
this means buying dI/p; units more of good 1 and dI/ps units less
of good 2. Let MU, and MU, denote the marginal utilities of the
two goods. This meaus that a small change dz; in the quantity of
good 1 changes utility by MU; dzy units, and similarly MU, dzy
for good 2. When the quantitics of both goods arc changing, the
two cffects can be added together, so the change in utility is

MU} dIl +J\/[U2(IIL‘2. (13)
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In later chapters I shall express this more rigorously using
partial derivatives and Taylor series, but the simple statement will
suffice liere. The important point is that any one marginal adjust-
ment is so small that any changes in the marginal utilities them-
sclves during its course can be neglected. Of course if many such
marginal adjustments are strung together, the marginal utilities
will change gradually over this sequence. In particular, if z, rises
and/or z; falls, MU,/MU, will fall; this is the principle of the
diminishing marginal rate of substitution in consumption. But for
the moment I am speaking of just one marginal adjustment.

The effect of the arbitrage operation on utility is then easy to
compute. The increase of dI/p; in the quantity of good 1 raises
utility by MU, dI/p;, while the decrease of dI/p; in the quantity
of good 2 lowers utility by MU, dI/p,. The net increase in utility
is therefore

(MU]/[)] —MUz/pQ)dI

If this expression is positive, the consumer will carry out this
reallocation and try further reallocations in the same direction. If
the initial consumption bundle is optimum, therefore, the expres-
sion cannot be positive. This is a part of the ‘no-arbitrage’ criterion
of optimality. Since dI was chosen positive, we can divide by it
and write the criterion as

(MUy/p1 — MUz /p,) 0. (1.4)

Now suppose the criterion is not met, that is, suppose the
left-hand side expression in (1.4) is > 0. Therefore some switch
of expenditure toward good 1 is desirable. How far should this
process go? Recall that as z; increases and z; decreases, MU,
will gradually fall relative to MU,. Eventually a point will be
reached where the expression in (1.4) is zero, and no further move
in this direction can raise the consumer’s utility level.

Next consider a reallocation in the opposite direction. This
will switch the signs in all the above arguments. If the initial
allocation is optimum, we must have

(MU,/py — MU, /p2) 2 0. (1.3)

If this is false, that is, if the expression is < 0, tlien the process
of increasing z, and decreasing x; will be carricd out until the
expression reaches zero.
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We can combine the two criteria of optimality of the initial
consumption bundle into one: if the allocation (z,, ), with both
quantities positive, is optimum, then the marginal utilities at this
point 1must satisfy

MU]/pl :MUQ/pQ (16)

This is the overall ‘no-arbitrage’ condition. The economiic interpre-
tation is that at the optimum the consumer should be indifferent
hetween allocating the marginal unit of money to the one good or
the other.

The Tangency Condition Using Calculus

The more complex but more commonly used way to derive the same
condition of optimality is based on the tangency of the budget line
(1.1) and the indifference curve (1.2). Write the equation of the
hndget line as

z2 = (I/p2) — x1(p1/p2)-

Then we see at once that the slope of the line is (p; /p, ) in numerical
value. The slope of the indifference curve is the marginal rate of
substitution (M RS) in consumption, and it equals the ratio of the
marginal utilities (MU /MU,;). A heuristic derivation of this is as
follows. If a marginal loss of dz; units of good 1 is just compensated
by the marginal gain of dz, units of good 2, then the marginal rate
of substitution (MRS) is the ratio dzy/dz,. But the exact offset
of the gain can be written as an equation in utility units:

MU1 de‘l = A/[UZ d.’EQ.

Therefore

MRS = dz,/dz, = MU, IMU,. (1.7)

Iucidentally, note the reversal of the subscripts 1 and 2 between
the numerator and the denominator of the two ratios. This is not
a typographical error; that is how the ratios arc related, as you can
sce by cross-multiplying to get back to the equation just above.

At the optimum, the slopc of the indifference curve (the mar-
ginal rate of substitution in consumption) is equal to the slope of
the budget line (the price ratio). Therefore

MU]/MUz =p1/p2. (18)
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This is equivalent to the optimality criterion (1.6) we derived
before. However, the verbal argument underlying (1.6) has some
advantages over the geometry of (1.8).

Corner Solutions

The arbitrage argument is somewhat easier to adapt to the case
where one of the goods is not bought at all. Since this occurs
at one end or the other of the budget line, such optima are often
called corner solutions. Suppose all income is spent on good 2
in the initial allocation, so z; = 0 and zg == I/p;. Now of the
two directions of improvement, namely trying to increase z, and
to decrease it, only the former is possible. Therefore only the
criterion {1.4) corresponding to this test survives. Since z; cannot
be decreased any further, the argument leading to (1.5) cannot
be made. The economic interpretation of (1.4) holding for the
consumption bundle {0, I/p;) is equally simple: even the first little
unit of income spent on good 1 does not bring cnough utility benefit
to match that from the last unit spent on good 2.

Marginal Utility of Income

The second advantage of the arbitrage argument is even more im-
portant. Return to the situation where both goods are initially
bought, and the criterion (1.6) for optimality. Now suppose our
consumer is given an extra amount dI of income to spend. He could
spend it all on good 1, buy (dI/p,) more units of it and achieve an
additional (MU, dI/py) units of utility. Or he could spend it all
on good 2, when his utility would increase by (AM U, dI/ps) units.
But the two increments to utility are equal by (1.6). Therefore at
the margin the allocation of the infinitesimal amownt dI of extra
income to good 1, or good 2, or indeed any mixture of the two, is a
matter of indifference to the consumer. Then we can call the util-
ity increment per unit of marginal addition to income simply the
marginal utility of income, without bothering to specify how the
marginal addition to the income is spent. Write A for this marginal
utility of income. Then the dI units of extra income raise utility
by AdI units. Equating this to the two other ways of writing the
same utility gain in terms of spending on each of the two goods,

we find
/\:MUl/pIZMUQ/pz. (19)
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We sce that the common value of the two sides in the opti-
malily criterion (1.6) has a very useful cconomic interpretation —
it is the marginal utility of income. A very similar interpretation
is possible for the no-arbitrage conditions in all constrained opti-
mization problems; I shall explain this in greater detail and unify
it under the concept of Lagrange multipliers or shadow prices.

Many Goods and Constraints

T'he generalization of the analysis to cover cases where there are
several goods, some of which may not be bought at all, is equally
casy. Suppose there are n goods, with prices (pi1,p2,...ps) and
(uantities (z1,z2,...x,). For all goods bought in positive amounts
at the optimum, the ratio of marginal utility to price must have
a common value, which can then be interpreted as the marginal
utility of income A. For all goods not bought, the ratio of marginal
utility to price must be smaller than, or at best equal to, this value.
In symbols, for any good 1,

= if]ﬁi>0,
MU"/pi{gA if 2; = 0.

or
=0 ifz; > 0,

<0 ifr; =0 (1.10)

MU; — Ap; {

The method can also be extended to allow several constraints.

We need a separate X for each constraint, and it can be interpreted

as the marginal utility of relaxing that constraint. I shall discuss
this in Chapter 3.

Non-binding Constraints

Finally, consider an extension that is not of great relevance in
consumer theory, but will prove very imiportant in some other ap-
plications. Picture a consumer with an income so large that he
is satiated, and fails to spend it all. The budget equation (1.1)
should be replaced by an inequality

Pz tperr <L

We can bring this within the scope of the above theory simply by
defining a new good z3, ‘unspent income’, which has price equal
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to one and yields no utility. (Note that I am not talking of saving,
which enables a non-satiated consumer to spend more on desired
goods in the future, but of totally useless unspent income.) The
budget equation becomes

p1xy+prry =1,

and we have MU; = 0. Since we are supposing that the consumer is
choosing a positive amount of 3, (1.10) for ¢ = 3 gives A = 0. This
makes intuitive sense: if the consumer does not even spend all the
income he has, then the marginal utility of an increment to income
should be zero. In turn, we can use this in (1.10) corresponding to
the other goods, and obtain MU; = 0 for i = 1 and 2. Thus these
goods are consumed at a level that yields zero marginal utility,
that is, to the point of satiation.

We started on a simple and intuitive excursion into a con-
sumer’s choice problem, using nothing but the computation of ‘ar-
bitrage’ gains and losses from marginal adjustments and building
them into criteria of optimality. This has already brought us to
a very important general way of characterizing optima subject to
constraints. In fact (1.10) is nothing but a form of a basic result
of the theory of optimization subject to constraints, namely the
Kuhn-Tucker Theorem. The extension to the case of a satiated
consumer is an instance of the general principle known as Comple-
mentary Slackness. In the chapters that follow, I shall gradually
develop the general theory in a more systematic way, making use
of the calculus, to develop and to sharpen the intuitive ideas in-
troduced here.

Preliminary Reading

To read this book with ease and profit, you should be famil-
iar with the basic concepts of elementary or intermediate micro-
economics: transformation curves and indifference curves, margi-
nal calculations done verbally or geometrically, etc. If you need
to acquire this background, any good introductory economics or
intermediate microeconomics textbook will serve. 1 mention just
one of each kind.

WiLLIAM J. BAUMOL and ALAN S. BLINDER, Economics:
Principles and Policy, Chicago: Harcourt Brace Jovanovich, 4th
edn., 1987.
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HaL R. VARIAN, Intermediate Microeconomics, New York:
Norton, 1987.

The mathematics needed is at the college calculus level. You
will need knowledge of partial derivatives right away in Chapter 2.
Vector and matrix notation, with simple sums and products of
these entities, appears in Chapter 3. Some concepts of convex-
ity arc developed in the book as needed. Definite matrices and
quadratic forms are required in Chapter 8, and some elementary
integration in Chapters 9 to 11.

Those who need to acquire some of these mathematical tech-
niques have the choice of proper mathematics books, mathematics
hooks designed for economists, and economics books which explain
the mathematics along the way. Here once again is one example of
cach kind.

SERGE LANG, Calculus of Several Variables, Berlin: Springer-
Verlag, 3rd edn., 1987, chs. 1-6, 13-16.

ALPHA C. CHIANG, Fundamental Methods of Mathematical
Economics, New York: McGraw-Hill, 3rd edn., 1984, chs. 4, 5, 7,
9.

ALASDAIR SMITH, A Mathematical Introduction to Economics,
Oxford, UK: Blackwell, 1982.
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Statement of the Problem

Let us begin the development of the general theory of optimization
subject to constraints, using a setting very close to the consumer
choice model of Chapter 1. Suppose the choice variables are x,
and z. I shall write them more compactly as a vector = arranged

in a column,
x
z = 1.
T2

Initially, I shall use vectors only to abbreviate lists of components;
actual operations with vectors and matrices will appear gradually.

We will need notation that distinguishes between the general
vector = and some particular value of z such as the optimum,
while remembering the family resemblance between the two: both
are vectors of choice variables. I shall gencrally use the symbol
Z to denote the optimum value of the general variable . The
components of  will be written z, etc.

The function to be maximized, called the objective function,
is F(z). The constraint is a general non-linear one,

G(z) =c, (2.1)

where G is a function and ¢ a given constant. The model of Chapter
1 was a special case of this: F was the utility function, G was a
linear function showing the expenditure,

G(z) = py 21 + p2 22,

and ¢ was income. If it helps, you can now think of G as a more
general non-linear expenditure or cost function, such as would arise
if the consumer faced a quantity discount or premium price sched-
ule.

With this notation, the problem in this chapter is to find the
value 7 that maximizes F'(2) subject to G(z) = c.

Lagrange’s Method 11

The Arbitrage Argument

As we did in Chapter 1, start with a trial point and an infinitesimal
chiange. Let the particular trial point be Z, and the infinitesimal

_ dl‘l
de = (dmz)'

We want (Z + dz) to satisfy the constraint, and sec if it yields a
higher valuc of the objective function.

Since the change in x is infinitesimal, we can approximate
the changes in values in functions of = by the first-order linear
terins in their Taylor serics. Let subscripts on a function denote
its partial derivatives with respect to the indicated argument; for
example Fy is 0F/0z,. We must remember that in general each
partial derivative is itsclf a function of the whole vector z. Only
in the special case where F is linear will the partial derivatives be
constants; only in the special case where F is additively separable
(a function of z; plus a function of z;) will Fi be independent of
r and vice versa. Thus we should write the partial derivatives as
functions Fy(z) and Fp(z). When these are evaluated at our initial
trial point Z, their values will be written Fy(z) and F3(z).

The first-order Taylor approximation of the change in F(z)
as a result of the infinitesimal move from the general point z to

r +dx is

change

dF(z) = F(z + dz) — F(z)
= Fi(z) dzy + Fy(x)dz,. (2.2)

Observe the similarity with the expression for the change in util-
ity (1.3) of Chapter 1; the marginal utilities that were motivated
there by economic intuition are simply the partial derivatives of
the utility function with respect to the amounts of the two goods
consumed.

There is a similar expression for the change in G(z):

dG(z) = G1(z) dzy + Ga(x) des. (2.3)

[n Chapter 1, the partial derivatives of G were simply the prices.
If we now think of G as a more general non-linear outlay or expen-
diture function, the partial derivatives are the marginal prices of
the respective commodities.
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Now we can modify the arbitrage argument of Chapter 1 to
apply to the new more general setting. Start at a point ¥ where the
constraint (2.1) holds, and consider a change dz such that (Z +dx)
also satisfies the constraint. Then dG(Z) = 0. Using (2.3) with the
particular initial point, we have

G] (’E) dIl = —Gg(i‘) dl‘g.

Call the common value of these two sides de. Then our arbitrage
consists of reallocating an amount dc in the value of the function
G(x) away from z and toward z,.
First suppose G1(Z) and Go(F) are both non-zero. Then
dz, = de/G,(T), and day = de/Go(z).
The resulting change in the value of the objective function is found
by substituting into (2.2) as

dF(3) = [F1(2)/G1(3) — Fy(7)/Ga(7))] de. (2.4)

If the bracketed expression is non-zero, then F(z) can be in-
creased by choosing de to have the same sign as that of the brack-
eted expression. As before, we can turn this around to find a
no-arbitrage condition that holds when Z is the optimum choice.
So long as neither Z; nor T, has hit some natural boundary such
as zero, then changes dc of either sign are possible. If z is opti-
mum, then no such change should be capable of increasing F(z).
Thercfore the bracketed expression in (2.4) should be zero, or

F1(2)/G1(2) = F3(2)/Ga(). (2.5)

This is the analog of the condition (1.6) of the previous chapter.
Note the exact statement: if the optimum choice is z, then
it satisfies (2.5). I have not established any implication the other
way round, so there is no guarantee that a solution to (2.5) is the
optimum. This is the difference between necessary and sufficient
conditions, and I will discuss it in more detail later in this chapter.
If # lies at some natural boundary, for example if one of 7,
and Z, is zero when both must be non-negative, then only one-
sided changes dc are meaningful, and we get an inequality that
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gorresponds to (1.4) and (1.5). I shall not consider this case in this
chapter, but shall return to it in the next.

As in Chapter 1, let us define A to be the common value of
the two sides in (2.5). Then we can write that equation as a set of
Lwo equations

Fi(z) = A G(%), j=12. (2.6)
Remember that the A of Chapter 1 could be interpreted as the
marginal utility of income. In the same way, the A just introduced
turns out to be the rate at which the optimum value of F(z) re-
sponds to a change in ¢. I shall develop this interpretation and
its implications in Chapter 4. The main topic in the rest of this
chapter involves writing (2.6) in a way that easily extends to more
peneral settings, and provides a method for finding the optimum
+. But first a couple of necessary digressions.

Constraint Qualification

What happens if say G1(Z) is zero? Now I, can be changed slightly
without affecting the constraint. If F1(Z) is not zero, it is desirable
to do so. For example, if F1(Z) is positive, then F(z) can be in-
creased by raising ;. This goes on until either F (z) drops to zero,
or G1(z) becomes non-zero. In the consumption interpretation, a
consumer will go on using more of a free good either until he is
satlated, or until the marginal unit of the good is no longer free.
Therefore if G1(#) is zero and 7 is optimum, then Fi(Z) must be
rero, too. We can define the ratio of these two zeros as we please,
and there is no harm in defining it so that (2.5) is satisfied.

What if G1(z) and G2(z) are both zero? This might mean
that both goods are free, and should be consumed to the point of
satiation. But there is a more ominous possibility arising from the
(uirks of algebra and calculus. Take the budget line (1.1) of the
previous chapter, and write its equation as

(pzy+prze—1)°=0.

"T'his is an unnecessarily complicated way of writing (1.1), but the
two are mathematically fully equivalent, and we should see if the
change makes any difference. Let G(z) be the function on the
left-hand side of this. Then

Gi(z)=3p1 (prz1+prz2—1)?,
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which is always zero when z satisfies the budget constraint. The
same is truc for G(x). Goods are not free at the margin, and yet
their quantities have zero effect on the constraint function. In such
a case, our method runs into trouble.

The formal mathematical theory cops out and simply rcfuses
to deal with such cases by assuming a condition called a Constraint
Qualification. In the present instance that simply amounts to as-
suming that at least one of G,(z) and G,(7) is non-zero. If this
is mot true in a particular application, then conditions like (2.6)
may be invalid there. Luckily, failure of the Constraint Qualifi-
cation is rarcly a problem in practice. In the rare cases where it
arises, it can usually be circumvented by writing the algebraic form
of the constraint differently, as with the budget constraint above.
But students of the subject should not forget the problem alto-
gether; it is a favorite source of trick questions in examinations. If
something strange scems to be going wrong when you try the stan-
dard methods, you should check to sce if the problem violates the
Constraint Qualificatiorr. But I shall omit further mention of this
complication except in the formal statements and mathematical
proofs.

The Tangency Argument

The second digression relates the arbitrage argument to the tan-
gency condition more familiar from elementary economics texts.
In Chapter 1 we saw an alternative way to obtain the condition
(1.6), based on the tangency of the budget line and an indifference
curve. The same can be done for (2.5). Figure 2.1 shows the story.
Along the curve G(z) = ¢, we have dG(z) = 0, and from (2.3) we
can calculate the slope of the tangent to the curve at z as

dzy/dz, = —G,(2)/Ga(z). (2.7)

Note the reversal of the subscripts, exactly as in Chapter 1. Note
also that if Gy(z) = 0 the curve is vertical; this is not a serious
problem. If both G;(z) and G;(z) are zero, the slope is not well
defined, and the method may run into a problemn as was explained
just above. In most economic applications, G is an increasing
function of both arguments. Then G;(z) and G4 (z) are both pos-
itive, dzy/dx, along the curve is negative, and we have the usual
downward-sloping transformation fronticr for the constraint.
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common
tangent

> X

Fig. 2.1 — The tangency solution

A contour of the objective function F, that is, a curve of equal
values F(z), runs through the point z. The slope of the tangent
to tlie contour at this point is similarly calculated:

dzo/dz, = —Fi(z)/ F3(x). (2.8)

Onee again, in most economic applications, F is an increasing func-
tionn and the contour (indifference curve) is downward-sloping.

If 7 is optimum, the two curves must be mutually tangential,
that is, have the same slope, at this point. Equating the two
expressions, we have

Fi(2)/Fy(7) = G1(7)/Ga(7), (29)
which is equivalent to (2.5).

Necessary vs. Sufficient Conditions

Recall what the above argument established: if £ maximizes F'(x)
subject to G(z) = ¢, then (2.5) holds. In other words, the condition



16 Optimization in Economic Theory

(2.5) is a logical consequence of the optimality of . Therefore it
is called a necessary condition for optimality. To be more precise,
since it involves the first-order derivatives of the functions F and
G, it is called the first-order necessary condition.

In scarching for an optimum, the first-order necessary condi-
tion helps to narrow down the search. The necessary conditions
were established starting with an assumed known optimum z. But
we turn the story around by treating the components z; and Z,
as unknowns, and the constraint (2.1) and the necessary condition
(2.5) as two equations that will determine them. Typically, there
is a whole continuous range of values of 7 satisfying the constraint
(2.1). But there are only a few values of Z, and if we are lucky,
just one, that also satisfies the condition (2.5).

If we know from separate reasoning that our problem indeed
has a solution, and we find that there is a unique Z satisfying the
constraint and the first-order necessary condition, then it must be
the solution we seek. If there are multiple solutions to (2.1) and
(2.5) taken together, then all are candidates for optimality as far
as the present analysis is concerned, and some other method must
be used to find the correct solution. Even then, the first-order
necessary condition (2.5) will have cut down quite drastically the
number of candidate points we need to examine.

The main reason that the first-order necessary condition does
not always lead us to the right solution is that the same first-order
condition is also necessary for the problem of minimizing the same
function F(z) subject to the same constraint G(z) = ¢. Minimizing
F(z) is the same as maximizing —F(z). By the same reasoning
as that leading to (2.8), we can find the slope of a contour of this
function:

dry/dey = —[-F\(2)}/[-Fa(2)] = —Fy(z)/Fy(z).

Equating the value of this at Z to (2.7), we get (2.9) again.

There is also the point that to obtain the condition, we asked
if the value F(z) could be improved by making small changes in
z. If not, then z is better than the comparison points in a small
neighborhood, or it yields a local peak of F(x). Now a function can
in general have several such local peaks, and several local troughs
too. The same first-order necessary condition will be truec at all
these points. Only one will give a true or global maximum.
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Finally, either a maximum or a minimum implies (2.5) but
nol vice versa. Therefore the condition might be satisfied at a
point that is neither a maximum nor a minimum, even in a small
neighborhood. As a simple example, consider F(z) = z% where z
m o sealar. We have F'(0) = 0, but z = 0 gives neither a maximum
nor o minimum of F(z).

‘To distinguish such cases, any point satisfying the first-order
necessary conditions is called a stationary poini. The true opti-
nmm is one of the stationary points. To locate it among these
enndidates, we need some other test. Such tests typically rely on
the curvature, or the second-order derivatives, of the functions. In
Figure 2.1 the curvatures of the contours of F' and G have been
vhosen correctly for a maximum. Thus the curve G(z) = ¢ gets
ntter as zy decreases and z5 increases along it; the economic in-
terpretation is that the marginal rate of transformation of z; into
r, diminishes as more and more of such a transformation is carried
ont. Similarly, the contour of F' shows a diminishing marginal rate
ol substitution.

Tests involving curvatures or second-order derivatives are the
nuhject of Chapters 6-8. These tests differ from the first-order con-
ditions of this chapter in another way: if such a condition holds,
then the point in question is a maximum, at least in comparison
with neighboring points; the condition ensures optimality. There-
fore such a condition is called a second-order sufficient condition.

Lagrange’s Method

Now let us express the first-order necessary condition (2.6) in a
wny that is easy to remember and use. This is called Lagrange’s
Method after its inventor. Note that we want to use the condition
to solve for the optimum z. We introduced A as the common value
of the two sides in (2.5), so it is just as much unknown as the
optimum Z. That is, we have to determine it as an integral part of
the solution. In the meantime, call it an undetermined Lagrange
nultiplier. Define a new function, called the Lagrangian,

L(z,\) = F(z) + A[c - G(z)]. (2.10)

Nole that L is also a function of ¢, and of any other parameters
that appear in the functional forms of F and G. Such arguments
of 1. will be shown explicitly only when they are important in the
context.
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Denote the partial derivatives of L by

LanL/ail?j, L,\EOL/B/\.
Then
Lj(.r,/\) = FJ(I) — /\GJ'(I),

and

Lx(z,A)=c— G(z).

The first-order necessary condition (2.6) becomes just L; = 0 for
J =1 and 2, and the constraint (2.1) simply Ly = 0. Then we
can state the result of the whole argument so far into a simple
statement:

Lagrange’s Theorem: Suppose z is a two-dimensional vector, ¢
1s a scalar, and F' and G functions taking scalar values. Definc the
function L as in (2.10). If & maximizes F(z) subject to G(z) = ¢,
with no other constraints (such as non-negativity), and if G;(z) #
0 for at least one j, then there is a value of A such that

Lij(z,A)=0 for j=1,2

Ly(z,\)=0. (2.11)

Remember that the theorem provides necessary conditions for
optimality. In other words, it starts with a known optimum z, and
establishes that it must satisfy (2.11). But in practice, much of the
use of the theorem is in helping us narrow down the search for an
initially unknown optimum. We regard (2.11) as three equations
for the three unknowns z1, Z2, and A. The equations are generally
non-lincar and neither existence nor uniqueness of the solution is
guaranteed. If the conditions have no solution, the reason may be
either that the maximization problem itself has no solution, or that
the Constraint Qualification fails and the first-order conditions are
inapplicable. If the conditions have multiple solutions, we need the
second-order conditions to arbitrate between the candidate solu-
tions. But in most of our applications, the problems will be well
posed enough that the first-order necessary conditions take us to
the unique solution. I shall now develop some exainples that use
Lagrange’s method, and offer some exercises for you to attempt
similar solutions. After you have gained some experience of prob-
lems with two variables and one constraint, you will be ready for
the extensions considered in the next chapter.
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While the notation Z keeps the theoretical developments clear
by distinguishing the general point from the particular optimum,
il. becomes cumbersome in applications where we are searching for
nn unknown optimum. Therefore we often drop the bar on z in
vonditions like (2.11) when using them in particular contexts, such
ns the examples below.

xamples

Krample 2.1: Preferences that Imply Constant Budget Shares

Consider a consumer choosing between two goods z and y, with
prices p and q respectively. (The notation z;, T etc. was used
in the theoretical part because it generalizes more easily to several
poods and constraints, but the z, y notation is simpler in examples
with just two goods.) His income is I, so the budget constraint is

prtqy=1
Luppose the utility function is

U(z,y) = a In(z) + # In(y), (2.12)

where «, 3 are positive constants and In denotes natural log-
mithms.
Write the Lagrangian

L{z,y,A\) =a In(z)+ 8 In(y) + A[I—pz—qy].

ltecall that dln(z)/de = 1/z. Therefore the first-order necessary
conditions (2.11) become

OL/0z =afz — Ap=0,

OL/0y = B/y —Aq=0,

|llll|

OL/JOA=1—-px —qy=0.

To solve these, substitute for z, y from the first two into the
third. This gives

A= (a+ B)/I, (2.13)
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and then
al pgI
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Thesc are the demand functions, namely the solutions for the opti-
mum quantities in terms of the prices, income and the given para-
meters a, J.

We can write them alternatively as

(2.14)

pr @ 9y 4

I " atp T "ot d (2.15)
In other words, for the utility function specified, the shares of in-
come spent on the two goods are constants. This is a convenient
property, and one that is sometimes close enough to reality. In the
initial exploration of theoretical models, this specification is often
the crucial simplification that yields concrete results that suggest
the directions for further analysis and testing. Therefore this func-
tion is a favorite of economists.

Note that in (2.13) the marginal utility of income is inversely
proportional to the income. This might seem a natural consequence
of the intuitively appealing idea of diminishing marginal utility.
But that is a treacherous concept; see Exercise 2.1 below.

Ezample 2.2: Guns vs. Butter

Consider an economy with 100 units of labor. It can produce guns
z or butter y. To produce z guns, it takes z? units of labor;
likewise y? units of labor are needed to produce y guns. Therefore
the economy’s resource constraint is

%+ y2 = 100.
Geometrically, you can easily see that the production possibility

frontier is a quarter-circle.
The objective function to be maximized is

Flz,y)=az+bdy.

where a, b are given positive constants.
To solve this problem, form the Lagrangian

L(z,y,\) =az + by + X [100 — 22 — y?].
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‘I'lie first-order conditions are

OL/0z =a~2Xz =0,

dL/dy=b—2\y =0,

nndd

OL/dX =100 — 2% —y* = 0.

Substitute from the first two into the third to get
100 = (a® + b%)/(4)?),

(R18

A= (a® + %)% /20.

1'hen

z =10 af(a® + )2, y=10b/(a® +b*)"/% (2.16)

You can think of a, b as the weights or social values attached
to the two goods, and then (2.16) gives the economy’s optimal
nipplies as functions of these weights. If both weights are increased
in equal proportions, say doubled, then the optimum quantities z
nud y are unchanged. The supplies are homogeneous of degree
se10 in the values, so only the relative values matter. The supply
of each good increases as its relative value increases. In later work,
eupecially the chapter on comparative statics, we shall see how
pencrally valid such properties are.

F.xercises

Frercise 2.1: The Cobb-Douglas Utility Function
Cousider the consumer’s problem as in Example 1, but with a
different utility function U defined by

ﬁ:xayﬂ.

Show that it yields the same constant-budget-share demand func-
tions (2.14) as above. (Hint to simplify the solution process: elimi-
nite the Lagrange multiplier between the first-order conditions for
the two goods. This gives a relation between z and y. Simplify
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this as far as possible, and then use it and the budget constraint
to solve for the quantities.)

Note that the two utility functions are linked

Ule,y) =n[F(zp)],  or  D(z,y) = oxplUle.0)].
This illustrates that changing the utility function by any increasing
transformation does not affect the consumer’s optimum choice. If
observed demand behavior is all that matters, then the form of the
utility function is indeterminate (and irrelevant) to within such a
transformation. Any properties that depend on the choice of a
particular form are meaningless.

One such is diminishing marginal utility of incomne. If we write
the multiplier for this problem as X to distinguish it from the A of
Example 2.1, then you should verify that
- a® ﬁﬂ Joats—1
A= .

(@t 7

(2.17)

If (a+ ) > 1, then X increases with income.

In some circumstances, specific forms of the utility function
play special roles. This happens when some assumptions about
interpersonal comparability are made, or when functions that are
additively separable across time-periods or states of the world are
used for representing preferences in situations involving time or
uncertainty. But in all these cases, the primacy of the special
functional forms arises from those other considerations, not from
the underlying mechanism of individual choice.

When these other considerations are absent, we are free to
transform the utility function for computational convenience. Note
that changing both o and 8 in the same proportions leaves demand
unaffected in Example 2.1 as well as in Exercise 2.1. A glance at
equations (2.14) or (2.17) shows that it is convenient to choose
these proportions so that o« + 5 = 1.

Ezercise 2.2: The Linear Ezpenditure System

Return once again to the consumer of Example 2.1, but let the
utility function be modified to U, where

U(x,y) = a In(z — z0) + 8 In(y — yo),
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where iy and yp are given constants, and a 4+ 3 = 1. Show that
the optimnal expenditures on the two goods are linear functions of
mcome and prices:
pr=al+ Bpze— aqyo,
qy=pB1—ppro+aqyo.

This slight modification of the utility function brings with it a
nuich richer range of possible optimum choice. The budget shares
of the two goods can now vary systematically with income and
pices. One good can be a necessity and the other a luxury (but
neither good can be inferior since a and 3 must be positive to keep
{he marginal utilities positive). But the expenditures still have a
simple functional form. For these rcasons, this specification was
popular in the early empirical work on consumer demand.

Ereveise 2.3: Production and Cost-Minimaezation

¢'onsider a producer who rents machines K at r per year and hires
lnhor L at wage w per year to produce output @, where

Q=VK + VL.
Simppose he wishes to produce a fixed quantity @ at minimum

¢, Find his factor demand functions. Show that the Lagrange
wmnltiplier is given by

A=2wr Q/(w+r).

Supgest an economic interpretation for A.

Now let p denote the price of output. Suppose the producer
vun vary the quantity of output, and seeks to maximize profit.
Show that his optimum output supply is

Q=p(w+7)/(2wr).

ltelate this to your interpretation of A.

I'urther Reading

lor supplementary treatments of Lagrange’s method, see Varian
(op. cit.), appendices to chs. 5 and 20, and Smith (op. cit.) ch. 2
{nects, 1-4), ch. 4 (sects. 1-3).

The development of the theory in this book is relatively intu-
iive and heuristic. There are several textbooks that are mathe-
mutically more rigorous; I mention just one:

MICHAEL D. INTRILIGATOR, Mathematical Optimization and
Feonomic Theory, Englewood Cliffs, NJ: Prentice-Hall, 1971, ch.
4 s about Lagrange’s method.




3 Extensions and

Generalizations

More Variables and Constraints

If there are n choice variables (zy,z2,...zn), we simply let the
vector £ have n components. Then (2.11) is extended to j =
1,2,...n, and we have (n + 1) equations in the (n 4+ 1) unknowns,
namely the n components of z and the number A.

If there are m constraints, write them as

G'(z) = ¢, i=1,2,...m,

where the functions are identified by superscripts to avoid con-
fusion with partial derivatives, which are being denoted by sub-
scripts. For the moment, continue to ignore any other restrictions
such as non-negativity on the variables. We need m < n, for n con-
straints on n variables will generally reduce the choice to a discrete
set of points, while more constraints will, in general, be mutually
inconsistent.

Lagrange’s method extends to this situation very casily. We
define a multiplier A; for each constraint, and define the Lagrangian

L(zy,...2n, A1, Am) = F(zy,...2,)
m
+  Xilei = Gia,..oza)]. (31)

i=1

The first-order necessary conditions satisfied at the optimum z are
then
6L/3zJ - 0,

i=1,2,...n, (3.2)

and

L/ONi=0 i=1,2,...m. (3.3)

Eztensions and Generalizations 25

When using these to search for the optimum, we treat them as
{tn | n) equations in the (m +n) unknowns Zi, Tg, ... Tn, A1, Az,
D

These can be put more neatly in vector-matrix forin. Let cbea
columu vector with components ¢;, and G a column vector-valued
lunction with component functions G*. Then all the constraints
vnn be written together as a vector equation G(z) = ¢. Next, the
pisttinl derivatives Fj(x) should be formed into a vector which I
whinll write as F.(x), the subscript « indicating the vector argument

with respect to which the derivatives have been taken. I shall make
the convention that when the argument of a function is a column
veetor, the vector of partial derivatives is a row vector, and vice

virsa. There is a good mathematical reason for this, but the main
nilvintage here is that it will save us from having to transpose
wintrices all the time. Each G* will have a row vector of partial
derivatives G (z) with components G;(z), and these row vectors
will be stacked vertically to form an m-by-n matrix, written G ().
I'"ie multipliers will form a row vector A.
With this notation, (3.1) can be written more simply as
Lz, \)=F(z)+ M c~ G(z)). (3.4)
‘I'v verify this, note that ) is an m-dimensional row vector, that is,
n | by-m matrix, while the term in the square brackets is an m-
flimensional column vector, that is, an m-by-1 matrix. The product
ol these two matrices is found by multiplying the ¢ th element of
i row vector by the corresponding element of the column vector,
ninl adding all these products. The result is a 1-by-1 matrix, that
in, n scalar. It is exactly the expression in (3.1).
i the same way, the conditions (3.2) and (3.3) become more

vonnpact:

L.(z,)) =0,
Li(z,)) = 0.

(3.5)
(3.6)

What happens to the Constraint Qualification? Note that in
the case of Chapter 2, we had two variables (n = 2) and one con-
stinint (m = 1). The matrix G;(z) was 1-by-2, that is, simply the
row vector (Gi(z), Ga(x)). The Constraint Qualification was the
nnmption that this vector was not zero at . The condition for
the peneral case is that the matrix should not have any singularity.
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Since m < n, this amounts to requiring that it should have m in-
dependent rows, that is, its rank should be the maximum possible.
namely m.

Let us sum up these results into a compact statement:

Lagrange’s Theorem: Suppose z is an n-dimensional vector, ¢

an m-dimensional vector, F' a function taking scalar values, G a
function taking m-dimensional vector values, with m < n. Define
L(z,A\)=F(z)+ M c— G(z)], (34)

where A is an m-dimensional row vector. If £ maximizes F(z)

subject to G(z) = c and no other restrictions, and rank G,(z) = m.
then there is a value of A such that

L.(2,)) =0, (3.5)

Ly(z,A) =0. (3.6)

I have stated all these generalizations without proof. Most
readers will probably accept the intuition of the case of two vari-
ables and one constraint, and merecly test the gencral result in
applications. Even they will find the precisc statements like the
ones above useful. For the more mathematically orientated read-
ers, I give a formal proof of the most gencral result of this chapter,
the Kuhn-Tucker Theorem, in the Appendix.

