Notification Showing: Strategy use case
https://github.com/unitools-apps/UniTools-android

@ Problem

The GetCustomNews and CheckForUpdate classes differ only in the execution of a portion of their
check() method. It is precisely in the last lines of the check() method where a behavior
is executed, always knowing that a condition is met, where it is checked if the notification is
really needed to display it'.

The small differences mean that, if a new type of check is implemented, this check will also have
a similar implementation, differing only in its last lines. Therefore, in the face of small differences
and large copy-pastes of code, there must be a way to avoid duplication of code around the
codebase.

The client class, HomeActivity, makes use of the check() methods of the GetCustomNews and
CheckForUpdate classes in its onCreate() method.

UML Diagram

HomeActivity

CheckForUpdate GetCustomNews
+check() +check()



https://github.com/unitools-apps/UniTools-android

GetCustomNews. java
public class GetCustomNews {
private static final String API_URL = "https://unitools.ir/config/pushNotification.json";
public static void Check() {

new Thread(() -> {
try {
URL url = new URL(API_URL);
BufferedReader in =
new BufferedReader(new InputStreamReader(url.openStream()));
StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readLine()) != null) {

page.append(inLine);

in.close();

PushNotifyModel pnm = new Gson().fromJson(page.toString(), PushNotifyModel.class);
if (pnm.enable)
AppNotification.ShowCustomNewsNotification(pnm.title, pnm.text, pnm.link);

} catch (Exception e) {
e.printStackTrace();

}
}).start();



CheckForUpdate. java

public class CheckForUpdate {

private static final String API_URL = "https://unitools.ir/config/version.txt";
public static void Check() {

new Thread(() -> {

try {
URL url = new URL(API_URL)

BufferedrReader in =

new BufferedReader(new InputStreamReader(url.openStream()));
StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readLine()) !'= null) {

page.append(inLine);

in.close();
if (!CH.getString(R.string.app_version).equals(page.toString()))
AppNotification.ShowUpdateAvailable();

} catch (Exception e) {
e.printStackTrace();

}
}).start();

HomeActivity. java

public class HomeActivity extends AppCompatActivity {
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
CH.initStatics(this);
SetupNav();
CheckForUpdate.Check();
GetCustomNews.Check();
ReminderAndAutoSilent.Setup(this);

MyDataBeen.onAppStarts(this);



@ Solution

The Strategy pattern allows you to extract the variant behavior, between CheckForUpdate
and GetCustomNews, into a separate class hierarchy from the Strategy
NotificationShowStrategy interface and combine the original classes into a Checker
class, thereby reducing duplicate code.

In addition, for the client class, HomeActivity, the algorithmic variants of checking,
between an update and a news item, can be swapped during initialization in the

onCreate() implementation.

UML Diagram

Checker <<Interface>>
+setStrategy(strategy : NotificationShowStrategy) [<“>———— MNotificationShowStrategy |
+check() +getApiURL() : String

+showNotification()
1
1
1
HomeActivity BaseStrategy

-ApiURL : String

UpdateStrategy NewsStrategy |

NotificationShowStrategy.java

package strategy;

public interface NotificationShowStrategy {
public String getApiURL();
public void showNotification();



BaseStrategy.java
package strategy;

public abstract class BaseStrategy implements NotificationShowStrategy {
protected String ApiURL;

@Override

public String getApiURL(){
return ApiURL;

¥



UpdateStrategy.java
package strategy;

public class UpdateStrategy extends BaseStrategy {

public UpdateStrategy(){
this.ApiURL = "https://unitools.ir/config/version.txt";
i

@Override
public void showNotification() {

AppNotification.ShowUpdateAvailable();
h

NewsStrategy.java
package strategy;

public class NewsStrategy extends BaseStrategy {
public NewsStrategy(){
this.ApiURL = "https://unitools.ir/config/pushNotification.json";
}

@verride
public void showNotification() {

PushNotifyMadel pnm = new Gson().fromJson(page.toString(), PushNotifyModel.class);

AppNotification.ShowCustomNewsNotification(pnm.title, pnm.text, pnm.link);

Checker. java

public class Checker {
NotificationShowStrategy strategy;

public void setStrategy(NotificationShowStrategy strategy){
this.strategy = strategy;
}

public void check(){
new Thread(() -> {
try {
URL url = new URL (spec: strategy.getApiURL());
BufferedReader in =
new BufferedReader(new InputStreamReader(in: url.openStream()));

StringBuilder page = new StringBuilder();
String inLine;

while ((inLine = in.readlLine()) != null) {
page.append(str: inLine);

in.close();
strategy.showNotification();
} catch (Exception e) {
e.printStackTrace();
}

}).start();



HomeActivity. java

package activities;

import strategy.Checker;
import strategy.NewsStrategy;
import strategy.UpdateStrategy;

/...

public class HomeActivity {
private Checker checker;

//
1/

checker

//

1/

checker.
.check();
checker.
checker.

protected void onCreate() {

setStrategy(new UpdateStrategy());

setStrategy(new NewsStrategy());
check();



Aia Pros and Cons

V' The details of the implementation of the algorithm are separated to show notifications
depending on whether it is a news story, a version update and another one that appears in the
future. The separation falls on the implementation and the Checker that uses it for HomeActivity.

“ Open Closed Principle. You can introduce new notification strategies without modifying
Checker or HomeActivity, customer classes.

X The complexity of understanding and introducing new classes and interfaces, to provide a
solution to a small portion of the codebase.

" Observer is a design pattern applicable in the call of these methods from a publisher to subscribers of

this type, considering the following conditions presented:
The AppNotification:ShowUpdateAvailable method is called when there is only a version change of

the app.
The AppNotification:ShowCustomNewsNotification method is called only if a PushNotificationModel is

enabled.



