Coordinate Conversion

First off, things are complicated because this machine doesn’t truly use polar
coordinates. Normal polar coordinates consist of an angle and a distance (¢
and r). But in our case, the extruder arms move in an arc and not a straight
line. This means that our coordinates have to be represented by two angles.
6, is the angle of rotation of the platter. 6, is the angle of the arm. Since
this system has two poles, we’ll call it bipolar coordinates.
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In the above diagram, R is the length of the extruder arm which is 160mm
on this machine. To simplify calculations all angles will be in radians.
The normal conversion from cartesian to polar is given by ...
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But for bipolar coordinates the conversion is ...
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Parametric Equations

We can now convert coordinates directly from cartesian to bipolar form, but
more importantly, we need to know how to make the machine move in a
straight line. Motion in 2D space is described using parametric equations.
The equations for moving in a straight line in cartesian space are ...

x =Vt + 1 (5)

y =Vt +yo (6)

...where t is time, V, & V,, are the velocities in the z and y directions, and
xo & yo are the starting points.

By substituting these into the conversion for bipolar coordinates, we get
the equations for linear motion in bipolar space.
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Time

The axes on the machine are controlled by stepper motors. Unlike most elec-
tric motors which run continuously when they are turned on, stepper motors
move in small increments. In order to drive the motors, the controller needs
to know exactly when to make each step. Since we know what the location
of each axis will be after each step, we can solve for ¢ in the parametric
equations to find out when to pulse the motors.



For 65 the parametric equation is parabolic, so we must use the quadratic
formula. The solution is broken down into components for simplicity.

b= Vb? — 4dac
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Remember that in the above equations, 65 is the point after the next step
will be made. It is easily determined by

627n+1 == 92,71 :|: Aeg (13)

where Afy is the distance that axis moves with each step. A#, is governed
by the gear ratio and the number of steps per revolution of the motor.

The reason for the + above is because we do not know in which direction
the axis is moving (forward or backward) or if it will reverse direction before
the step occurs. This means there are two possibilities. Combined with the
two possible outcomes of the quadratic, this means that we can get up to 4
values for t5. So which one do we choose? We use the lowest value that is
still in the future (> t).

Now lets solve for ¢ in thetay
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But there is a problem. 6, is dependent on #,. In order to find ¢t we need
to know 65, but in order to get 5 we need to know t. The solution we used is
crude but effective. Instead of waiting until a certain time to make the step,
the software periodically checks what the position of #; should be based on
the current time. If the difference between the current and ideal positions is
too great, it makes the step.



Derivatives

It is also important for the software to know in which direction to move
the motors, forward or reverse. When moving in a straight line in cartesian
space, the direction is always the same. But in bipolar space, the direction
can reverse in the middle of a move. In order to determine which way to go,
we must find the signs of the derivatives of the parametric equations.

These are the derivatives. Here x and y are given by equations (5) and

(6).
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