Non-Negative Variables

Next supposc that the variables z; must be non-negative to make
cconomic sense. If the optimum Z happens to be such that thesc
requirements are not binding, that is, all the ; arc in fact strictly
positive, then the above conditions (3.2) and (3.3) continue to ap-
ply. If say Z; is zero, then the arbitrage argument that leads to
first-order conditions is more limited. We can consider only those
infinitesimal changes dz for which dzy > 0. Generalization of the
reasoning in Chapter 1 that led to the inequality condition (1.10)
now gives us

Li(z)= Fy(z)~ Y X Gi(2) <0.

=1

Extensions and Generalizations 27

Unee again I omit the formal proof.

More generally, some components of z may be positive and
othiers zero. Then an equation like (3.2) should hold for the partial
derivative of the Lagrangian with respect to every component that
i pesitive, and an inequality like the one just above with respect to
cvery component that is zero, at the initial point. In other words,
fin every j, we should have

Li(z) <0, z; >0, (3.7)
with at least one of these holding as an equation. In exceptional
cnries, both might hold as equations. But the logical possibility that
both inequalities may be strict is ruled out by the requirements of
optimality.

The requirement that at least one inequality in (3.7) should
hold as an equation is sometimes stated more compactly as

zj LJ'(E) =0.

I'he point is that the product can be zero only if at least one of
the factors 1s zero.

A pair of matched inequalities like (3.7), not both of which
cnn be strict, is said to show complementary slackness. A single
mequality, say z; > 0, 1s binding if it holds as an cquation, that is,
i r; is at the extreme limit of its permitted range; the inequality is
unid to be slack if 7 ; is positive, and so has some room to maneuver
hefore hitting an extreme. Each one of the pair of incqualities in
{3.7) therefore complements the slackness in the other: if one is
nlnck, the other must be binding.

We can collect all the component inequalities in (3.7) into vec-
tors. Here 1 shall use the following notation: & > 0 means that
rj > 0 for every j; z > 0 means that at least one of these com-
ponent inequalities is strict; = >> 0 means that all the component
inequalities are strict. Then (3.7) becomes

L,(z)<0, 20, with complementary slackness, (3.7)
it being understood that complementary slackness holds for each
component pair in the vector inequalities.

Once again, I summarize the result for future reference:
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Lagrange’s Theorem with Non-Negative Variables: Suppose
1s an n-dimensional vector, ¢ an m-dimensional vector, F a function
taking scalar values, G a function taking m-dimensional vector
values, and m < n. Define

L(z,A) = F(z)+ A[c - G()], (3.4)
where A is an m-dimensional row vector. If £ maximizes F(z)
subject to G(z) = ¢ and = > 0, and the constraint qualification
rank G,(z) = m holds, then there is a value of A such that
L.(z,A) <0, >0, with complementary slackness, (3.7)
and
Ly(z,\) =0. (3.6)

First-order necessary conditions are supposed to narrow down
our scarch for a solution. How does that work in this instance?
We start without knowledge of which components of the solution
If we assume a
particular pattern, say ; > 0, 2, =0, 3 > 0, ..., then from (3.7)
we get Li(Z) =0, T2 = 0, L3(z) = 0, .... In other words, an
assumed pattern leads to a set of n equations from (3.7). These

are going to be positive and which ones zero.

may not have a solution at all, and even if they do, it may not
satisfy the other inequality conditions required from the pattern.
But if a solution satisfying the requirements exists, then it becomes
a candidate for the optiinum choice.

There are 2" patterns of positive and zero components in the
n-dimensional vector . We can then repeat the sarne exercise for
every one of these patterns and find other candidates for optimality.
Then our search narrows down to all these candidates.

In some applications the search is relatively easy to perform;
the simplex method for solving linear programming problems is es-
sentially a systematic algorithm for such a search. But in general
the search is too exhaustive and exhausting. If we had to carry it
out every time, the prospects for solving constrained optimization
problems would be very poor. Luckily many problems of prac-
tical interest offer short cuts or systems for searching among the
patterns. In most basic contexts of cconomic theory, we can make
good guesses about the likely pattern of equations and inequalities,
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proceed on that basis, and use second-order sufficient conditions
(o verify that the resulting solution is indeed the optimum.

Incquality Constraints

Now we can consider more general inequality constraints. This is
of considerable economic importance, because usually there is no
compulsion to use all of available income or some resource, and we
uhould determine in the process of solution whether it is optimal
to use 1t fully.

Suppose the first component in the constraint need only hold
nn nn inequality

G'(z) < ¢;.

We can fit this into the context discussed before using the same
frick as the introduction of the ‘unspent income’ variable in the
consuiner’s problem of Chapter 1. Let us define a new variable
Fpy1 as

Tny1 =c; — G (z). (3.8)

I terms of the enlarged set of variables, the constraint has become
nn exact equation. The new variable z,4; is restricted to be non-
negative, but we know how to handle that.

Write L as the Lagrangian for the new problem, to distinguish
. from the L of the old one. Then

Z(:El,... $n,$n+1,/\1,... /\m)

=F(z1,... Tu, A1, Am)
+/\1 [CI—GI(II,...JJH)—LE"+1]
+Z /\,‘[C,’*Gi(l‘l,...:tn)]
=2
:L(.Tl,....fn,/\l,.../\m)—/\1 Tn41-

All the other first-order conditions are as before, but we have
n new one with respect to z,41:

62/813"4_1 = —/\1 S 07 Tnt1 2 0,
witll complementary slackness. Recall that
Tpt1 — C1 — GI(I) = 8L/6/\1

\




30 Optimization in Economic Theory Ezxtensions and Generalizations 31

Therefore the condition can be written Kuhn-Tucker Theorem: Suppose z is an n-dimensional vector,
« an o dimensional vector, F' a function taking scalar values, G a
OL/3N > 0, A >0, (3.9 lietion taking m-dimensional vector values. Define
with complementary slackness: a form that is nicely symmetri L(z,)) = F(z)+ M c— G(2)], (3.4)
with the condition (3.6) for non-negative variables.

We can similarly allow all constraints to be incqualities. If wiwlwre X is an m-dimensional row vector. Supposc Z maximizes
do that, there is no reason in general to maintain the restrictior F'( r) subject to G(z) < cand = > 0, and the constraint qualifica-
m < n; any number of inequality constraints can still leave a nou tion holds, namely the submatrix of G .(z) formed by taking those
trivial range of variation for the choice variables z. The first-ordc 1vawr 7 for which G*(Z) = ¢; has the maximum possible rank. Then
conditions are the exact analogs of (3.9) for the other component: here is a value of A such that
and we can stack them into a pair of vector inequalities with com
plementary slackness in each component pair. L,(#,A) <0, £ >0, with complementary slackness,  (3.7)

The Constraint Qualification is altered. Specifically, suppos
k of the constraints are binding, that is, hold as cqualities. Tali il
the rows corresponding to these k from the matrix of derivative

G:(z). The resulting k-by-n submatrix should have rank k. LA(E,2) >0, A >0, with complementary slackness.  (3.10)
Once again we have the formal statement:

Lagrange’s Theorem with Inequality Constraints: Suppose z |
an n-dimensional vector, ¢ an m-dimensional vector, F' a functio
taking scalar values, and G a function taking m-dimensional vecto
values. Define

Ouce again, the exhaustive procedure for finding a solution
nning this theorem involves searching among all 2(m+™) patterns
that are possible from the (m + n) complementary slackness condi-
tions. Once again, short cuts are usually available. We shall soon
we some examples that illustrate and apply the theorem.

L(z,\) = F(z) + A ¢ — G(2)], (3.4
lixamples
where A is an m-dimensional row vector. If # maximizes F(r
subject to G(z) < ¢, and the constraint qualification rank hold.
namely that the submatrix of G,(z) formed by taking those row
i for which G*(z) = ¢; has the maximum possible rank, then ther
is a value of A such that

Frample 8.1: Quasi-Linear Preferences

“uppose there are two goods = and y, whose quantities must be
non negative, and whose prices are p and g respectively, both be-
mip, positive. Consider a consumer with income I and the utility
function

L.(z,)) =0, (3.5 Uz,y) =y + a In(z),

and where a is a given positive constant. Such preferences are called

quasi-linear, because the utility function can be chosen linear in
LA(2,A) 2 0,A 20 with complementary slackness. (3.10 (e quantity of one of the goods.
To find this consumer’s demand functions, we can use the
Finally, we can combine the cases of non-negative variable huhn-Tucker Theorem. Form the Lagrangian
and inecquality constraints to get the most general result of thij

kind: Lz,y,\)=y+a ln(z)+ A[I—pz—qy].
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The first-order conditions (3.7) and (3.10) become

aJt—Ap<0, z>0, (3.11)
1-Xg <0, y =20, (3.12)
I—pz—qy >0, A >0, (3.13)

in each case with complementary slackness.

Let us solve this mechanically to develop an intuition for the
technique.
constraint, there are 23 = 8 possible patterns of equations and
inequalities. Let us see which ones offer candidates for optimality.

First note that the budget constraint cannot be slack. The
economics of this is simple: the budget cannot go unspent because
the goods have positive marginal utilities. Formally, if the budget
constraint were slack, (3.13) would give A = 0. Then (3.11) would
require a/z < 0 which is impossible; similarly (3.12) would require
1<0.

This reduces the number of cases we need look at to four,
namely the patterns of positive and zero 2 and y that can arise in
(3.11) and (3.12).

Both z and y being zero does not satisfy the budget equation,
which must hold, as we saw above. Therefore this case is logically
impossible. The cconomics of the matter is again that the goods
have positive marginal utilities.

Ifz =0andy = I/q> 0, then (3.12) gives A = 1/¢, and then
(3.11) becomes p/q > oo, which is not true. Therefore this case
cannot arise either. The economic reason is that the first small
unit of z has infinite marginal utility, so it cannot be optimal to
consume zero .

Next consider z > 0 and y = 0. Then from the budget con-
straint z = I/p, and from (3.11), A = a/I. Using this in (3.12),
we have 1 < aq/I, or I < ag. This is a condition on the given
parameters of the problem, and they may or may not satisfy it. If
they do, the premises of the case are mutually consistent and we
have a candidate for optimality.

Finally, if both = and y are positive, (3.11) and (3.12) give
a/(pz) =X =1/q,s0x = aq/p. Then the budget constraint gives
y = I/qg — a. This is logically consistent if I > ag¢. Once again
this may or may not be satisfied; if it is, we have a candidate for
optimality.

With two non-negative variables and one inequality
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This completes the discussion of the cases. Now let us infer
nome useful ideas from the procedure and the results. The first
thing to note is that six of the eight possible patterns could be
1uled out using economic sense; after some experience it is possible
to eut down the amount of formal reasoning quite a lot in this way.

Next, observe that the space of all possible values of p, g,
nnd I is split into two exhaustive and mutually exclusive scts by
the conditions on the parameters that make cach of the last two
enses internally consistent. One requires I < a g, while the other
requires I > a¢. In many applications, a similar neat classification
will emerge.

Third, when I = agq, we have A = 1/q. Therefore

1-X¢g=0 and y=0;
hoth inequalities in (3.12) hold as exact cquations. When I dis-
russed complementary slackness following (3.6), I mnentioned this
possibility, and called it an exceptional case. Now we see why: it
nrises at the special configuration of parameters where the solution
m just at the point of switching from one pattern of equations and
incqualities in the complementary slackness conditions to another
pattern. .
Finally, let us restate the optimum choice rule:

If I<ag,

z=I/p and y=0,

if I>aq, z=aq/p and y=1I/q—a.

To see the solution more clearly, carry out the thought ex-
periment of starting at a very low level of income and raising it
pradually. At first, all of income is spent on good z and none on
. After a point, the expenditure on z is kept constant, and all
additional income is spent on y. We can think of good z as an
excmplar of a necessity: it has an absolute first claim on income,
Imt once its needs are satisfied, all extra income can go toward
other goods.

Quasi-linear preferences are useful when we want to isolate
one sector or industry and wish to avoid the feedback of income
effects on the demand for its goods. This is often called ‘partial
equilibrium’; a better name would be ‘industry analysis’. The as-
sumption that changes in income do not affect the demand for the
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good in question is obviously not meant to be taken literally, bu!
often proves an acceptable approximation or simplification for the
purpose.

Ezample 8.2: Technological Unemployment
Suppose an economy has 300 units of labor and 450 units of land
These can be used in the production of wheat and beef. Each uni
of wheat requires 2 of labor and 1 of land; each unit of beef require:
1 of labor and 2 of land.

A plan to produce z units of wheat and y units of beef i
feasible if its requirements of each factor of production are les:
than the available amount of that factor:

27 +y < 300, (3.14

z + 2y < 450. L (315

Each of the inequalities allows all points on or below a straight line
The set that is feasible given both constraints is the quadrilatera
OABC of Figure 3.1. The north-east frontier of the feasible set, o
the production possibility frontier, is ABC.

Along AB, (3.14) holds as an equation, while along BC, (3.15
does. Only at B do both hold as equations. Everywhere else, then
is unemployment of one factor or the other.

You might be tempted to assume that it will be optimum t
have full employment, and achieve production at B with z = ¢
and y = 200. However, that is not necessarily so.

Suppose the society has an objective or social welfare functior
defined over the quantities of the two goods of the simple form w
have used before:

W(z,y)=a Inz+ 5 Iny, (3.16
where a and # are given positive constants, and (o + 3) = 1.

We know from the intuition developed in the previous exam
ple that non-negativity constraints on = and y are not going to b
binding. So let us leave them out from the start. Write the Lag
range multiplier for the constraint (3.14) as A and that for (3.15
as p. Form the Lagrangian

Liz,y, A p) =alnz+ 8 Iny+ A[300—2z—y]+ u[450—z — 2|
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Fig. 3.1 — Production and unemployment
'l tirst-order conditions are

afr—2X—p=0, (3.17)

Bly—A~2p=0, (3.18)

J0—-2z—-y>0, A>0 with complementary slackness,
(3.19)

M) —z -2y >0, p=>0 with complementary slackness.
(3.20)

Between (3.19) and (3.20) we have four possible patterns of
rquntions and inequalities. We should suspect that it is not going
v he sensible to keep both factors less than fully employed, that is,
to have A = 0 and p = 0. Let us check this out: using A =0 = p
i {3.17) and (3.18) would give « = 0 = g, and that is not so.
I'herefore this case is ruled out, and we are left with three.
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second line, A is an m-dimensional row vector, G,(z) is an m-by-n
matrix, and dz is an n-dimensional column vector. The final re-
sult is the product of the row vector A and the column vector dc of
equal dimensions m; therefore it is a scalar. In fact it is the inner
product of the two vectors:

Ade=%; A\ida.

The result is important enough to be stated separately for
reference:

Interpretation of Lagrange Multipliers: If v is the maximum
of F(z) subject to a vector of constraints G(z) = ¢, and X is the
row vector of multipliers for the constraints, then change dv that
results from an infinitesimal change dc is given by

dv = X dc. (4.2)

' It should be stressed that (4.2) gives only the first-order or
linear approximation to the change in v if the change in ¢ is more
than infinitesimal. For such changes, we can carry the Taylor ex-
pansion to higher orders and find a closer approximation. This will
be done, although for a different purpose, in Chapter 8.

Shadow Prices

To illustrate and explain (4.2), consider a planned economy for
which a production plan # is to be chosen to maximize a social
welfare function F(z). The vector of the plan’s resource require-
ments is G(z), and the vector of the available amounts of these
resources is ¢. Suppose the problem has been solved, and the vec-
tor of the Lagrange multipliers A is known. Now suppose some
power outside the economy puts a small additional amount dey
of the first resource (say labor) at its disposal. The optimization
problem can be solved afresh with the new labor constraint to de-
.termine the new pattern of production. But we know the resultant
increase in social welfare without having to do this calculation: it
is simply A; de;. We can then say that the multiplier A; is the
Tnarginal product of labor in this economy, measured in units of
1?5 social welfare. This is clearly a vital piece of economic informa-
-f,I()ll, and that is why Lagrange’s method and his multipliers are so
important in economics.
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If there is only one scarce input, then a paraphrase of the ar-
gument of Chapter 1 yields another very instructive way of looking
at this result. Suppose we use the additional labor input to raise
the quantity of a particular good, say good j, leaving the outputs
of all the other goods unchanged. Since we are assuming full em-
ployment of labor in both situations, the increase dz; in the output
of the chosen good must satisfy

G}(f)dii = dey, or dz; = de /G;(:E)
The resultant increase in social welfare is
Fj(z)dz; = | F;(2)/G;(2)) dey.

The condition of optimality (2.5) says that the ratio in the square
brackets should be the same for all j. Thercfore the effect of the
marginal increase in labor supply on social welfare is independent
of how the extra labor is used. That is why we can speak unam-
higuously of the marginal product of labor.

Now suppose the additional labor can only be used at some
cost. The maximum the economy is willing to pay in terms of its
own social welfare units is clearly X; per marginal unit of ¢y. Any
smaller payment leaves it with a positive net benefit from using the
extra labor; for any larger payment the cost exceeds the benefit.
[n this natural sense, the Lagrange multiplier is the demand price
the planner places on labor services. A price expressed in units of
social welfare may seem strange, but a minor modification brings
it into familiar light. Consider some otlier resource, say land, and
number it 2. Now supposc the economy is offered the services of
an extra de; of labor, but asked to give in return the services of
de, of land. The net gain in social welfare from this transaction 1s
(A; dey — Az dey). Therefore the most land the planner is willing
to give up is (A1/Az)de;. Then 1t is cqually natural to call the
ratio (A;/);) the demand price of a unit of labor mecasured in
units of land. You know from microeconomic theory that relative
prices rather than absolute ones govern market exchange; similarly
the relative magnitudes of the Lagrange multiplicrs for different
resources govern the planner’s willingness to exchange one resource
for another.

If a neighboring economy has a diffcrent trade-off between the
two resources on account of differences in their relative availability
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First consider the case, A = 0 and u > 0, which I shall label
Case (i). Here (3.17) gives £ = o/p and (3.18) gives y = 8/2 .
Since g« > 0, (3.20) then becomes

450 =z + 2y =(a+ 8)/ 1, or p = 1/450.
Then @ = 450 « and y = 225 3.

It remains to check out if the feasibility condition in (3.19) is
true. We need

300 > 224y =900+ 2258 =900 — 6753,

or > 8/9.

The other cases can be checked out in the same way, and 1
shall merely state the results:

If A >0 and ¢ =0 (Case (i1) ), we get 2 = 150, y = 300 8.
The case is internally consistent if 3 < 2/3.

If A>0and p > 0 (Case (ii1) ), we get the full employment
point z = 50 and y = 200. This case is internally consistent if
2/3 < B < 8/9.

The solution gives several useful insights. Omnce again, the
range of parameters splits nicely into exhaustive and mutually ex-
clusive regions, in cach of which just one of the cases yields a can-
didate for optimality. For low values of 3, the solution lies along
the line AB. Then there is a middle range where the solution stays
at the point B. Finally, for high values of § the solution lies along
the line BC.

The social indifference curves for the objective function (3.16)
are like hyperbolas. The higher is the weight § attached to y
(relative to the weight of z), the more willing is society to sacrifice
z for y, that is, the flatter are the hyperbolas. Therefore for low
we get a tangency of a social welfare contour and the production
possibility set along the segment AB, for medium values we have
a corner solution at B, and for high values a tangency along BC.

Next note that at any point along AB (except B), it is optimal
to keep some land unemployed. To see why, note that the goods
have fixed coefficients of input requirements, and wheat requires
rclatively more labor. If we wish to use the unemployed land, we
must do so by producing less wheat and more beef. To try it the
other way round would increase the labor requirement, but labor
1s already fully employed. But this is a situation with a rclatively
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low 3; beef is not highly valued relative to wheat, and the required
ancrifice of wheat is not worth while.

If enough substitution in production were possible, then the
hifliculty would not arise and both factors could be fully employed.
The unemployment in this setting is a consequence of the rigid
techuology, not of any effective demand failures or coordination
fnilures.

Finally, look again at the complementary slackness conditions
(3.19) and (3.20). If one factor is not fully employed at the opti-
i, then the Lagrange multiplier for its constraint is zero. In
Chapter 1, the multiplier on the consumer’s budget constraint was
the marginal utility of money. In the same way, each multiplier
i thiis problem gives the effect on social welfare of having another
marginal unit of that factor. Then complementary slackness be-
comes economically quite intuitive: if it is optimal not to employ
the available amount fully, then an increment must be worthless.
In the next chapter I shall develop this idea in more detail.

lixercises

Frercise 8.1: Rationing
Suppose a consumer has the utility function
Ulzy,z9,23) = oy In(z)) + az In(a2) + a3 In(z;), (3.21)

where the «; arc positive constants summing to one. The budget
vonstraint is

prr+prre+psas <L

In addition, the consumer faces a rationing constraint: he is not
nllowed to buy more than k units of good 1.

Solve the optimization problem. Under what condition on the
virious parameters is the rationing constraint binding?

Show that when the rationing constraint binds, the income
thnt the consumer would have liked to spend on good 1 but cannot
i so is now split between goods 2 and 3 in the proportions ay : as.
Would you expect rationing of bread purchases to affect demands
for hutter and rice in this way? What is the property of the utility
lunction (3.21) that produces the result, and how would you expect
the bread-butter—rice case to differ?
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Ezercise 3.2: Distribution Between Envious Consumers
There is a fixed total Y of goods at the disposal of society. Ther
are two consumers who envy each other. If consumer 1 gets ¥; and
consumer 2 gets Y3, their utilities are

Uy =Y, —kY}, Uy =Y, — kY?,
where k is a positive constant. The allocation must satisfy ¥; |
Y; <Y, and maximize U; + Us.

Show that if Y > 1/k, the resource constraint will be slack a
the optimum. Interpret the result.

Ezercise 8.83: Investment Allocation

A capital sum C is available for allocation among n investmen
projects. If the non-negative amount z; is allocated to projec
jfor j = 1,2, ... n, the expected return from this portfolio of
projects is

- 1
Z [Ofﬂj‘§ B; $§]~

The allocation is to be chosen to maximize this.
Find the first-order necessary conditions from the Kuhn-Tucke
Theorem. Define

H=3 (a;/B), K=Y (1/8)).

=1 =1
Show that

(i) If C > H, then a part of the total sum available is lcfl
unused.

(ii) If a; > (H—C)/K for all j, then every project will receive
some funding.

(ii1) If any project receives zero funding, then it must have «
lower a than any project that gets some funding,.

Further Reading

A more rigorous treatment of the more general Lagrange and IKuhu
Tucker theorems is in Intriligator (op.cit.), ch. 4.

Quasi-linear preferences and their applications are discussc:.
i more detail by
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HAL VARIAN, Microeconomic Analysis, New York: Norton,
*nd edn., 1984, pp. 278-83.

A good modern treatment of rationing is in

PETER NEARY and IKKEVIN ROBERTS, ‘The theory of house-
lild behavior under rationing’, European Economic Review, 13
(1980), pp. 2542, They use methods that will not be developed
i this book until Chapter 8, but it will be worth while to return
1o this reference then.
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Comparative Statics

Lagrange’s method, and its extensions and generalizations in Chap-
ter 3, all introduce an undetermined multiplier for each constraint.
The values of these mwltipliers are found as a part of the solu-
tion. The heuristic discussion of the consumer choice problem in
Chapter 1 offered an cconomic interpretation for its Lagrange mul-
tiplier: it was the marginal utility of income. In Chapters 2 and
3 I hinted that a similar interpretation holds much more generally
for constrained optimization problems. That is the focus of this
chapter.

A constrained optimization problem has several paraineters as
data. In the maximization of F(z) subject to G(z) = ¢, the para-
meter ¢ 18 an obvious example. There are also other parameters
that appear in the definitions of the functions F' and G, for exam-
ple the weights «, 3, and the prices, in the examples and exercises
of Chapter 2. Economists often need to know how the solution to
the problem will change if these parameters take different values.
In consumer theory, we discuss the income and substitution effects
of price changes by comparing the optimum choices for different
budget lines. In the theory of a firmn’s production and supply, its
marginal cost is the difference between the costs of producing two
different levels of output when the firm chooses the least-cost input
mix for each output level. The general method of comparing sol-
utions for various parameter changes is called comparative statics.
and the importance of Lagrange multipliers lies in the fact that
they provide the answer to a very important comparative static
question.

Equality Constraints

Let us begin in the simple setting of Chapter 2, with two choice
variables (z;,72), an objective function F(z), and one equality
constraint G(z) = ¢. Let T denote the optimum choice, and v =
F(z) the highest attainable value. Now suppose ¢ increases by an
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“infinitesimal amount de. Let (Z + dz) be the new optimum choice,

and v 4 dv the new optimum value.

Note a slight difference between the usage here and that of
Clinpter 2. There the aim was to test Z for optimality, and we did
this by considering arbitrary deviations dz from it. This led us
tor the first-order necessary conditions that held at the optimum
i Now the increment dz is not arbitrary; it is the optimum small
vhange in the choice, arising in response to a small change in the
pnraneters.

For these small changes, we can use the first-order Taylor ap-
proximations to the changes in the values of F' and G. We have

dv = F(Z + dz) — F(%)
= Fy(z)dz, + Fy(%) dz,
=X [GL(E) dZ1 + Go(T) dTy |
= [G(3 + dz) - G(2)]
=X [(c+dc)—c] = Mde.

In the derivation, the second and the fourth lines are the Taylor
npproximations, the third line uses the first-order condition (2.6),
and the fifth line uses the constraint (2.1). The result can now be
written

dv/de = M. (4.1)

Thus the multiplier is the rate of change of the maximum
ntininable value of the objective function with respect to a change
i the parameter on the right-hand side of the constraint. Now we
nn see the marginal utility of income in Chapter 1 as a special
ense of this more general result.

The case of several choice variables and many equation con-
straints is no harder. In vector-matrix notation, the argument is
m fact identical. Look at the first section of Chapter 3. Let the
tight-hand side of the vector constraint change by de, and write dz
for the resulting change in the optimum vector z. Then

dv = F(7 +dz)— F(z) = Fy(z) dT
=X G(z) dz = X [G(F +dz) - G(z)] = Ade.

I'nuse a moment to check the sizes of the various vectors and mat-
tices being multiplied. For example, in the first expression of the
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Comparative Statics

Lagrange’s method, and its extensions and generalizations in Chap-
ter 3, all introduce an undetermined multiplier for each constraint.
The values of these multipliers are found as a part of the solu-
tion. The heuristic discussion of the consumer choice problem in
Chapter 1 offered an economic interpretation for its Lagrange mul-
tiplier: it was the marginal utility of income. In Chapters 2 and
3 I hinted that a siinilar interpretation holds much more generally
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chapter.

A constrained optimization problem has scveral parameters as
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marginal cost is the difference between the costs of producing two
different levels of output when the firm chooses the least-cost input
mix for each output level. The general method of comparing sol-
utions for various parameter changes is called comparative statics,
and the importance of Lagrange multipliers lics in the fact that
they provide the answer to a very important comparative static
question.

Equality Constraints

Let us begin in the simple setting of Chapter 2, with two choice
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constraint G(z) = ¢. Let 7 denote the optimum choice, and v =
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‘infinitesimal amount dec. Let (Z + dz) be the new optimum choice,
nid v + dv the new optimum value.

Note a slight difference between the usage here and that of
Chapter 2. There the alm was to test & for optimality, and we did
this by considering arbitrary deviations dz from it. This led us
to the first-order necessary conditions that held at the optimum
r. Now the increment dZ is not arbitrary; it is the optemum small
vhange in the choice, arising in response to a small change in the
phrameters.

For these small changes, we can use the first-order Taylor ap-
proximations to the changes in the values of F" and G. We have

dv = F(z + dz) — F(z)
= Fi(2)dz, + Fy(x)dr,
= A [G(T)dT + G2(T) dZ2 )
A [G(z + d2) — G(x)]
= A [(c+dc) —c] = Ade.

I the derivation, the sccond and the fourth lines are the Taylor
npproximations, the third line uses the first-order condition (2.6),
nud the fifth line uses the constraint (2.1). The result can now be
written

dv/dc = A. (4.1)

Thus the multiplier is the rate of change of the maximum
nttainable value of the objective function with respect to a change
in the parameter on the right-hand side of the constraint. Now we
can see the marginal utility of income in Chapter 1 as a special
cnse of this more general result.

The case of scveral choice variables and many equation con-
straints is no harder. In vector-matrix notation, the argument is
inn fact identical. Look at the first scction of Chapter 3. Let the
right-hand side of the vector constraint change by de, and write dZ
for the resulting change in the optimum vector . Then

dv = F(z + di) — F(z) = F,(z) dz
=\ Go(2) di = A [G(F + dz) — G(2)] = Ade.

Pause a moment to check the sizes of the various vectors and mat-
rices being multiplied. For example, in the first expression of the
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sccond line, A is an m-dimensional row vector, G ,(Z) is an m-by-n
matrix, and dZ is an n-dimensional column vector. The final re-
sult is the product of the row vector A and the column vector dc of
equal dimensions m; therefore it is a scalar. In fact it is the inner
product of the two vectors:

A de = E,‘ /\,-dc,.

The result is important enough to be stated separately for
reference:

Interpretation of Lagrange Multipliers: If v is the maximum
of F(z) subject to a vector of constraints G(z) = ¢, and X is the
row vector of multipliers for the constraints, then change dv that
results from an infinitesimal change dc is given by

dv = A dc. (4.2)

It should be stressed that (4.2) gives only the first-order or
linear approximation to the change in v if the change in ¢ is more
than infinitesimal. For such changes, we can carry the Taylor ex-
pansion to higher orders and find a closer approximation. This will
be done, although for a different purpose, in Chapter 8.

Shadow Prices

To illustrate and explain (4.2), consider a planned economy for
which a production plan z is to be chosen to maximize a social
welfare function F(z). The vector of the plan’s resource require-
ments is G(z), and the vector of the available amounts of these
resources is ¢. Suppose the problem has been solved, and the vec-
tor of the Lagrange multiplicrs A is known. Now suppose some
power outside the economy puts a small additional amount de;
of the first resource (say labor) at its disposal. The optimization
problem can be solved afresh with the new labor constraint to de-
termine the new pattern of production. But we know the resultant
increase in social welfare without having to do this calculation: it
is simply Ay de;. We can then say that the multiplier \; is the
marginal product of labor in this economy, measured in units of
its social welfare. This is clearly a vital piece of economic informa-
tion, and that is why Lagrange’s method and his multipliers are so
umportant in economics.
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If there is only one scarce input, then a paraphrase of the ar-
gxnment of Chapter 1 yields another very instructive way of looking
nt this result. Suppose we use the additional labor input to raise
the quantity of a particular good, say good j, leaving the outputs
of all the other goods unchanged. Since we are assuming full em-
ployment of labor in both situations, the increase dz; in the output
of the chosen good must satisfy

G;(z)dz; = dey, or dz; = dey [G}(T).

The resultant increcase in social welfare is
Fy()ds, = [Fy(5)/GY(z)] de.

The condition of optimality (2.5) says that the ratio in the square
brackets should be the same for all j. Therefore the effect of the
marginal increase in labor supply on social welfare is independent
of how the extra labor is used. That is why we can speak unam-
biguously of the marginal product of labor.

Now suppose the additional labor can only be used at some
cost. The maximum the economy is willing to pay in terms of its
own social welfare units is clearly A; per marginal unit of ¢;. Any
sialler payment leaves it with a positive net benefit from using the
extra labor; for any larger payment the cost exceeds the benefit.
[u this natural sense, the Lagrange multiplier is the demand price
the planner places on labor services. A price expressed in units of
social welfare may seem strange, but a minor modification brings
it into familiar light. Consider some other resource, say land, and
number it 2. Now suppose the economy is offered the services of
nn extra dc; of labor, but asked to give in return the services of
decy of land. The net gain in social welfare from this transaction is
(A1 dey — Ag dcy). Therefore the most land the planner is willing
to give up is (A1/Az2)der. Then it is equally natural to call the
ratio (A;/A2) the demand price of a unit of labor measured in
units of land. You know from microeconomic theory that relative
prices rather than absolute ones govern market exchange; similarly
the relative magnitudes of the Lagrange multipliers for different
resources govern the planner’s willingness to exchange one resource
for another.

If a neighboring cconomy has a different trade-off between the
two resources on account of differences in their relative availability
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or technology, then there is a possibility of mutually advantageous
trade in factor services between the two. (Even if factor services
cannot be traded, exchange of goods made using these factors can
secure some or even all of this mutual gain, but details of that
would take us too far into the theory of international trade.)

Of course, the internal organization of the economy need have
nothing to do with prices, and the Lagrange multiplier for the labor
constraint need not equal the wage that is actually paid for each
man-hour. Labor may simply be directed to various tasks in a
command economy. (Therec are serious conceptual and practical
problems in so doing, as most Soviet-style economies have now
realized, but that again is another story.) But the plan implicitly
places values on the resources, and the planner’s understanding of
the economy and of its possible bottlenecks will be improved by
paying attention to the multipliers that reflect these values.

Now consider an economy that does allocate resources using
markets. In equilibrium, the prices are such that the demands
and supplies chosen by individuals solving their own constrained
maximization problems are equal in the aggregate. Now suppose
an economist sets out to evaluate the performance of the economy
using some given criterion. To get a comparison standard, he will
solve the planning problem of maximizing this criterion function
subject to constraints arising from the economy’s resource avail-
ability, technology, and information transmission. The solution
will include a vector of Lagrange multiplicrs for the resource con-
straints.

You may think there is little reason why the market should
replicate this planned allocation, and equally little reason why the
Lagrange multipliers should have anything to do with the market
prices. But there are important cases where the optimum can be
replicated in the market, and the Lagrange multipliers are pro-
portional to the market prices of the resources: the relative prices
equal the corresponding ratios of multipliers. In such cases the
economist is tempted to say that the economy is guided by an ‘in-
visible hand’ to his planned optimum. Such a case is worked out in
detail in Example 4.1. Tt rests on many special assumptions whose
validity is often doubtful, and most of modern economic theory is
concerned with questions of what happens when those assumptions
are not met. But the case has great importance as the point of de-
parture for all such analysis, and as a practical matter many people
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helieve i the optimality of the market mechanism. Therefore it
tleserves carcful study. '

To evoke the connection with prices, and yet maintain a con-
reptual distinction from market prices, Lagrange multipliers are
often called shadow prices.

Inequality Constraints

Au economic question now arises. We expect prices to be non-
negative, but so far we have seen no reason why the shadow prices
(Lngrange multipliers) should be non-negative. In the planning
npplication used in the above exposition, the multipliers m.eam.lr.cd
the increase in social welfare resulting from incrcased availability
of scarce resources. Having more of a resource leaves all previous
production opportunities available and adds some new ones. Tl}is
should allow the planner to achieve at least as high a level of som.al
welfare, and in most instances a higher level. In the same way, in
the general problem of constrained optimization, a relaxat1on.of
the constraint should be a desirable thing. Can the mathematics
confirm this intuition?

One difficulty is that in the general formulation of the pr(‘)b—
len with equality constraints, an increase in the right-hand side
of a constraint equation need not mean a relaxation of the con-
mraint. Trivially, we could have written the constraint G*(z) = ¢;
nv —G(z) = —¢;, and an increase in the right-hand side. of the new
forin would be a decrease in the quantity ¢; of resource 1. Also, not
nll of the constraints need be ones of resource availability. For ex-
mnple, we might want to maximize the amount of investment while
ensuring a minimum acceptable provision of some consumer good.s.
Now an increase in this stipulated minimum tightens the economic
constraint, so a smaller amount of investment can be squcezed out
nnd the multiplier is negative. Here the multiplicr is like the slope
of a transformation function (consumption into investment). We
should expect such a curve to be downward-sloping, and should
interpret minus the slope as the shadow price.

