A Java Library for sparse and dense matrices, linear algebra, visualization and big data
Java Other
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
.idea
ujmp-colt
ujmp-commonsmath
ujmp-complete
ujmp-core
ujmp-ehcache
ujmp-ejml
ujmp-elasticsearch
ujmp-examples
ujmp-gui
ujmp-hadoop
ujmp-itext
ujmp-jackcess
ujmp-jama
ujmp-jblas
ujmp-jdbc
ujmp-jetty
ujmp-jfreechart
ujmp-jmatio
ujmp-jsch
ujmp-jsci
ujmp-jscience
ujmp-jung
ujmp-la4j
ujmp-lucene
ujmp-mail
ujmp-mtj
ujmp-ojalgo
ujmp-parallelcolt
ujmp-pdfbox
ujmp-poi
ujmp-vecmath
ujmp
LICENSE.md
README.md

README.md

Universal Java Matrix Package

A Java library for sparse and dense matrices, linear algebra, visualization and big data

Project Website:

https://ujmp.org

About

The Universal Java Matrix Package (UJMP) is an open source library for dense and sparse matrix computations and linear algebra in Java. In addition to the basic operations like matrix multiplication, matrix inverse or matrix decomposition, it also supports visualization, JDBC import/export and many other useful functions such as mean, correlation, standard deviation, mutual information, or the replacement of missing values.

It's a swiss army knife for data processing in Java, tailored to machine learning applications.

##In a Nutshell:

  • Dense and sparse matrices in multiple dimensions
  • Matrix inverse, pseudo inverse, determinant, SVD, LU, QR, Cholesky, Eigenvalue decomposition
  • Multi-threaded and lighting fast
  • Handle terabyte-sized matrices on disk
  • Visualize and edit as heatmap, graph, plot
  • Treat every type of data as a matrix
  • TXT, CSV, PNG, JPG, HTML, XLS, XLSX, PDF, LaTeX, Matlab, MDB
  • Free and open source (LGPL)

Quick Start

// create a dense empty matrix with 4 rows and 4 columns
Matrix dense = DenseMatrix.Factory.zeros(4, 4);

// set entry at row 2 and column 3 to the value 5.0
dense.setAsDouble(5.0, 2, 3);

// set some other values
dense.setAsDouble(1.0, 0, 0);
dense.setAsDouble(3.0, 1, 1);
dense.setAsDouble(4.0, 2, 2);
dense.setAsDouble(-2.0, 3, 3);
dense.setAsDouble(-2.0, 1, 3);

// print the final matrix on the console
System.out.println(dense);

// create a sparse empty matrix with 4 rows and 4 columns
Matrix sparse = SparseMatrix.Factory.zeros(4, 4);
sparse.setAsDouble(2.0, 0, 0);

// basic calculations
Matrix transpose = dense.transpose();
Matrix sum = dense.plus(sparse);
Matrix difference = dense.minus(sparse);
Matrix matrixProduct = dense.mtimes(sparse);
Matrix scaled = dense.times(2.0);

Matrix inverse = dense.inv();
Matrix pseudoInverse = dense.pinv();
double determinant = dense.det();

Matrix[] singularValueDecomposition = dense.svd();
Matrix[] eigenValueDecomposition = dense.eig();
Matrix[] luDecomposition = dense.lu();
Matrix[] qrDecomposition = dense.qr();
Matrix choleskyDecomposition = dense.chol();

References

License

The Universal Java Matrix Package is licensed under the GNU Lesser General Public License v3.0.