Introduction

Acknowledgments

- Giovanni dal Maso, Peter-Raymond Kettle, Andreas Knecht!
- Zachary Hodge

Setup

- ▷ G4BL version 3.06
- GEANT4 version 10.05.p01

both patched to include HIMB pion production model

- PIONEER G4BL respositories of Zachary Hodge (https://gitlab.com/zhodge)
- based on/incorporating material from
 - ► HIMB pion production model (QGSP_BIC_HIMB_HYBRID_HP_BIAS_EMY)
 - F. Berg, et al., Phys. Rev. Acc. and Beams 19, 024701 (2016)
 - 'CMBL A High-intensity Muon Beam Line . . . ', Ph.D thesis, Felix Berg
 - 'Production, . . . of surface muon beams . . . ', Ph.D thesis, Zachary Hodge

Goals

- validate pioneer G4BL with Giovanni's surface muon G4BL
- ▶ pioneer G4BL for pions, phase space measurement, . . .

Particle production

Particle production

HIMB model (also tests without HIMB) physics QGSP_BIC_HIMB_HYBRID_HP_BIAS_EMY splittingFactor=100

▶ target

 $polycone\ TargetCone\ innerRadius = 203.13912, 200.89821, 243.67818, 246.86088$

 $outerRadius{=}203.13912,206.32182,249.10179,246.86088$

 $z{=}{-}20.618932, {-}17.948325, {17.948325}, {20.618932}$

initialPhi=0 finalPhi=360 maxStep=100

material=TargetEGraphite color=1,1,1 kill=0

place TargetCone copies=1 x=-194.9 y=0.0 z=112.5 rotation='Y(180+30)'

▶ beam<u>line</u> zero defined by initial dipole selecting *p*

posAHSW41=0

write pions/muon

place DetEMuPiFromTarget copies=1 x=0.0 y=0.0 z=150.0

 $\rightarrow\,$ (propagation of) beam starts at $z=150\,{\rm cm}$

- Samples, using param scaleMom (= p/28 MeV)
 - > surface muons with p = 28 MeV (comparison with Giovanni's results)
 - ▷ pions/muons with $p = 75.9 \,\text{MeV}$ (from Zach)

Particle transport

• beam 'sampling' (so far)

virtualdetectors

virtualdetector CALOENTR radius=200 length=1 material=Vacuum

virtual detector ATAR width=20 height=20 length=1 material=Vacuum $\ensuremath{\mathsf{Vacuum}}$

profile.txt

profile zloop=posQSF41, posATAR, 10 particle=mu+

(also for pi+)

▶ positions

place CALOENTR z=\$posCALOENTR place CALOCNTR z=\$posATAR param posQSF41 1533.05 param posCALOENTR 17199. param posATAR 18000. param posCALO 18000.

scaleMom

- > Zach's default setting scaleMom = 2.3491 ($\rightarrow p = 65 \text{ MeV}$)?
- surface muons with scaleMom = 1

so far no 'air' in Zach's beamline

TMath::Sqrt(Px*Px + Py*Py + Pz*Pz) 3.013 Inderflow Overflow 600 (Zach's) mu+/pi+ 300 200 30 40 50 60 70 80 TMath::Sgrt(Px*Px + Pv*Py + Pz*Pz) TMath::Sqrt(Px*Px + Py*Py + Pz*Pz 1.17 td Dev Inderflov 200 mu+ 100 15 20 25 30 TMath::Sqrt(Px*Px + Py*Py + Pz*Pz

CALOCNTR

Giovanni's two profiles

Overlays beam positions/envelopes

Parameter comparison (I)

- BeamTeam (google) notebook mirrors Giovanni's parameters in
 - Settings/CMBL2021_05
 - TBC?! (different in Settings/CMBL2021_05_optimized)
- currents and settings

place QSK rename=QSK41 current=\$scaleMom*\$QSK41set z=\$posQSK41

- QSK4?current is not used
- Indeed, looks like a sign flip
 - reason unclear (to me)

Giovanni/PIONEER (2nd try)

Momentum

• Issue (?)

- AHSW selects momentum
- driven by outliers? (profile.txt analysis)

Miscellaneous

Discussions with

- Giovanni dal Maso on 2022/05/04, plus emails/code exchange
- Peter-Raymond Kettle on 2022/05/05

• PRK past reference measurements

p [MeV]	Rate $f [\pi^+/sec @2.2mA]$	$\sigma(X)$ [mm]	$\sigma(Y)$ [mm]	$f(\pi^+)/f(\mu^+)/f(e^+)$
107.8	6.8×10^8	11	9	75/20/5
84	4.7×10^{8}	13	13	71/19/9

Background (PRK)

- SEP41 (+/-200kV) may run into limitations at 'high' end of momentum
- ▶ had had issues with protons (\rightarrow teflon, tape)
- maximize particle separation by optimizing TOF separation (position)
- 'Inversion' of (x, y, f) measurement to phasespace
 - Peter-Raymond uses transport
 - Giovanni uses another setup

▷ . . .