These examples show that if we want non-negative shadow
prices, we must be careful to write the constraints in such.a way
that an increase in the right-hand side does relax the restrictions
on the choice.

There is another, more important, consideration. There may
be cases in which the marginal value of a resource turns negative
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beyond a point. For example, too many workers may simply in-
terfere with one another’s effort. In such a case, a further increase
in the quantity of the resource will mean a lower maximum value
of the objective function and a negative multiplier. But in such a
situation, it would be better not to use the resource in such ex-
cessive amounts even if it is available. Exercise 3.2 considered a
situation where it was optimal to throw away some quantity of a
good in the face of overwhelming envy effects. Mathematically,
the equality constraint forces use of the entire amount available. If
the constraint were an inequality, G'(z) < ¢;, then we would have
the frecdom to leave resources idle when this serves the goals of
optimization.

In practice there may be some costs of leaving resources idle.
Unemployment of labor might be thought to be socially undesir-
able, and some capital, especially brains, can rust when unused.
In such situations we should include these costs in the objective
function. Provided this has been done, there is no economic reason
to deny ourselves the freedom of leaving some part of the resource
endowment unused if this leads to a better outcome.

This discussion has an exact parallel in market prices, too. If
some ‘goods’ are actually ‘bads’, we expect them to have negative
prices. More generally, it is the assumption of free disposal that
ensures non-negative prices.

The Kuhn—Tucker Theorem stated in Chapter 3 gives the first-
order necessary conditions for maximization subject to inequality
constraints. It immediately confirms this intuition. The condi-
tion (3.10) says that the vector of the Lagrange multipliers is non-
negative. It yields a further result of considerable importance.
The vector inequality A > 0 shows complementary slackness with
Ly > 0, which is just another way of writing G(z) < ¢. For every
t, at least one of the pair

Gl(l‘) S Ccq, /\i _>_ 0,
holds as an equation. If resource 7 is not fully used, then its shadow
price is zero; a resource with a positive shadow price must be fully
used.

This supports and completes the interpretation of shadow
prices as the marginal value products of the resources. If part
of some resource is already idle, then any increment in it will also
be left idle. The maximum value of the objective function will not
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change, and the shadow price will be zero. On the other hand, a
positive shadow price means that a marginal increment in resource
nvnilability can be put to good use. Then none of the amount
originally available can have been left idle in the original plan.
Vou should return to the account of technological unemployment
in Example 3.2 and examine the results there in this light.

There is just one tricky point to be taken care of. Suppose ¢ is
wich that resource ¢ is just on the point of becoming superfluous at
the margin. This amount is fully used, but any increment will be
Jeft wused. Complementary slackness does not tell us whether the
multiplier will be positive or zero at this point. In fact the answer
{v specific to each problem, and depends on whether the slope of
the maximum value v shown as a function of ¢; drops smoothly or
siddenly to zero at the borderline point.

SN B .
(a) (h)

Fig. 4.1 — Resource quantities and shadow prices

Figure 4.1 shows both possibilitics. In (a) the drop is smooth,
nud the multiplier at the point in question is zero. In (b) the drop
in sudden, and any value of A; between the slope of the curve to
the left and its slope to the right (zcro) will serve at the point
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of transition. This happens in the context of linear programming
(Example 7.1).

Examples

Ezample 4.1: The Invisible Hand — Distribution

Consider the stage of planning where the production of the various
goods is already known, and the only remaining question is that of
distributing them among the consumers. There are C' consumers
labeled ¢ = 1,2,...C, and G goods, labeled ¢ = 1,2,...G. Let X’
be the fixed total amount of good ¢, and x4 the amount allocatezl
to consumer ¢. Each consumer’s utility is a function only of his
own allocation,

Ue = UN(@e1, T2y Teq) (4.3)

Social welfare is a function of these utility levels

w=W(u,ug,... uc).

T'he constraints are that for each good, its allocation to the indi-
viduals should add up to no more than the total amount available.
When the utilities and social welfare are increasing functions, it is

clear that no goods are going to be wasted, so we can express the
constraints as equations

Tyg+Tog+ ...tz =X, for ¢g=12,... G, (4.4)

and use Lagrange’s Theorem. Let m, be the multiplier for the
constraint on good ¢, and form the Lagrangian

L=WU(z11,... 216),...- US(zcy,. ..

+Z Mg [Xg“z -”cg]’

TcG))

where the arguments of L and the ranges of summation are omitted
for brevity.

.When deriving the first-order conditions, we must differentiate
L with respect to every x4 using the chain rule. This gives

(OW/du.) (U Bz cy) — 7y = 0. (4.5)
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All the partial derivatives are to be evaluated at the optimum as
nsnnd; T omit them for ease of notation. The multipliers 7, are also
ubtnined as a part of the solution.

Now suppose the 7, are made the prices of the goods. Every
ponsumer c is given a money income I, and allowed to choose his
cousumption vector to maximize his utility (4.3) subject to the
hudget constraint

T T + 2T+ .. F TG T = Lo (4.6)
This optimization will be characterized by the conditions
OU[0xcq = Ae Ty, (4.7)

for all ¢ and c. As usual, A, is the marginal utility of income for

tonsumer C.

If we compare (4.5) and (4.7), we sce that they coincide pro-

vided we set

OW/B0u. = 1/, or (OW/Bu.) Ac =1, (4.8)
for all ¢. This can be done by adjusting the money incomes I.. The
left hand side of the second equation in (4.8) is simply the marginal
efleet on social welfare of giving a unit of income to consumer ¢; it
ju the marginal effect on ¢’s own utility times the effect of a unit
of his utility on social welfare.

In other words, the distribution of income should be arranged
no that at the margin the social value of every consumer’s income
in the same. Once this is done, they can be left free to choose their
netual consumption bundles. This is the ‘invisible hiand’ result for
the distribution problem.

The argument comparing first-order conditions is not fully rig-
wrous, but better proofs exist. The important thing is to recognize
the crucial assumptions that lead to the result. Here the most im-
portant is the dependence of every consumer’s utility only on his
owil consumption quantities. If one consumer’s utility depends on
anotlier’s consumption, this is called an ‘external effect’ or ‘exter-
unlity’. Such effects can interfere with the simple decentralization
of consumption through prices. In essence, we must charge each
consumer not just for the scarcity value of his consumption, but
ulso for the harm his consumption causes to the utility of others
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(or pay him for the benefit he confers on others). Such prices can
be person-specific, and the market implementation becomes mucli
more complicated.

Ezample 4.2: Duty-Free Purchases

Let us turn from the dreary image that central planning and -
come distribution always invoke, to the consumption decision of i
jet-setter. He can buy various brands of liquor at his home-town
store, or at the duty-free stores of the various airports he travels
through. The duty-free stores have cheaper prices, but the to
tal quantity he can buy there is restricted by his home country’s
customs regulations.

There are n brands. Let p be the row vector of home-town
prices and ¢ that of duty-free prices. The duty-free prices arc
uniformly lower: ¢ < p. Let z be the column vector of his home
town purchases and y that of the duty-free. Suppose he travels
and entertains enough in a year that we can regard the quantities
as continuous variables, not restricted to integer numbers of bot
tles. The integer problem gives similar results, but needs different
techniques.

Let us simplify the problem by leaving aside the problem of
choice between liquor as a whole and all other goods. Thus we
take the income he has decided to spend on liquor during the yea:
as fixed, say I. The budget constraint then becomes

pr+qy <1 (4.9

Suppose during the year our jet-sctter is allowed to import I\

bottles of liquor duty-free. This constraint is

vitye+.. tyn S K

To simplify the notation, let e be the row vector with every com

ponent equal to one. Then the left-hand side is just the product :

ey, and the constraint can be written

ey < K. (4.10)

Unless the consumer is satiated within his duty-free allowance
(an unlikely story), both constraints are going to hold as equa
tions. But we should expect that it will be optimal to buy some
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Airnnds only at duty-free stores and others only at home-town
atores. Therefore we must remember that 2 and y are restricted
o be non-negative.

Utility depends only on the total consumption ¢ =
‘I'"herefore the Lagrangian is

T+ y-

L=U(c)+MNI—-pr—qyl+p[K—ecyl

"The first-order conditions are given by Lagrange’s Theorem for
non-negative variables in Chapter 3. For each j, we have:

OL)0z; = 0U/0c; — Ap; <0, zj > 0, (4.11)
with complementary slackness, and
BL/Byj = 8U/8cJ — /\qj —p < 0, yj = 0, (4.12)

alho with complementary slackness.

These inequality pairs permit 2*" patterns of equations and
seros, and sorting them out systematically would be hopeless. But
n nearch assisted by economic intuition quickly reveals the solution.

Can some brand j be bought in positive amounts at both kinds
of stores? If so, the equations that emerge from (4.11) and (4.12)
nre

aU/aCj —/\pj :OZOU/aCj—/\q]'——,u,

Save by coincidence, this can hold for at most one ;. If it were
trne for j = 1 and 2, say, we would have

/\(PI—Q1):H:/\(P2*(12)-

Since we are supposing the consumer is not satiated, A is positive
nid

P1— @1 =p2— 92
With given prices, this can occur only by chance. This argument
not only narrows down our search, but also tells us that the absolute
price differences between the two sets of prices will have a lot to
o with the optimal purchase decision.
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Now suppose brand j is bought ounly in the home-town store.
With z; > 0 and y; = 0, we have

8U/8cj :/\pj, (4.14)

and

OU)dc; < Agj + . (4.15)

Of these, (4.14) is familiar, but even it benefits from a reinter-
pretation. The left-hand side is just the marginal utility of brand
7. The right-hand side is the marginal opportunity cost of buying
it at the home-town store: to do so takes p; of income which can-
not then be used for other purchases, and the utility value of this
much income is Ap;.

This in turn casts light on (4.15). Its right-hand side is the
marginal opportunity cost of buying a unit of brand j at a duty-
free store. This requires g; of income having utility value Agq;. But
1t also uses up a unit of the duty-free allowance, which has the
shadow price u. The total opportunity cost of the purchase is the
sum of these two components. If the brand is not bought at the
duty-free store, it must be because the opportuuity cost of so doing
exceeds the marginal utility from its consumption.

Now the principle is clear: buy each brand at the outlet with
the lower opportunity cost. Note that

Agi+p <Ap; if and only if p; — ¢ > p/A.
Therefore our jet-setter should rank the brands by their absolute
price differences in the two kinds of stores. Tlic brands with the
largest price differences are bought at the duty-free stores, and
those with the smallest price differences, at the home-town store.
The meeting-point of the two is chosen so as to use up the duty-
free allowance. There may be at most one brand that is bought at
both kinds of stores.

Incidentally, if the duty-free allowance restricts the total value
qy of purchases instead of the quantity ey, then the solution will
be similar, but the brands will be ranked by their relative price
diffcrences instead of the absolute ones. I shall leave this case for
the readers to work out as an exercise.
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Exercises

Ezercise 4.1: The Invisible Hand - Production
Continue with the notation of Example 4.1, but now allow produc-
tion of the goods. Let there be F factor inputs, available in fixed
quantitics Zy for f = 1,2, ..., F. If z4, of factor f is used in the
production of good ¢, the output X, is given by the production
function

Xy =824, 224, -

zpy)- (4.16)

Add these constraints to the earlier problem. Verify that the
first-order conditions of optimum distribution are the same as be-
fore, but new conditions for optimum factor allocation are added.
Interpret the Lagrange multipliers. Can production be decentral-
ized, with onc firm producing each good? Show that the sum of
the incomes I, handed out to the consumers equals the value of
aggregate output.

Ezercise 4.2: The Invisible Hand - Factor Supplies

Now let even the factor supplies Z; be a part of the optimization.
Suppose cach consumer ¢ supplies z.5 of factor f. These amounts
affect his utility adversely; there is disutility from supplying fac-
tors.

Find the first-order conditions. Interpret the Lagrange multi-
pliers and discuss the implementation of the optimum in a market
framework.

Now you must distinguish two sources of income for the con-
sumers: their earnings from the factor services they supply, and
the lump sums I, they get from the government. These luinp
sums must now be varied (in a person-specific way) to attain the
condition (4.8). Show that the total of the lump sums lianded out
to the consumers equals the total profit in production, that is, the
value of output minus the payments to the factors.

Ezercise 4.8: Borrowing and Lending

Consider a consumer planning his consumption over two years. He
will have income I; during the first year and I during the sccond.
In each year there are two goods to consume. In year 1, the prices
are p; and ¢, and the corresponding quantities z; ands y;. In year
2, we similarly have py, ¢ and x4, y2. The utility function is

u; = oy In(z1)+ 81 In(y1) + a2 In(z2) + B2 In(y2).
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This is to be maximized subject to two budeet constraints, one for
cach year.

Solve this problem, and find the multiphers Ay and Ag for the
two constraints. Examine how they depend on money income and
other parameters of the problem.

How much more of year-2 income will the consumer require
if he is to give up di; of year-1 income? tn other words, what
is the rate of return needed to induce him to save o little? You
would cxpect borrowing and lending mstitutions arise in an econ-
omy populated by such consumers. What poverns who will borrow

and who will lend?

Further reading

An excellent discussion of the role of prices in decentralizing an
efficient allocation of resources is in

TIALLING C. KOOPMANS, Three Essays on the State of Eco-
nomic Science, New York: McGraw-Hill, 1057,

5 Maximum Value Functions

The last chapter introduced the concept of comparative statics, and
used it to interpret the Lagrange multipliers as the rates of change
of the maximum attainable value of the objective function with
respect to the right-hand sides of the constraint cquations. Many
other parameters enter the objective function and the constraint
functions, and the maximum attainable valuc of the objective func-
tion depends on them all. The method used before can be adapted
to understand the nature of this more general dependence. That
is the object of this chapter. As there, I shall begin with the case
wherce all constraints arc cxact equalities, and consider inequality
constraints later.

Parameters in the Objective Function

Consider first the case where the parameters affect the maximand
alone. A common example is a producer who chooses a mix of in-
puts to minimize the cost of producing a given target output. The
prices of the inputs are parameters that affect his objective func-
tion. But the constraint, which says that the chosen inputs should
yield the desired output, involves only the production function and
not the prices. As another example, consider a small country that
chooses its production pattern to maximize the national product
cvaluated at world prices; now these prices are parameters that
affect the maximand. More generally, suppose a vector § of para-
meters enters the objective function, so z is chosen to maximize
F(z,8) subject to the usual vector constraint G(z) = c¢. Lagrange’s
first-order necessary conditions (3.5) and (3.6) hold with a slight
modification — we now recognize the dependence of F and the La-
grangian on §. Thus

L(z,\,0) = F(z,8)+ A[c~ G(z)],
and the optimum 7 satisfies the first-order conditions

L.(%,1,0)=0,  Lx(%,X,0)=0.
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Write v for the maximum value once again. Suppose 8 changes
to (6 + df). Correspondingly, let the optimum & change to (z +
dz), and the maximum value to (v + dv). Using first-order Taylor
approximations as in Chapter 4, we can find an expression for dv.

dv = F(z + dz,6 + df) - F(z,6)
= F,(7,0)di + Fp(z,6)d8
= AG,(ZT)dz + Fy(7,0)db
= Fy(z,6)d6. (5.1)

In this calculation, the passage from the second to the third line
uses Lagrange’s first-order condition, and the passage to the last
line uses the fact that the value of G stays cqual to ¢ in the course
of the change in 6.

Once again, for changes in 8 that arc large cnough to make the
first-order approximation invalid, we can carry the series expansion
further to find closer approximations to changes in v. But the result
above has great interest because of its simplicity. It says that to
find the first-order change in the maximum value of the objective
function in response to changes in parameters that do not affect
the constraints, we need not worry about the simmultaneous change
in the optimum choice 7 itsclf. All we have to do is to calculate the
partial effect of the parameter change, and evaluate the expression
at the initial optimum choice.

The cost-minimization problem mentioned above illustrates
this well. Suppose z is the vector of inputs, G the production
function, and ¢ the required output quantity. Let 8 be the row
vector of input prices. Then the producer minimizes 6 z, that is,

maximizes F(z,0) = —0z subject to G(z)=c.
Write the resulting maximum as (—v). Then (5.1) gives
d(—v) = df Fp(z,0) = —dfz.

Note that df is a row vector, so we interpret Fy as a column vector
and write the inner product as shown. The result is

dv = db z. (5.2)
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Now v is just the minimum cost of producing output ¢ when
input prices are . When input prices change, the producer will
¢liange his input mix, using less of the inputs that have become
telatively more expensive and more of the others. That is, he will
mibstitute along an isoquant of the production function. But the
rin (5.2) is the optimal choice for the original parameter vector
f, not the one for 8 + df, or some average. In other words, the
first-order change in the cost is just the change in the cost of the
original optimum Z, as if fixed coefficients ruled. Another way of
looking at this is useful. If we write v = 8% and differentiate, we
have

dv =20 dz + df .

The first term on the right-hand side is the value of the change in
the input mix, using the original prices. But at those prices, the
otiginal mix is chosen optimally, therefore the value of any change
in it must be zero to the first order. This just leaves the second
term, as in (5.2).

The Envelope Theorem

The algebra of the previous section is illustrated geometrically in
IMigure 5.1. For a particular value of 8, say 8;, suppose the optinun
choice is £!. The two curves represent two functions of 8. One is
F(z',8), where z is held fixed at z! as 6 varics. The other is the
optimum value function linking v and 8, where z is allowed to vary
optimally as 8 varies. Formally, this function is defined by

V(o) = max { F(z,8)| G(z) = ¢ }, (5.3)

which is read as ‘V(6) is the maximum over z of F(r,8) subject
to G(z) = ¢’. Next write the optimum choice 7 itsclf as a function

r = X(6), then we have
V(8) = F(X(6).6).

The two functions V(8) and F(z!,6) coincide at 6, hecause
+! happens to be the optimal choice there. For other values of
f, unless ! remains the optimal choice, the curve showing the
optimum value function will be higher than that of F(z',6). (In
nny event, it cannot be lower.) Therefore the two curves should be

nmtually tangential at 6;, and that is just what (5.1) expresscs.
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Fig. 5.1 -~ The Envelope Theorem

Similarly, we could draw the graph of F(z?,8), where #2 is the
optimal choice at 6,. This would touch the graph of the optimal
value function V(6) at ;. In fact we could draw a whole family
of curves of F(z,8) for a whole range of fixed values of 2, each
optimal for some 8. No member of this family of curves coul:i ever
cross above the graph of V(8), and each would be tangential to the
optimal value function at that value of 8 where its z happened to
be the optimal chioice. In other words, the optimal value function
is the upper envelope of the family of value functions, in each of
which the choice variables are held fixed. That is why the formula
(5.1) is often referred to as the Envelope Theorem. |

In the cost-minimization application, for example, let a scalar
pa?ameter 6 denote the price of Just one input. When the veetor
of input quantities is held fixed, the cost of production is a linear
function of 6. The minimized cost as a functon of 8 is the lower
envelope (not upper, because this is a problem of minimization, not
maximization) of all these straight lines. Figure 5.2 shows thi’s.

The main focus here is on a first-order or tangency prop-
erty: where the upper envelope meets one member of the family
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£, Fig. 5.2 — The minimum cost function

of curves, the two are tangential. In the cost-minimization cxain-
ple, let z denote the quantity of the input whose price 8 is being
viried. The slope of cach line equals the fixed z along it. The
line touches the minimum cost function at that 8 where this « is
optimal. Therefore the slope of the mininnim cost function at ev-
ery point is just the optimal value of z there. In other words, the
minimum cost function carries within it the information about the
optimum choices of inputs. This idea will be developed further in
[ixample 5.2.

A second-order or curvature property is also evident. Fig-
ure 5.1 shows cach F(Z,8) as a concave curve and V(6) as a convex
curve. But more generally, the envelope must be more convex than
any member of the family of which it is the envelope. Thus the cost
function for any fixed input choice is linear in input prices, but the
lower envelope (the minimum cost curve) is concave. This prop-
erty will be studied in more detail in Chapter 8, and it will lead
to an important comparative static result called the Le Chatelier-

Samuelson Principle.

AL o o
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Parameters Affecting All Functions

Now suppose G as well as F involves 6. The calculation proceeds
as above, except that the change in G is no longer zero. Suppose
the vector constraint is G(z,8) = ¢, where 8 and c are distinct.
Then

G.(z,0) dz + Gy(z,6)dd = 0.

Using this in the previous chain of equations, we have

dv = —AGy(Z,0)d8 + Fy(z,0)do
= Ly(Z,),06)dé. (5.4)
The difference between this and (5.1) has an intuitive explanation.
When 6 affects the constraints, a change d has the direct effect of
increasing the value of G by Gy(z,6)df. This acts exactly like an
equal reduction in ¢. The interpretation of the Lagrange multiplier
tells us that the equivalent reduction in ¢ reduces v by A G4(%,6) dé.
This is just the additional term in (5.4) when compared to (5.1).
In the previous chapter, a similar comparative static analysix
with respect to changes in the parameters ¢ led to (4.2), which gave
us the important interpretation of the Lagrange multipliers. The
more general formulation of this chapter can subsume the earlier
case. To see this explicitly, define a larger vector of parameters, b
which includes 8 and ¢ as subvectors, and write the constraints as

@(rﬁ) = G(z,0)—c=0.
The Lagrangian can now be written as
L(z,),8) = F(z,6) — \G(z,0),

and (5.4) becomes
dv=Lz,),8)dd.

Separating the subvectors in é\, note that
G(2,8)d8 = Gy(,6)df — de.
Therefore the expression for dv becomes

dv = Ly(z,),0)d0 + )dc,

i
E
i
H
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which includes (5.3) and (4.2) as special cases.

Some Choice Variables Fixed

When the parameters 8 in the constrained optimization problem
change, so do the optimum choice vector z and the maximum value
v. But we have seen that the first-order effect on v can be calcu-
lated by holding z fixed at the old optimum and finding the partial
ceffect of 8 on v. If the parameters affect the constraints, we must
remember to include the contribution of the equivalent reduction
in the right-hand-side magnitudes ¢, but we still ignore the change
in z.

This suggests a generalization. Is the effect on v the samne
when only some components of z adjust to their new optimum lev-
cls while others must be kept fixed at the original levels? Compar-
isons of this kind are common in economics. The most prominent
example is the distinction between the short run and the long run
some quantities that can be varied optimally in the long ran must
be held fixed in the short run.

This question can be tackled using the same caleulus method
as was used in deriving (5.1) and (5.4). But the geomnetry Chat
provided the intuition for the envelope property docs the job far
more simply. Let us begin by stating the question somewhat more
precisely.

Partition the vector « into two subvectors y and . Subsuming
the right-hand sides of the constraints into the parameter vector

as explained above, write the problem as:

maximize F(y,z,6) subject to G(y,z,8)=0. (5.5)

There are two versions. In the long run, both y and = e choiee
vectors, while in the short run, z is held fixed and only y allowed
to vary. For the latter problem to be meaningful, the munber of
constraints must be less than the dimension of y.

Write the long-run optimum choices and the resulting value
as functions of 8, say

y=Y(6), z=26), v=V(). (5.6)

In the short run, z should be treated as just another parameter
nlong with €, and the optimum choice y and the resulting value v
are functions of (z, 8), say

y=Y(z,9), v=V(z,6). (5.7)
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The use of the same symbols ¥ and V to denote different func-
tions in the two cases should not cause confusion since the distinct
arguments will be displayed as appropriate.

The definition of optimization gives at once

V(8) > V(z,6) for all (2,86),

with equality if z = Z(6), the optimal choice. Then, just as in
Figure 5.1, the graph of V(8) is the upper envelope of the curves
showing V(z,8) as functions of 6 for the whole range of possible
values of z.

If the functions are differentiable, we can conclude that

V'(8) = Vs(Z(8),86), (5.8)

where the right-hand side is the partial derivative of the short-run
optimum value function V(z,8) taken holding the first argument 2
fixed, but evaluated at the point z = Z(8).

Now the gecometry alerts us to a potential problem that the
calculus approach would have concealed, namely that the functions
may not be differentiable. Even when the underlying objective and
constraint functions F' and G are as smooth as one might like, the
optimum value function V' can have sudden changes of slope. We
saw an example of this in connection with the interpretation of
Largange multipliers in the last scction of Chapter 4, and in Fig-
urc 4.1. When there are inequality constraints, or non-negativity
constraints on the choice variables, these can be binding for onc
range of parameter values, and slack clsewhere. The objective
function may respond differently to parameter changes depending
on the configuration of binding or stack constraints. At the point
where there 1s a regime change, from binding to slack or vice versa,
the graph of the maximum value function may have a kink.

In many applications we will not be concerned with such regime

changes and will be able to use (5.8), but the possibility of its
failure should be kept in mind. In some contexts such as Linear
programming, changes of slope ncecessarily arisc as the parameter
values move from one combination of tight and slack constraints
to another.
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Ezample 5.1: Short-Run and Long-Run Costs

As an illustration of the Envelope Theorem on its home ground,
consider the relation between short-run and long-run cost curves
for the production function

Q= (L L)/, (5.9)

where @) is output, I\ is capital fixed in the short run, and L is
labor. Returns to scale are constant if & = 2, increasing if o < 2,
and decreasing if o > 2.

Let w be the wage rate and r the unser cost of capital (the
rental price of capital services if they are rented, or the sum of
interest and depreciation costs if capital cquipment is purcliased).
The long-run cost function is

Clw,7,Q) = min { wL+rk | KL=Q" ). (5.10)

Using Lagrange’s method, the cost-minimizing input choices are
casily seen to be

K=(wQ/r)"/t  L=(rQ"w)2 (5.11)

Then

Clw,r,Q) =2 (wr)/? Q*/2. (5.12)

Sce Exercise 5.1 below for a more general case.

In the short run, there is no freedom of choice. If output €9 is
to be produced using capital K, labor L = Q*/L must be hired,
and the cost function becomes

Clw,r,@Q, ) =wQ/K +r k. (5.13)

If there were a third input, say raw materials, whose quantity
can be varied in the short run, there would be a short-ruir cost-
minimization problem to be solved. I shall leave this as an exercise.

The long-run marginal cost is found by differentiating (5.12):

Colw,r, Q) = a (wr)/? Qo271 (5.14)
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In the short run, (5.13) gives

Co(w,r,Q,K)=awQ*"'/K. (5.15)
If the value of K happens to be the long-run optimum given by
(5.11), then the short-run marginal cost (5.15) and the long-run
marginal cost (5.14) coincide, as the Envelope Theorem requires.

Ezample 5.2: Consumer Demand

The most important new idea introduced in this chapter was to
regard the maximum value of the objective as a function of the
parameters of the problem. Such functions contain a lot of eco-
nomically useful information, which can be used to simplify the
treatment of optimizing behavior in many applications. This ex-
ample treats the case of consumer demand theory based on utility
maximization.

Consider a consumer who maximizes utility U(z) subject to
the budget constraint pz = I, where p i1s a row vector of prices, x
a column vector of quantities, and I is money income. The para-
meters of the problem arc p and I, and the resulting maximum
utility is a function V(p, I). This is called the indirect utility func-
tion, to distinguish it from the direct utility function U(z) defined
over the quantities.

Some properties of V are evident. For example, changing all
prices and income in the same proportion leaves the budget con-
straint unchanged, and thus does not affect the optimal choice or
the resulting utility. Therefore V is homogeneous of degree zero
in (p,I). We will have occasion to study some other properties
later. The focus of interest here is the application of the Envelope
Theorem, or more specifically, the formula (5.4). Note that the
Lagrangian is

L{z, \,p,I) =U(z) + A(I — pz).

Therefore

Vi(p,I) = Li(x, A, p, 1) = A, (5.16)

evaluated at the optimum. Similarly the column vector of deriva-
tives of V' with respect to the prices is

Volp, I) = Lp(x, X, p, 1) = —Ax, (5.17)

i h S ©
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ngain evaluated at the optimum. Of course the utility-maximizing
guantites ¢ comprise the (vector) demand function D(p, I). There-
fore we can divide (5.17) by (5.16) and write
D(p,I) = _Vp(p’ I)/Vl(pvl) (518)
This is a useful and important result. If we are given the
cousumer’s (direct) utility function and asked to find his demand
functions, we have to carry out the whole constrained maximiza-
tion solution, which is messy even in the simplest cases. On the
other hand, if we are given his indirect utility function, we can find
the demands by differentiation alone. Thus it is much snnpler to

summarize our information about consumers by means of indireet
utility functions. Particularly in general cquilibrimm models where

' consumers are only one part of the story, this cconomy of effort

mid of notation makes a great deal of difference. We will see some
instances of this in the chapters to follow.

Next consider the mirror-image problem where the consumer
is seen as minimizing the expenditure rquired for attaining a given
target utility level. The resulting minimum expenditure is a fune-
tion of the price vector p and the target utility level w. Call it the
consumer’s expenditure function, and write it E(p,u). Keeping u
fixed and changing all prices in the same proportion will simply
change the necessary expenditure by this proportion; therefore B
is homogeneous of degree one in p for fixed 1. Other properties of
E will be developed as necessary. Once agaii, our focus is on the
envelope property.

Write the Lagrangian for the minimization problem as

L(z,p,p,u) =pz+ plu—-Ulx)]
Arguing as before, we have

E.(p,u) = p. (5.19)

This Lagrange multiplier gives the increase in expenditure required
to achieve a marginal increase in the utility level. Thercfore it is
just the reciprocal of the marginal utility of moncy A above. Next

E,(p,u) ==z.
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Cost-minimizing commodity choices for a given utility level are the
Hicksian compensated demand functions C(p,v). The situation is
as if, following any price change, the consumer is compensated by
changing his money income just enough to leave him on the samc
indifference curve as before. Thus we have shown that

C(p,u) = Ey(p,u). (5.20
This expression is even simpler than that for the uncompensated
demand functions D above.

Finally, we can relate the indirect utility function and the
expenditure function, and thereby the uncompensated and com-
pensated demand functions. Suppose we begin with a utility level
u, and find I = E(p,u). Then we assign this I as the money in-
come, and find the utility-maximizing choice. So long as all prices
are positive, as will be the case in most elementary cconomic ap-
plications, this gives back the utility level we started with, that is,
u = V(p,I). The cost-minimizing choice of z is also the utility
maximizing choice, that is, C'(p,u) = D(p,I) so long as u and I
are related as above. Take the j th component equation, and dif
ferentiate it with respect to py. Hold « fixed, but make I = E(p, u)
a function of px. By the chain rule,

Cl(p,u) = Di(p,I) + Di(p,I) Ex(p,w).

But
Ei(p,u) = C¥(p,u) = D*(p,I),

the demand for good k. Therefore

Ci(p,u) = Di(p,I) + D*(p,I) Di(p,I). (5.21)

This relationship between the derivatives of compensated and un-

compensated demand functions is called the Slutsky-Hicks equa-
tion. Some readers may know it in a different notation:

((%J) (OTJ) g aTJ
-4 = | — P
apk u constant apk I constant oI
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Ixercises

Frercise 5.1: The Cobb—Douglas Cost Function

Cousider a production function
n
y=A ][] =, (5.22)
i=1

where y is output, the z; are inputs, and A and the «; are positive
constants. Let w = (w;) be the vector of input prices, and show

y that the minimum cost of producing a given output level y is

Clw,y) = By/ )P T (/)77

=1
where 3 = Z]— aj. If B < 1, caleulate the corresponding maximum

profit function w(p,w) where p is the output price. What poes

wrong if 3 > 17

Frercise 5.2: The CES Erpenditure Funclion

Suppose the direct utility function is

Uz,y) = [az? + j y"]l/", (H.24)
where z and y are the quantities of the two goods, and «, 4, and p
nre given constants, with a, g positive and p < 1. Show that the
expenditure function is of the form

E(p,q,u) = [(Lpr—i—bq"]'/", {H.25)

wliere p, ¢ are the prices of the goods, u is the utility level, and «,
b, and r are constants that can be expressed in terms of a5, and
.

Find the compensated demand functions and show that the
ratio of the cost-minimizing quantities is

z/y = (a/b) (a/p)' ™"
The elasticity of (z/y) with respect to (q/p),

dIn(z/y)
dln(q/p)’

is called the clasticity of substitution in production. Show that
in this example, it is constant and equal to (1 - ). What condi-
tion must be imposed on p to ensure a non-negative clasticity of

substitution, that is, r < 17
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Further Reading

An interesting account of the discovery of the Envelope Theorem
is

JacoB VINER, ‘Cost curves and supply curves’, as reprinted
in George J. Stigler and Kenneth E. Boulding (eds.), Readings in
Price Theory, Homewood, IL: Irwin, 1952.

Samuelson clarified the confusion that surrounded Viner’s dis-
covery; his original exposition is still worth reading:

PAUL A. SAMUELSON, Foundations of Economic Analysis,
Cambridge, MA: Harvard University Press, 1947, pp. 34-6.

For further discussion of the Envelope Theorem, see Varian,
Microeconomic Analysis (op.cit.), mathematical appendix, or

DaviD KREPS, A Course in Microeconomic Theory, Prince-
ton, NJ: Princeton University Press, 1990, ch. 7.

For more detailed treatments of the indirect utility function
and the expenditure function, see Varian (ibid. ch. 3) and Kreps
(ibid. ch. 2); for more on a firm’s cost and profit functions, Varian

(ibid. ch. 1) and Kreps (ibid. ch. 7).

6 Convex Sets and

Their Separation

The Separation Property

Lagrange’s Theorem and the Kuhn-Tucker Theorem give us first-
order necessary conditions for constrained maximization problenrs.
The conditions are not in general sufficient to determine the op-
timum. The same necessary conditions would arise if we wanted
to minimize the same objective function subject to the sane con-
straints. When I discussed this point in Chapter 2, T mentioned
that maxima and minima can be distinguished by examining the
curvatures of the objective and constraint functions. That idea is
developed in this chapter and Chapters 7 and 8.

Begin with the problem of choosing the vector .« to maximize
F(z) subject to a scalar constraint G(z) < ¢. Let o denote the
optimum choice, and now write ¥ for the maximum value.

Figure 2.1 showed the familiar tangency; now 1 shall interpret
the solution in a new and useful way. That figure showed the
contour where G(z) = c. Now we need to know the set of all points
¢ that fulfill the more general inequality coustraint G'(r) < ¢, or
the lower contour set of G for the value ¢. In Figure 6.1 it is the
shaded area A below the contour G(z) = ¢. Similarly, Figure 2.1
showed only the contour where the F(z) = v. Now we need the
set of all points where F(z) > ¥, or the upper contour set of I for
v. This is the shaded area B in Figure 6.1. The ligure assumnes
F and G are increasing functions. This is true in mauy cconouric
applications, as when F is a welfare function aud G a resource
requirement function of the output vector z. But a stmilar figure
can be drawn for other cases.

The two curves meet tangentially at z, and the figure shows
their common tangent line at this point. The curvatures are chosen
to ensure a maximum. In Chapter 2 the curvatures were said to
reflect diminishing marginal rates of substitution and transforma-
tion; now I offer a somewhat different interpretation.
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Fig. 6.1 ~ Separation by the common tangent

Note that the sets B and A lie one to cach side of their com-
mon tangent, with only their common point z on that line. In
other words, the common tangent separates the r-plane into two
halves, each containing one of the scts. In higlier dimensions, the
common tangent will be a hyperplane; it will likewise scparate the
two contour scts.

