
   

 

   

 

Notification Showing: Strategy use case 

https://github.com/unitools-apps/UniTools-android 

 

 Problem 
 
The GetCustomNews and CheckForUpdate  classes differ only in the execution of a portion of their 
check() method. It is precisely in the last lines of  the check()  method where a behavior 
is executed, always knowing that a condition is met, where it is checked if the notification is 
really needed to display iti.  
 
The small differences mean that, if a new type of check is implemented, this check will also have 
a similar implementation, differing only in its last lines. Therefore, in the face of small differences 
and large copy-pastes of code, there must be a way to avoid duplication of code around the 
codebase.  
 
The client class, HomeActivity, makes use of the check() methods of the GetCustomNews and 
CheckForUpdate  classes in its onCreate() method. 
 

UML Diagram 

 

 
 
  

https://github.com/unitools-apps/UniTools-android


   

 

   

 

GetCustomNews.java 

 

 

 
 
  



   

 

   

 

CheckForUpdate.java 

 

 

HomeActivity.java 

 

  



   

 

   

 

 Solution 
 
The Strategy pattern allows you to extract the variant behavior, between CheckForUpdate  
and GetCustomNews, into a separate class hierarchy from  the Strategy 
NotificationShowStrategy  interface and combine the original classes into a Checker 
class, thereby reducing duplicate code.  
 
In addition, for the client class, HomeActivity,  the algorithmic variants of checking, 
between an update and a news item, can be swapped during initialization in the 
onCreate() implementation. 
 

UML Diagram 

 
 

NotificationShowStrategy.java 

 



   

 

   

 

 
BaseStrategy.java 

 
  



   

 

   

 

UpdateStrategy.java 

 

 
NewsStrategy.java 

 

 
Checker.java 

 



   

 

   

 

HomeActivity.java 

 

  



   

 

   

 

 Pros and Cons 
 

The details of the implementation of the algorithm are separated to show notifications 
depending on whether it is a news story, a version update and another one that appears in the 
future. The separation falls on the implementation and the Checker that uses it for HomeActivity. 

Open Closed Principle. You can introduce new notification strategies without modifying 
Checker or HomeActivity, customer classes. 

The complexity of understanding and introducing new classes and interfaces, to provide a 
solution to a small portion of the codebase.  
 

 
i Observer is a design pattern applicable in the call of these methods from a publisher to subscribers of 
this type, considering the following conditions presented:  
The AppNotification::ShowUpdateAvailable method is called when there is only a version change of 
the app. 
The AppNotification::ShowCustomNewsNotification method is called  only if a PushNotificationModel is 
enabled.  


