Flow past a cylinder

Guanjiang Chen Nick Zang

2021.04.11

Fig. 1 The computational domain and boundary conditions.

the averaged velocity of it is fixed to make sure the Reynolds number Re is 10,000, which is in the subcritical range. A pressure outlet condition is set for the outlet to allow pressure to convect beyond the computational domain. The cylinder surface is set to a **no-slip wall**. The top, bottom and two side boundaries are set to **symmetry conditions**.

libs ("libdynamicSmagorinskyModel.so");

- application pimpleFoam; startFrom startTime;
- startTime 1.4;
- stopAt endTime;
- endTime 2;
- deltaT 0.000005;
- writeControl timeStep;
- writeInterval 40000;
- purgeWrite 0;
- writeFormat ascii;
- writePrecision 8;
- writeCompression off;
- timeFormat general;
- timePrecision 8;
- runTimeModifiable true;

It is a incompressible case. I use pimpleFoam solver.

Near field result

The pressure PSD value around the cylinder is reasonable. The tonal peak at St=0.2 is well captured, which is a feature for the flow past a cylinder in the subcritical Reynolds number range.

4

Near field result

The velocity PSD in the flow field is also reasonable.

v/D=2

My curle set

Cur	rleAnalogy1							
i	<pre>functionObjectLibs ("libAcoustics.so");</pre>			с0	340;			
	type	Curle;		dRef	-1;			
	log	true;		pInf	0.0;			
	order	second;		pName	p;			
	<pre>probeFrequency 2; patches ("CYLINDER"); interpolationScheme cellPointFace; surfaces</pre>			rho	rhoInf;			
				rhoInf	1.205;	the centre of the		
				CofR (0 0 0)	;	cylinder		
				cleanFreq 10	90;	cymider		
	(CYLI {	NDER		writeFft tru	le;			
		type patches interpolate	patch; ("CYLINDER"); false;					
	});				Observ	Observers are set 50 diameters far		
	timeStart	0;			Trom ti	e cylinder		
	timeEnd	10;						

6

My curle result

Curle result seems to be reasonable

2	Line1	
	0	400
	800	

8

unit: mm

My FWH set

functionObject	smallL {	EStrisurf	ace_	farassatresmall			
log	true;		type #include	e	FfowcsWilliamsHawkings; "fwhCommonSettings";		
writeFft	true;		patches ("CYLINDER"); interpolationScheme cell;				
probeFrequency	2;		surface	s			
timeStart	0;//0.0001;		(CYLINDER1				
timeEnd	10;			{	+ 400	compledTriSupfeceMech.	
с0	340;				surface	<pre>sampleurrisurracemesh; smallLES_trisurface_small2.stl; calle:</pre>	
dRef	-1; //a coefficients for 2D case; set -1 for 3D cases			ı	interpolate	false;	
pName	p;);	ſ			
pInf	0;		nonUniformSurfaceMotion false;				
rho	rhoInf;		U0 Ufwh		(0 0 0); (0 0 0);		
rhoInf	1.205;	//7.572614108 cleanFreq 100;					
CofR (0 0 0);		ł	formulationType Farassat1AFormulation; fixedResponseDelay true; responseDelay 1e-4;				

9

My FWH result

If the control surface is very close to the cylinder, the result is close to the curle result.

My FWH result

If the control surface is a little far from the cylinder, the fwh result would be bad.

University of BRISTOL