This separation is the crucial property that allows us to dis-
tinguish maxima from minima, and obtain sufficient conditions for
the maximization problem. Now we must make explicit the hid-
den conditions on the functions F' and G that ensure the right
curvature.

Convex Sets and Functions

Each of the contour sets in Figure 6.1 bulges outward. That is
why each bends away from the common tangent at 7, and cannot
bend back to meet the other sct once again. This property of
bulging outward is called convexity. A geometric test of convexity
15 that given any two points of the set, the whole line segment
Joining them should lie in the set. Algebraically, a set S of points
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in n-dimensional space is called convez if, given any two points
et = (28,28, ... 2%) and b = (¢b, 28, ... 2%) in S and any real
number 6 in the closed interval [0,1], the point (8 2® + (1 —6) 2*),

or
(628 4+ (1—0)ab, 025 +(1—60)ad, ... 022+ (1—6)a})

when written out explicitly in terms of the componeuts, is also in
S.

Applied to the lower contour sct of G, this means that if 2¢
and z* satisfy the constraint, so does 6z* + (1 — 6)2®. In eco-
nomic applications, constraints often reflect limited availability of
resources. Thus G(z) might be the amount of labor necessary to
produce the vector z, and ¢ the amount of labor available. I such
a context, the convexity of the sct G(x) < ¢ means that a weighted
average of two production plans does not need more labor thau
one of the extremes. This rules out siguificant cconomics of scale
or specialization. Similarly, applied to the upper contour set of I,
convexity means that a weighted average of two consumption plans
1s at least as good as one of the extremes; this assumes a taste for
diversity.

Algebraically, the condition states that

G(z%) < c and G(:cb) <c¢ imply G(#2°+ (1 )ty e

The most severe test of this arises when oue of the extreme values
cquals ¢, therefore we can state the condition alternatively as

G(fz* + (1 — 0)$b) < max (G(x"), Gy, (6.1)

for all z%, z® and for all § € [0,1]. An added advantage of this
form is that it does not involve the particular wunber ¢ Since
in practice we will have to solve the maxhmization problenn for a
general value of ¢, we will need to invoke the condition for all e
and a general statement like (6.1) is the best way to do so.

A function G satisfying (6.1) is said to be guasi-conver. The
parallel condition on £ will be

F(6z% + (1 — 6)a®) > min ( F(2), F(«")), (6.2)

for all %, 2% and for all § € [0,1]. Such a function will be called
quasi-concave.
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Note that the sets B and A lie one to each side of their coni-
mon tangent, with only their common point z on that line. In
other words, the common tangent separates the x-plane into two
halves, cach containing one of the sets. In higher dimensions, the
common tangent will be a hyperplane; it will likewise separate the
two contour sets.

This separation is the crucial property that allows us to dis-
tinguish maxima from minima, and obtain sufficient conditions for
the maximization problem. Now we must make cxplicit the hid-
den conditions on the functions F and G that ensure the right
curvature.

Convex Sets and Functions

Each of the contour sets in Figure 6.1 bulges outward. That is
why each bends away from the common tangent at 7, and cannot
bend back to meet the other set once again. This property of
bulging outward is called convexity. A geometric test of convexity
15 that given any two points of the set, the whole line segment
joining them should lie in the set. Algebraically, a sct S of points
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in n-dimensional space is called convez if, given any two points
et = (¢, 2%, ... 2%) and zb = (2%, 28, ... 2%) in S aud any real
number 6 in the closed interval [0,1], the point (8 2® + (1 — 6) z?),

or
(622 +(1—6)zb, 625+ (1—60)ab, ... 02+ (1—6)al)

when written out explicitly in terms of the components, 1s also in
S.

Applied to the lower contour sct of G, this means that if z*
and «® satisfy the constraint, so does 2% 4 (1 — 8)z". In eco-
nomic applications, constraints often reflect limited availability of
resources. Thus G(z) might be the amount of labor necessary to
produce the vector z, and ¢ the amount of labor available. In suclh
a context, the convexity of the set G(z) < ¢ means that a weighted
average of two production plans does not need more labor than
one of the extremes. This rules out significant cconomics of scale
or specialization. Similarly, applicd to the upper contour set of F,
convexity means that a weighted average of two consumption plans
is at least as good as one of the extremes; this assumes o taste for
diversity.

Algebraically, the condition states that

G(z%) < ¢ and G(‘zb) <e¢ imply G#z" 4 (1 6)") < «

The most severe test of this arises when one of the extreme values
equals ¢, therefore we can state the condition alternatively as

G(6z® + (1 — 9)zb) < max ( G(x"), G(r"y), (6.1)

for all 2%, 2% and for all § € [0,1]. An added advantage of this
form is that it does not involve the particular mimber ¢ Sinee
in practice we will have to solve the maxinization problem for a
general value of ¢, we will need to invoke the condition for all ¢,
and a general statement like (6.1) is the best way to do so.

A function G satisfying (6.1) is said to be quasi-convez. The
parallel condition on F will be

F(z*+(1 - 9)1"’) > min( F(a*), F\( ;Irh) ), (6.2)

for all 2%, 2% and for all § € [0,1]. Such a function will be called
quasi-concave.
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The quast in the above definitions serves to distinguish them
from somewhat stronger properties that often arise in optimization
problems. In the usual economic interpretations, quasi-convexity
corresponds to a diminishing marginal rate of transformation along
the constraint curve, while convexity of the constraint function cor-
responds to diminshing returns to scale. Similarly, quasi-concavity
of the objective function means a diminishing marginal rate of sub-
stitution along an indifference curve, while concavity is diminishing
marginal utility.

Formally, we define G to be convex if

G0z + (1 - 6)2?) <0G(") + (1—0)G(z*),  (6.3)

for all 2%, z* and for all 4 € [0,1]. The right-hand side of (6.3) is
obviously no larger than that of (6.1):

G (z) + (1 —8)G(z*)
< 8 max( G(z%), G(z*)) + (1 — 8) max( G(z?), G(z*))
< max(G(z%), G(z*)).

Therefore if (6.3) holds, so does (6.1). In other words, a convex
function is quasi-convex; convexity is the stronger property of the
two.

Similarly, we define F' to be concave if

F(8z° 4+ (1 - 0)z%) > 0 F(2*) + (1 — 8) F(z")), (6.4)

for all %, z® and for all 4 € [0,1]. In words, the graph of the
function lies on or above the chord joining any two points of it.
Figure 6.2 illustrates this for the case where x is a scalar. It is
easy to verify that (6.4) implies (6.2): a concave function is also
quasi-concave.

Note that the inequalities in (6.3) and (6.4) are weak. There-
fore convex and concave functions are allowed to have straight-line
segments in their graphs, where the chord coincides with the graph.
In particular, a linear function is simultancously convex and con-
cave. Later we will have occasion to strengthen the concepts of
convexity and concavity.

An alternative definition of a concave function is sometimes
useful. Consider the (n + 1)-dimensional space consisting of points
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Fig. 6.2 — Concave function

like (z,v) where z is an n-dimensional vector and v is a scalar. In
this, define the set

F={(z,v) v < F(x)}.

Then F is a concave function if and only if F is a convex sct; chieck
this using (6.4). In other words, a concave function traps a convex
set underneath its graph. This is casy to see from Figure 6.2.
Similar properties of convex functions are cqually easy to state,
so I shall leave them to the rcader. Finally, if the functions are
differentiable, the properties of concavity, quasi-concavity cte. can
be expressed in terms of first- and sccond-order derivatives; I shall
do this in Chapter 7.

I must define two more concepts to he able to state the basic
mathematical result T need. A point x° € S is called an interior
point if it is surrounded for some distance by points of the set, that
is, if there is a number 7 > 0 such that all points » within distance
r of 2° are in S. In the plane, such points will forin a disc of radius
r and centre z°. Then, a point that is interior neither to S nor to
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the rest of the space is called a boundary point of S. Thus z° is a
bhoundary point of S if, for any r > 0, we can find points in S as
well as points not in S within distance r of z°.

In Figure 6.1, for example, Z is a boundary point of B and also
a boundary point of A. Any z for which F(z) > v is an interior
point of B so long as F' is continuous. Similarly any point = with
(/(.r) < ¢ is an interior point of A so long as G is continuous.

The two scts have only the boundary point Z in common,
and the common tangent separates them. Let the equation of this
tangent be

Pr=pi1zy+pra2=b,

where p is a row vector of coefficients, so pz is the inner product.
or the sum of products of corresponding components, of p and z.
Of course p # 0, that is, at least one of p; and pp must be non-zero.
Since z lies on the separating line, we have

PI=p171 +p272=0b

For all points z to one side of the line, pz is greater than b, and
for all those on the other side, it is less.

If the sets had no points in comnmon at all, there would be
a clear gap between them, and once again we could draw a linc
that separated them, although it nced not be a tangent to either
set. But if the sets had interior points in common, then any line
entirely above the set 4 would have to cut into the set B, and any
line entirely below B would have to cut into A; separation would
be impossible.

Convexity of the sets is also important; Figure 6.3 shows two
cases, in cach of which one of the sets is not convex. The common
tangent cuts into the non-convex set, and separation fails.

All these ideas are formalized in the following thcorem. 1
hope most rcaders will find the pictorial argument convincing, and
so shall not give a formal proof. I shall only state the result in the
simplest form that suits my purpose, even though more general
results of this kind are available.

Separation Theorem: If B and A are two convex scts, that
Liave no interior points in common, and at least one of the sets has
a non-cmpty interior, then we can find a non-zero vector p and a

N
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Fig. 6.3 — Partial failure of decentralization
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number b such that the hyperplanc px = b separates the two sets,

or
<b forallze A (6.5)
pr >b forallzebB.

The qualification that at least one of the sets should have a
non-empty interior rules out some awkward cases where the sets
are of smaller dimension than the whole space. I state it for com-
pleteness, but in our economic applications the contoux: sct of thg
objective function is full-dimensional, so no difficulty arises on this

account.

Optimization by Separation

Let F and G be continuous functions, with F quasi-convex and
G quasi-concave. Consider the maximization of F(x) subject to
the constraint G(z) < ¢. So long as the constraint sct 18 b()undC(’L
the problem has a solution. In most economic applications in this
hook, except in one case of infinite time-horizons in Chapter 10,
existence of an optimum is not a problem. Let 7 denote the opti-
mum. All the conditions assumed in Figure 6.1 are met, and the
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Separation Theorem applies. Let pz = b be the equation of the
separating common tangent. The equation is unaffected if we mul-
tiply it through by —1, but that will reverse the directions of the
incqualities in (6.5). To ensure that the inequalities hold the right
way for the scts B and A as stated there, we should choose p1 and
P2 to be positive.

Since the point Z lies on the separating tangent, we have pz =
b. Therefore (6.5) tells us that Z gives the largest value of pz among
all points in A, that is, among all points satisfying G(z) < «c.
Similarly, z gives the smallest value of pz among all points in 5,
that is, among all points satisfying F(z) > &. This is the basic
result of this section.

Optimization by Separation: Given a quasi-concave function F
and a quasi-convex function G, the point 7 maximizes F(z) subject
to the constraint G(z) < cif, and only if, there is a non-zero vector
p such that
(i) 2 maximizes pz subject to G(z) < ¢, and
(i) Z minimizes pz subject to F(z) > v.

The generalization to several constraints is straightforward.
The set B; of points for which G*(z) < ¢; is convex if G* is quasi-
convex. If this is so for all ¢, then the set B of points satisfying
all the constraints, being the intersection of the convex sets A, is
itself convex; this is easy to verify using the definition of a convex
set. Then the argument proceeds as above.

Note the ‘if and only if’ in the statement of the result. The
stated conditions are both necessary and sufficient for optimality:
if Z is optimal, the conditions will hold, and vice versa. In both
respects, the result goes beyond the Lagrange or Kuhn-Tucker
conditions we met before. This is the first time we have met a
sufficient condition, therefore it is of interest in itself. But the
conditions are not easy to verify in practical applications. After
all, we have replaced one optimization problem by two, and have
given no useful criterion for judging when either one of them is
solved. In the next two chapters we shall see sufficient conditions
that are more useful in this regard.

The real benefit from splitting the maximization problem into
two separate problems, in each of which the objective function is
linear, comes from its economic interpretation. It raises the pos-
sibility of decentralizing optimal resource allocations using prices.
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To give the simplest interpretation, suppose z is the production-
cum-consumption vector, the constraints reflect limited resource
availability, and the objective is the utility function. Now inter-
pret p as the row vector of prices of outputs. Then part (i) of the
above theorem says that the optimum z would be produced by an
entrepreneur seeking the maximum value of output, and (ii) says
that Z would also be demanded by a consumer trying to reach the
target utility level ¥ in the least-cost manner. If we assume away
some technical complications that arise when there are free goods,
this is equivalent to maximizing utility subject to the budget con-
straint pz < pZ. Thus the original problem of social optimization
can be decentralized. Let an entrepreneur choose the production
plan. The resulting value of output accrues to the consumer in the
usual circular flow of income. Then let the consumer solve his own
utility maximization problem. This separation of decisions has two
advantages. One is informational: the producer nceed know nothing
about the consumer’s tastes, and the consumer need know nothing
about the production technology. For each, the relevant informa-
tion about the other is adequately summarized in the price vector
p. The other advantage relates to incentives: the process relies on
the self-interest of each side to ensure the effective implementation
of the optimum.

Note that nothing of economic substance will change if we
multiply the vector p and the related number & by the same pos-
itive number. Another way of saying the same thing is that only
relative prices like (p;/py) matter for economic decisions. The
separate maximization problems in the above theorem are solved
when producers equate their marginal rates of substitution, and
consumers their marginal rates of transformation, to the relative
prices.

Of course decentralization in practice is more complicated.
When there are several producers and consumecrs, issues of exter-
nal effects and income distribution must be addressed. There is
also the question of how the correet price vector is found. All too
often, people do not have the incentive to reveal their private infor-
mation that is needed to calculate the right prices, taxes etc. Their
behavior imposes additional constraints on the social optimization
problem. Such issues are discussed at length in microeconomics
textbooks, and continue to be the subject of active research. But
the simple story above remains a useful starting-point.
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If we do not assume both B and A4 to be convex, full decentral-
ization is not possible. Figure 6.3 illustrates this. In case (a), B is
not convex and ¥ does not minimize p x over it. Here the consumer
prefers extremes to a diversified bundle of goods. In case (b), A
is not convex and T does not maximize px over it. Here the pro-
duction techinology has economies of scale or of specialization. But
m both cases, ¢ does maximize F(z) subject to G(z) < ¢. Thus
the theorem on Optimization by Separation, which started out by
assuming that ' to be quasi-concave and G quasi-convex, does not
cover all economically interesting cases. What really matters is the
relative curvature of the contours of F and G. In Chapter 8 I shall
develop conditions that capture this idea using calculus.

Uniqueness

Inn Figure 6.1 the boundaries of the two sets B and A were shown as
smooth curves. But this is not necessary according to the definition
of a convex set. In general, a convex set can have straight-line
segments along its boundary; this will still permit the whole line
segment jolning any two points of the set to lie in the set. Therc
can also be kinks along the boundary so long as the corners point
outward.

These possibilities have implications for separation and opti-
mization. Figure 6.4 illustrates some such cases. In (a), two corners
happen to mect at the optimum z. Now we can find many lines
through  which separate the two sets, that is, the decentralizing
price vector p is not unique. None of the possible separating lines
can be called a tangent in the usual sense, but that is not essential
for the economics of the problem. Decentralization depends only
on the separation property, namely that the two sects lie one on
cach side of the line px = b. Thus separation is a more general
notion than that of a common tangent. This generalization, and
the decentralization property, hold even when the functions F and
G fail to have derivatives. In such cases the usual smooth marginal
rates of substitution and transformation are not defined, and can-
not be equated to price ratios in the usual way. What happens is
that there are different marginal rates of substitution to the left
and the right of a kink in an indifference curve, and the price ratio
lics between the two. Similarly for transformation curves.

In case (b), the two sets have a flat portion in common. Now
any point along this region serves as the optimum z. All such
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(c) (d)
Fig. 6.4 - Optima at kinks and along flats

points yield the same value of the objective function F(r), so the
non-uniqueness is not a causc for concern. There is, however, a
problem about decentralization. Given p, all points on the flat
portion of A will yield the same value of output to the producer,
and all those on the fat portion of B will yicld equal utility to
the consumer. Their choices will be arbitrary to that extent, and
there is no reason why the independent choices should coincide.
We can only make the weaker claim that if the two happen to
make coincident choices, neither will have any positive incentive
to depart from these choices. This is a standard limitation in any
careful statement of economic equilibrium theory.

If the two boundaries have vertical parts in common, as in
case (c), we have a vertical separating line. In its equation, p2 = 0,
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and in the decentralization interpretation, good 2 is a free good.
Similarly for horizontal separating lines implying p; = 0. In case
(d) there is also a kink, and while there is a vertical separating line,
thiere are also non-vertical ones. Thus without stronger assump-
tions, it is not possible to guarantee strictly positive prices. In fact,
if tlic boundaries sloped upward at the optimum, the common tan-
gent would have a positive slope and one of the prices would be
ucgative. This is usually avoided by assuming either that there is
free disposability of both goods, when the boundary of A cannot
slope upward, or that both goods are desirable, when the bound-
ary of B cannot slope upward. Both these assumptions have been
implicit in all the illustrative figures.

To sum up, problems of kinks are not serious; in fact they
allow us to generalize the concept of tangency and preserve the de-
centralization property. Problems of flats are more serious because
optimum choices can be non-unique and it might be difficult to get
all producers and consumers to make mutually consistent choices.
Therefore it is useful to know what property of the functions F
and G removes this difficulty. A strengthening of the concepts of
quasi-concavity and quasi-convexity is needed.

Recall the definition of a convex set: S is convex if, given
two points z® and z? in S, and any 6 satisfying 0 < 6 < 1, the
intermediate point § 2% + (1 — )z’ is also in S. The whole line
segment joining =2 to z° could lie along the boundary of S; that is
how the boundary could have flat portions. We could strengthen
the definition by requiring that all points of the line segment except
the end-points are interior points: whenever £ and z® are distinct
and 6 is not equal to 0 or 1, the point § z® + (1 — 8) % should be
interior to S. If this is so, the set S is called strongly conver. The
function F is called strictly quasi-concave if all of its upper contour
sets are strongly convex.

Now consider the problem of maximizing F(z) subject to
G(z) < ¢, where F is strictly quasi-concave and G is quasi-convex.
Suppose T satisfies the conditions of the theorem of Optimization
by Scparation. Then it is the unique solution to the optimization
problem.

To see this, suppose £ is another solution. Both must be feas-
ible for the second (or consumer’s) half of the pair of decentralized
optimization problems. Thus

pr=pi==b and

!
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Take the midpoint Z = }(Z +&). Since F is strictly quasi-concave,
this is an interior point of the upper contour set B, that is, F(z) >
v. Then we can find a neighboring point that is still in B, and has
a smaller value of px than z. To be formal, take e positive, and
define z' by

1 ~
T; =T; —€p;

j fory=1,2,...n.

Because 7 is an interior point of B, for € small enough, z' is in B.

And

!

pz' =pi —ep’
=3 (pz+pi)—ep’
= %(b—}-b)—epQ
< b,

where p? denotes the inner product of the vector p with itself,
namely X, p? > 0. Thus we have found a point € B with pz < b,
contradicting the separation property. This contradiction stems
from the initial supposition that £ was not unique. Therefore that
supposition must be wrong. Thus strict quasi-concavity of F' im-
plies the uniqueness of the maximizer.

Strict quasi-convexity of G would do equally well. When there
are several constraints, we have to assume every component con-
straint function G to be strictly quasi-convex to ensure strong
convexity of the constraint set A.

Examples

Ezample 6.1: Illustration of Separation
Suppose there are two non-negative choice variables labeled z and
y, and the functions F and G arc given by
F(z,y)=1zy and G(z,y) = 2% + %
The constraint is G(z,y) < 25.

Figure 6.5 illustrates this. The feasible sct A consists of the
quarter-circle and all points below it; boundaries of the upper con-
tour sets of F' for various values v are shown as a family of rectan-
gular hyperbolas. The optimum occurs at (&,y) = (5/v/2,5/v2),
and the maximized value of Fi(x,y)is v = 12]5.

The upper contour set B corresponding to ¢ touches the feas-
ible set at the optimum; they are separated by the common tangent
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—> x+y

Fig. 6.5 — Illustration of separation

T+y=25 V2. The upper contour set of F' for the larger value I&
has no points in common with A, and we can draw a separating,
line z + y = 8 through the clear gap between them. For a smalles
value than o, say 10, the upper contour set of F' and the feasible
sct have interior points in common (the lens-shaped area of thei
intersection), and the two cannot be separated.

Ezample 6.2: Indirect Utility and Ezpenditure Functions

A utility-maximizing consumer’s indirect utility function and ex
penditure function were defined in Example 5.2. Hecre I shall ex
amine their convexity properties.

Begin with the expenditure function

E(p,u):rnrin{prlU(.r)Zu}. (6.6

This is concave as a function of p for cach fixed u. To see this, take
any two price vectors p® and p®, and any number 8 in [0,1]. Lef
p° = 0p® + (1 — 8)pb. Then we need to show that

E(p®,u) > 0 E(p*,u) + (1 —6) E(p®,u). (6.7
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Let z¢ achieve the expenditure minimization for p¢. Of course
2° must satisfy the constraint, so U(z¢) > u. The constraint does
not involve the price vectors, so z¢ is also feasible when the price
vector is p* or p. In cach case it cannot achieve a smaller expen-

¢ citure than the minimum:

p*z¢ > E(p",u) and pP ¢ > E(p*u). (6.8)

Multiply the first of these by § and the second by (1—8); this leaves
the directions of the inequalities nnchanged since both multipliers
are non-negative. Adding the two,

Pt = (0p° 4 (1 6)p") s > 6 B(p*,u) + (1 6) E(p* ).

' The left-land side is just E(p®,u). This proves (6.7).

The economic intuition is that as the price vector changes, one
could leave the quantity vector unchanged. Then the expenditure
would change linearly with the price. To the extent that there
is substitution along the indiffereuce curves, the quantity choice
can be adapted to the changing prices. This will change the ex-
penditure slower than linearly, that is, the minimized expenditure
will be a concave function of prices. Another way of looking at
this is to examine the worst case, when there is no substitution
in consumption. The indifference curves are L-shaped, and ¢ is
the optimal way of achieving the utility level u, irrespective of the
prices. The two inequalities in (6.8) hold as equations, and then
(6.7) is an equation, too: expenditure is linear in prices.

Next the indirect utility function,

V(p,[):mfx {U(@)|pz < T} (6.9)

This is quasi-convex in (p, I). The proof follows a similar line. Let
(p*,I*) and (p*, I*) be any two price income vectors, and ¢ any
mmber in [0,1]. Let

(P I9) =" I) + (1= 0) (", 1",

and suppose ¢ solves the utility-maximization problem for (p®, I7).
It satisfies the constraint, so p¢z® < I°.

Now I claim that z¢ is feasible for at least one of the price-
income vectors (p*, I*) and (p®, I?). For if not, we would have

p*at > 1" and plat>I°.
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Multiplying the first by 6, the second by (1 — ) and adding, w«
would get p© € > I°, contradicting the feasibility of z¢ for (p¢, I°).

In whichever situation ¢ is feasible, its utility U(z¢) cannof

exceed the maximum utility achievable in that situation. Therefor«

at least one of

U(z®) < V(p*I*) and  U(z°) < V(pb,I?)

must be true. Then
V(p®, I¢) < max( V(p®, I*),V(p®, %)),

which is just the statement of quasi-convexity of V.

In other words, the lower contour sets of the indirect util
ity function are convex. This has an unfortunate consequence
When the government chooses indirect taxes optimally, it is in of
fect choosing prices to maximize an indirect utility function. Quw
result says that the objective function has the wrong curvaturc
for a maximization problem. Therefore sufficient conditions fo
optimal tax problems are hard to verify.

Exercises

Ezercise 6.1: Commodities that Cause Disutility

How is Figure 6.1 altered when (a) one of the choice variablc:
is labor, which gives disutility to consumers and is an input to
production, and (b) when one of the goods is pollution, which give:.
disutility to consumers and is the by-product of an economically
desirable good which is the other choice variable? Interpret the
assoclated prices in each of these contexts.

Ezercise 6.2: Convezity of a Firm’s Profit Function

A firm chooses vectors z of inputs and y of outputs subject to «
production possibility constraint G(z,y) < 0, to maximize profit
(gy — pz), where ¢ denotes the row vector of output prices and p
that of input prices. Let II(q, p) be the maximized profit expressci
as a function of the prices. Prove that II is a convex function of
(¢,p)-
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Ezercise 6.8: Corner Solutions

(lonsider an economy with labor endowment L. It can produce
two goods z; and z3. A unit of good j needs a fixed amount a;
units of labor, so the production possibility constraint is

alzl—l—agzgSL.

The world prices of the two goods are p; and p2, independent of
the levels of production chosen by this country. The aim is to
maximize the value of national product, (py z; + ps T2).

Draw a figure and solve the problem by separation of two con-
vex sets. You will need to consider two cases separately, depending
on which of (p;/p2) and (a;/az) is larger.

Having seen the solution in the figure, verify Lagrange’s con-
ditions. Find and interpret the Lagrange multiplier. Show that the
maximized national product, expressed as a function of the prices
(the revenue function or the GNP function) is

R(Pl,P2) = max ( pi/ai,pz/az ).

Further Reading

On definitions of convex sets, convex and quasi-convex functions
etc. see Varian, Microeconomic Analysis (op. cit.) pp. 313-
15. In ch. 3, he also considers expenditure and indirect utility
functions in more detail, and shows when and how it is possible to
go back to a consumer’s preferences given one of these maximum
value functions, thus completing the duality between these two
ways of modelling consumer choice. Another excellent treatment
of consumer theory using duality is in

ANGUS DEATON and JOHN MUELLBAUER, Fconomics and
Consumer Behavior, Cambridge, UK: Cambridge University Press,
1980.
For a pionecring analysis of the optimuin tax problem, sce

PETER DIAMOND and JAMES MIRRLEES, “Optinal taxation
nnd public production,” American Economic Review, 61, March
and June 1971, pp. 8-27, 261-278.



7 Concave Programming

Concave Functions and Their Derivatives

In the last chapter I defined convex sets and quasi-concave and
concave functions, and developed a geometric approach to con-
strained optimization based on the separation of two convex sets.
This had the conceptual merit of suggesting a decentralized im-
plementation of society’s economic optimization problem. But it
was of limited value in solving actual examples. In this chapter 1
combine the idea of convexity with a more conventional calculus
approach. The result is that the Lagrange or Kuhn-Tucker con-
ditions, in conjunction with convexity properties of the objective
and constraint functions, are sufficient for optimality.

The first step is to express the convexity cte. of functions in
terms of their derivatives. In Chapter 6, a concave function was
defined by the property that the chord Jjoining any two points on
its graph lies entirely below (or at most coincident with) the grapli;
see Figure 6.2. If we let the point 2® move closer and closer to z*.
the chord approaches the tangent to F(z) at 2. The requirement
of concavity then says that the graph of the function should lie on
or below the tangent. The worst that is allowed is when F(z) has
straight-line segments; then the tangent could coincide with one
such segment.

More formally, for 6 € [0, 1], we have

F(z* +9(xb—xa)) :F(91b+(1 —-8)z%)
> 0 F(z®) + (1 - 6) F(a®).
Thercfore

F(z® +8(z* — 2%)) - F(z%)
9

> F(z?) — F(z).

Now let 8 tend to zero. Provided F is differentiable, the chain rule
says that the left-hand side tends to F,(2%) (z® — z%), where F, is
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the row vector of partial derivatives, and the product is an inner
product. Then

Fy(z%) (z® = 2%) > F(z%) — F(29). (7.1)

When z is one-dimensional, F;(z®) is just the slope of the tangent
to F(z) at ¢, so the left-hand side is the vertical distance along
this tangent as we move from z¢ to z°. Then (7.1) says that the
change in the value of a concave function is overestimated by its
tangent, that is, the tangent lies above the curve. More generally,
the left-hand side is just the lincar term in the Taylor approxi-
mation to the change in F(r) using z® as the initial poiut; this
approximation is an overestimate of the change in F(x).
Similarly, if G is a differentiable convex function, then

Go(z%) (2" — 2%) < G(a®) — G(a). (7.2)

A particularly important class of optimization problemns has a con-
cave objective function and convex constraint functions; the term
concave programming is often used to describe the general problem
of this kind, and it is the subject of the next section.

Concave Programming

Consider the maximization of F(z) subject to a vector constraint
G(z) < ¢, where F is differentiable and concave, and each com-
ponent constraint function G is differentiable and convex. This
is called the general problem of concave programmang. For con-
creteness and economic interest, I shall use the terminology of the
production problem, where z is the vector of outputs, F(z) is the
revenue from the sale of the outputs, ¢ a fixed vector of input sup-
plies, and G(z) is the vector of inputs needed to produce . But
the mathematics is independent of this wterpretation.

The conditions of optimality for a particular value of ¢ are
found by first considering the problem for a general ¢ Then the
optimum choice of z, say 7, and the maxihmum value o = F(&),
hoth become functions of ¢. Let X(¢) denote the optinnun choice
function, and V(¢) the maximum value function.

The first result is that V is a non-deercasing function. This is
hecause an x that was feasible for a given value of ¢ remains feasible
when any component of ¢ increases, so the maximum value cannot
decreasc.
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The next result is that V' is concave. Let ¢ and ¢’ be any two

input supply vectors, with
r=X(c), '=X(), 5=V(), v =V().

Since the optimum choices must be feasible, we have G(z) < ¢ and

G(z') < .

Now let 8 be any number in [0,1]. For V to be concave, it
should be possible to achieve revenue at least as high as 8 V(c) 4
(1—=0)V(c') when the input supply vector is 8c + (1 — ). A
natural candidate for the output vector is 24 (1~ 6) z'. The first
point to check is whether this is feasible. For each 7, the convexity
of G* implies

G0z +(1-0)7') <0G (7)+(1-8)G(T') <bc; +(1—8)c,.

proving feasibility. The next point is to find the resulting revenuc.
Using the concavity of F', we have

Flz+(1-60)i")>0F(a)+(1-6)F(z')>6v+(1—-86)7.

Thus we have found a feasible output vector that yields revenue at
least as high as the expression on the extreme right of this chain
of incqualities. The maximum value, V(8c+ (1 —8)¢'), can be no
smaller. This is the result we want to prove.

The economics behind this is that the convexity of G rule.
out economies of scale or specialization in production, ensuring,
that a weighted average of outputs can be produced using the
same weighted average of inputs. Then the concavity of F' ensurc:
that the resulting revenue is at least as high as the same weighte:
average of the separate revenues.

As V is a concave function, the set of points on or below it.:
graph is a convex set. This is an (m 4 1)-dimensional set, the
collection of all points (¢, v) such that v < V{c). That is, revenuc
of at least v can be produced using the input vector ¢. Therefore
it is natural to think of it as the set of production possibilities fo
revenue. Figure 7.1 shows this set as the shaded area A in the case
where ¢ is a scalar. Since V is non-decreasing and concave, tle

ey

¥
:
i

Concave Programming 89

(f*

Fig. 7.1 — The value function in concave programuining

sct has a frontier that shows a positive but diminishing marginal
product of the input in producing revenue.

Convex sets are meant to be separated from other convex scts.
"To do this in the most useful way for the present purpose, choose a
point (¢*,v*) in A such that v* = V(¢*). This must be a boundary
point, since for any r > 0, the point (¢*,v* —r) isin A but (c*,v* +
) is not. Now define B as the set of all points (¢,v) such that
¢ < ¢* and v > v*, that is, revenue v cannot be attained with
inputs ¢ except when ¢ = ¢* and v = v*. Thus the set B serves
the same role as the corresponding set in Chapter 6. Clearly B is
n convex set with a non-empty interior, and A and B have only
houndary points in common. Thercfore the Separation Theoremn
can be applied. For reasons that will become clear in a moment, 1
write the equation of the separating hyperplane as

tv—Ae=b=1v* = Ac*,

wlicre ¢ is a scalar, A is an m-dimensional row vector, and the signs
nre so chosen that
<b forall (c,v)e A
tv —Ac { Z (¢,v)

>b forall (e,v) € B. (7.3)
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The first point to note is that ¢ and A must both be non
negative. For example, suppose ¢ is negative. Now consider tlic
point (¢*,v* + 1), which is clearly in B. We have

(v + 1) - A =b— < b

which contradicts the separation property. Similarly, for each ¢ -
1, 2, ...,m, considering points (¢* — ¢',v*), where e’ is a vector
with its ¢ th component equal to 1 and all other components zero,
we see that A; cannot be negative.

Now comes a more subtle question: can ¢ equal zero? Let us
sce the conscquences of that. For the equation of the hyperplanc
to be uieaningful, the combined vector (¢, A) must be non-zero.
If ¢« = 0, therefore, at least one component of A must be non
zero, that is, positive. The equation of the separating hyperplanc
becomes —Aec = —Ac*, or A(c—¢*) = 0. For all (¢,v) iu A, we
have —Ac < —Ac¢*, or A(c—¢*) > 0. In the scalar constraint casc.
the separating line is vertical at ¢*, and the set A lics entirely to
the right of it.

Figure 7.2 shows two ways in which this can happen. In both
cases, there are no feasible points to the left of ¢*; production is
impossible if input supply falls short of this level. In some appli
cations, this can happen because of indivisibilities. The two cases
differ in the behavior of V(c) as ¢ approaches ¢* from the right.
In case (a), the marginal revenue product of the resource goes to
infinity, and only a vertical scparating line will do. In case (b)
the limit of the marginal revenue product stays finite, and while
vertical scparating line exists, there are also many other separating,
lines with finite slope, and therefore positive «. This shows that
the conditions soon to be found for ensuring a positive ¢ are only
sufficient and not necessary.

The natural condition is to rule out indivisibility. If the sci
A has any points to the left of ¢*, then it cannot have an infinit(
slope at ¢*. For this, there must be an z° such that G(z°) < ¢’
and F(z°) is defined; then we can choose (G(2°), F(2°)) as the
desired point in A. If there are several constraints, we neced the
corresponding vector inequality G(z°) <« ¢*. This then is the
constraint qualification for the concave programming problem. It
is sometimes called the Slater condition.

To prove that the Slater condition implies a positive ¢, suppose

that the condition holds but ¢« = 0. Then at least one component of
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(a)
Fig. 7.2 — Failure of the constraint qualification

A must be positive. Now every component of G(r°) — ¢* is strictly
negative. Then

A(G(z°) - " Z/\(G —cl) <0,

because at least one component product on the right-hand side is
negative, and all are non-positive. But the point (G(r?), F'(+?)) is
in A, therefore by the separation property

“AG(2°) =1 F(z°) = AG(x®) <o = Xt oo Nt

or A(G(z°) — c¢*) > 0. We have proved the same expression to
be both negative and non-negative; the contradiction forces ns to
conclude that the supposition ¢ = 0 st be wrong.

The separation property (7.3) is unaffected if we wultiply b,
1, and every component of A by the sae positive nunber. Once
we can be sure that ¢ # 0, we can choose this scale to make ¢ = 1.
I economic terms, ¢ and A constitute a systein of shadow prices,
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+ fon the revenue and A for the inputs. Only relative prices mat
ter for economic decisions, and in setting ¢ = 1, we are choosing,
revenne to be the numéraire. This seems an obvious choice, and
I »hiall adopt it henceforth. But sometimes we might wish to do
otherwise; for example F(z) might give the revenue in a foreign
cirrency, and then ¢ would be an exchange rate to convert it into
Jdomestic currency units. The important thing is to establish con
ditions under which the marginal revenue product of inputs at the
optimumn is finite, ensuring that the proposed numeraire is not «
free good.

