Notification Showing: Strategy use case
https://github.com/unitools-apps/UniTools-android

@ Problem

The GetCustomNews and CheckForUpdate classes differ only in the execution of a portion of their
check() method. It is precisely in the last lines of the check() method where a behavior
is executed, always knowing that a condition is met, where it is checked if the notification is
really needed to display it'.

The small differences mean that, if a new type of check is implemented, this check will also have
a similar implementation, differing only in its last lines. Therefore, in the face of small differences
and large copy-pastes of code, there must be a way to avoid duplication of code around the
codebase.

The client class, HomeActivity, makes use of the check() methods of the GetCustomNews and
CheckForUpdate classes in its onCreate() method.
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GetCustomNews. java
public class GetCustomNews {
private static final String API_URL = "https://unitools.ir/config/pushNotification.json";
public static void Check() {

new Thread(() -> {
try {
URL url = new URL(API_URL);
BufferedReader in =
new BufferedReader(new InputStreamReader(url.openStream()));
StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readLine()) != null) {

page.append(inLine);

in.close();

PushNotifyModel pnm = new Gson().fromJson(page.toString(), PushNotifyModel.class);
if (pnm.enable)
AppNotification.ShowCustomNewsNotification(pnm.title, pnm.text, pnm.link);

} catch (Exception e) {
e.printStackTrace();

}
}).start();



CheckForUpdate. java

public class CheckForUpdate {

private static final String API_URL = "https://unitools.ir/config/version.txt";
public static void Check() {

new Thread(() -> {

try {
URL url = new URL(API_URL)

BufferedrReader in =

new BufferedReader(new InputStreamReader(url.openStream()));
StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readLine()) !'= null) {

page.append(inLine);

in.close();
if (!CH.getString(R.string.app_version).equals(page.toString()))
AppNotification.ShowUpdateAvailable();

} catch (Exception e) {
e.printStackTrace();

}
}).start();

HomeActivity. java

public class HomeActivity extends AppCompatActivity {
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
CH.initStatics(this);
SetupNav();
CheckForUpdate.Check();
GetCustomNews.Check();
ReminderAndAutoSilent.Setup(this);

MyDataBeen.onAppStarts(this);



@ Solution

The Strategy pattern allows you to extract the variant behavior, between CheckForUpdate
and GetCustomNews, into a separate class hierarchy from the Strategy
NotificationShowStrategy interface and combine the original classes into a Checker
class, thereby reducing duplicate code.

In addition, for the client class, HomeActivity, the algorithmic variants of checking,
between an update and a news item, can be swapped during initialization in the

onCreate() implementation.
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NotificationShowStrategy.java

package strategy;

public interface NotificationShowStrategy {
public String getApiURL();
public void showNotification();



BaseStrategy.java
package strategy;

public abstract class BaseStrategy implements NotificationShowStrategy {
protected String ApiURL;

@Override

public String getApiURL(){
return ApiURL;

¥



UpdateStrategy.java
package strategy;

public class UpdateStrategy extends BaseStrategy {

public UpdateStrategy(){
this.ApiURL = "https://unitools.ir/config/version.txt";
i

@Override
public void showNotification() {

AppNotification.ShowUpdateAvailable();
h

NewsStrategy.java
package strategy;

public class NewsStrategy extends BaseStrategy {
public NewsStrategy(){
this.ApiURL = "https://unitools.ir/config/pushNotification.json";
}

@verride
public void showNotification() {

PushNotifyMadel pnm = new Gson().fromJson(page.toString(), PushNotifyModel.class);

AppNotification.ShowCustomNewsNotification(pnm.title, pnm.text, pnm.link);

Checker. java

public class Checker {
NotificationShowStrategy strategy;

public void setStrategy(NotificationShowStrategy strategy){
this.strategy = strategy;
}

public void check(){
new Thread(() -> {
try {
URL url = new URL (spec: strategy.getApiURL());
BufferedReader in =
new BufferedReader(new InputStreamReader(in: url.openStream()));

StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readlLine()) != null) {
page.append(str: inLine);

in.close();
strategy.showNotification();
} catch (Exception e) {
e.printStackTrace();
}

}).start();



HomeActivity. java

package activities;

import strategy.Checker;
import strategy.NewsStrategy;
import strategy.UpdateStrategy;

/...

public class HomeActivity {
private Checker checker;

//
1/

checker

//

1/

checker.
.check();
checker.
checker.

protected void onCreate() {

setStrategy(new UpdateStrategy());

setStrategy(new NewsStrategy());
check();



Aia Pros and Cons

V' The details of the implementation of the algorithm are separated to show notifications
depending on whether it is a news story, a version update and another one that appears in the
future. The separation falls on the implementation and the Checker that uses it for HomeActivity.

“ Open Closed Principle. You can introduce new notification strategies without modifying
Checker or HomeActivity, customer classes.

X The complexity of understanding and introducing new classes and interfaces, to provide a
solution to a small portion of the codebase.

" Observer is a design pattern applicable in the call of these methods from a publisher to subscribers of

this type, considering the following conditions presented:
The AppNotification:ShowUpdateAvailable method is called when there is only a version change of

the app.
The AppNotification:ShowCustomNewsNotification method is called only if a PushNotificationModel is

enabled.



