How CSS works behind the
scene

1. Overview

Document Object

v

Load HTML = Parse HTML Model (DOM)

‘ Parse CSS

Resolve conflicting CSS Object Model
CSS declarations (CSSOM)
(cascade)

Load CSS

Process final CSS
values

Final rendered Website rendering: Render tree —

website the visual formatting model

2. CSS Terminology (CSS rules)

How CSS works behind the scene

Selector Declaration block

| l

.my-class||{

color: blue;
text-align: center;

font-size: 20px;

3. CSS Parsing: the Cascade (The ‘C’ in CSS)

a. Process of combining differenct stylesheets and resolving conflicts between
different €ss rules and declarations , When more than one rule applices to a

certain element.

IMPORT ANCE > SPECIFICITY > SOURCE ORDER

1. User | important declarations
1. Inline styles

2. Author ! important declarations o)
Same 2.1Ds Same The last declaration in the code will

3. Author declarations importance? specificity? override all other declarations and
3. Classes, pseudo-classes, attribute will be applied.

4. User declarations

4. Elements, pseudo-elements
5. Default browser declarations

<l

5 &

§
'\\gtojé,g
£ 95 F

(N R @ Don't Click here |

e Summary

How CSS works behind the scene

o CSS declarations marked with !limportant have the highest priority.

o But only use !limportant as a last resource. It's better to use correct
specificities - more maintainable code!

o Inline styles will always have priority over styles in external stylesheets
o A selector that contains 1 ID is more specific than one with 1000 classes

o A selector that contains 1 class is more specific than one with 1000
elements

o The universal selector * has no specificity value (0,0,0,0)
o Rely more on specificity than on the order of selectors

o But rely on order when using 3rd-party stylesheets - always put your
author stylesheet last

4. CSS Parsing: Value processing

width padding font-size font-size font-size
(paragraph) (paragraph) (root) (section) (paragraph) "
ng">(S§
140px
1. Declared value P _ - 1.5rem -
(author declarations) 66% .section {
2. Cascaded value 66% _ 16px om _ : orangered;
(after the cascade) (Browsexdefault)
3_. S_pecl_fled value 66% opx 16px 1. :
(defaulting, if there is no cascaded value) (I nitial val ue) ?g\\“? <
¥ o
4. Qomputed value 66% opx) 16pX ———» 24px 24px
(converting relative values to absolute) o 2808 (1.5 * 16px)
¥ 2
5. Used value 184.8px opx 16px 24px 24px
(final calculations, based on layout)
6. Actual value 185px opx 16px 24px 24px
(browser and device restrictions) (Let's analyse the green paragraph)

5. CSS Parsing: Value processing (unit conversion)

How CSS works behind the scene

Example

(9

% (fonts) 150% _

% (lengths) 10% _—

Font-based
T

Viewport-based

Summary

o

em (font) 3em —

€M (lengths) 2em —

1lorem e

vh 90vh R —

80vw _—

How to convert
to pixels

X% * parent's
computed font-size

x% * parent's
computed width

x * parent
computed font-size

x * current element
computed font-size

x * root
computed font-size

x * 1% of
viewport height

x * 1% of
viewport width

no inheritance — see next lecture)

(o]

(o]

(e]

specify font-size

(o]

specify lengths

[¢]

size

o

[e]

Result in
pixels

24px

100px

72px (3 * 24)

48px

160px

90% of the current
viewport height

80% of the current
viewport width

4. Computed value
(converting relative values to absolute)

html, body {

i

header {

}

_header-child {

Each property has an initial value, used if nothing is declared (and if there is

Browsers specify a root font-size for each page (usually 16px)
Percentages and relative values are always converted to pixels

Percentages are measured relative to their parent’s font-size, if used to

Percentages are measured relative to their parent’s width, if used to

em are measured relative to their parent font-size, if used to specify font-

em are measured relative to the current font-size, if used to specify lengths

rem are always measured relative to the document’s root font-size

o vh and vw are simply percentage measurements of the viewport’s height

and width.

6. CSS Parsing: Inheritance

How CSS works behind the scene

YES

Specified value

Cascaded value

Every CSS property must
have a value

NO

Is therea
cascaded value? I

NO

Is the property
inherited? (specific to
each property)

Specified value

Initial value (specific to
each property)

e Summary

Specified value

Computed value of
parent element

THIS IS INHERITANCE!