Next observe that by the separation property, (¢*,v*) achieves
the mwaximum value of (v — A¢) among all points (¢,v) € A. This
has an important economic implication. If we interpret A as the
vector of shadow prices of the inputs, then (v — Ac¢) is the profit
that accrues when a producer uses inputs ¢ to produce revenuc

v. Since all points in 4 represent feasible production plans of

this kind, the result says that a profit-maximizing producer will
pick (¢*,v*). He need not be aware that in fact the availability ol
iuputs is limited to ¢*. He may think himself free to choose au
¢, but ends up choosing the right ¢*. The prices A bring home to
him the scarcity. The interpretation is special, but the principle i..
general and important: constrained choice can be converted into
unconstrained choice if the proper scarcity costs or shadow valuc:
of the constraints are netted out of the criterion function. To the
economist, this is the most important feature of Lagrange’s Method
in concave programming,.

The shadow price interpretation of A can be confirmed some
what more formally. For any ¢, the point (¢, V(¢)) is in A. So by
the separation property we have

Vie) - Ae<V(c")— Act,

or

Vie)=V(c") £ A(c—c"). (7.4

The linear function on the right overestimates changes in the vali
of V. This looks very much like the concavity property (7.1), and
suggests that A should equal V. (¢*), the vector of partial derivative:.
of V at ¢*. That would make A the vector of the marginal revenu
products of the inputs at the optimum, or the vector of shadow
prices for the constraints. But one difficulty remains: we cannot
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be sure that V is differentiable. So far in this chapter we have not
even assumed F and G to be differentiable, but even when we do,
V may fail to be. This can happen for the same reason as we saw
in Chapter 4 and Figure 4.1. Different inequality constraints may
hold as exact equalities for different ranges of the parameters, and
wlere the solution switches from one regime to another, the slope
of V may change suddenly.

Even when such discontinuities in the slope of V exist, a very
natural generalization of the concept of diminishing returns holds.
As the value of some component of ¢ increases, the corresponding
partial derivative of V may jump downward, but not upward. This
follows from the concavity of V.

The asterisks, having served their purpose of distinguishing
n particular point in the (¢,v) space for separation, may now be
dropped. Let us consider a general point (¢, V(¢)) with its associ-
nted multiplier vector A\. Coinpare this with a neighboring point
where only the ¢ th input is increased: (¢ + he!, V(¢ + h¢')) where
h is a positive scalar and e’ is a vector with its ¢ th component
cqual to 1 and all others zero. Then (7.4) becomes

V(c+he)=V(c)<Ahe' =h),.
Since h is positive, we can divide by it to write
[V(e+he')=V(e)]/h <\,

It is easy to show that by the concavity of V, the left-hand side
is a non-increasing function of k, and therefore must have a limit
as h goes to zero from positive values. In a diagram showing c;
and V(c), the expression on the left-hand side is siniply the slope
of a chord joining the point (¢, V(c)) to an adjacent point to the
right (because k > 0). Its limit is defined as the ‘vightward’ partial
derivative of V' with respect to the 7 th coordinate of ¢, and written
V'-+(c). Thus we have proved that Vi+((*) < A

Next repeat the procedire but let o he negative. Now division
by h reverses the direction of the incquality, and taking the limit
from negative values of h gives us the ‘leftward’ partial derivative
V.7 (¢). This proves V;7(¢) > A;. Cowmbining the two, we have
the final result that generalizes the notion of dhminishing marginal
returns and relates the multipliers to these geuncralized marginal
products:

Vi(e) = A = V¥ (o). (7.5)

1



94 Optimization in Economic Theory

Viey 2 V(o)

- ¢

Fig. 7.3 — Generalized marginal products

Figure 7.3 illustrates this for the case of a scalar ¢.

So far the vector of choice variables, &, has been kept in the
background. Let us bring it in explicitly. Recall that & maximizes
F(z) subject to G(z) < c. Let A be the vector of shadow prices of
inputs found from the separating hyperplane as in Figure 7.1. The
point (F(z),G(z)) is in A, so the separation property gives

F(z)= AG(@) <V(c)— Ae. (7.6)
Of course F(z) = V(c), so
Me—G(z)] <0. (7.7)

Now every component of the row vector A is non-ncgative, and
every component of the column vector [¢ — G(Z)] is also non-
negative. Therefore for every i, the product \; [¢; — G*(&)] is non-
negative. The inner product in (7.7) is the sum of these terms.
It can be non-positive only if each term is zero. Therefore for
every 1, either A\; = 0 or ¢; — G*(%) = 0. This is just the notion
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of complementary slackness developed in Chapter 3, and it fits
in well with the interpretation of A; as the shadow price of the
i th constraint. The shadow price of any slack constraint is zero,
and any constraint with a positive shadow price must be binding,.
Note an implication of complementary slackness: the inequalities
in (7.6) and (7.7) must in fact hold as equations.

Finally, since (F(z),G(z)) 1s in A for any =, and since (7.6)
holds as an equation because of complementary slackness, the sep-
aration property gives

F(z) = AG(x) < F(x) = AG(r) (7.8)

for all z. That is, T maximizes F(r) — AG(r) without any con-
straints. This is an alternative statement, in terms of the underly-
ing choice variables, of how shadow prices allow us to couvert the
original constrained revenue-mmaximization probleimn into an uncon-
strained profit-maximization problem.

All of the above reasoning can now be summarized into the
basic thecorem of this section:

Necessary conditions of Concave Programming: Suppose that
F is a concave funetion and G is a vector convex function, and
that there exists an a° satisfying G(2°) <« ¢. If ¥ maximizes F(z)
subject to G(z) < ¢, then there is a row vector A such that
(1) z maximizes F(z) — A G(z) without any constraints, and
(i) A > 0, G(7) < ¢ with complementary slackness.

Nomne of this requires F' and G to have derivatives. But if the
functions arc differentiable, then we have the first-order necessary
conditions for the maximization in (i), namely

Fo(#) — AG, (i) = 0. (7.9)

In terms of the Lagrangian L(x,\) of Cliapter 3, (7.9) becowmes
L.(z,\) = 0. This is just the condition (3.5) of Lagrange’s The-
orem with Incquality Constraints. Here I did not impose any non-
negativity constraints on the choice variables r, hut that was just
to keep the algebra as simple as possible. Sueh conditions can be
added on without causing any new difficultics, and then we get
the corresponding condition (3.7) of the Kulin Tucker Theorem. I
leave it as an cxercise for the rcader to verify this.
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There is one respect in which concave programming goes be-
yond the general Lagrange or Kuhn-Tucker conditions. The con-
ditions of Chapter 3 merely set the first-order derivatives of the
Lagrangian with respect to the choice variables equal to zero. This
was not sufficient to ensure maximization, and in general there
was no claim that £ maximized the Lagrangian. When F is con-
cave and G is convex, part (i) of the above theorem on Concave
Progamming is easily transformed into L(x,A) < L(z, M) for all z,
so I does maximize the Lagrangian. The distinction does make
economic sense: we know that profit-maximization at given prices
can be problematic when there are cconomies of scale. Price mmust
still equal marginal cost at the optimum, but profit nced not be
maximized, even in comparison with neighboring points. In the
same way, our interpretation of Lagrange’s method as convert-
ing constrained revenue-maximization into unconstrained profit-
maximization must be confined to the case of concave program-
ming.

The previous paragraph was on the verge of saying that the
first-order conditions are sufficient to yield a true maximum in the
concave programining problem. That is indeed so. The argument
proceeds in two parts.

First, suppose 7 satisfics the conditions (i) and (i) in the
statement of the necessary conditions. Then, for any z, we have

F(z) - AG(z) > F(z) - AG(xz),
or using complementary slackness,
F(z)— Ae > F(z) - A G(x).
If z is feasible, G(z) < ¢, and then
F(z) > F(z) + Ae — G(2)] > F(x).

Next suppose T satisfies the first-order conditions (7.9). Since
F is concave, G is convex, and A > 0, F — A G is concave. Then
(7.1) applicd to this function gives

[F(z) — AG(2)] - [F(2) = AG(8)] < [Fo(7) = A Gal )] (2 — 7).
But the right hand side is zero by (7.9). Therefore
F(z) = AG(z) < F(z) - AG(2),
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or ¥ maximizes F(z) — A G(z) without any constraints.
This is summed up in the next theorem:

Sufficient Conditions for Concave Programming: If # and A
are such that
(i) # maximizes F(z) — A G(z) without any constraints, and
(ii) A > 0, G(7) < ¢ with complementary slackness,
then z maximizes F(z) subject to G(z) < ¢. If (F =) G) is concave
(for which in turn it suffices to have F concave and G convex), then

(7.9) implies (i) above.

Note that no constraint qualification appears in the sufficient
conditions; it pertains to the validity of the necessary conditions.,

Quasi-Concave Programming

In the separation approach of Chapter 6, F' was merely quasi-
concave and each component constraint function in ¢ was quasi-
convex. In this chapter the stronger assumption of concavity and
convexity has been made so far. In fact the weaker assumptions of
quasi-concavity and -convexity make little difference to the neces-
sary conditions. They yield sufficient conditions like the ones above
for concave programining, but only in the presence of some further
technical conditions that are quite complex to establish. Therefore
['shall discuss only a limited version of quasi-concave programining,
namely one where the objective function is quasi-concave and the
constraint function is linear. Of course the mirror-intage case of a
linear objective and a quasi-convex constraint can be treated in the
same way. Therefore my analysis covers each of the decentralized
pair of decision problems into which the separation approach of
Chapter 6 split the general quasi-concave progranmuming problem.

First we must establish a property of quasi-concave functions
that is similar to the ‘overestimation by the tangent’ property of
concave functions. Start with the definition: if F is quasi-concave,
then for any z* and 2* and for any 6 in [0,1], we are to have

F((1~6)z" 462" > min((F(z%), F(2%)).
Suppose F(z%) > F(z*). Then

F(ma’—&—G(rb—I“)) > F(z).
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Fix z°, z%, and regard the left-hand side as a function of 8, say
h(6). Then the inequality is simply

h(8) > h(0) forall®# >0 (and <1).
Therefore h'(0) > 0. But by the chain rule,

R'(6) = Fy(z® + 6 (b — 2%)) (b — z%).
Evaluating this at § = 0, we have

Fo(z®) (z® —z%) > 0. (7.10)
This holds for all 2%, z* such that F(z®) > F(z?). Note that F,
is a row vector, so the expression on the left-hand side 1s an inner
product.

Now consider the maximization of F(z) subject to pz < b,
where p is a row vector and b a number. The necessary conditions
for z to be optimum are

Fo(z)~ Ap=0. (7.11)

If A > 0 the constraint is binding, and this is the only case I
shall consider. (By taking cubic transforms of F), it is possible to
get spurious stationary points where (7.11) holds with A = 0, but
that is not a case of sufficient economic interest for an elemen
tary exposition.) The aim is to prove that if F' is continuous and
quasi-concave, the conditions (7.11) are also sufficient. That is, if
they are satisfied by # and A > 0, then ¥ solves the quasi-concave
programming problem.

To prove this, consider any x such that F(z) > F(z)=v. |
shall prove that z is not feasible, that is, pz > b. Start by using
(7.10) with z® = 7 and 2 = 2. Then F(z) > F(z) implies

Fu(z) (z —2) 2 0.

Substitute (7.11) into this and divide by the positive number A to
get
plz—1)>0, or pr>pz.

In other words, the upper contour set of F(z) for the value v is
contained in the half of the z-space on or above the constraint linc.

oo o ¢
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F(x) =F(5)

- —— X

Fig. 7.4 — Quasi-concave objective and linear constraint

Figure 7.4 illustrates this. Geometrically, the vector Fy(z) is
normal (perpendicular) to the contour of F(x) at . The vector
p is normal to the constraint line pz = b at any point on it. The
usual condition of tangency between the two curves is cquivalent
to saying that their normal vectors be parallel. That is just what
(7.11) expresses, with the constant of proportionality equal to A.

Since F is continuous and F(z) > F(&), in fact x 15 au wterior
point of the upper contour sct. Thercfore it is also an interior point
of the set pz > b. In other words, it satisfies pa > b, So auy =
yielding value greater than F(#) is infeasible, or any feasible
yields no greater value than F(x). This completes the proof.

Uniqueness

The above sufficient conditions for concave as well as quasi-colcave
programming are weak in the sense that they establish that no
other feasible choice z can do better than &. They do not rule out
the existence of other feasible choices that yield F(z) = F(z). In
other words, they do not cstablish the uniquencss of the optimum.
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As in Chapter 6, an additional condition, namely a strengthening
of the concept of concavity or quasi-concavity, gives uniqueness.

For example, the definition of strict concavity requires all in
terior points of the chord joining any two points on the graph of
the function to lie strictly below the graph. This rules out any
straight line segments where the graph and the chord can coincide.
Formally, call F strictly concave if, for distinet 2%, z®, and for any
6 in [0,1] except the end-points 0 and 1, we have

F(8z2" +(1-8)z")>0F(2*) + (1 — ) F(z*). (7.12)

If the objective function F' in the concave programiming problem
is strictly concave, then the maximizer 7 is unique. The proof pro
ceeds by assumning another equally good choice, say &, and showing,
that %(:T: + &) can do even better. I shall lcave the simple details
to the reader.

Examples

Ezample 7.1: Linear Programmang

An mmportant special case of concave progranmumning is the theory of
linear programmang. Here the objective and constraint functions
arc linear:

Flz)=az, G(z)=Bu,

where a is an n-dimensional row vector and B an m-by-n matrix.

Now

Fi(z)=a, G,(z) = B.

Sign constraints > 0 are also imposed. When the coustraint func-
tions are lincar, no constraint qualification is needed; interested
readers can see the reason for this from the formal development of
the Kuhn-Tucker theory in the Appendix.

All the conditions of concave programming are fulfilled, and
the appropriate Kulin—Tucker conditions (3.7) and (3.10) are nec
essary as well as sufficient. There is a small new notational point.
In this problem we will have occasion to consider the Lagrangc
multipliers as variables. Therefore their particular values corre
sponding to the optimum of the problem at hand will be indicated
by placing bars over the corresponding symbols.
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The Lagrangian is
L(z,\)=az + A[c~— Bz}, (7.13),
md the optimuin Z, A satisfy the conditions
a—AB <0, >0, with complementary slackness, (7.14)

c—Bz >0, A\>0, with complementary slackness.  (7.15)

Between them, (7.14) and (7.15) coutain 2™1" combinations
of patterns of equations and inequalitics. Not all of these are per-
missible. Generally, if ¥ of the constraints in (7.15) hold with
equality, this puts k restrictions on the n-dimensional vector z. To
determine it, we should have (1 — &) more conditions from (7.14), so
cxactly this number of the nou-negativity constraints should bind.
When this is the case, the corresponding count for A s also cor-
rect. Each such (Z, \) pair is called a ‘basic solution’. The space of
parameters (a, ¢, B) splits into regions, in each of which one basic
solution obtains. At the boundaries where two such regions meet,
there are additional non-basic solutions where botl inequalities m
some of the complementary slackness pairs hold as cquations.

The transition from one such region to another causes a sud-
den change in the Lagrange multipliers, and thercfore kinks in the
maximnm value function of the kind we saw in Figure 4.1.

Now consider a new linear programming problen: find a row
vector y to minimize y ¢ subject to the constraints y B > «, y > 0,
where the vectors a, ¢, and the matrix B, are exactly as before. In
our maximization terminology, this can be written as

max ( —yc) subject to —yB < —a,y > 0.

Except for an interchange of row vectors and column vectors, this
is of the same form as the above problem involving 2. Thercfore
we can introduce a column vector u of multipliers, and define the
Lagrangian

M(y,pu)=—yc+[-a+yBlpu (7.16)

The optimum % and ji are defined by the necessary and sufficient
Kuhn-Tucker conditions

—c+ B <0, § >0, with complementary slackness, (7.17)
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—a+yDB >0, 1>0, with complementary slackness. (7.18)

Now (7.17) is exactly the same as (7.15), and (7.18) is the same
as (7.14), if we replace § by A, and 2 by #. In other words, the
optimum & and A of the original problem solve the new problem,
with their roles interchanged: X is the optimal vector of the choice
variables in the new problem, and 7 is the corresponding vector of
the multipliers.

The new problem is said to be dual to the original, whicl
is then called the primel problem in the pair. This captures an
important economic relationship between prices and quantities in
economics. The primal problem has the standard interpretation.
Let @ be the vector of output quantities, and a that of prices or
unit values of the outputs. The matrix B contains unit input
coefficients, so B z is the vector of input requirements for producing
z. Finally, ¢ is the vector of input supplies.

When the optimum z is found, the corresponding A is the
vector of shadow prices of the inputs. We just saw that among
all the vectors A that satisfy the constraints AB > a and A > 0,
the X yields the minimum value of Ac. Thus the shadow prices
minimize the cost of the inputs ¢. Note that the jth component
of AB is ¥; A; B;j, which is just the cost of the bundle of inputs
needed to produce one unit of good j, calculated using the shadow
prices of the inputs. Thus the constraint is that the vector of such
input costs is at least as great as the vector of the unit values of
outputs. In other words, the shadow prices of inputs ensure that no
good can make a strictly positive profit - a standard ‘competitive’
condition in econormics.

Complementary slackness in (7.14) ensures that if the umt
cost of production of good j actually exceeds its price, that is, pro
duction would entail a loss when calculated at the proper shadow
prices of inputs, then the good will be produced in zero quantity.
Conversely, if good j 1s produced in positive quantity, then the unit
cost exactly equals the price, that is, the profit is exactly zcro.

This can be summarized by observing that complementary
slackness in (7.14) implies

azr

!l

ADBz,

and that in (7.15) gives

>
S
il
>l
o
8
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Combining the two, we have
az = Ae. (7.19)

This says that the value of the optimuin output equals the cost
of the factor supplies cvaluated at the shadow prices. The result
can be interpreted as the familiar circular flow of income, that is,
national product equals national income.

Finally, it is casy to check that if we take the dual problem
as our starting-point and go through the mechanical steps of find-
ing 1ts dual, we return to the primal. In other words, duality is
‘reflexive’.

This is in essence the duality theory of linear programming
except for one point. We took the optimum 7 as our starting-point,
paying no attention to the existence of the solution. This may
be problematic, either because the constraints may be mutually
inconsistent, or because they may define an unbounded feasible
sct and the objective function may tend to mifinity as we proceed
out along this unbounded set. T shall leave the treatment of this
issue to more advanced texts.

Ezample 7.2: Failure of Profit-maziinization

For a scalar z, consider the maximization of F(r) = ¢* subject to
G(z) =« < 1. Since F is increasing, the optinnun occurs at @ = 1.
The Kuhn-Tucker conditions apply, and give A = ¢.

But ¢ = 1 does not maximize F(z) — A G(«x) without cou-
straints. In fact e* — e can be made arbitrarily large by increas-
g 2 beyond 1. Lagrange’s method does not convert the original
constrained maximization problem into an unconstrained profit-
maximization problem. The difficulty is that F is not concave.

Exercises

Ezercise 7.1: Minimization

Develop the theory of minimization of a convex function along lines
parallel to those used in this chapter for maximization of a concave
function.

Erercise 7.2: Convezity of Maximum Value Function

Let 6 be a vector of parameters, and consider the problemn of chioos-
ing z to maximize F(x,8) subject to G(z) < e. Let V() denote
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the maximum value as a function of the parameters. Prove that if
F is convex as a function of 8 for each fixed z, then V is convex.

In Chapter 5 we saw geometrically (Figure 5.2) that the min-
imum cost of producing a given quantity of output, regarded as
a function of input prices, is concave. Derive that formally as a
corollary of the above general result.

Ezercise 7.3: More on Linear Programmaing

Show that the optimal solution Z of the linear-programming prob-
lem of Example 7.1, and the corresponding vector of multipliers A,
are such that

L(z,A) < L(7,A) < L(z, )

for all non-negative z and A. In other words, T maximizes the
Lagrangian when A = X, and X minimizes the Lagrangian when
r = z. In other words, the graph of the Lagrangian in (z, A) spacc
is shaped like a saddle. Therefore (7, A) is said to be a saddle-point
of the Lagrangian.

Let V(a,c) denote the maximum value function of the linear-
programing problem. Show that V is convex in a for each fixed
¢, and concave in ¢ for each fixed a.

Further Reading

The best treatment of linear programming continues to be

ROBERT DORFMAN, PAUL A. SAMUELSON, and ROBERT M.
Sorow, Linear Programming and Economic Analysis, New York:
McGraw-Hill, 1958.

On quasi-concave programming, the original article remains
the most valuable:

KENNETH ARROW and ALAIN ENTHOVEN, ‘Quasi-concave
Programming’, Econometrica, 29(4), 1961, pp. 779-800.

8 Second-Order Conditions

Local and Global Maxima

The previous chapter developed sufficient couditions for optimal-
ity, using properties like concavity and quasi-concavity. These were
defined globally, that is, over the full domain of definition of the
functions. For example, a function is called concave if the tangent
at eny point lies on or above the graph of the function, or if the
graph lies on or above the chord joining any two points of it. Cor-
respondingly, the conditions are sufficient for a global maximuin;
the & satisfying them does at least as well as any other feasible
z. In a sense the conditions arc ideal; if they are met, we have no
further worry that some distant point somewhere may do better
than the one we are looking at. But in many applications the func-
tions do not have the desired property over their whole domain of
definition.

In this chapter the focus is on the curvature of the objective
and constraint functions in a small neighborhood of the proposed
optimum. The conditions are expressed in terms of the second-
order derivatives of the functions at this point. Conditions on
such derivatives are sufficient for local optima; if they hold, the
proposed point does better than all points in a sufficiently small
neighborhood of it.

This is a useful property when global conditions arc not met.
Moreover, it has a valuable by-product. In Chapter 4 I introduced
the term comparative statics for the geueral method of comparisons
of solutions in response to small changes in parameters. Thus far
we have been concerned only with the comparative staties of the
maximum value v, and not of the optimum choice variables . Now
we focus on the latter. It turns out that the second-order condi-
tions play an instrumental role in deternining the comparative
static responses of the optimum choice variables. Therefore 1 shall
develop the theory of second-order conditions and their application
to comparative statics in parallel. I shall start with simple cases
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where the maximization is not subject to any constraints, and go
on to the more complex theory of constrained maximization.

Unconstrained Maximization

First suppose a scalar variable z is being chosen to maximize F'(z).
Let Z be a candidate for the optimum choice, and expand F(z) in
a Taylor series around z:

Flz)y=F(z)+ F'(z)(z —2)+ § F'(z)(c —2)* + ... (8.1)

The first-order necessary condition for optimality is F'(z) = 0.
Using it, we can write (8.1) as

F(z)-F(@)=F"(z)(z—-2)* +... (8.2)

1
2

For z near enough to z, the quadratic term will dominate the
higher-order terms (concealed in the ...) in the Taylor expansion.
Therefore if F''(z) is positive, we will be able to find an z near
enough to z for which F(z) > F(&). In other words, z will not
vield a maximum of F(z) in a small neighborhood. Of course it
could not yield a maximum over the whole range of F either. This
argument gives us a second-order necessary condition for T to yield
a maximum, local or global, of F(z), namely

F'(7) < 0. (8.3)

If this derivative is negative, then the quadratic term in (8.2)
will be negative. In a small enough interval around #, we will have
F(z) < F(z), irrespective of the signs of higher-order terms. Thus,
given that (8.1) holds,

F'(z) <0 (8.4)

is a second-order sufficient condition for ¥ to give a local maximum
of F(z).

Note two points of difference between (8.3) and (8.4). The
former is a weak inequality while the latter is the corresponding
strict inequality. The former is a necessary condition for local or
global maxima, while the latter is a sufficient condition for local
maxima only. Similar remarks apply to second-order conditions
in more general contexts. Therefore I shall concentrate on the
local sufficiency role of second-order conditions, and leave it to the
readers to formulate the corresponding necessary ones.
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A local maximum satisfying the second-order conditions is
called a regular maximum. If the maximum is ‘irregular’, that
is, F""(z) = 0, we have to look at higher-order derivatives. Then
F'"'(z) = 0 is a necessary condition, and F""'(z) < 0 is a sufficient
condition. I shall leave aside such complications.

Now suppose the problem involves a parameter 8. The first-
order condition is

F(z,6) =0. (8.5)

This implicitly defines T as a function of 8, and we need to kiow
how the optimum choice will respond to changes in 8. Diflerenti-
ating (8.5) totally, we have

F, . (2,0)di + Frp(x,8)d8 0,

or

dz/d8 = —F,e(a,0)/1°, (i, 0). (R.6)
At a regular maximum, the denominator on the right Tand side s
negative. Then the sign of di/df is the same s that of the cross
partial derivative Fiy at the optimum. This shows al onee how the
second-order condition helps us in assessing the gqualitative effects
of parameter changes on the optimum ehoice.

As a simple economic illustration, consider a profit maxnuizing,
firm whose demand curve, and hence the revenue curve, shifts Let
R(z,6) be the revenue as a function of output o and w shift para
meter 6. Arrange matters so that Ry is always positive: an inercase
in @ shifts the demand and the revenue curves upward. A calen

lation similar to that above will show that an iucrease ¢ will
increase the profit-maximizing output Z if R,¢ is positive, that is,
if the increase in 6 shifts the marginal revenue upward. Now it is
perfectly possible that as § increases, the average revenne (Lhe de
mand curve) shifts up but the marginal revenuc shifts down; what
is needed is a twist that reduces the elasticity of demand. Then a
favorable shift of demand will cause output to fall. This is what
underlies many fond paradoxes and trick questions in clementary
IICrOCCONOMICS COUrSes.

Let us turn to the case of maximization with a vector of choiee
variables, but still no constraints. Now the Taylor expansion is

F(z)=F(z)+Fo(2) (2 —2)+ 1 (¢ —3)T Fou(2) (£ —2) +... (8.7)



108 Optimization in Economic Theory

Here F,, is the symmetric square matrix of the second-order par-
tial derivatives Fjx = 8*F/0z 0z, the superscript T denotes the
transpose operation to change the column vector into a row vector,
and the second-order terms are the quadratic form

(2=8)T Fer(8) (2 —7) = 3 Y Fjr(@)(z;— ;) (zx— k). (88)

j=1 k=1

Before turning to the maximization problem, it is useful to
note how (8.7) gives a new characterization of concavity. If F is
concave, it lies on or below its tangent, or its value is less than or
equal to that given by the Taylor expansion up to first order. For
this to be true when z is sufficiently close to £ where the second-
order terms dominate the difference, we must have

(z — &) Fpu(2)(z ~7) <0

for all z.

A quadratic form y7 My, where M is a symmetric matrix,
is called negative definite if its value is negative for all y # 0.
This corresponds to the following condition on M. Consider a
principal minor of order k of M, that is, the submatrix formed
by the elements common to any k rows and the k columns with
the same numbers as the chosen rows. The determinant of such a
principal minor should have the sign of (—1)*, negative if k is odd
and positive if k is even. Moreover, this should hold for any choice
of the k rows and corresponding columns, and for every k from 1
to n, the dimension of the matrix. In fact it suffices to check this
for the leading principal minors, namely those formed by taking
the first & rows and columns. The form is called negative semi-
definite if its value is non-positive for all y; the conditions for this
are the corresponding weak inequalities on the principal minors.
With these definitions, we say that F is concave at z if F,,(z) is
the matrix of a negative semi-definite quadratic form.

Now consider the maximization problem. The first-order nec-
essary condition is F,(z) = 0, and then the second-order sufficient
condition is that the quadratic form on the right-hand side of (8.7)
is negative for all x # z, that is, negative definite. The correspond-
ing necessary condition is that it be negative semi-definite. The
objective function need not be concave in the general sense defined
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in Chapter 6, but it must be concave at the point z in the scnse
Just defined.

All this once again helps in doing comparative statics. Sup-
pose a vector of parameters 6 enters the definition of F. The
first-order condition is F;(z,8) = 0. Differentiating, we have

Fo.(2,0)dz + Fo(7,0)d6 = 0,

which looks exactly like the corresponding equation for the onc-
variable case, except that now dz and df are vectors, and F,, and
F,¢ are matrices. The solution for dz is

di = —F,,(%,0)" F,e(z,0) db. (8.9)

The inverse of a negative definite matrix is also negative definite,
and the information about the sign of its minors can be combined
with the information about Fig in specific problems to find the
signs of the changes in some choice variables as somc parameters
change. The results with many variables and parameters are thus
not as simple or gencral as those before. But I shall offer one
application in Example 8.4.

Constrained Optimization

I shall begin with the simplest case of two choice variables and one
equation constraint, and then state how its results extend to more
general situations. Consider the maximization of F(z,,z,) subject
to G(z1,72) = ¢, where both F and G arc iucreasing functions
of their arguments. Figures 2.1, 6.1, and 6.3 considered various
aspects of this. The crucial point is the relative curvature of the
two contours through the optinmumn #; the contour of £ should be
more convex than that of G. To express this algebraically, we have
to think of z, as a function of x; aloug cach contour, and find
the second derivative of this function. Begin with the contour of
F(zy,z2).

The expression for the first-order derivative was obtained in
conjunction with the tangency argument of Figurc 2.1. Equation
(2.8) is

dza/dzy = —Fi(z1,22)/ Fa(z1, 72).
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Now we must differentiate this again, remembering that z, on the
right-hand side is a function of ;. Thercfore

d2I2 _ d[—FI/F2]

dl'12 - d.T]

_F2 (Fi1 + Fraodea/dzy) — Fy (Foy + Fae dzo/dxy)
F,? ’

F* Fy —2F Fy Fio + By Foy
F23 '

The arguments (z;,z2) of all the derivatives of F' arc suppressed
for brevity.

A similar expression can be derived for the second derivative
along the constraint curve. The second-order sufficient condition
for 7 to be a local optimum is that d?z,/dz,? along the F contour
should be greater than that along the G contour. Using the first
order necessary conditions

Fi(z) = /\GJ(.f) for y =1,2

remembering that we are assuming the F; and G; to be positive,
and simplifying, the second-order condition becomes

G2 (Fl1—AG11)—2G1 G2 (Fia = A G12) + G1% (Faz — A G2q) < 0.
(8.10)

This is more neatly expressed in matrix notation: evaluated

at ,
Fll_)\Gll F12_)‘G12 _Gl
dCt F‘Zl —_ )\ G21 F22 - )\ G22 —G2 > 0 (811)
-G, -G 0

The conditions for the general problem with n choice variables
and m < n equation constraints are a direct generalization of this.
In the matrix notation alrcady established, we form the partitioned
matrix

EEI —A Gzz _GIT
-G, 0 ’
of course evaluated at . The top left partition is n-by-n, the

bottom right is an m-by-m matrix of zeros, and the other two
partitions arc m-by-n and n-by-m as appropriate.

e e o e o o e
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Consider its square submatrices formed by the last & rows and
the corresponding columns. We can let & range from 1 to (m+ n),
and the submatrix for ¥ = m 4+ n will be the whole matrix. For low
values of k, the submatrices will be singular because of the large
number of zeros in the bottom right corner. But those for which
k = 2m or more are not necessarily singular. The second-order
sufficient conditions for a local maximum then impose restrictions
on the signs of their determinants. The signs are required to al-
ternate, the first one (that formed by the last 2m rows and the
corresponding columnns) having the sign of (—1)™.

I shall omit the proof, but shall verify that the earlier result
(8.11) arises as a special case of this. When n = 2 and m = 1,
there are only two submatrices to consider. The determinant of the
submatrix formed by the last two rows and columns is —G5?, which
is negative. This automatically conforins with the requirement that
it should have the sign of (—1)'. The next determinant is that of
the whole matrix, and the alternation rule requires it to be positive.
That is just what (8.11) expresses.

Note that the successive submatrices start from the lower
right-hand corner, not the top left. Thus (F;, — AG ;) 1s not
involved. It need not have a determinant of any particular sign,
let alone be negative definite. Thus (F — A G) need not be con-
cave, and while the first-order necessary conditions say that 2 gives
a stationary point of (F'— A (), it need not maximize it. This pos-
sibility was mentioned in Chapter 7 and illustrated in Example 7.2;
now we see more clearly why it can arise.

As usual, the sccond-order conditions are closely related to
questions of comparative statics. Add an s-dimensional vector of
paramcters 8 to the functions F and G 11 the above problem. Then
the first-order conditions are

F (z,0) - MG, (x,0) =0,
and the constraints are satisfied, so
G(z,0) =c.

The optimum choice vector Z as well as the vector of multipliers A
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can change as f changes. Differentiating totally, we have

Y (0°F/0z;0x¢) dix + Y (0°F/0z;06.) df,

k=1 r=1

-3 N { Y (0°G'/0x;0xy) dir + Y (9°G'/0x,06,) dﬁr}
i=1

k=1 r=1

~ 3 d\ 0G0z ; = 0.

=1

This formidable expression, and a simpler one obtained by total
differentiation of the constraint, can both be stated in a much more
compact formn in matrix notation:

T =
[F”_GAIG” C(:) } [;lf?] _ {er_é\er} 9. (8.12)
Of course all the derivatives are evaluated at (z,4).

It should be no surprise that the partitioned matrix on the
right-hand side is the same as the one involved in the second-order
conditions. Once again, those conditions give us some information
about the solutions. Their use is best demonstrated in particular
contexts, and I shall do so in Example 8.4.

Finally, consider the case of inequality constraints: the choice
of z to maximize F(z) subject to G(z) < ¢. In Chapter 3 we saw
that the space of parameters # that enter into the definition of
the functions F' and G splits into several regions. In each region.
a subset of the constraints binds (holds with equality), and the
rest are slack. Different regions have different patterns of binding
and slack constraints. So long as the initial configuration is in the
interior of one of these regions, we can consider small deviations
from it, treating the binding constraints exactly as in the above
theory of equation constraints, and simply forgetting about the
constraints that remain slack throughout the exercise. But if the
initial point is on the boundary between two regions witl different
patterns of binding and slack constraints, then deviations to one
side will have to be treated using one set of equations, and thosc
to another side using a different set. Qur approach based on a
common Taylor expansion will not handle this. In fact there is little
systematic that can be said in such cases; cach has to be handled

et b

.
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ad hoc. Luckily, optima are perched on the boundary between two
regions only for exceptional configurations of parameters, so we
need not worry too much about them.

Envelope Properties

In Chapter 5 we established the envelope property of the maximum
value function of an optimization problem:

V()= max { F(z,0) | G(z) < c}

is the upper envelope of the family of functions F(z,6) in each
of which z is held fixed. If z! happens to be optimum for 8,
then V(8) and F(z',0) are tangential at §,. Figure 5.1 illustrates
this. A relation between the curvatures of the two functions is also
apparent from the figure: V is more convex than each F. This
second-order envelope property 1s the subject of this section.

Chapter 5 subsequently considered a more gencral problem,
where the vector z was partitioned into subvectors (y,z). The
y variables always changed optimally as 6 changed, while 2z were
held fixed in a subproblem interpreted as the short run. We saw
that provided the short-run and long-run maximum value functions
were differentiable, they had the same slopes when the variables
fixed in the short run happened to be at their long-run optimum
values. Now a related second-order property suggests itself: the
fewer variables are held fixed, the more convex should the maxi-
mum value function be. That is the form in which I shall establish
the result.

