Skip to content
Branch: master
Go to file
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Universal Java Matrix Package

A Java library for sparse and dense matrices, linear algebra, visualization and big data

Project Website:

https://ujmp.org

About

The Universal Java Matrix Package (UJMP) is an open source library for dense and sparse matrix computations and linear algebra in Java. In addition to the basic operations like matrix multiplication, matrix inverse or matrix decomposition, it also supports visualization, JDBC import/export and many other useful functions such as mean, correlation, standard deviation, mutual information, or the replacement of missing values.

It's a swiss army knife for data processing in Java, tailored to machine learning applications.

##In a Nutshell:

  • Dense and sparse matrices in multiple dimensions
  • Matrix inverse, pseudo inverse, determinant, SVD, LU, QR, Cholesky, Eigenvalue decomposition
  • Multi-threaded and lighting fast
  • Handle terabyte-sized matrices on disk
  • Visualize and edit as heatmap, graph, plot
  • Treat every type of data as a matrix
  • TXT, CSV, PNG, JPG, HTML, XLS, XLSX, PDF, LaTeX, Matlab, MDB
  • Free and open source (LGPL)

Quick Start

// create a dense empty matrix with 4 rows and 4 columns
Matrix dense = DenseMatrix.Factory.zeros(4, 4);

// set entry at row 2 and column 3 to the value 5.0
dense.setAsDouble(5.0, 2, 3);

// set some other values
dense.setAsDouble(1.0, 0, 0);
dense.setAsDouble(3.0, 1, 1);
dense.setAsDouble(4.0, 2, 2);
dense.setAsDouble(-2.0, 3, 3);
dense.setAsDouble(-2.0, 1, 3);

// print the final matrix on the console
System.out.println(dense);

// create a sparse empty matrix with 4 rows and 4 columns
Matrix sparse = SparseMatrix.Factory.zeros(4, 4);
sparse.setAsDouble(2.0, 0, 0);

// basic calculations
Matrix transpose = dense.transpose();
Matrix sum = dense.plus(sparse);
Matrix difference = dense.minus(sparse);
Matrix matrixProduct = dense.mtimes(sparse);
Matrix scaled = dense.times(2.0);

Matrix inverse = dense.inv();
Matrix pseudoInverse = dense.pinv();
double determinant = dense.det();

Matrix[] singularValueDecomposition = dense.svd();
Matrix[] eigenValueDecomposition = dense.eig();
Matrix[] luDecomposition = dense.lu();
Matrix[] qrDecomposition = dense.qr();
Matrix choleskyDecomposition = dense.chol();

References

License

The Universal Java Matrix Package is licensed under the GNU Lesser General Public License v3.0.

About

A Java Library for sparse and dense matrices, linear algebra, visualization and big data

Resources

License

Languages

You can’t perform that action at this time.