EXAMPLE

Let's analyse
line-height
on .child

30px

.parent {

e font size of the element itself

je and length values, the absolute length,
pecified

iguous order defined by the formal

Source: https://developer.mozilla.org/en/docs/Web/CSS/line-height

o Inheritance passes the values for some specific properties from parents to
children — more maintainable code

o Properties related to text are inherited: font-family, font-size, color, etc

o The computed value of a property is what gets inherited, not the declared
value.

o Inheritance of a property only works if no one declares a value for that
property

o The inherit keyword forces inheritance on a certain property

o The initial keyword resets a property to its initial value.

7. Website re

ndering

a. Algorithm that calculates boxes and determines the layout of theses boxes, for
each element in the render tree, in order to determine the final layout of the

page

i. Dimensions of boxes: the box model

ii. Box type: inline, bloc, inline-block

iii. Positioning Scheme: floats and positioning

iv. Stacking contexts

How CSS works behind the scene

v. Other elements
vi. Viewport size, dimensions of images, ...

b. The box model

- Content: text, images, etc;

background color or background image.

|

! I

! I

! I

|

| 1 ddi i

I padding i

i A . i - Padding: transparent area around the

i : it N i content, inside of the box;

! I

| | A

! | + Border: goes around the padding and

Imargin FILL AR heigit i the content;

| CONTENT }

} ! - Margin: space between boxes;

! |

! |

i border } + Fill area: area that gets filled with
|

! |

! |

! |

! |

|

1. * total width = right border + right padding + specified width + left padding +
left border
* total height = top border + top padding + specified height + bottom
padding + bottom border

|

i

i

i
I padding i I padding i
i i]
i width i | width i
| | i |
I margin height i imargm height i
1 CONTENT ! N ! CONTENT '
! box-sizing: border-box 1]
1
i
border | border !

1

1

|

i

,,

total width = right-berder + right-paeiding + specified width + lefipedaing + |eFehordar
total height = top-berder + toppaeding + specified height + botiarpadding + botioraarder

Example: height = 0 + 25g€+ 100px + 28K + 0 = 100px

c. The Box types

How CSS works behind the scene

Block-level Inline-block

boxes boxes

Elements formatted visually as - A mix of block and inline - Content is distributed in lines
blocks

Occupies only content’s space <«+—— - Occupies only content's space
100% of parent's width

No line-breaks - No line-breaks

- Vertically, one after another
+ Box-model applies as showed + No heights and widths
Box-model applies as showed /
- Paddings and margins only
horizontal (left and right)

display: block

(CHCNER i) display: {inline-block display: inline
(display: list-item)

(display: table)

d. Positioning schemes

Absolute
Normal flow Floats o
positioning
- Default positioning scheme; + Element is removed from the —_ + Element is removed from the
normal flow; normal flow
+ NOT floated;
- - Text and inline elements will # + Noimpact on surrounding
+ NOT absolutely positioned; wrap around the floated element; content or elements;
: Elements laid out according to - The container will not adjust its - We use top, bottom, left and
their source order. height to the element. right to offset the element
from its relatively positioned
container.
Default float: left position: absolute
position: relative float: right position: fixed

e. Stacking contexts (z-indexes)

How CSS works behind the scene

z—-1index: 3

position: relative

z-index: 2

position: absolute

z-1index: 1

— position: relative

8. CSS Architecture, Components and BEM
a. Think : about the layout of your webpage or web app before writing code

b. Build : your layout in HTML and CSS with a consistent structure for naming
classes

c. Architect : create a logical architecture for your CSS with files and folders
d. Think: Component-driven design
i. Modular building blocks that make up interfaces
ii. Held together by the layout of the page
iii. Re-usable across a project, and between different projects
iv. Independent, allowing us to use them anywhere on the page
e Atomic Design
o Atoms
o Molecules
o Orgnisms (component)
o Templates

o Pages

How CSS works behind the scene

e. Build: BEM
i. Block Element Modifier
ii. Block : standalone component that is meaningful on its own
iii. Element : part of a block that has no standalone meaning
iv. Modifier : a different version of a block or an element
.block { } / .block__element{ } / .block__element—modifier { }
f. Architect
i. The 7-1 Pattern

7 different folders for patial Sass files, and 1 main Sass file to import all
other files into a compiled CSS stylesheet

THE 7 FOLDERS

+ base/

+ components/
. layout/

*+ pages/

+ themes/

+ abstracts/

+ vendors/

How CSS works behind the scene