Continuing the notation of that chapter, let Z(8) be the long-
run optimum values of the z variables, V() the long-run maximumn
value function, and V(z,6) the short-run maximum value function.
When 6 changes to 8, we have

V(Z(6),8") < V(Z(8"),0") = V(")

Expanding the two expressions on the left and the right around 6
in Taylor series, we have

V(Z(8),8) + Vo(Z(6),6)(6' — 6) + 2 Voo(Z(6),0) (8" - 6)* +...
SV(B)+ Va(8) (6" — 0) + 2 Vip(8) (6 — 6)* + ...
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The first-order envelope property allows us to cancel the first two
terins on the left-hand side with those on the right-hand side. This
leaves

(Voo(Z(8),6) — Vig(6) ) (8' —6)* +... < 0.

Taking 8’ sufficiently close to 8, the quadratic term dominates the
rest of the expansion (concealed in ...) on the left-hand side. For
the inequality to hold in this situation, we must have

Ves(Z(8),0) < Vie(0). (8.13)
This proves that the long-run maximum value function is at least
as convex as the short-run one at the point where the two arc
tangent. For suitably ‘regular’ maxima, we have a strict inequality
like (8.13). I shall not pursue this refinement, but will take up an
important application of (8.13) in Example 8.2.

Examples

Ezample 8.1: Consumer Theory

In Example 5.2 the consumer’s expenditure function E(p,u) was
defined as the minimum outlay required to attain the utility level
u at prices p. The compensated demand function C(p,u) was the
vector of quantities that solved this cost-minimization problem.
The envelope property implied that

C(p,u) = Ep(p,u),

the veetor of price-derivatives of the expenditure function.

In Example 6.2 we showed that the expenditure function was
concave. Now we know the characterization of concavity in ternis
of second-order derivatives, and can use this to obtain useful prop-
erties of compensated demand functions.

Differentiating the above relationship, we have

Cp(]%“) - Epp(P»U)- (814)

Since the matrix of second-order derivatives on the right-hand side
is symmetric, we have the symmectry of substitution effects of price
changes:

dC? |dpy, = AC* [0p; = Eju.
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Next, since E is concave, the matrix on the right-hand side is
In particular, its diagonal entrics, being
1-by-1 minors, must be < 0. Therefore

negative semi-definite.

dC7[0p; <0 for all j. (8.15)
[n other words, the own substitution effects of price changes are
non-positive.

The same result follows even more simply from the very con-
cept of a maximum. Manipulation of the ‘revealed preference’ in-
cqualities showing that the optimum does at least as well as any
other feasible choice leads us to the desired result. Suppose p* and
p® are two price vectors, and 2%, z° the corresponding compensated
demands. Both attain the same utility level u. Since 2% gives the
smaller expenditure when prices are p® and z* does the same for
pt, we have

p*x® < p®zb and pPab < pbat.

Adding the two inequalities together and simplifying,

(" —p*) (=" —z*) <0 (8.16)

This is a general version of (8.15): if p® and p® differ only in their
J th commponent, the product in (8.16) reduces to

(p; = p}) (2§ — %) <0,

showing that the own substitution effect of any price chauge is
non-positive. This argument i1s more general in another sense: it
requires no assumptions of differentiability, quasi-concavity cte.
Therefore you should use ‘revealed preference’ arguinents whenever
possible.

Ezample 8.2: The LeChatelier Samuclson Principlc

Consider the consumer’s expenditurc-minimization problem once
again, this time focusing on the sccond-order envelope properties.
Consider a change in any one price, say p;. Compare two situa-
tions. In the first, the quantities of all goods are frec to change
optimally. In the second, the quantity of one good, say @2, must be
kept fixed at its initially optimal level. Each problem will have its
own expenditure function. The first-order envelope property says
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that, displayed as functions of p;, the two will be tangential !
the initial point. The second-order property says that the expen
diture function of the first problem (where there is more freedon
of choice) will be more concave (remember this is a minimization
problem): its second derivative with respect to p; will be more ncg,
ative. But the first derivative in each problem is the compensatcd
demand for z; in that situation. Therefore

0z,
Ip

(')1'1

a 8.16)
= ap, (8.16

T, free o fixed

In other words, fixing the quantity of some other good 2 make:
the compensated demand for good 1 less responsive to its own
price. Roughly speaking, any imposed rigidity in one sector of
the economy causes a reduction in the responsiveness to prices m
other sectors. This is true irrespective of whether goods 1 and
are substitutes or complements. This is known as the LeChatelicr
Samuelson Principle.

Ezample 8.3: Derived Demand

The cost function of a producer is defined by analogy with the ex
penditure function of a consumer. If y is a scalar output produccd
using a vector z of inputs and a production function f(z), we lct
w be a row vector of input prices and define

C(w,y):mrin{wz|f(x)2y}. (8.17)

The properties of this are found by analogy with those of the cx
penditure function (see Examples 5.2, 6.2, and 8.1). It is increasiny
in all its arguments, homogeneous of degree 1 in w for each fixed
y, and concave in w for each fixed y. The cost-minimizing input
choice vector z is found by differentiating the cost function with
respect to the input prices:

z = Cyu(w,y). (8.18)

In the production context there is a further point of interest
Output has a natural scale whereas utility does not. Therefore
the concept of returns to scale is pertinent for a producer’s cosl
function but not for a consumer’s expenditure function. In partic
ular, if the returns to scale are constant, then cost is proportionat
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to output, and the cost function has a multiplicatively separable
{orin

Clw,y) =y c(w). (8.19)

'The function ¢(w) is now the minimum cost of producing one unit
of output. In elementary microeconomics this is called the average-
equals-marginal cost when the cost curve is horizontal; Lere we go
one step further and recognize that the height of this cost curve
depends on the input prices.

Now consider a competitive equilibrium of an industry with
siuch a cost curve and a demand curve D(p). When cach firm’s
average or marginal cost is horizontal at ¢(w), so is the industry’s.
Its intersection with the demand curve determines the industry
equilibrium. The price equals the average (equals marginal) cost:

p = c(w).

| The output is found from the demand curve:

y = D(p).

Finally, the input demands are found by using the special form
(8.19) in the general result (8.18):

T =y cp(w).

By successive substitution we obtain the industry’s demand for
inputs as a function of the input prices, when the output market
is in equilibrium:

z = D(c(w)) cw(w). (8.20)

This is called the ‘derived demand’, and the next question is to
find its derivatives.
The chain rule gives

an/awk =D Cik + D' Ck €y,

where I have omitted the arguments of the functions for brevity.
This is better written as an elasticity:

we 025 _ ¢ (k= 1), (8.21)
Z; awk
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where 7 1s the elasticity of the industry demand curve
n=—pD'(p)/D(p),

6 is the share of the kth input in average cost:
0 = wy zi/(y (1)),

and o, 1s the elasticity of substitution between inputs j and k:
ok = ccjr/(e5er);

of which a special case was examined in Exercise 5.2.
To interpret (8.21), it is useful to split the effect of wy on «,

into two parts. The first is a substitution effect: as relative price.
of factors change, the cost-minimizing factor proportions changc.

As in consumer theory, the sign of this effect 1s unambiguous when
j = k; the concavity of ¢ implies ¢xgr < 0 and so o < 0. When
J # k, the effect depends on whether inputs j and & are substi
tutes or complements. The other term gives the output effect. An
increase in wy raises the whole average equals inarginal cost sched
ule, reducing the cquilibrium output along the demand curve and
thereby the demand for all factors.

Ezample 8.4: Use of Second-Order Conditions

Consider a firm that buys a vector z of inputs at prices w, pro
duces output y = f(z), and sells it for revenue R(y). Its profit.
expressed as a function of the choice variables z and the mput
prices (parameters) w is

F(z,w) = R(f(z))~wz.

We can find the effect of a change in w on the optimum = by
using the general formula (8.9). Now w replaces 6, and

F, = —w, Frp=-1,

where I is the identity matrix. So

dz = Fop(z,w) ™! dw?,
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where the transpose is taken because dw is a row vector like w.
Then
dw dz = dw Fypo(2,0) 7" dw’.

By the second-order mecessary conditions the quadratic form is
negative semi-definite, so dw di < 0. If the maximum is regular,
that is, if the second-order sufficient conditions are satisfied, then
the quadratic form is negative definite, and we have the somewhat
stronger result dw dz < 0.

Next consider a consumer maximizing utility U(z) subject to
the budget constraint pz < I. The first-order condition is

Uz) = Ap,

and so long as utility is increasing, the budget constraint holds
with equality,
px=1.

We want to find the pure substitution effect of a price change. So
let prices change by dp, and at the same tine chiange income by
dI = dp% to compensate the consumer, where z is the optimum
choice at the initial (p,I). Then total differentiation of the first-
order condition and the budget equation gives a particular version
of the general result (8.12),

% )10

—pT T

Then

—p 0 dX

which is negative when the second-order sufficient conditions for a
regular maximum hold. This is another way of fixing the sign of
the own substitution effect in consumption.

Exercises

Ezercsise 8.1: Production Theory

In Exercise 6.2 we examined a firm’s profit function

I(q,p) = max {gy—pz|G(z,y) <0},
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where ¢ and p are respectively the vectors of prices of output:
and inputs, y and z the corresponding quantity vectors, and the

constraint reflects technological feasibility. There we proved tha!
IT was a convex function of (g, p).
Now you are asked to show that the optimum choices of y and
x are given in terms of the partial derivatives of II by
Y= Hq(va)7 T = _HP(Q7P)
Hence show that output supply curves are upward-sloping and i
put demand curves are downward-sloping;:

Oy;/0q; > 0, Oz /Opr <0

for all j, k.

FEzercise 8.2: More on Derived Demand

Consider a competitive firm like that of Example 8.3, but without
the assumption of constant returns to scale. Suppose its total cost
function is C(w,y), so the marginal cost is Cyy(w,y). Assume that
the marginal cost curve is rising, or Cy, > 0. The firm takes the
output price p and the input price vector w as given, and maxi
mizes profit. Find the set of equations that determines its input
demand vector z. Examine the role of the cross-partial derivativ:-
9*C/dyOwy in determining the sign of dz;/0wy. Interpret youw
result.

Ezercise 8.3: Minimization

Develop second-order conditions for unconstrained and constraincd
minimization problems by analogy with the maximization prol,
lems of the text. You will need to define positive definite and
semi-definite quadratic forms, and the signs of the principal i
nors of their matrices.

Further Reading

For a more detailed treatment of consumer and producer theory
see Varian, Microeconomic Analysis, op. cit., chs. 1, 3, or

JAMEsS M. HENDERSON and RICHARD E. QUANDT, Micro
cconomic Theory: A Mathematical Approach, 3rd edn., New York
McGraw-Hill) 1980, chs. 2-5.

#
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The use of second-order conditions in comparative statics was
pioneered by Samuelson; his classic treatise is still cssential rcading.

PAUL A. SAMUELSON, Foundations of Ecomomic Analysis,
(ambridge, MA: Harvard University Press, 1947.
Further reflections on these issues, including a discussion of the
[.oChatelicr—Samuelson Principle, is in his Nobel Prize lecture,

PAUL A. SAMUELSON, ‘Maximum principles in analytical eco-
nomics’, American Economic Review, 62(3), 1972, pp. 249-62.
lor an extension of this principle, with applications, sce

EUGENE SILBERBERG, ‘The LeChatelier Principle as a corol-
lnry to a generalized envelope theorem’, Journal of Economic The-
ory, 3(2), 1971, pp. 146-55.

A useful reference that will help you avoid some pitfalls in the
use of optimization theory is

KNUT SYDSETER, ‘Letter to the Editor on some frequently
occurring errors in the cconoinic literature pertaining to problems
of maxima and minima’, Journal of Economic Theory, 9(4), 1974,
pp. 464-66.



9 Uncertainty

Expected Utility

In a formal scnse, the theory of optimization under uncertaint:
docs not require any new mathematical theory as such. The choice
variables lcad to random outcomes with objcctive or subjective
probability distributions. The objective functions are appropriate
probability-weighted averages (expected values). The choices arc
also subject to some constraints. The general theory developed
in the first eight chapters continues to apply. In fact the special
structure of problemns of choice under uncertainty leads to specific
results that were not available in the general mathematics of con
strained optimization.

Let us make these ideas a little more precise. Suppose that
after the decision at hand has been taken, the world could evolve
in any of a number of different ways. These are called differcut
states of the world, or elementary cvents. Suppose at first that the
states arc discrete and finite in number, indexed by : =1, 2 ...
Write p; for their probabilitics, objective or subjective as may be
approriate for the application being considered. These are nou
negative and add to one. The economically relevant outcomes in
the alternative situations will typically be the levels of income.
wealth, or profit accruing to the decision-maker. Denote thes
by Yi. Most of the time I shall take the Y; to be scalars, bul
in gencral they could be vectors. Then we can write a general
objective function

F(YI,YQ, e }’m;pl,pg, s pm).

The choice or control variables z will affect some or all of the Y,
and the p;; the x variables may also be subject to some additional
constraints. The maximization problem can then be solved by
familiar methods.
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Under certain restrictions on the prefcrences, the objective
function can be cxpressed in a special form, namely the mathe-
matical expectation (probability weighted average) of the values of
a utility function U of the ontcomes in the different states:

Z pi U(Y3). (9.1)
=1

The function U is called the von Neumann-Morgenstern utility
function (of income, wealth, or profit as the case may be), and the
whole cxpression (9.1) is called the expected utility.

This formulation is very useful in its simplicity and its ability
to capture somc economically interesting aspccts of beliavior such
as risk-aversion. Thereforc it is used almost universally in appl-
cations. All the work I discuss is based on it. Since my focus is
on the techniques of optimization, I shall not state or discuss the
conditions under which expected utility maximization is valid, but
refer the reader to the books by Arrow and Kreps cited at the end
of the chapter. Recent research has begun to develop more general
yet tractable alternatives; see the survey by Machina cited at the
end of the chapter.

In most situations, one would not expect the decision-maker to
be indifferent to the risk involved in getting one of a whole range
of values of Y. Suppose therc are just two states, with distinct
outcomes Y] and Y3, and positive probabilities p and (1 — p) re
spectively. Compare this with an actuarially equivalent alternative,
where the mathematical expectation of Y, namely [p Y +(1—p) Y],
is received with certainty. A decision-maker who is risk-averse will
prefer the sure suin. That is,

UlpYr + (1= p)Y2) > pU(Y)) + (1 —p) U(Y2).

This just says that U is (strictly) concave in the range [Y, Y]
More generally, strict concavity implics

U (i PiYi> > Z P U(Y7), (9.2)
i=1 =1

wlien the probabilities are positive and the outcomes distinet. If
U/ is twice differentiable, U'" < 0 corresponds to risk-aversion.
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Once again, the decision variables & affect some or all of the
outcomes and probabilities, setting up the basis for an optimization
problem. A couple of quick illustrations will develop the economic
intuition for this.

First suppose Y; < Y3, so the first state entails some loss.
at least relative to the sccond. A natural response would be to
purchase insurance. Suppose an advance premium payment of .
gets you X if state 1 occurs. If this insurance industry is perfectly
competitive, and each firm can pool a large number of independent
risks, then insurance will be actuarially fair. Then pX = z, o
X = z/p. Therefore ¥; changes to (Y7 — =z + z/p), and Y3 to
(Y, — z); remember that the premium is paid in advance, that is.
in both states. The value of the objective function becomes

pUYi—z+2/p)+ (1 —-p) U}, —z).

The first-order condition for z to be optimum is found using the
chain rule:

pU MY —z+x/p)(1/p—-1)—(1—-p)U'(Yoa—2) =0,

or

U'(Y1, —2 +2/p) =U'(Ys — ).

If U" < 0, this is also sufficient, and implies ¥ —z+z/p = Y3 —
Thus a risk-averse person will buy actuarially fair insurance to th
point where the outcomes in different states are equal. He will
insure, or hedge, fully.

Next suppose the probability of the bad outcome 1 can be
reduced by incurring an expense z in advance. In specific contexts
this might mean using a more reliable but more expensive product.
or exercising more care in the risky activity when the act of beiny
careful causcs disutility. Now we make p a function of z; this will
be decreasing, and since p is bounded below, it will generally 1y
convex. The objective function can be written as

dz)=p(2) Uy —2)+ [L = p(2)]U(Y, — ).

Then

¢'(z) =—p'(2)[U(Y2 —2) = U(Y1 — 2)]
—A{p)U' Y1 —2)+ 1 —p(2)]U'(Y2 — 2)}. (9.3
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The first term on the right-hand side is the expected marginal ben-
ofit, of care or quality, being the product of the marginal reduction
in the probability of the bad outcome, and the difference in util-
ities between the two outcomes. The other terms constitute the
marginal cost of care or quality. The optimum z is defined by the
first-order condition.

Finally, suppose both insurance and care variables are avail-
able. The insurance company cannot tcll whether care was exer-
cised, it can only observe the outcome. If actuarially fair insurance
is available, the objective function is

#(z,2) = p(2) UY: = 2 — o+ 0/p(2)) + [1 = p(2)| U(Ya — = — ).
The first-order condition with respect to x implies
Yi—z—z+a/piz)=Y,—z—z

by the same rcasoning as before. Let the common value of these
be Yy. Then, by analogy with (9.3), we have

é.(z,2)
=-p()UY2 —z—2) - UM -2 -z +1/p(2))]
—{p(x)U'(V1 -z =z +2/p(2)) +[1 = p(2)]U'(Y2 — 2 — z)}
=-U'(Yy) <0

when z is chosen optimally. In words, the marginal benefit from
care vanishes when there is full insurance, while the marginal cost
stays positive. Thercfore the optimum of care occurs at the coruer
z = 0. In other words, the availability of full insurance destroys the
incentive to exercise costly care. This is known as ‘moral hazard’
in the insurance jargon. In practice, ouly partial insurance will be
available when moral hazard is present.

This is an example of the general problem of asymmetric in-
formation: one side in an economic transaction has knowledge of
some relevant variable like risk, effort, or quality that the other side
lacks. Then the transaction cannot take place in a classical com-
petitive market at arm’s length; a contract or an incentive scheme
lias to be designed to get around the information asymmetry as far
ns possible. A vast new area of economic theory of such situations
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Lias opened up in the last decade or so. I discuss two simple prob

lems of this kind in Examples 9.1 and 2, and offer some references

for further reading at the end of the chapter.

The rest of this chapter deals with more conventional situ
ations of choice under uncertainty, particularly portfolio choice
This is somewhat more conveniently treated in terms of continu
ous random variahles rather than a finite number of states of the
world. Thus we replace the index ¢ by a random variable r defined
over the range [r, 7], the probabilities p; by a density function f(r).
and the expected utility expression (9.1) by

EWWM=/TWHMNﬂW (9.4)

r

The choice variable 2 will then become an additional argument i1
the functious Y and f. The interpretation of risk-aversion parallels
(9.2). The mathematical expectation of Y is

ElY] = /T Y(r) f(r)dr.

Then U" < 0 implies
U(E[Y]) > E[U(Y)); (9.51
this 1s an application of Jensen’s Incquality.

One Safe and One Risky Asset

An investor has initial wealth Wy. Investing z in the risky asscl
yields the total (principal plus interest) of z(1 + r), where r i
a random variable with the density function f(r). The safc assc
pays zero interest; this can be generalized but it makes the notation
a little messier. Now the final (random) wealth is

W=W,—z)+z(1+r)=Wo+azr. (9.6

The amount z must be in the range [0, Wp]; ‘short sales’, aud
borrowing at the riskless rate to invest in the risky asset, arc
not allowed. The investor has a strictly concave von Neumann
Morgenstern utility function U, and chooses x to maximize

EUW)] = /‘T UWy +zr) f(r)dr. (9.7,

r
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Let ¢(z) denote this expression regarded as a function of z.
Then

¢ (2) = /T rU'(Wo+ar) f(r)dr =0.

In particular,

wmzvm%yfrﬂnw:wmmEM

Note that U’(Wp) is non-random, and therefore can be taken out-
side the integration (summation). If the mathematical expectation
(probabilistic average) of the rate of interest on the risky asset is
positive, then ¢'(0) is positive, and the optimmun » cannot be zero.
In other words, the risk-averse investor will buy at least some of
an actuarially good investment.

If r > 0, then ¢'(z) > 0 for all #, and it is optimal to put all of
Wy in the risky asset. More typically, the investor will hold sowe
of cach asset. The first-order condition with respect to z is

/‘T rU' Wy +zr) f(r)dr=0. (9.8)

If there is an = < W, satisfying this, then the concavity of U
guarantees that it is the global optimum.

The next obvious step is to study the comparative statics of
this choice. First suppose Wy changes. Recognize Wy as a para-
meter in ¢. So the maximand is ¢(x, Wy). Write its partial deriva-
tive with respect to z as ¢,, and that with respect to Wy as ¢y
Then the first-order condition is ¢.(x, Wy) = 0. Differentiating
this totally as in Chapter 8, we find

d.’L‘/dWQ = —éru,(.l', ‘/I/U )/(f),nl»(;l', I"LV() )
The denominator is negative by the second-order condition, so the

sign of the comparative static derivative is the sae as the sign of
the numerator. Now

$rw(z, Wo) = /T r U"(Wy + ar) f(r)dr. (9.9)

T
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Since an interior z can be optimal only if r < 0 < 7, we cannot fix
the sign of (9.9) without further work. The answer turns out to
depend on the property of a measure of risk-aversion. Remembci
that U" < 0 means risk-aversion; a useful quantitative measure of
this turns out to be

AW) = -U"(W)/U'(W). (9.10)

To interpret this, we consider decreasing the variance of the dis
tribution of W slightly, and asking what decrease in its mean will
leave the investor indifferent. This marginal rate of substitution
turns out to be 3 A(W). A higher A(W) means the investor
willing to give up more of the mean return to get a given small
decrease in variance. Therefore A(W) is called the investor’s ab
solute risk-aversion. We would expect a wealthier investor to he
more tolerant of a given marginal risk, that is A(W) should be =
decreasing function.

Then the result is that if the absolute risk-aversion A(W) i.
a decreasing function of wealth, then ¢, is positive; that is, &
wealthier investor will hold more of the risky asset.

To prove this, note that for r < 0, we have

—U"(Wo + ar) U (Wo + ar) > —U"(Wo) [U'(Wo) = A(Wo).
Multiplying by —r,
r U'(Wy + 2r) /U (Wo + z7) > —1 A(W)),

or

r U"(Wo +zr) > —A(Wo)r U'(Wy + zr). (9.11)
For r > 0,
—U"(Wo + zr)JU'(Wy + ar) < —U"(W,)/U' (Wy) = A(W,).
Multiplying by r,
—r U"(Wo + 2r)/U' (Wo + 27) <r A(Wy),

or

r U"(Wo + ar) > ~A(Wy) r U'(Wy + zr)

once again.
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We have shown that the inequality (9.11) holds for all r, pos-
itive or negative. Integrating it,

/T r U (Wo + zr) f(r)dr > —A(Wy) /r rU'(Wy + ar) f(r)dr.

r

The right-hand side is zero by (9.8). This proves the result.

The next natural questions arc the effects on z of shifts in
the density function f, particularly an increase in risk, and in the
utility function U, particularly an increase in risk-aversion. But
these topics would take far too much space, and I must leave them
o proper microeconomics texts and research articles cited at the
end of the chapter.

Portfolio Choice

Here we allow any number of risky asscts. Tlhe treatment of this in
financial economics usually assuines that the investor’s objective
can be expressed as a function of the mean A and the standard
deviation S of wealth. This is quite a restrictive assumption. In
the expected utility framework, it corresponds to one of two spe-
cial cases: (1) If the von Neumann-Morgenstern utility function is
quadratic,

UwW)y=w — %aWz,
where a > 0 is constant, then
ElUW) =M — %a(]ﬂ2 + S%).

(2) If each asset has a normally distributed return, then wealth has
a normal distribution, and the expectation of any von Neumann-
Morgenstern utility function can be expressed in terms of its mican
and variance. A specific function of interest in this context is

U(W) = exp(~a V),
with @ > 0, for which
E[U(W)) = — exp(~a[M — L a5?))
Then expected utility is maximized when (M — 1 a $?) is. Using

(9.10), we can see that for this function the absolute risk-aversion
is constant and equal to a.
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In either of the two cases where mean-variance analysis is ap
plicable, the indifference curves of expected utility can be shown
in (M, S) space. By constructing the feasible frontier between A/
and S, we can study the portfolio-choice problem diagramaticalls

The initial wealth will be held fixed throughout this exercise
so normalize it to unity. Suppose there are n assets. Write then

total returns (principal plus interest) as a vector r = (ry, ro ... 7, |
These are random variables. Let their mathematical expectation
form a vector p = (g1, pt2 - .. fn), and let the (symmetric, positivi

definite) variance—covariance matrix of the gross returns be ¥
(oij). The portfolio is a vector of proportions of wealth investcd
in the various asscts, z = (1, T2 ... Tn).

The random final wealth is

n
W = E IiTi:ITT.

=1

The mecan and the variance of final wealth are respectively

M:i T =27 g,

i=1

and

n n
52: E E l'i:TjGijZIr]El‘.

i=1 j=1

Note that both M and $? are functions of z.

To find the feasible transformation frontier between M and S.
we want to minimize the standard deviation for a given mean, that
1s

minimize S = (xTE:r,)l/Q, subject to zT =M, 2Te =1,

where e 1s a vector of ones.

The minimized S is a convex function of M. It may have o
decreasing portion, but for large M it is increasing, thus presen!
ing a trade-off between rcturn and risk. The case of two assct:.
suffices to bring out the main points, thercfore I restrict attention
to it here. But the general case illustrates the use of some tech
uiques of optimization from previous chapters; [ shall outline it i
Exawmple 9.3.
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With two asscts, let z stand for x;, so 3 = 1 — 2. Then
M = pig + (g — pa)z, (9.12)

und
S§? =02 2K,z + (K, + Ky)a?, (9.13)

wliere I have defined
_ 2 -2
Ky =o0{ —po10g, No=0;—poy0g,

and p is the correlation coefficient between the random returns
r, and ry, that is, the covariance divided by the product of their
standard deviations.

Order the assets so that g > pp. Then the equations (9.12)
and (9.13) define the frontier in (M, §) space in terus of a para-
meter x. As z increases from 0 to 1, M increases from py to p,
and S changes from o to o1. Along the way,

S dS/dx = —K, + (I + Ky) . (9.14)

So
at x =0, dS/dz =—(o2 —po1),

and
at z =1, dS/dz =01 — poa.

If o, > o2, so there is a risk-return trade-off between the two
completely specialized portfolios, then dS/dz is sure to be positive
near ¢ = 1, that is, there is bound to be a trade-off over some
range of high returns. Even if o1 < o9, that is, assct 1 dominates
nsset 2, there may be a diversification benefit from wixing them,
and therefore a trade-off, if p is sufficicutly less than one.

More generally, the minimun-variance portfolio is given by

K, at — payoy

= K, + Ko - (02 — poyay) + (03 — poLoy)

The conditions for this to lie in [0,1], that is, not involve any short
sales, arc evident from the equation.
Differentiating (9.14) again,

S d28/d2? + (dS/dz)? = C.



132 Optimization in Economic Theory
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Fig. 9.1 — Portfolio choice in mean-variance framework

Simplifying, we find
sgn d*S/da* =sgn (1 — pHoto? > 0.

Therefore the froutier in (M, S) space is convex.

Figure 9.1 sums up the results so far. Two extreme cases arc
worth pointing out. If p = 1, the frontier is simply the straight line
joining (y11,01) to (p2,02). If p = —1, then the minimum variance
is zero, and the frontier consists of two straight lines joining this
riskless portfolio point to each of (p1,01) and (u2,02).

Next suppose there is one riskless asset with a sure gross return
to, and risky assets are as before. If a fraction zy of wealth is held
in the riskless assct, then

M=zopo+a’ p=xop+(1—x0)é g,

where the vector £ gives tlie proportions of the various assets in
the risky part of the portfolio. Likewise,

S§?=2T%z =(1-1) T T¢,

i1
¥
§
:
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or
S=(1—-z) (Tze)"

Therefore the feasible points are found by joining (o, 0) to cach of
the points on the frontier previously obtained. In Figure 9.2, this
produces the efficient frontier ABP; if short sales are not allowed,
and the straight-line frontier ABC if they are. In this casc the risky
assets arc only ever held in the proportions represented by the point
B. Everyone holds a mix of the sure assect and the portfolio B, the
proportions of this mix depending on the attitude to risk. Thus B
becomes a mutual fund.

s
i M
Fig. 9.2 - Portfolio choice with a riskless asscet
Examples

Ezample 9.1: Managerial Incentives

Eliciting the right amount of cffort from subordinates is a problem
for capitalist owners and socialist planners alike. Here is a simple
example. An owner has to hire a manager to ruu a project. If
the project succeeds, it will produce value V. The probability
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of success depends on the quality of the manager’s work. Given
high quality, the project will succeed with probability p, but low
quality will reduce this to ¢. The basic salary nceded to attract «
manager is w. But he has to exert himself more to achieve higl
quality, and will do so only if he is paid a premium e. Both the
owner and the manager are risk-neutral, that is, each maximizes
the mathematical expectation of his monetary returns (ininus the
moncy-cquivalent cost of effort in the case of the manager).

First suppose the owner can observe the quality of the man
ager’s work, and compensate the effort dircctly. His expected profit
from eliciting high-quality work is pV — (w + ¢€), while low-quality
operation would get him ¢ V — w. The interesting case to cousider
is one where (a) high quality yields more profit than low quality,
that is,

pV—(wte)>qV —w, or (p—q)V >e, (9.15)
and (b) the profit with high quality is positive, that is,
pV>w+e. (9.16)

Now suppose the owner cannot obscrve the quality of cffort.
If the owner offers the premium e to a manager iu return for an
unverifiable promise to provide high-quality work, the manager can
cheat and deliver low quality instcad. This lowers the probability
of success of the project, but so long as 1 > p > ¢ > 0, the owner
cannot infer the quality of the manager’s effort by observing «
single success or failure, and therefore has no recourse against the
manager’s breach of contract.

Thercfore the owner must base his payment scheme on the
ouly thing he can observe, namely success or failure. Suppose he
pays the manager z if the project succeeds, and y if it fails. Given
this scheme, the manager will choose high-quality effort if this gives
him greater benefit net of the cost of his effort, that is, if

pr+(l—-ply—c>qz+(1-q)y.

If tlie two sides are equal, the manager is indifferent between high
and low-quality effort. It is usual to suppose that so long as if
makes no difference to him, he acts like a nice guy and breaks the
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tie favorably to the owner, that is, chooses high quality. Therefore
the inequality is weak rather than strict. It simplifies to

(p-—a)(z—y)=e (9.17)
Sccondly, the manager will agree to work for the owner if
pr+(l-plyzwte,

or

y+plz—y)>w+te. (9.18)

These then are the constraints that give the manager the right
incentives.
The owner’s expected profit is

r=pV—[pr+(1-pyl=pV-y—plz—y) (9.19)

He wants to maximize this subject to the two incentive constraints
above. It is obvious that he should make y and (z — y) as small as
possible. Then the constraints will hold with equality, and

z—y=ce/(p—1q), y=w+e—ep/(p—q),
y=w—ecq/(p—9), c=w+e(l-q)/(p—q)  (9:20)

These have a simple interpretation: the manager’s compensation
consists of the basic salary plus a reward for success or s a
penalty for failure.

With these values, the owner’s expected profit is

r=pV —w—c¢,

the same as when he could observe the manager’s eflort directly;
the inability to observe effort has made no difference.

But there is a difficulty. Nothing guarantees y > 0. Thus the
optimum scheme may involve a fine that the manager pays to the
owner if the project fails. In practice such a fine is very difficult
to extract. If fines are ruled out, the problem must be solved with
an additional constraint y > 0. The solution is to go as far as
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possible, namely set y = 0. Then z must satisfy the remaining two
constraints, so

z > (w+e)p and x> ellp—q).

But when the y in the unconstrained solution is negative, w + e i:
less than ep/(p — ¢), and the latter is the binding constraint. So
x =¢/(p— ¢q), and the owner’s expected profit is

T=pV —ep/(p—q).

By the conditions (9.15-16) assumed at the outset, this is less thau
pV —(w+e), but still positive. Thus the need to pay output-based
incentives means a simaller expected profit, but not by so much a-
to make the whole enterprise unprofitable.

This example is just the beginning of a large body of recent
research on the design of incentive contracts. The problem consid
ercd here is similar to that of moral hazard in insurance, where the
company could not observe the risk-reducing carc on the part of the
policyholder. We designed the best contract for a single project. In
an ongoing relationship of this kind, the average of the manager’
successes over time provides statistical information about his effort.,
cnabling a better contract that generates higher expected profit.
Sinilarly, if the planner has several similar managers who face
some common risk, then observation of their relative performance
can provide information about their relative efforts. Finally, in
the example there was a liquidity constraint — the manager could
not be fined — but no risk-aversion. Allowing the manager to be
risk-averse brings additional issues of the efficient allocation of risk
between the planner and the manager. Somne references to the bur
geoning literature on such matters are provided at the end of the
chapter.

The next example concerns a different problem of information.
The planner may not know the innate quality of the manager. This.
.too, has a parallel in insurance, where the policyholder has better
information about his own risk- class than does the company. Thix
gives rise to ‘adverse sclection’; an insurance policy is esI;ociallv
attractive to those who know their own risk to be higher than the
odds mmplicit in the terms of the policy, and who are therefore
undesirable customers from the point of view of the company. It
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wants to design a contract that will handle this problem. For
variety, I shall construct the example in a different context.

Ezample 9.2: Cost-Plus Contracts

Government expenditures for defense, health, and yes, cven educa-
tion are often made on a cost-plus basis. That is, the government
reimburses the supplier’s cost plus a normal profit. The govern-
ment’s purchasing agency usually does not know the true cost of
production of these goods or services. If a supplier wlo can pro-
duce the good at low cost pretends to have a higher cost, he gets a
higher reimbursement, which he can enjoy by paying high salaries
to himself and other workers, spending lavishly on offices and such
facilitics etc. If the government wishes to avoid the excessive pay-
ment, it must devise a scheme that eliminates the temptation to
\nisstate cost. Here is a very simple example.

Suppose the truc average cost of production can take just one
of two values, ¢; and ¢z, with ¢; < ¢2. Each figure alrcady includes
normal profit. The problem is that the higher figure may be real
or pretense; the government cannot tell the difference. In other
words, the supplier can be either of two types, low cost or high
cost, and the purchasing agency cannot tell whether it faces a
genuinely high-cost supplier, or a type-c, who is pretending to be
a type-¢; and planning to enjoy the extra payment.

The government can decide how many units it will buy, and
Low much it will pay, depending on the cost declared by the sup-
plier. Suppose it announces that if the supplier claims to have the
average cost ¢;, for i =1 or 2, it will buy ¢; units, and pay a total
sum of R; for them.

What arc the constraints on these cholces?  First, for cachi
of the two cost figures, if that happens to be genuine, the supplier
should be willing to participate. That is, his cost shiould be covered:

R:>ciq for+ == 1,2. (9.21)

Secondly, it should be optimal for the supplier to reveal his frue
cost. These are called incentive compatibility constraints. If the
supplier’s true average cost is ¢, lie should not wish to pretend it
is ¢, and the other way round. Economic intuition suggests that
only the first of these will be binding (a truly high-cost firm will
not pretend to be low-cost), but a proper theoretical treatment
should prove that, and not assume it at the outset. Now if a firm
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with cost ¢ pretends to have cost cg, it sells g, units instead of gy,
and has revenue R, instead of Ry, but its actual cost in its profit
calculation stays at ¢;. Therefore the constraint for a firm with
cost ¢ to report it truthfully is

Ry —c1q1 2 Ry — a1 qo. (9.22)

Similarly for a firm with true cost ¢y, the constraint is

Ry —cyqp 2 Ry — 241 (9.23)

Suppose the government gets benefit B(g) from quantity g,
where B is an increasing and strictly concave function. Suppose
its estimatc of the probability of the true cost being ¢; is 8, and

that of ¢z is 2 = 1 — 6;. Then its expected benefit net of the
payments to the supplier is

61 [B(q1) = Ri]+ 62 [B(q2) — Ra |- (9.24)

The optimum scheme will maximize this subject to the partici-

pation and incentive compatibility constraints (9.21-23). For the

moment I shall ignore non-negativity constraints on the ¢; and R;.
Form the Lagrangian

L =6,[B(q1) — R1]+6,[B(g2) — Rz ]
+p1 [By — er qu] + p2 [Ry — €2 g9
+M[R—Ry—crqter @+ ARy — R —caqa +eaqul.

