Skip to content

uralik/mode_recovery

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mode recovery in neural autoregressive sequence modeling

ACL-IJCNLP 2021 5th Workshop on Structured Prediction for NLP

Paper link: https://arxiv.org/abs/2106.05459

Usage

This code is the implementation of the learning chain used in the paper. Single experiment with a particular learning chain can be started as:

python run_experiment.py N,

where N is the number starting from 1 to 300 meaning the particular configuration of the learning chain returned by the config_factory() function.

Every experiment saves the statistics from all induced distribution along the learning chain in the pickle file. Mode recovery costs are computed using functions from compute_pkls.py. compute_pkls.py parallelize computation of mode recovery costs across multiple cpus such that each process takes an independent pickle file.

The jupyter notebook plots.ipynb implements all the plots which are used in the paper. Please contact me if you want to get pkl files from our experiments.

Requirements

  • torch
  • scipy
  • numpy
  • tqdm
  • fire

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published