Most of the economically interesting results can be found with-
out solving the whole problem. First we add the incentive com-
patibility constraints together and simplify to write

(2 —e)(q1 —q2) 20, (9.25)

so if the supplier declares lower cost, he will sell at least as much,
and typically more. This is a part of the incentive for the low-
cost-type firm to respond truthfully. Indeed the solution may have
g2 = 0 and ¢ > 0. That will effectively eliminate the incen-
tive to pretend to have high cost. But this carries a risk: if the
supplier turns out to have genuinely high cost, the government,
haviug committed itself to the scheme, will be unable to purchase
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from him even though such a transaction might be ez post desir-
able. Therefore such a solution will arise only if either this risk
or its consequences are sufficiently small, that is, if 3 is small, or
B'(0) is finite and small. I shall leave the details to tle reader, and
assume henceforth that ¢, and ¢; arc both positive.

Now consider the participation constraints (9.21). The aim is
to prove that botl cannot be slack. Begin by noting that if a type-
2 firm makes positive profit, so docs a type-1 firm. To see this,
suppose Ry — ¢ g2 > 0, then from type 1’s incentive compatibility
constraint (9.22) we have

R, — 1 qQ > (CQ — Cl)QQ > 0.
Next note the first-order conditions for Ity and It):
*91 +/\1—/\2 +/l] :0,

—92*/\1+/\2+ﬂ2:0.

If firins of both types make positive profits, both participation
constraints are slack, and complementary slackness implies py =
0 = 1. Then

0= — Ay = —6;

but both #; and 8, are positive, so this is impossible.
Therefore the optimum scheme must have

Ry —crq0 =0, Ry —c1q1 > 0. (9.26)

The positive pure profit is another part of the incentive a type-1
firm has for revealing its low cost truthfully. Its average revenue
Ry /q exceeds its average cost ¢, but by type 2’s incentive cont-
patibility constraint, it cannot exceed ¢y

Of course the government will make 17y as small as possible
while meeting type 1’s incentive compatibility constraint (9.22).
Substituting for R, in it, we have

Ri=cq + (2 —c1)q (9.27)

With this, it is casy to verify that (0.23) is automatically satisfied,
and it is a strict inequality so long as ¢ > ¢2 which is true at the
optimum. Thus we have proved the intuitive suggestion that the
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truly high-cost firm will not want to deflate its cost, but the truly
low-cost firm will be on the verge of wanting to inflate its cost.
Now the government’s objective function can be rewritten as

01[B(q1) ~c1q1 —(c2 — 1) 2] + 62 [ Blqz2) — c2 g2 |.
The first-order conditions with respect to ¢; and ¢, are
Bl(ql) = C1,

and

B'(gz) = c2 +(6:/62) (c2 — c1).

These have a role in the incentive scheme, too. Of the two.
(9.28) is straightforward. If the supplier declares himself to be
low-cost, the government buys from him a quantity that makes
the marginal benefit equal to the marginal (equals average) cost.
But (9.29) is more complicated. If the supplicr declares himself to
be high-cost, that in itself would be a reason for buying less; the
equality of marginal benefit and cost would imply B'(¢2) = ¢z and
thercfore g2 < ¢1. In fact the right-hand side of (9.29) is greater
than ¢y, so the governient buys even less from a high-cost supplier.
This again makes it less tempting for the low-cost supplier to inflate
cost. The policy does mean giving up a net marginal social gain
when the supplier is really of type 2, but it is desirable to incur
some such cost to achieve the offsetting gain on the incentive side.
Another way of expressing the idea is to note that the possibility
of the cost being higher offers a temptation for the low-cost firm
to pretend a high cost; this is like an external diseconomy causel
by a high-cost firm. The right-hand side of (9.29) adds the shadow
cost of this externality to ¢; to get the true social cost of a type-2

(9.29)

firm. Then the amount ¢ bought from it equates the marginal
benefit with this true social cost.

FEzample 9.5: The Mean-Variance Frontier

Here I examine the convexity of the transformation frontier in port-
folio selection with n assets. This fills out the technical details
omitted from the text, and incidentally provides a nice illustra-
tion of the use of convexity and maximum-value functions. The
argument proceeds using two intermediate results or leminas.

Lemma 1: ¢(z) = (2T % .r)% is a convex function of z.

it

e TR SR i
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Proof: Let ¢? = 27 £z, then differentiating,

2¢¢, =2%r,
and
¢¢II+ ¢I¢Z= .
Therefore
YrzTE®
¢¢II =3 - T

We show that the matrix ¢, is positive semi-definite. For

any vector z,

¢ ZT ¢rzz

T8z -:T82 ITEZ/¢2
=T8T /(@ Ea).

This expression is non-negative by the Caucly-Schwartz inequal-
ity.

Lemma 2: If ¢(z) is convex, and
S =min{ ¢(z) | pTx =M eTaz=1},

then S is a convex function of M.
Proof: Let M, M be any two valucs of M, and let !, 22 the
respective minimizers. Then for any 6 € [0, 1],

T (0t 4+ (1—80)2%) =6M; + (1 - 6) My,
T (92! +(1-0)a*) =1
So the average portfolio is feasible. Thercfore

SOM; +(1—60) M) < ¢(0z' +(1—8)x*)
<H(z') + (1 8)p(a?)
=60S(M))+ (1 —8)S(M,).

This proves the desired convexity. Now I indicate how to
obtain the explicit solution for the frontier S(M). It is easier to
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S 2
immmize $%. Let a, 8 denote the multipliers on the respective

constraints. The first-order condition is

Tr=apu+Pe.

Solving for z and substituting in the constraints,
a (BT wy+ 8 ("7 ) =M,

a (@7l e)+ 8 (! D1 e) =1.

These two equations can be solved for a and 3, which in turn gives

expressions for the optimum portfolio & and the minimized § in
terms of M.

Exercises

Ezercise 9.1: Tazation of Risky Income
Suppose .tha,t in the model of one safe and one risky asset in the
text, we introduce taxation of intcrest income on the risky asset

(with deduction allowed for losses) at the rate 7, where 0 < 7 <1
Thus the final random wealth is '

W=Wo+(1-r)er

Show that the first-order condition for an interior optimum z is

/r rU'(Wo+ (1—1)zr) f(r)dr = 0,

Deduce that if 7 changes, the optimum z changes keeping (1 — T)x
constant. Therefore if the tax rate on risky income increases so
does the amount of wealth held in the risky asset. Suggest, an
economic intuition for this seemingly paradoxical result.

Ezercise 9.2: Saving with Uncertainty

A consumer lives for two periods. Income in period 1 is sure and
cqual to Y1, The income Y, in period 2 can be random. If he
Sﬂ‘V(‘S.S from his period-1 income, he gets total return (prin(:ipai
plus interest) of r .S in period 2, where r can be randomn. VHis

skl
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objective is to maximize the expected present value of the utilities
of consumption in the two periods:

U(Y, - S)+ 68 B[U(Y, +75)],

where U’ > 0 and U"” < 0. Write down the first- and second-order
conditions. Show that as Y] increasecs, S also increases but at a
smaller rate, that is, the marginal propensity to save lies between
0 and 1.

Next suppose that Y, 1s sure but r is random, and cxamine
the effect of an incrcase in Y,. Finally, suppose r is sure but Y,
random, and examine the effect of an increasc in r.

Further Reading

A basic exposition of the economics of uncertainty is in Varian,
Microcconomic Analysis, ch. 3, sccts. 18-20. For a fuller treat-
ment, including a discussion of the validity of expected-utility max-
imization, see

Davip M. KRErs, Notes on the Theory of Choice, Boulder,
CO: Westview Press, 1988.

The classic, and still highly recomnmended treatment of cx-
pected utility theory and its applications is

KENNETH J. ARROW, Essays in the Theory of Risk-DBearing,
Amsterdan1: North-Holland, 1971, chs. 1-3.

A review of recent work on criterion functions more general
than expected utility is

MaARK MACIINA, ‘Choiee under uncertainty: Problems solved
and unsolved’, Journal of Economic Perspectives, 1(1), 1987, pp.
121--54.

The general theory of the comparative static cffects of iu-
creases in risk and in risk-aversion can be found in

MicHAEL RornscmLp and Joseen Sticrrrsz, ‘Inercasing
risk: (1) A defintion, and (2) Economic Consequences’, Journal
of Economic Theory, 2, 1970, pp. 225 43 and 3, 1971, pp. 66 84,
and

PETER DIAMOND and Joskru STIGLITZ, ‘lncrcases in risk
and in risk aversion’, Journal of Economic Theory, 8, 1974, pp.
337-60.

The theory of portfolio scleetion is set forth in every book on
financial cconomics. At an clementary level, the interested reader

can consult
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RICHARD A. BREALEY and STEWART MYERS, Principles of
Corporate Finance, 2nd edn., New York: McGraw-Hill, 1984.

A more advanced treatment is in

CHI-FU HUANG and ROBERT H. LITZENBERGER, Foundations
of Financial Economics, Amsterdam: North-Holland, 1988.
' Varian (ibid., ch. 8) gives a brief treatment of asymmetric
information. For more detailed expositions, see

DAviD KREPS, 4 Course in Microeconomic Theory,

chs. 16-18. op. cit.,
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10 Time: The

Maximum Principle

Statement of the Problem

As in the case of uncertainty, the study of optimization over time
requires no new general principles. The variables to be chosen will
pertain to different dates, but we can always stack them together
in one large vector z, and the general problem remains one of max-
imizing the value of a function F(z) subject to a vector inequality
constraint G(z) < c¢. At the time when the decision is taken, the
knowledge of future tastes and technology may be very imperfect.
But this simply requires us to capture the uncertainties and at-
titudes to risk in the functions F and G. As time unfolds, there
may be opportunities to rethink the current decision and revise the
plan. But this merely requires us to recognize such future revisions
in our current decision. Such a consideration may lead us to take
more flexible decisions now so as to allow later choices in the light
of better knowledge. But it may also mean making commmitinents
now to foreclose certain future avenues that tomorrow’s preferences
would tempt us into, when today’s preferences dictate otherwise;
here today’s decision involves playing a game of strategy agalust
one’s own future self. Once all such considerations are incorporated
in the objective function and the coustraints, the formal theory of
the previous chapters continues to apply.

The reason for studying optimization involving time as a sep-
arate topic, therefore, is not that it requires any basically new
theory. Rather, it is that such problews often have a special struce-
ture that enables us to say more about their solutions, The most
important aspect of this special structure is the existence of stock—
flow relationships among the variables at successive points in time.
Some of the variables, which I henceforth label y with the appro-
priate time-subscript or argument, have the dimensions of a stock.
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Others, labeled z, have the dimensions of a flow. In the mathema
tical termiinology, the stocks are called state variables and the flows
control variables. Thinking in terms of the usual production inter
pretation, economic activity in one period determines the changes
in stacks from that period to the next. The feasible increments to
stocks depend on both the stocks and the flows during this period.
Therefore production possibility constraints are

Yig1 — Y1 = Qys, 715 1), {10.1)

Here t and (4 1) are successive discrete periods of time, y denotes
stocks of capital goods, z can include labor supply, consumption
flows etc., @ should be thought of as a production function, and
the explicit appearance of ¢t as an argument of this function cap
tures exogenous technological change. Mathematically, the control
variables control the change in tlie state variables. In conformity
with the usual ideca that it should be permissible to throw goods
away, I should write (10.1) as an inequality

Yo+ Qye, 2, 1) 2 Yaga-

But in fact this constraint will always bind along an optimal patl,
so I shall use the simpler equation form.

In addition to the constraints that govern changes in stocks.
tliere may be constraints on all the variables pertaining to any onc
date, such as

G(yt, 2, ) <0, (10.2)

wliere (G is a vector function. An example would be a constraint
that requires consumption not to exceed gross output. Constraints
for stocks and flows to be non-negative can also be included in
(10.2).

Another special feature that often occurs in optimization over
time 1s that the criterion function is additively separable: it can be
expressed as the sum of functions, each of which depends on the
variables pertaining to only one date:

T
Z F(ylazt’t)' (103)
t=0

For example, a firm maximizing the discounted present valuc of its
stream of profits would naturally have such an objective, and time
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would enter the function explicitly in the form of discount factors
(14 r)~", where r is the rate of interest. For a consumer’s choice
over time (the saving decision), it is often convenient to assume
that the utility function is additively separable over time. This 1s
a restriction on preferences. Roughly, it requires that ‘the marginal
rate of substitution between lunch and dinner is independent of the
amount of breakfast’; a neat example due, I believe, to Henry Wan.
As with the expected utility formulation in the case of uncertainty,
additive separability over time is commonly assumed because of its
analytical tractability.

Just one more detail remains to be specified. The time-span
of the optimization problem begins at t = 0. The initial stocks or
state variables yo must be the result of some unspecified history;
we simply take them as given. Similarly, when the optimization
ends at a finite T, we must specify some terminal condition, and
the simplest is a requirement of a fixed vector yr 4 of stocks to be
bequeathed to the future.

The Maximum Principle

Now the choice variables are the y, for ¢ = 1,2,... T and the z
for t = 0,1,...T. These are subject to the constraints (10.1) and
(10.2), cach holding for ¢ = 0,1,...T. The objective function is
given by (10.3).

We can define shadow prices and form the Lagrangian as usual.
Let A, denote the multipliers for the contraints (10.2); these have
the usual interpretation of shadow prices of the constraints on ac-
tivities at £. The shadow prices of (10.1) arc new, and wmore in-
teresting. They tell us the amount of the first-order inerease in
the objective function if the constraint on the nercase in stocks 1s
relaxed, that is, if we are given a gift of a small addition to the
stock yi41. Therefore they are the shadow prices of the stocks at
(t + 1), and I shall denote themw by 1.

Write £ for the Lagrangian of the full mtertemporal problem.
Then

L: =
t

+ T4 [‘yz + Q1,205 ) — yt+l] — MGy, 20 t) } (10.4)

T
{ F(ytvzﬁt)

0
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The arguments of £ are all the y,, 24, A¢, and my4; they are too
numerous to list on the left-hand side. In this chapter I shall
use the first-order necessary conditions established in Chapter 3,
without ever explicitly comparing the optima with other feasible
choices. Therefore I shall not need bars to distinguish specific
points from general ones, and shall make the notation simpler by
omitting them. I shall also assume that the appropriate constraint
qualification is always met.

The first-order conditions with respect to z; tort =0,1,...7
are simple:

a[’/azt = Fz(yt7 Ztyt) + Tt41 Qz(yta zt7t)
—‘)\t Gz(yt,zt,t):[). (105)

Those with respect to y; are made more complicated because eacl
y; appears in two terms of the sum. For example, y; appears iu
the functions F, Q, and G and as may; in the term ¢t = 1, and
also as —my y; in the term ¢ = 0. We can rearrange the expression

so that each y; appears in only one term. Take only the relevant
portion of (10.4):

T

Z Ter1 (Yt — Yet1)

t=0

=m (yo—vy1)+m2(y1 —y2)+ -+ Tryp1 (Yyr — yYre1)

=yomi+y1(me—7mi)+ ...+ yr (Tre1 — Tr) = Yra1 Frg
T

= Z Ye (Tep1 — Te) + Yo Ty — Yoy Trgy- (10.6)
t=1

Then (10.4) becomes

L= Z { Fye, z,t) + i1 Qye, 24, 1)

t=1

+yp (g1 —m) — At Gy, 24, t) }
+ F(yo,20,0) + m1 Q(yo, 20,0) + Yo "1 — yr41 Tryq- (10.7)

The terms left hanging in the last line pertain to yo and yry,.
which are not choice variables. The first-order conditions on y; for
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t=12,...T are
a[’/ayt = Fy(ytaztat) + T4 Qy(yh Ztvt)
+ 41 — Tt — X Gy(ye, z1,t) = 0,

or

Ti+1 — Tt = —[Fy(yt,lt,t) + w41 Qylyt, 26, )
_)‘t Gy(ytvztvt)]' (108)
These conditions can be written in a more compact and eco-

nomically illuminating way. Define a new function H, called the
Hamiltonian, by

H(y,z,7,1) = F(y,z,t) + 7 Q(y, =, 1). (10.9)

Then (10.5) says that the controls z; at t should be chosen to
maximize H(yq, zt, Te41,1), subject to the constraint G(y:,z¢,t) <
0. Write H*(y¢, Te41,t) for the resulting maximum value._

Define the Lagrangian of this single-period optimization prob-
lem L (not to be confused with the £ for the full problem over all

periods) as
L:H(yt,zt,ﬂ,+1,t)—)\t G(yt,zt,t). (1010)
Then (10.8) is more simply written as
Tip1 — Tt = _Ly(ytaztyﬂ't+]7t)-
In the static maximization problem, only the z; arc choice varl-
ables and the y; and 41 are parameters. Therefore the Envelope
Theorem applies, and we have

Tt4+1 ——7Tt:7[{;;(y,,ﬂ'1+|,f). (1011)

The Envelope Theorem also gives Hp = L. = Q, (%vuluate.d
at the optimum. Therefore we can write (10.1) in a form that is

symmetric to (10.9):
yer1 — ¥t = Ho(yo, T, t)- (10.12)

The results can be summed up as follows:
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The Mazimum Principle: The first-order necessary condition:.
for the maximization of (10.3) subject to (10.1) and (10.2) are

(1) for cach ¢, z; maximizes the Hamiltonian H{ye, 2z, mq1, 1
subject to the single-period constraints G(y¢, z1,1) <0, and

(ii) the changes in y, and r, over time are governed by the
difference equations (10.11) and (10.12).

This principle proves useful in solving such problems in specific
applications. But its greatest conceptual merit is in the economic
interpretation of the maximization condition (i). 1t is clear thal
we would not want to choose z, to maximize F(yy, z1,1): we know
that the choice of z, affects Yet1 via (10.1), and therefore affects tlic
terms in the objective function at times ¢ +1 ete. In the production
mterpretation, for example, a big splurge of consumption today
would increase utility today, but would mean a lower capital stock
for the future, and therefore less consumption and less utility in
the future. How can we capture all these future effects in a simple
way? By using the shadow price of the affected stock, of course.
The effect of 2z, on ¥4, equals its effect on Q(y,, z,,¢), and the
resulting change in the objective function is found by multiplying
this by the shadow price 7,4 of Ye+1. That is just what we add to
F to get the Hamiltonian. Thus the Hamiltonian offers a simple
way of altering the one-period objective function F(y,, 2, t) to take
nto account the future conscquences of the choice of the controt«
zy at t.

The condition (10.8), or cquivalently (10.11), also has a uscful
economic interpretation. A marginal unit of Yy, yields the marginai
return Fy(t) — A, G, (t) within the period t, paying proper attention
to the shadow cost of the single-period constraint, and an extra
Q,(t) the next period valued at mey1. (Note that T have used the
argument ¢ instead of the full (y,, z,, t) for brevity.) These can be
thought of as a dividend. The change in price 7,4, — 7 is like
a capital gain, except that the prices are in present-value terimns.
S0 ¢4 contains an extra discount factor that captures the usual
interest or opportunity cost of carrying y; for one period. When
Y¢ 1s optimum, the overall marginal return, or the sum of these
components, should be zero. That is just what (10.8) expresses.
wlien written as

[Fy(t) = M Gy(8)] 4 (1) Qy () + [reqs — m) = 0. (10.13)

oo 5 B T
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In other words, the shadow prices take on values that do uf)t permit
a pure or excess return from holding the stock; this 1s an intertem-
poral no-arbitrage condition.

What if the terminal condition on stocks yr,, had not been
imposed? As these stocks contribute nothing to the objecFive func-
tion, the optimal policy should keep them as low as p.0851ble, usu-
ally zero. But in some cases it may be desirable to bUI.l(l up sFoc.ks
first to provide output and utility, and then depreciation limits
how fast they can be run down before the terminal date. If any
positive stocks are left, they must be worthless, in other words, we
should have

yry1 = 0, 7ryp >0,  with complementary slackness.

More generally, if there is a constraint yry, > g, we get

Yrp1 2 Ys  Trpp 20, with complementary slackness. (10.14)

Such a condition on terminal stocks and their shadow prices is
often called a transversality condition.

Continuous-Time Model

Up to now I have treated time as passing in a discrete succession.of
periods. This permits the development of the theory as a special
case of the standard Lagrange—I{ulin—-Tucker theory, and easy eco-
nomic interpretation of the conditions. But when sollving act}la,l
specific examples, it turns out to be much more COIIV(’,llleI.lt to think
of time as a continuous variable. There is no real theoretical reason
for preferring the one or the other. For mncmonic convenience, I
shall write discrete timme as a subscript, and continuous time as a
function argument in parenthieses.

We can think of continuous time as the hmit when we take
discrete periods of length At, and let this shrink to zero. This
requires some modifications in (10.1 3). Flows are 11()w.1';1‘t(‘s per
unit time, so the right-hand side of the stock flow relation (1()..1)
must be multiplied by the length At of the period. The equation
becomes

y(t + At) — y(t) = Q(y(t), =(1), 1) At.

Dividing by At and letting this go to zero gives the time~deriv%1tive
of the stock on the left-hand side. It is conventional to indicate
this by a dot placed over the variable. Thus we have

0(t) = Qu(t), =(1), ). (10.15)
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Ouly a notational change from subscripts to arguments is needed
in (10.2) to get

G(y(t),2(1),t) < 0. (10.16)

The sum in (10.3) is more complicated. The total span of time
from 0 to T is split into T'/ At little discrete periods. Indexing these
periods by i, the sum can be written as

T/At
> F(y(i At), z(i At),i At) At.

1=0

The limit of this sum, when At goes to zero, is the integral

T
/(; F(y(t), z(t),t) dt. (10.17)

An incidental advantage is that m;4a¢ converges to ¢, and
thus stocks at time ¢ do not go awkwardly together with shadow
prices at t +1 in the Hamiltonian. Defining H as in (10.9), z; max-
imizes H(y(t), z(1), 7(t),t)) subject to G(y(t), 2(t),t) < 0. Writing
H* for the maximum value function, y(t) and 7(¢) satisfy the pair
of differential cquations

i(t) = Hi(u(t), w(1),1), (10.18)

and
m(t) = —Hy(y(t), 7(1),1).

We could formally derive these conditions by first defining the
Lagrangian £ of the full problem by analogy with (10.4):

(10.19)

7
£= [ { R, a0.0 4 70) [, 2(0,0)— it0)]

) Gy (), (1), 1) } dt. (10.20)
The analog of the rcarrangement in (10.6) is integration by parts:

T T
—Aﬂwmwﬁ=AzMHMm+wmﬂm—Mﬂﬂﬂ-
(10.21)
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Then

T
L :/O { F(y(t), 2(t),t) + () Q(u(t), z(t), 1) + y(t) 7(t)

M) G(y(), 2(1), 1) } dt 1 7(0)5(0) — m(T) y(T).(10.22)

Now we can think of the integral just like a sum, and differentiate
with respect to z(#) and y(t) to get the first-order conditions

Fo(y(t),2(t),t) + (1) Qu(y(t), =(t), 1)
() G (y(t), 5(1),1) =0, (10.23)

and

F,(y(t), z(t),t) + 7(t) Qy(y(t), 2(2),8) + 7(1)
CA(#) Gy (y(t), 2(1),8) = 0. (10.24)

(10.23) is the condition for z(t) to maximize the Hamiltonian, and
(10.24) parallels (10.13), the intertermnporal arbitrage equation
F,(t) — M#) Gy(t) + =() Q1) +7(t) = 0. (10.25)

Of eourse matters are not really that simple. Integrals cannot
be differentiated in the ordinary sense with respect to a variable
at one instant of time, and a rigorous theory of optimization with
continuous time is very complicated. But short-cuts like the one
above do lead to usable results. This will suflice for most readers;
those demanding more can pursue the references cited at the end
of the chapter.

Practical applications of the Maximunm Principle proceed by
deriving the differential cquations (10.18 19), and solving them
subject to the appropriate conditions at £ =0 and 7. If time does
not enter the Hamiltonian cxplicitly, the solutions can be shown
geometrically in the (y, ) space; such a pictorial representation is
called a phase diagram. Tts use is best explained by illustrating it
in the context of a specific problem of cconomic interest. I shall
develop such an application in Example 10.2.
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Examples

Ezample 10.1: Life-Cycle Saving

C.onsidcr a worker with a known span of life T, over which hc
will earn wages at a constant rate w, and receive interest at «
constant rate r on accumulated savings, or pay the same rate on
accumulated debts. Thus when his stock of accumulated assets

(debt. if negative) equals k, his flow income is (w + rk). Writing ¢
for his consumption flow, capital accumulation is governed by

k=w+rk—c
Note that k and ¢ are functions of t. The general point of evaluation

is taken as understood; only special values are shown explicitly
wlen needed. )

' In technical language, k is the state variable, and ¢ the control
var'lable. Suppose there are no inheritances or bequests, so the end-
point conditions are

k(0) = k(T) = 0. (10.26)

Suppose .t.herc are no other constraints on choice. The instanta-
neous utility function is In(c), and there is a utility discount rate

p, so the maximand is
T
/ In(c) e™#! dt.
0

To use the Maximum Principle, define the Hamiltonian
H=lIn(c)e " +m(w+rk~c). (10.27)
The condition for ¢ to maximize H is
cle ™ —7m=0. (10.28)
Substituting in (10.27), the maximized Hamiltonlan becomes
H*=—(In(r)+pt) e " +7(w+rk)—e .
The differential equations for k and 7 are

k=0H"/0r =w+rk—n"" e, (10.29)
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and

&= —OH*|0k = —rT. (10.30)

The general solution of (10.30) is obvious:
T=mp e ", (10.31)

where 7 is a constant to be determined. Substituting this int

(10.29), we have
b=wdrk—mt TN
Now
d(ke ") /dt = (k—rk)e " =w et —me Tt e,
which integrates to
ke ™ —k(0)=w[l—e""]/r— T [1—e " ]/p.

Since we know k(T), this equation fixes 7o, and completes the
solution.

Some economically important facts can be found without know-
ing the complete solution. Using (10.31) in (10.28) we can write

c=mp ! (T,

This shows that the worker’s optimum consumption grows over his
lifetime if r > p. Since consumption and wages must balatice over
his whole lifctime in the sense of having equal discounted present
values, this implies ¢ < w in the carly years of life aud ¢ > w
in the later years. In other words, the cousunuer saves carly on,
builds up assets, and in the last ycars of life s down the savings.
The opposite happens if r < p. Some institutional constraints
may prevent him from having negative assets by dissaving at the
beginning of his life, and of course the whole econonty could 1ot
be in equilibrium with all consumers atterpting to dissave. But
these are separate issues.

This is merely the simplest example of life-cycle saving. The
theory can be generalized to include more complicated preferences,
labor supply and retirement choices, taxation, uncertainty, liquid-
ity constraints, and many more features of reality.
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Erample 10.2: Optimum Growth,

This is also a problem of optimal saving, but from the point of view

of the o .

I-tf:i,lg j:)::l{(::t{l::gaFv‘\;ilczlcéhThetcha‘fnge of perspective brings with
fwone tures. 5%, the rate of return to saving cannot be a
l(;:l\l(t)g;;rlll(;li)éntz;rl\et rate of mterest.as it would be forg;m individualu
e 1€ endoger%ous marginal product of capital. Secondl ’
here 15 no logical terminal date to the plan. 1 shall "
theory by formally letting T = oo, and m(;nti(; Ltl
complications only in passing. , S

develop the
e attendant

N .tsili)pose the aceumulated saving becomes a scalar stock of
:( ) L 9 1 ] io :
F(IL,I)RTI’ and t'he flow of ()‘utput 1s given by the production function
Con, . The ttllqu;l( a;sumptlons are that F is increasing and strictly
cave, with £7(0) = 0 and F'(0) = i A
neave, w : = o0. Capital depreciates at
proportional rate §. If the consumption flow is ¢, tlen t il
accumulation equation is e e capital

= Fk)y— 6k — ¢, (10.32)

The initial capital stock k(0)

. is given. There are T ©
. are 1o other con-

The utility of the fow on 1
. > of consumption is {7 1 asing :
:9t1'1ctly concave. The utility disco © o ]
is

unt rate is p, so the maximand

/ Ufe) e P gy
0

?111 (t)bvmus potelfti'al difficulty is the convergence of this integral
1at 1nceds a sufficiently large p; T shall leave out the details. '

To apply the Maximum Principle, define the Hamiltonian

H=U(c) e~ + 7 [F(k) —ok—c]
The condition for ¢ to maximize H is
Ule) e™# = 1. (10.33)
The differential cquation satisfied by 7 ig
T =—-0H/0k = —m[F'(k) - §]. (10.34)

7o o
Whi(.}? evcmllld solve .(110.33) for c and substitute the result in (10.32)
would then join (10.34) in giving us a pair of (lifforcntiual’

b

ot
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equations for ¥ and 7. Actually it is more convenient to work in
terms of 7 et = ¢ say, because the pair of differential equations
for k and ¢ does not involve time explicitly. Here I shall take a
different approach, and work with & and c.

Differentiation of (10.33) gives

= (U"(e) é—pU'(c)] ™.

Using (10.34) and simplifying, we find

¢_Fh)—(p+8) (10.35)
c n(e)

where n(c) is the elasticity with which the marginal utility of con-
suption declines as consumption increases:

n(e) = —¢ U"(c)/U"(c).

Observe that Example 10.1 had a formally identical structure, with
F'(k) constant and equal to r, § =0, and n{c) constant and equal
to 1.

Now we can use (10.32) and (10.35) as the pair of differen-
tial cquations in & and ¢. Tiume does not cnter explicitly, and we
can show the solutions in a diagram; sce Figure 10.1. Given any
poiut (k,c), we can find the velocitics (i:,c') from the differential
equations. Thesc can be shown by a small vector arrow attaclied
to (k,¢). If we do this for all points, we can join successive ar
rows together and find whole paths of motion in the (b, ¢) space.
Given an initial point, the differential equations deternune the suly-
sequent change to proceed along the solution path passing through
this point. Two such patlis cannnot cross, hecanse the direction of
motion is uniquely deternined by the equations given a starting-

point.
The easiest way to understand the phase diagram s to recog-
nize that cacl of k and ¢ can increase or decrease; thus thie space is

split into four regions cach corresponding to movement toward the
north-cast, south-east cte. From (10.32), we see that & lucreases if
¢ < F(k)— &k, which is the region below the curve ¢ = F(k)— 6 k.
This curve has its pcak when F(k) — é & 1s wmaxiimumn, that is, for
k = k' defined by F'(k") = 4. Turniug to (10.35), we sce that ¢ in-
creases when F'(k) > p+&; note that n(c) > 0 since U is increasing
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Fig. 10.1 — Phase diagram for optimum growth

and strictly concave. But F is also increasing and strictly concave:
therefore ¢ increases when k < k*, where Flk*)=p+6. Further7
when p > 0, which we need for convergence, we have k* < k’.’
Putting together all this information, we get the pattern of paths
shown in the figure.

Writing ¢* = F(k*) — 6§ k*, we see that there are exactly two
paths that converge to (k*,c*), one from the left and the other
from the right. All other paths diverge, and are asymptotic to, or
even hit, one of the axes. ,

We are given k(0) but not ¢(0), so we must try out alternative
possibilites for ¢(0) and see where they lead. If we choose c(0)
such that the path starting at (k(0),¢(0)) converges to (k*, c*), all
is well. If we choose any other ¢(0), the path diverges to oné of
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the axes. Along the k-axis the consumption goes to zero. Along
the c-axis consumption grows for a while, but capital runs out and
eventually capital, output, and therefore consumption must fall
to zero. Neither possibility looks attractive. This suggests that
the right choice of ¢(0) is on the stable path directly above k(0).
Indecd, an appeal to sufficient conditions, which I shall discuss
briefly in Chapter 11, shows that such a choice is indeed the right
one.

A general feature of the solution is apparent: c is higher when
k is higher. But the figure does not tell us whether ¢/ F(k) increases
with k, and in fact this can go either way for particular forms of F
and U. Thus we cannot say in general that richer societies should
optimally save a larger proportion of their income.

Exercises

Ezercise 10.1: Life-Cycle Saving

Solve the problem of Example 10.1 with the instantaneous utility
function changed to

U(c) =c7)(1—¢), e> 0.
Thus the marginal utility is U'(¢) = ¢~¢. The earlier example is
the special case where € = 1, as can be verified by taking limits
using L’Hépital’s Rule.
Next suppose the consumer inherits assets ky and plans to
leave a bequest of k;. How large can k; be before the problem has
no feasible solution?

Ezercise 10.2: Optimum Growth

Interpret the variable ¢ defined in Example 10.2. Show that & and
¢ satisfy the pair of differential cquations

k=F(k) =68k —G(¢),
and ]
¢=—¢[F'(k)—p—2o],
where G is the function inverse to U’. Draw the phase diagram,

which should look just like Figure 10.1 but reflected upside down.
Complete the solution.
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Ezercise 10.8: Entry-Deterrence

The demand curve in an an industry at time ¢ is given by

a(t) = a—bp(t),

where a and b are positive constants, p(t) and q(t) are respectively
the price and the quantity. There is one large firin that sets the
price, and a fringe of small firms that accept this price and sell their
entire output. New fringe firms cnter if the large firm charges a
price greater than p*. Write z(¢) for the output of the fringe firms.
The initial 2(0) 1s given; z(t) satisfics the differential equation

a(t) = k[p(t) —p* ]

The large firm’s sales are ¢(¢)—x(1), and its average cost is constant
and equal to ¢. Therefore the discounted present value of its profits
is

/0°° [p(t) —clla—a(t) —bp(t)] e " dt,

where p is the rate of interest. Assmuce p* > c.

Apply the Maximum Principle to this problem, taking = as
the state variable and p as the control variable. Construct the
phase diagram in (z, p) space. Find the qualitative features of the
optimum pricing policy of the large firm. Obtain conditions on the
parameters of the problem under which the competing firms retain
positive sales in the limit as ¢ goes to oo.

Further Reading

A more rigorous treatment of the Maximum Principle and its ap-
plications is in Intriligator (op.cit.), chs. 14 and 16. Sec also his
chs. 11 and 12 for related ideas and techniques.

For relatively simple expositions of the theory of optimal sav-
ing, sce

ROBERT M. Sorow, Growth Theory: An Ezposition, Oxford
University Press, 1970, ch. 5, and

AviNasu K. Dixit, The Theory of Equilibrium Growth, Ox-
ford University Press, 1976, chs. 3, 7.

For details of the entry deterrence problem (Exercise 10.3),
sce

Darius W. GASKINS, ‘Dynamic limit pricing: Optimal pric-
ing under threat of entry’, Journal of Economic Theory, 3(3), 1971,
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pp. 306-22, and the comment on it by NORMAN IRELAND, ibid.,
5(2), 1972, pp. 303-5. ‘ ‘ .

Although time is the natural independent variable in applica-
tions of the Maximum Principle, the mathematics is independent
of this interpretation. Indeed, problems of the optimal layout of
roads in cities have been handled using the same method, and there
¢ is interpreted as distance. An example 1s

AVINASH K. DIXIT, ‘The optimum factory town’, Bell Journal
of Economics and Management Science, Autumn 1973, pp. 637~

51.



11 Dynamic Programming

The Bellman Equation

In Chapter 10 we studied optimization over time. The constraints
(10..1) expressing increments to stocks or state variables; and the
a'd(htlvely separable form (10.3) of the objective function ’were s e;
cial features that enabled us to express the first-order COI,lditi()I;Spill
a useful special form, namely as the Maximum Principle. Dynamic
Programming is an alternative way of solving the same problem
It proves especially useful when time and uncertainty appear to—.
gether, as they so often do in reality. Let us begin with time to
keep the exposition simple, and introduce uncertainty later.

' The vectors of initial stocks yo and terminal stocks yr,, were
given when we maximized

> Flye, 2, t), (10.3)

t=0

subject to the constraints

Yy — Y = Qyy, Ztat), (10~1)

and
G(ye,2t,t) <0, (10.2)

for ¢ i O', 1...T. Keep the terminal stock requirement fixed for
now. As in Chapter'S, we can define the resulting maximum value
as a f\‘l/nchon of the initial stocks, say V(o). The vector of deriva
tives il 1 initial
StOCkS'y(yo) will be the vector of the shadow prices of these initial
The s'eparability of the objective and the constraints allows us
to gcnerahze.thls gr.eatly. Instead of the starting time 0, consider
another partxc.ular time, say * = 7. For the decisions starting at
7, the only thing that matters about the past is the vector y. of
‘ T
stocks that emerges from the past decisions. We can take that
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as parametric, and start the whole problem afresh at 7. In otlier
words, we maximize a sum just like (10.3), but extending only
from 7 to T, subject to constraints just like (10.1) and (10.2),
but holding only for r, 7 +1, ... T. Let V(y,,7) be the maxinum
value function of this problem; the explicit argument 7 is necessary
because the limit of the summation depends on it. The vector of
derivatives Vy(y-,T) is the marginal increase in the maximized sum
when we start with a small increment to the initial stocks y, at
r, that is, the vector of shadow prices of the initial stocks for the
optimization problem that starts at 7.

What happens when we embed the sub-problem starting at
r into the full problem starting at 0?7 In Chapter 10 we could
interpret the Lagrange multiplier on the constraint (10.1) for 7 as
the shadow price vector 71 of stocks at (T4+1). Aslight relaxation
of this constraint meant an exogenous increase in yr41, and the
multiplier told us the resultant increase in the objective function
(10.3). At first sight this differs from the vector of derivatives
Vy(yrs1,7 + 1) for the sub-problem starting at (r +1). In the
full problem, we know at time 0 that the stocks at (7 + 1) are
going to increase a little. Then we can plan ahead and change
the control variables at earlier dates. For example, if we know at
time 0 that a windfall of wealth is going to occur at (7 +1), we
will consume more in anticipation as well as after the realization.
But the Envelope Theorem comes to the rescue. For the small
changes that are involved when we look at first-order derivatives,
the direct effect on the objective function is all that counts; the
induced effect of optimal readjustments in the choice variables can
be ignored. Therefore we can indeed identify the derivatives Vy
with the shadow prices 7 at all times.

Now pick any ¢, and consider thie decision about the control
variables z; at that time. Consider the consequences of any partic-
ular choice of z;. It will lead to next period’s stocks Yoy according
to (10.1). Thereafter it remains to solve the subproblem starting
at (t + 1), and achieve the maximum value V{yer,t+ 1) Then
the total value starting with yg at ¢t can be broken down into two
terms: F(y, z1,t) that accrues at once, and V(yeg1,t + 1) that
accrues thereafter. The choice of z should maximize the sum of
these two terms. In other words,

V(ye,t) = max { Flyi,z0,t) + V(yer,t + 1) }, (11.1)
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sub](j,lf}tl.to the c.onstraints (10.1) and (10.2) for just this one ¢
Optimizlst fequatlot)nl g1lves us a brute-force way of solving the oriéinal
ation problem. The idea is to start at
t zatio : : Tt at the end and proceed
fio eczlzrher t'lmes recursively. At time T there ig no future orjll t}ie
xed terminal stock requirement Yr4+1 - Therefore o

V(yr, T) = max Fyy, 2, T)
zr
subject to

yr + Qyr, zr,T) = Y41 and G(yr, 20, T) < 0.

;Fh(;s is in principle a straightforward static optimization problem
bn yiclds the maximum value function V(yz,T). That can theny
e tl}slcd on the right-hand side in (11.1) for t = 7 -1 This i

. . ’ S
?/n(o er ;tatlc)problem, and yields the maximum value function
Yr-1, 4 — 1). And so on all the wr

( ay back to 0. [ 1
t : . n practice
O?lihx.voil.\s only for t.he simplest problems. Analytical solutions
o is 1nd. are possible only when the functions F, G, and Q
foave very hs1mple forms. Numerica] solutions can be C(;mputed
Ver tsomefw at harder problems, but if the state variables form a
unc or o rric;re than two dimensions, even that quickly becomes

manageable. Luckily, the brute force 1

: g g method is only a backst

tI}rll many.economlc applications, there are better methods to ﬁcI)II:i

e solution, or at least obtajn useful insights about it.

This L .
method of optimization over time as a succession of static

(t)?eos;l?ir;btlem;}tlartmg.at (t+1) is known as Bellman’s Principle
o lity. € maximum value function V(ye,t) is called the
man value function, and equation (11.1) the Bellman ¢ uati

Let us look at the Mmaximization problem on the rig(}llt—h:i(::i.

side of the Bellman e i 1tuti
quation. Substitut
we are to choose z to maximize e for yian from (10.1)

k]

F(y,, z6,t) + Viy: + Qyr, 24, 1), + 1)

subject to
G(ytvzht) S 0.
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Letting Ay denote the row vector of the multipliers on the con-
straints, the first-order conditions are

Fo(yi,20t) + Vy(yer, t + 1) Q(yrs 26, ) — Ay Gaye, 20, t) = 0.

Recognizing the derivatives V) as the shadow prices 7, this becornes

Folye,ze,8) + meq1 Q:(ye, ze,t) — Ay Ga(yi, 21,1) = 0.

These are exactly the first-order conditions for z; to maximize the
Hamiltonian H(y¢, z¢, Te41,¢) defined in Chapter 10, subject to the
single-period constraints (10.2) as there. Thus Dyanamic Program-
ming leads to the same rule for setting the choice variables as the
Maxunum Principle.

In fact the Maximum Principle and Dynamic Programming
are fully equivalent alternative methods for optimization over time.
You should use whichever is simpler for tackling the particular
problem at hand. The Maximum Principle is generally better when
time is continuous and there is no uncertainty; Dynamic Program-
ming in the opposite case of discrete time and uncertainty. But
that is not a hard and fast rule.

Later in this chapter I shall illustrate the use of Dynamic
Programming in some economic applications. To conclude this
section I use 1t to establish the intertemporal arbitrage cquation
(10.13) in a different way. When 2, is chosen optimally, (11.1)

holds with equality, that is,
V(yt’t) = F(yta Zt7t) + V(yt+]’t + 1)

Differentiate this with respect to y,, noting that y,4; depeuds on
y¢, and using the Envelope Theorem on the right-hiand side. Then

Vy(tt,t) _ Fy(y[,Zut) 4+ Vy(yt—va’ +1)(1+ (Jy(.’/t, z,1))
— /\[ Gy(ytvztvt)'

Using the shadow prices . this becowes (10.13).

Uncertainty

Dynamic Programming 1s particularly well suited to optimization
problems that combine time and uncertainty. Suppose that the
process governing the evolution of stocks y; through time has a
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random component. Given the stocks y, at the beginning of pe-
riod ¢, and the controls z, during the period, we know only the
probability density function of next period’s stocks y;4,. Write
this as @¢(ye41;Yt,2:). The arguments are separated out for no-
tational clarity. The first argument y,;4; is the actual vector of
random variables whose probability density function this is; the
others are like parameters that can alter the functional form of the
distribution. As a simple example, y,4; could be a vector normal
distribution with a mean vector g and a variance—covariance ma-
trix & both of which depend on (y;,z,). As an even more special
case, y could equal y;+ Q(y¢, 2¢, t), the value of y,4+1 in the previous
discussion without uncertainty.

Now the problemn is to maximize the mathematical expectation
of (10.3), subject to (10.2) for all ¢, and (10.1) replaced by the
stochastic law of motion for y, 4, described by the function ¢. Write
V(yy, t) for the maximum value function of the subproblem starting
at t. For the moment fix the choicc of z;. Consider what happens
after the actual value of y,4; becomes known at the beginning of
period (t+1). The rest of the decisions will be made optimally, and
yield V(y,41,t + 1). From our perspective of period ¢, this is still
a random variable, and we are concerned about its mathematical
expectation,

E[V(yz+1,t+1)]:/ V(g t + 1) $(yerr; v, 2¢) dyesr, (11.2)

where the integral is taken over the range over which yyy, is dis-
tributed. Then the Principle of Optimality becomes

V(yi,t) = max { F(yi,20t) + EV(yepst £ 1]}, (11.3)

The maximization on the right-hand side of (11.3) is somewhat
more difficult than the corresponding certainty case (11.1). The
first-order condition with respect to z; requires differentiation of ¢
with respect to z, inside the integral, and the results of that can
be hard to characterize and understand. But in principle (11.3)
allows us to start at T and solve the problem recursively backward
to 0 just as before. In simple but useful models, the solution can
be completed analytically. At the end of the chapter, I develop two
examples of Dynamic Programming under uncertainty applied to

I
o s
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econornic problems, and give references where readers can pursuc

the topic further.

Continuous Time

The Maximum Principle could be formulated for discretc? or con-
tinuous time; so can Dynamic Programming,. R.cc.all t’hat in Chap-
ter 10 the problem was formulated as the maximization of

T
[ Pasw.na, (10.17)
0
subject to the law of motion
y(t) = Qy(t), (1), 1), (10.15)
and the instantancous constraint
G(y(t), 2(1),t) < 0. (10.16)

Define V(y(t), t) as the maximum value function of: tle sub-problem
starting at ¢. Over the next small interval dt of tlme., suppose the
control variables take the value z(t). Then the contribution to the
objective function over this small interval will be F(y(t), 2(t),t) dt.
The stocks at (¢ + dt) will be incremented by

ot 1 dt) — t(t) = QUu(t), 2(1), 1) dt,

and optimal policies from then on will yield V(y(t +df),t + dt).
Bellman’s Principle of Optimality gives

V(y(t),t) = max { Fy(t), (1), ) dt+V (y(t+dt), -+ d1) b, (11.4)
z(1

subject to (10.15) and (10.16). Expand the right-Land side in a
Taylor series:

V(y(t + dt),t + dt)
— V(y(t), 1) + Vi (y(t), 1) [y(t +dt) — y()] + Valy(D),1) dt
— V() 1) + Vy(y(1), 1) QUu(t), =(1), ) dt + Vily(t), t) dt.

Substituting in (11.4), we sce that V(y(t),t) cancels from the two
sides. and then the equation can be divided through by dt. (A
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more .rigorous argument would use finite increments At and then
take limits.) This gives

0 = max { F(y(t), z(1), 1) + Viy(y(1), ) Qy(y(t), 2(1), 1) }

T Vily(t), 1), (11.5)
subjcct to the instantaneous constraint (10.16).
. Sn?cg Vy(y(#),t) is the vector of shadow prices n(¢), the max-
imand is just Fhe Hamiltonian H(y(t), z(t), 7(t),t) of Chapter 10,
and the result is the maximized Hamiltonian H*(y(t), n(t),¥) Then
(11.4) can be written o
Vily(D), ) + B (5(6), Vy(p(0),0,6) = 0. (116)
Since H* is a known function, this is a partial differential equation
for the B.el.lman' Value Function V. With suitably defined bound-
ary.condxtlon.s in particular applications, it can be solved. Once
again, analytical solutions are available only in very simple special
cases. But numerical solutions are becoming increasingly viable as
computing technology improves.

Transversality Conditions

We have so far kept the terminal time T and the associated target
stock requirement y,,; fixed, while allowing the initial time and
stocks to vary in order to set up the Bellman Value Function. But
the reverse approach leads to some useful insights, too. T shall
do this in continuous time, leaving the corresponding discrete-time
expressions for readers to derive. Write W{(y,t) for the maximum
mtc‘gral of F over [0,t], with a fixed initial stock vector y; and a
variable requirement y at . When a greater stock must be left
at.the. end, the maximized integral is smaller, and the shadow
price interpretation becomes 7(t) = —W,(y(¢),t). Splitting the
problem into an initial interval [0, — d¢] and a small final interval

[t — dt,t], we can apply Bellman’s Principle of Optimality as above
and obtain

Wi(y(t),t) — H*(y(1), =Wy (y(t),1),¢) = 0. (11.7)

This alternative approach allows us to extend the theory to
more general end-point conditions. It is natural to accept a fixed
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initial time and historically given initial stocks at that time, but
forms of terminal conditions other than a fixed date and stock are
easily conceivable. For example we may wish to attain a given
target stock in the smallest possible time, or may have a more
general trade-off between the terminal time and stocks. Suppose
the aim is to maximize the integral (10.17), choosing both T and
y(T) subject to a general constraint

J(y(T),T) < 0. (11.8)

This can be tackled in two stages. First we can regard T and y(T')
as fixed, solve the standard Dynamic Programming problem, and
find the value function W (y(T),T) defined above. Then we choose
T and y(T) to maximize this function subject to the constraint
(11.8). Thisis a standard static optimization problem, with first-

order conditions
W, (y(T),T) = € Jy(u(T), T), Wy(y(T),T) = € J(y(T),T),

where £ is the Lagrange multiplier. Using the shadow price and
Hamiltonian notation, these become

B (y(T), #(T), T) = € J(y(T), T).
(11.9)

These say that the vector (7, —H*) should be parallel to the
vector (Jy,J¢) when both are evaluated at the optimuin terminal
point. Since the latter vector is perpendicular to the constraint
surface J(y,t) = 0, the conditions say that the former vector is
also perpendicular to the same surface. Therefore the conditions
(11.9) are called the transversality conditions.

As an example, suppose we wish to reach a given target, say
y*, in minimum time. Then W(T) = —T is to he nmaximized
subject to y(T) = y*. Now Jy is identically zero, and (11.9) says
that at the optimally chosen end-point, the Hamiltonian H* should
also be zero. Similarly, if T is fixed but y(T) is unconstrained, then
J, is identically zero, and the transversality condition is 7(T) = 0.
These serve as boundary conditions that help us pin down the
solution to the Dynamic Programming problem.

o(T) = =€ Jy(y(T).T),
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Infinite Horizons

:Another extension of the intertemporal optimization problem is
important in many economic contexts. Often there is no natural
way to specify the terminal date for the decisions being optimized
In.fact we can rarely fix a date in advance and claim that consider:
ations beyond it can be totally disregarded. This may be a minor
problem for an individual, but it becomes more and more impor-
tant as we consider wider and wider contexts of decision-making
such as an extended family, a firm, and the economy as a whole7
Keeping the time-horizon finite, we can recognize that the termi—.
.nal stocks will provide utility flows beyond the horizon, and thus
mdir(’actly take the future into account. But this is an’imperfect
solution. We cannot specify the correct terminal stock target, or
a valuation function like J above, without paying explicit att’en—
tion to the future beyond the horizon. But that means solving a
problem exactly like the original one but with a longer horizon
Of course, there is no logical stopping point to this argument anci
that forces us to allow an infinite horizon. 7

. We run i.nto some technical problems when we consider deci-
sions over an infinite time-horizon. The most important is that the
integral (or the sum in discrete time) may not converge. A typical
cxample of this occurs in the optimum growth problem of Exam-
ple 10.2. Suppose the production function and the utility function
arc both linear,

F(k)=pk, Ule) = c,

and the marginal product of capital 3 exceeds the utility discount
ra,tc.p. Neglect depreciation, that is, set § = 0. Now consider di-
Ycrtmg one unit of output from consumption to saving, and letting
it compound up to time 7', and consuming the additional output
then. The extra output at T is ¢#7, and the present value of its
consumption is e®~A7 which exceeds 1, the opportunity cost of
the cu‘rrent consumption forgone. Thus the postponement of con-
sumption is always desirable, and longer and longer postponement
can make the utility integral larger and larger. But the limit of
such policies means no consumption at all, which is the worst of
all policies.

The condition that is sufficient, and often necessary, for ruling

out such pathologies says that the shadow value of the terminal
stocks should go to zero: '

Tli—{nm w(TYy(T) = 0. (11.10)
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The rigorous proof of this statement is beyond our scope here. But
note that it is a natural extension of the transversality condition
(which is just the complementary slackness condition) for a finite
horizon problem with a non-negative terminal stock requirement.

Apart from this new condition, infinite horizon optimization
is no different from the finite horizon case. Bellman’s Principle of
Optimality at once tells us why. Consider any finite horizon sub-
problem with the initial and terminal conditions fixed by the larger
problem. For the subproblem, the Maximum Principle or Dynamic
Programming conditions apply. But the initial and terminal times
of the subproblem could be arbitrary, so the conditions must in
fact hold for the entire range (0, 00).

An application of the infinite-horizon transversality condition
is to the optimum growth problem of Example 10.2. The paths
that converge to the steady state (k*,c*) in the phase diagram
satisfy this condition; the divergent paths in general do not. This
allows us to reject the divergent paths, and for given initial capital
k(0), select the initial consumption level ¢(0) to lie on a convergent

path.

Examples

Ezample 11.1: Search

This is a greatly simplified model of job search. Tt does not alnl
to be realistic; its purpose is to introduce you to the Dyanamic
Programming approach, and to prepare you for richer models cited
at the end of the chapter.

There is a whole spectrum of jobs paying different wages 1
the economy. The cumulative distribution function - the proba-
bility that a randomly selected job pays w or less  1s ®(w). The
corresponding density function is p(w) = ¢'(w). The individual
knows these probabilities, but not the details of where any par-
ticular job is to be found or the wage it pays; he must engage in
scarch for that information. To fiud out about one job, he must
stay unemployed with zero income and searcl for one period. At
the beginning of the next period hie can either accept the job just
found, or continue search. If lie rejects the job he cannot return to
it later. His objective is to maximize the mathematical expectation
of the discounted present value of his wages. If the interest rate is
r, define the discount factor 6 =1/(1 +r), so a dollar in ¢ years’
time is worth é* dollars now.
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Consider the person starting the last possible period of his
working life. Suppose the job he observed during his search of the
previous period pays z > 0. It is clearly better to accept this and
work one period than to remain unemployed. Thus he will accept
any positive z, and his value function is simply Vj(z) = z, where
the subscript denotes the number of periods of working life left.

. Next suppose the same searcher has two periods of working
life left, and the wage he observed last is z. If he accepts it, he
gets x this period and the next, that is, a discounted present value
of z + éz. If he searches, he gets no income this period, but finds
out another job prospect and the wage y it pays. The next period
being the last of his working life, he will accept it. Therefore the
expected income next period is the mathematical expectation

Ely} = /Doo y #(y) dy,

and this must be multiplied by § to get the present value in this
period.

Of the two alternatives, the searcher will pick the better, so

Va(z) =max ((1+48)z, § Efy]). (11.11)

There is a critical value

z; = 6 E[y]/(1+6), (11.12)
such that the searcher with two periods of working life left will
accept the most recent offer z if and only if it is greater than z3.
Therefore z3 is called this searcher’s reservation wage. In the sarnze
way we could define z7 for a searcher in his last period, and as we
saw above, z7 = 0.

More generally, with n periods left, accepting the latest = gets
A+6+8+...6"Hz=2(1-6"/1-6).
Continued search gets a new observation y and an optimal decision

starting next period (so discounted by é) with (n — 1) periods to
go. Bellman’s Equation becomes

Va(z) = max (2(1—6")/(1—$6),6 E[Vacr(y)]).  (11.13)

o
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This produces a reservation wage ;. An induction argument
quickly shows that the sequence of reservation wages z}, 1s increas-
ing in n, that is, searchers with longer working lives ahead of them
are more selective about what jobs they will accept. We can also
solve for the functions V,(z) using (11.13) recursively.

If we let n go to infinity, Va(z) and V,—1(z) alike converge to
a limiting function V(z), which satisfies

V(z)=max (z/(1-6),6 E[V(y)]).

Since the same function V appears on both sides, the solution of
(11.14) involves a circular (or more properly, fixed-point) reason-
ing. Think of the right-hand side as an operator, or a ‘function
of a function’, that starts with a function V/ and generates a new
function. Then we look for a particular V that leads to itself in this
way. This view also provides a method of numerical computation.
Start with any V and apply the operator to get a new one, then
apply the same operator to that, and so on. This process converges
to the solution so long as a solution exists, which it does in this
example so long as 6 < 1.

Intuitively, the solution should have the same qualitative fea-
ture as that for long but finite life-spans, namely there should be
a reservation wage, or a critical z* such that wage offers above
this are accepted and those below trigger continued search. I shall
proceed on this assumption and see where it takes us. For z > z*,
(11.14) becomes

(11.14)

V(z)=z/(1—9).
For smaller z, we have
V(z) =6 E[V(y));

say, which is independent of z. Equating the limits of these alter-
native expressions as x goes to z* from the right and the left,

V(z")::c*/(l—é):5E[V(y)]. (11.15)
Now

E[V(y)] :/Ooo V(y) ¢(y) dy
= [ Vs [ - olem

oo

V) )+ 18] [ vet)dy
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Therefore

o0

Vi) =88] = 6/1-5)] [ yowd,

o [1—§®(z*)) = 6 /m y d(y) dy. (11.16)

Since we know the functions ¢ and ¢, this equation can be solved
for z*, and then the function V is constant up to z* and equal to

z/(1 — 6) thereafter.

Ezample 11.2: Saving under Uncertainty

This is again a simplified ‘starter’ example. Consider a consumer
with an infinitely long life, wealth W that earns a random total re-
turn (principal plus interest) of r per period, and no other income.
Consumption of C in any one period gives him utility

UC)=C"/(1-¢) (11.17)

with € > 0, as in Exercise 10.1. His utility discount factor is
6, and the objective over time is to maximize the mathematical
expectation of the discounted present value of utility.

Starting a period with wealth W if he consumes C and saves
(W — (), his random wealth at the start of the next period will
be r(W — C). Writing V(W) for his Bellman Value Function, the
Bellman Equation is

V(W) = max (C'/(1—€e)+ 8 E[V(r(W-C))]). (11.18)

The neat way to solve this problem is to guess a solution of
a particular form and then verify it. Since wealth is split into
consumption over a number of periods and each gives utility of the
form (11.17), a natural form to try is

V(IW)=A W' /(1 -e¢), (11.19)

where A is a constant to be determined. Using this in (11.18), we
have

AWl Cl-e 6 A
—:mgx { +1—_?E[T1—€](W—-C)l_€}, (1120)

1—e¢ 1—c¢

[
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The first-order condition is
C —6AE[r' ] (W-C)“=0.
This simplifies to
C=W/(1+ B), (11.21)
where I have used the abbreviation
B=(64E[" )1/6.
Substituting back in (11.20) and simplifying, we find
AMe (1= g4 ElrtTY ) =1

This determines A provided

§ Elr'7] <1,

which becomes the condition for existence of a solution to the prob-
lem. It can be shown that the condition is just what is needed to
guarantee convergence of the infinite utility sum in this example.
Substituting back in (11.21), we get

CJ/W =1-— <5E[r1"] )1/5. (11.22)

The optimal rule (11.22) for consumption out of wealth is a
relatively simple proportional one, but the proportion depends on
the parameters € and § of the utility function, and the distribution
of the random variable r. A special case yields an explicit solution.
Suppose r is lognormal, that is, In(r) is normally distributed with
standard deviation o. Then standard formulas for the lognormial
distribution give

E[r'~) = (E[r])' ™ exp(—e(l — €)o’/2).

To see the consequences, consider the casc of « - 1. Now an
increase in E[r], holding ¢ fixed, decreases the consumption wealtlh
ratio, while an increase in o, with E[r] fixed, increases thic radio.
The opposite results hold if € > 1.
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J t =1

not optimum

optimum

(0,0) {

Fig. 11.1 — The shortest distance

Ezample 11.3: The Shortest Distance

This example has no economic content, but has the great merit
that the answer is known at the outset, enabling us to focus on
the techniques that much better. Also, it illustrates the point that
although the independent variable ¢ in the theory has a natural
interpretation as time, any other variable such as space can serve
the same formal role and the theory continues to apply.

Consider the path of minimum length between the points (0,0)
and (1,0) in the plane; see Figure 11.1. Call the horizontal coordin-
ate ¢t and the vertical coordinate y. It is clear that any path which
loops or winds cannot be of minimum length, because we can sim-
ply omit the loop or an S-shape to get a shorter one. We can
therefore restrict discussion to the case where y is a single-valued
function of ¢. The distance between the adjacent points (¢,y) and
(t + dt,y + dy) is [(dt)® + (dy)*]*/?. Let dy/dt = z, the control

variable. Then we are to maximize

—/0 (14 z()®)/? dt, (11.23)

i B e
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subject to

§(t) = =(2), (11.24)

and y(0) = y(1) = 0.
To use the Maximum Principle, define the Hamiltonian

H:—(1+22)1/2+7r2. (11.25)
The first-order condition for z to maximize this is
—(1+ 22)_1/2 z+7 =0,
which simplifies to
z=m/(1—n2)/2 (11.26)
Then the maximized Hamiltonian is
H* = —(1—=H)Y2 (11.27)
Now the two differential equations are
§=0H* /o =n/(1 -/, (11.28)
and
i = —0H* /9y = 0. (11.29)

Thus 7 is constant along the optimal path, and then so is z. But
the only constant z that will keep y(1) = y(0) is zero. Thus the
shortest path is the horizontal straight line joining (0,0) and (1,0).

We can apply Dynamic Programming and cousider a some-
what more general problem, namely finding the shortest line join-
ing (0,0) to thelinet = 1. First we consider the subproblem joining
(0,0) to the general point (T, y) with T > 0 but y nneonstrained.
The theory above continues to apply, and we sce that the straight
line y(t) = ty/T does the job. Now it remains Lo choose y opti-
mally. The transversality condition for that is (T} = 0. Since
7 is constant along the optimal path, it must be zero everywhere.
Then z must be zero, and therefore y(T) = 0 is optimal. In other
words, the shortest path from a poiut to a line is the straight line
from the point and perpendicular to the given line.
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Exercises

Ezercise 11.1: Search

Consider a variant of the search problem of Example 11.1. Suppose
that the searcher can return to old jobs that he had rejected. So
at any time, the state variable z is the best offer he had observed
up to that point. If he rejects this, searches and observes y, then
next period he will start with the better of z and y. Thus instead
of (11.14) we have

Va(z) = max (2 (1~ 6")/(1-6), 8 E[Vo_y (max(z, y))]).

Show that there is a reservation wage z,, and that the sequence
of reservation wages is increasing in n. Write down the Bellman

Equation as n goes to infinity, and characterize its z*. Note that

BV (max(z,)] = [ " V() é(y)dy + [ veesway
=V@ )+ [ V) oly) dy.

Ezercise 11.2: Intensity of Research Effort

The rescarch and development needed for a new product consists of
completion of a number of stages. Think of these as a continuum of
%ength L. If z(t) stages are completed at time t, and flow cost c(t)
is incurred on the R.&D. program at this time, then the completion
process evolves according to the differential equation

z = f(c).

Wh.en all L stages are completed, a reward R accrues. If this occurs
at time T, and 7 > 0 is the rate of interest, the net present value
of the program is

—rT T —rt
Re - c(t)e " dt.
(4]

The aim is to choose the completion time T and the profile of costs
¢(t) over [0, T to maximize this.
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Define V(z) to be the value function for the corresponding
problem that starts with z stages completed. Applying Bellman’s
Principle over an initial small time interval d¢, we have

V(z) = max [—cdt + V(z + f(c) dt) e 4.

Expanding the right-hand side in a Taylor series as in the derivation
of (11.5), convert this into
r V(z) = max [V'(z) f(c) — ¢]. (11.30)
For the case f(c¢) = ¢*, with 0 < @ < 1, the maximization in
(11.30) can be performed explicitly. Show that it yiclds

V(@) = B V(2)™°,

where 3 is a known constant that depends on r and a. Solve this

to show that

V(z)* =R+ ap(z—- L) (11.31)

Deduce that V is a convex function, and therefore that the
optimal intensity of research effort starts at a low level, and rises
as more stages get completed. (Try offering this as an excuse for
procrastination to your teachers, bosses etc.)

If L is large enough, it may be optimal not to embark on this
program of research at all. Find the limit on L. Solve the whole
problem using the Maximum Principle.

How can the problem be modified to allow for uncertainty in
the progress of research?

Further Reading

A more rigorous and detailed exposition of Dynamic Programming
is in Intriligator (op. cit.), ch. 13. For applications to problewms
like search, see

Mogrris H. DEGROOT, Optimnal Statistical Dceisions, New
York: McGraw-Hill, 1970.

The treatment of optimal saving here follows

DAvID LEVHARI and T. N. SRINIVASAN, ‘Optimal saving un-
der uncertainty’, Review of Economic Studics, 36, 1969, pp. 153—

63.
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For important applications of dynamic programming to the
theories of investment and growth, see

NANCY L. STOKEY and ROBERT E. Lucas, Jr., with Ep-
WARD C. PRESCOTT, Recursive Methods in Economic Dynamics
Cambridge, MA: Harvard University Press, 1989. ,

The research and development exercise is based on

GENE M. GROSSMAN and CARL SHAPIRO, ‘Optimal dynamic

5RS&D programs’, Rand Journal of Economics, Winter 1986 PP
1-93. T

Appendix: The
Kuhn—Tucker Theorem

The purpose of the Appendix is to offer the sketch of a rigorous
proof of the Kuhn-Tucker Theorem, which is the most general
theorem on first-order necessary conditions for maximization sub-
ject to non-negativity and inequality constraints. Notice the word
‘sketch’: this is not a detailed proof, but each heuristic argument in
the sketch can easily be converted into a rigorous one. This should
suffice for most readers. I begin by recapitulating the statement of
the theorem from Chapter 3:

Kuhn-Tucker Theorem: Suppose z is an n-dimensional vector,
¢ an m-dimensional vector, F' a function taking scalar values, G a
function taking m-dimensional vector values. Define

L(z,A) = F(z) + A[e — G(z)], (3.4)

where A is an m-dimensional row vector. Suppose I maximizcs
F(z) subject to G(z) < ¢ and z > 0, and the constraint qualifica-
tion holds, namely the submatrix of G,(z) formed by taking those
rows ¢ for which G*(z) = c¢; has the maximum possible rank. Then
there is a value of A such that

L.(z,)) <0, £ >0, with complementary slackness, (3.7)
and

Ly(z,A) 20, A >0, with complementary slackness.  (3.10)

Before we begin the proof, we can simplify the notation. The
non-negativity constraints can be expressed as —u; <0 for j =1,
2, ... n. Thus we can subsume them into the general inequality
constraints, whose number m is increascd accordingly. We can
also choose the labels on the component functions G* such that
constraints 1, 2, ... k are binding, and k + 1, ... m are slack, or

. =¢; fore=1,2...k,
Gi(z) { (4.1)

<c¢ fori=k4+1...m.
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Since Z is a maximizer (local or global) of F(z) subject to
G(z) < ¢, there is no neighboring z such that

Gi(z) < Gi(F) = ¢; fori=1,2, ...k, (A.2)

and

F(z) > F(). (A.3)

Note that we do not need any restrictions arising from the con-
straints k+4-1, ... m; since the constraints hold as strict inequalities
at z, by continuity they will go on holding for z sufficiently near
I.

Now write ¢ = 74 dz where dz is infinitesimal. Then we want
to replace (A4.2) and (A4.3) by the first-order Taylor approximations:

Gi(Z)dz <0 fori=1,2, ... k, (A.4)

and

Fy(7) dz > 0. (A.5)

This is valid provided the k-by-n matrix G.(Z) formed by
stacking the k rows Gi(z) has rank k. If it has a smaller rank,
it has too large a null space, that is, too many vectors dz yield
zero when multiplied by this matrix. Then many more dz satisfy
the linear approximation (A.4) than do 7 + dz satisfy the true
constraints (4.2). As a result, the first-order conditions can fail
even though 7 is optimum.

I shall illustrate this using an example with two variables and
two constraints. Suppose the objective function is

F(zy1,22) = 3,
and the constraints are
2> 23 or Gl(zl,xz) =23 -z, < 0,

or Gz(.’ll,l‘g)E(l)zﬁ—x? SO
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X9

X

Gz(x) =0

Fig. A.1 — Failure of the constraint qualification

Figure A.1 shows the feasible set as the shaded area, and then it
is clear that (0,0) solves the constrained maximization problem.
At this point both constraints bind (£ = 2), and the vectors
of derivatives of the constraints are
G1(0,0) = (0,-1) and  G%(0,0) = (0,1).
The rows are linearly dependent, and the rank of the 1‘11;1,trix of
derivatives is 1, which is < k. The linear approximation (A.4)

becomes

—dro <0 and dzqy <0, that is, dry =0,
which is the whole horizontal axis. Points to the right of the origin
are not in fact a linear approximation to the feasible set, but they
appear as feasible deviations in the licar approximation to the
functions. o

Now we also see the sense of the reinark made earlier in the
context of linear programming (Example 7.1, p. 100) that no con-
straint qualification was needed there. When the constraints are
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X9

Fig. A-2: The Kuhn-Tucker Theorem

already linear, there is no need to find linear approximations to
them, so the issue does not arise.

Let us proceed with the assumption (the Constraint Qualifica-
tion) that the rank of G,(Z) equals k. Figure A.2 shows the situa-
'tion. It is drawn so that all functions are increasing in z, but that
is only to conform to the economic intuition; other configurations
make no difference. The feasible region, and the upper contour set
of F(z) for its optimal value, are both shown by hatch-marks on
their boundaries. The vector of derivatives of each of the functions
is also shown; each is normal (perpendicular) to the contour curve
of the corresponding function.

When 7 is optimum, the feasible region and the upper con-
tour set of the objective function should not intersect. Assuming

X1
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validity of the constraint qualification, their linear approximations
defined by the deviations in (A.4) and (A.5) should not intrsect
either. For this to be true, the vector of derivatives F.(z) should
lie in the cone formed by the vectors G (%) of the derivatives of the
constraint functions. This is more casily seen from the cquivalent
statement in the opposite direction (contrapositive) from the fig-
ure: if F,() were to lie outside this cone, the contour of F through
# would cut into the feasible region, so a neighboring feasible point
with a higher value could be found, and z could not he optimal.

Points in a finite cone are non-negative linear combinations of
the vectors that define the cone. Therefore there arc non-negative
numbers A1, Az, ... Ag such that

k
Fi(z) =Y X\ GL(3). (A6)

i=1

It is harmless to extend the range of summation to m by defining
Akt1y -+ Am all equal to zero. The extended (A.6) is just the
condition L;(z,A) = 0 to which (3.7) reduces when there arc no
non-negativity constraints (remember they are subsumed into the
inequality constraints and so do not have a separate role). The
complementary slackness condition (3.10) is fulfilled because of the
way the A; are defined for the slack constraints. This completes
the sketch of the proof.

Further Reading

A more detailed proof can be found in

E. MALINVAUD Lectures on Microeconomic Theory, Amster-
dam: North-Holland, 2nd edn., 1985, Appendix by J.-C. Milleron.
Intriligator (op. cit.) ch. 4 treats the concave case in fuller detail.
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